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Language models and protocol
standardization guidelines for accelerating
synthesis planning in heterogeneous
catalysis

Manu Suvarna1, Alain Claude Vaucher 2, Sharon Mitchell 1,
Teodoro Laino 2 & Javier Pérez-Ramírez 1

Synthesis protocol exploration is paramount in catalyst discovery, yet keeping
pace with rapid literature advances is increasingly time intensive. Automated
synthesis protocol analysis is attractive for swiftly identifying opportunities
and informingpredictivemodels, however such applications in heterogeneous
catalysis remain limited. In this proof-of-concept, we introduce a transformer
model for this task, exemplified using single-atom heterogeneous catalysts
(SACs), a rapidly expanding catalyst family. Our model adeptly converts SAC
protocols into action sequences, and we use this output to facilitate statistical
inference of their synthesis trends and applications, potentially expediting
literature review and analysis. We demonstrate themodel’s adaptability across
distinct heterogeneous catalyst families, underscoring its versatility. Finally,
our study highlights a critical issue: the lack of standardization in reporting
protocols hampers machine-reading capabilities. Embracing digital advances
in catalysis demands a shift in data reporting norms, and to this end, we offer
guidelines for writing protocols, significantly improving machine-readability.
We release our model as an open-source web application, inviting a fresh
approach to accelerate heterogeneous catalysis synthesis planning.

Heterogeneous catalysis stands at the forefront of developing sus-
tainable technologies, driving the transition towards carbon-neutral
chemicals and green energy carriers from renewable feedstocks1,2. At
its core, catalyst design revolves around exploring and refining
synthesis procedures, enabling the creation of unique and tailored
architectures with distinct reactivity3,4. Catalyst design is often viewed
as more of an art than a science due to the subtleties in preparation
methods introduced by synthetic chemists, ultimately leading to
diverse protocols and catalyst formulations found in research articles
and patents5–8. Despite the empirical nature, the literature review
serves as the foundational step in designing reaction-specific catalysts,
providing crucial insights into synthesis strategies, suitable active

sites, supports, and promoters, and preventing the repetition of past
work9,10. However, with the ever-growing rate of publications, catalysis
practitioners face a daunting task of keeping abreast of the latest
developments in their respective fields. This challenge spans from
identifying gaps for formulating original research objectives for pro-
jects to drafting grant applications and identifying opportunities for
intellectual property in patents. Furthermore, traditional literature
searches can be highly time-consuming, often spanning several weeks
ormonths. This extendedduration calls formore efficientmethods for
literature review and synthesis protocol extraction.

In recent years, text mining has gained prominence in automated
information extraction from large corpus of material sciences11–14 and
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organic chemistry15–18 publications. Notable examples include named
entity recognition to extract material properties,19–22 and natural lan-
guage processing9,15,16,23–27 and deep learning17,18,28,29 approaches to
capture synthesis protocols and store this information in structured
databases that enable collective insights. The emergence of large lan-
guage models (LLMs), for example, GPT-3 and ChatGPT, claim to have
a disruptive impact on natural sciences and engineering30–32. Generally,
language models could read hundreds of synthetic procedures and (i)
expedite the literature review and foster collective analysis of experi-
mental data to identify interesting patterns and unexplored areas, (ii)
generate data for trainingmachine learningmodels to screen reaction-
specific catalysts, and (iii) ultimately, drive computer-assisted synth-
esis planning and autonomous experiments to accelerate innovation in
catalyst discovery and design33,34. Despite these promises, the appli-
cation of text mining and language models in the heterogeneous cat-
alysis community remains relatively unexplored.

In this paper, we introduce a transformer model for the auto-
mated extraction of synthesis protocols in heterogeneous catalysis,
aiming to streamline the literature review and analysis process. The
significance of the approach is illustrated by the case of single-atom
heterogeneous catalysts (SACs), a catalyst family that has garnered
substantial attention in recent years due to their precise atomic-scale
structures, highmetal utilization, and unique reactivity35–37. A literature
comparison reveals that SACs are the fastest-growing family of cata-
lytic materials (Fig. 1a) over the past decade, with a wide range of
electro-, thermo-, and photocatalytic applications (Fig. 1c). However,

their compositional diversity combined with challenges associated
with confirming their properties and the fast-paced exploration of
synthetic routes, including wet-chemical, solid-state, gas-phase, and
hybrid methods38–40 or minor adaptations to existing procedures41–43

(Fig. 1b), make it extremely challenging to follow progress.
Based on a transformer architecture, our model captures details

contained within and converts prose descriptions into action
sequences with associated parameters, covering all steps required for
replicating the synthesis (Fig. 2). We extend its application to analyze
trends in prominent electrocatalytic processes like oxygen and carbon
dioxide reduction reactions. Beyond SACs, our model is adaptable,
offering accurate predictions for other prominent families of catalytic
materials. Its potential to reduce literature analysis times significantly
underscores its value. However, our analysis highlights the critical
issue of non-standardized synthesis reporting on text mining effi-
ciency. To address this, we propose guidelines for machine-readable
synthesis procedures. By comparing the model on original and
guideline-modified protocols, we observe a significant performance
enhancement, demonstrating the value of protocol standardization as
a key enabler to accelerate synthesis planning in heterogeneous
catalysis.

Results
Annotation and extraction of synthesis actions
In our study, we targeted reviewing SAC literature fromwhen the term
was introduced in 2010 to 2021, identifying nearly 1200 papers. Of
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Fig. 1 | Trends in SAC research. a The Comparative increase in the number of
publications on SACs to other prominent material families for catalytic application
illustrates the exceptional growth. b Relative number of publications reporting
SACs for electro, thermo, and photocatalytic applications based on manual analy-
sis, illustrating the distribution of synthetic approaches applied. c–eNetworkmaps
linking the main metals supported in SACs to their targeted electro-, thermo- and
photocatalytic applications. Node areas are scaled to the frequencies mentioned in
literature, and the edges interconnecting the nodes relate to the frequency with
which the SACs and reactions appear simultaneously. The nodes’ size and the

edges’ thickness are normalized to enable a fair comparison across all three cata-
lytic applications. MOFs metal-organic frameworks, HEA high entropy alloys, SP
solution-phase, HT high-temperature, EC electrochemical, GP gas-phase, and their
corresponding hybrid methods; ORR oxygen reduction reaction, OER oxygen
evolution reaction, HER hydrogen evolution reaction, CO2RR carbon dioxide
reduction reaction, Halo halogenation, Hyd hydrogenation, Oxd oxidation, Degrd
degradation, NRR nitrogen reduction reaction, NOC nitric oxide conversion, and
BO benzaldehyde oxidation. Source data are provided in the source data file.
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these, 569 were experimental reports, while the remainder comprised
reviews and theoretical studies. We focused on experimental papers,
from which we manually reviewed 145 publications, aiming to analyze
the trends in synthetic routes investigated across various thermo-,
electro-, and photochemical reactions (Supplementary Note 1).
Synthesis routes of SACs typically encompass various steps, such as
mixing, wet deposition, pyrolysis, filtering, washing, and annealing.
Conventionally, these procedures are reported within the “Methods”
sections of scientific articles as unstructured natural language-based
textual descriptions. Our goal was to extract all relevant synthesis
steps, related conditions, and the resultingmaterial compositions into
a structured format, as exemplified in Fig. 3a. To facilitate our analysis,
wedefined the synthesis of SACs as the process starting from themetal
precursor and carrier or carrier precursor and continuing until a cat-
alytic material containing single atoms stabilized on a support is
obtained. Using this definition, we classified the reported synthetic
approaches into eight categories and an additional post-synthetic
treatment step (Supplementary Table 1).

To develop a framework for extracting and analyzing this infor-
mation, we initially identify the most commonly used synthetic steps
that could later be used as action terms for annotation purposes
(Supplementary Note 2, Supplementary Table 2). We further analyzed
the frequency of occurrence of synthetic steps in the same subset of
145 publications through manual analysis. Each step involves several
relevant parameters, such as the temperature, temperature ramp,
atmosphere, and duration in the case of pyrolysis. These details need
to be clearly defined and can be customized depending on the
required level of detail. Thus, all such synthetic steps and essential

parameters necessary to replicate the experiments were identified and
labeled as action terms (Supplementary Table 3).

The action terms were then used to manually annotate a ran-
domized subset of 127 synthesis paragraphs (approximately 25% of
the total paragraphs compiled) comprising 936 sentences. The
annotation was performed on the dedicated software, as shown in
Fig. 3b. (see “Methods” for details). Using this set of annotated
paragraphs, and combining it with previously annotated set for
organic synthesis,17 we fine-tuned a pretrained transformer model17

to devise our ACE (sAC transformEr) model, which translates full-
length unstructured sentences from entire paragraphs into a struc-
tured, machine-readable sequence of information (see “Methods”
for details and Supplementary Note 3). We evaluated the fidelity of
our model based on metrics such as the Levenshtein similarity
and BLEU (Bilingual Evaluation Understudy) scores. With an
overall Levenshtein similarity of 0.66, our ACE model can capture
and extract approximately 66% of information from synthesis
protocols into correct action sequences, while a BLEU score of 52
attests to the high-quality translation of synthesis sentences
from natural language into machine-readable formats (Supplemen-
tary Note 4)

To maximize the potential of this language model for automated
extraction of synthetic protocols, we wanted to make it easily acces-
sible to a broad audience and, more specifically, experimental
researchers. For this purpose, we developed a web application and
open-sourced it at synthesis_protocol_extraction. Synthetic and com-
putational researchers can easily access this tool, requiring no prior
programming or coding experience.

Analysis

Synthesis conditions Model transferability Protocol guidelines

Modelling

Data split Deep learning Performance

Annotation

Action terms Customizable

Data collection

Database search Experimental reports Publisher access rights Synthesis paragraphs
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Search  Engine
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Fig. 2 | Approach to text mining SAC literature. A literature search identified
articles on SACs publishedbetween 2010-2021, followedbymanual classification of
experimental reports. Relevant papers were sourced with permission from various
publishers in json or txt format. To configure the annotation framework, 127
synthesis paragraphs containing 936 sentences were manually annotated with 33
action terms defined in this study. Post annotation, the 936 sentences were split

into training, validation, and test split (80:10:10), and theACEmodelwasdeveloped
until achieving acceptable performance. Analysis of the data extracted by the
model provides insights into synthesis and application trends. Extension of the
model to other families of heterogeneous catalysts demonstrates its transferability,
and guidelines for the standardization of synthesis protocols set the path for
facilitating future text mining endeavors.
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Accelerating literature analysis and synthesis insights
The ACE model serves the dual purpose of synthetic protocol text
mining and collective analysis of this literature data to reveal interesting
patterns. As such, this model serves as an invaluable tool to catalysis
practitioners as it expedites literature review practice, which is often
routine, tedious, and time-intensive. We estimate the time spent on one
single paper and for collecting details on the metal speciation, compo-
sition, synthetic route, and reaction types by a SAC researcher to be
approximately 30min without any help and under 1min with our ACE
model. Scaling this effort to 1000publicationswould cumulatively result
in a minimum of 500 man-hours in an ideal case scenario, while text
mining these publications by the ACEmodel would take amere 6–8h (a
set of 300 papers were text mined in less than 2h for quantification)
offering over 50-fold reduction in the time invested for literature ana-
lysis- and thus demonstrating the true worth of language models.

The results of our analysis on the synthesis of SACs complement
existing domain knowledge, thereby instilling greater confidence in
themodel output. By applying topic queries to articles reporting SACs
for the oxygen reduction reaction (ORR) and CO2 reduction reaction
(CO2RR), applications accounting for approximately one-third of the
reports in our database, we identified themost frequently usedmetals
and metal precursors, carrier materials, and solvents (Fig. 4a, b). Our
analysis revealed that Fe is one of the most commonly investigated
metals for the ORR reaction, with Fe-based precursors typically
involving chlorides or nitrates. The model findings also revealed that
carbons derived from zeolitic imidazolate frameworks (ZIF-8) are a
popular choice for carrier materials in ORR applications due to their

high surface areas, microporous structures, chemical and thermal
stabilities, and synthesis controllability, with ZIF-8 synthesized from
2-methylimidazole and Zn(NO3)2 via solvothermal and solvent meth-
ods being prevalent. The analysis also provides valuable insights into
the temperatures applied during thermal treatments in SAC synthesis,
for example, pyrolysis, annealing, and reductive treatments (Fig. 4c). A
broad range of temperatures are used in all cases, but distinct peaks
are observed. These are typically around 1173 K for annealing and
pyrolysis steps. Reduction treatments usually activate the catalyst at
lower temperatures (373–423 K). For SACs subjected to heat treat-
ment, two distinct peaks are observed, where the evidenced distribu-
tion at lower temperatures could plausibly account for instances
where the catalyst was subjected to heat treatment (573–623 K), post
the metal stabilization on the carrier.

Though the above enterprise presents valuable information to
synthesis experts for informed decision-making during the experi-
mental planning stages, we realize that the seamless automation of
text-mined synthetic protocols to create comprehensive SAC reposi-
tories or databases is far from realization and requires extensive
manual intervention. We highlight and attribute this limitation to the
absence of uniform data presentation and lack of standards in writing
protocols6,44,45. This discrepancy consumes valuable time and intro-
duces the risk ofmisinterpretation and inaccuracies in the process. For
example, we observe that the commonly used solvent ethanol is
referred to using various terminologies such as ‘ethanol,’ ‘C2H5OH,’
‘EtOH,’ and ‘EOH’ in different publications. While human researchers
can recognize these variations as referring to the same chemical entity,

Text to procedure

1. MakeSolution with Ni(OAc)2·4H2O (0.5 mmol) and 
    1,10-phenanthroline monohydrate (1.5 mmol)
2. Add ethanol (50 mL)
3. Sonicate for 10 min
4. Add MgO (3.2 g)
5. Sonicate for 10 min
6. Reflux for overnight at 60°C
7. Concentrate
8. PostTreatment heat under nitrogen for 2 h at 600°C
    ramp 2°C min−1

9. SynthesisProduct Ni-N-C

Typically, FeSO4.7H2O (0.44 g) and 
1,10-phenanthroline monohydrate (0.76 g) 
were dissolved in 120 mL methanol and stirred 
for 0.5 h.

Action 
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Delete
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MakeSolution with FeSO4.7H2O 
(0.44 g) and 1,10-phenanthroline 
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Stir for 0.5 h
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A mixture of Ni(OAc)2·4H2O (0.5 mmol) and 1,10-phenan-
throline monohydrate (1.5 mmol) was added to 50 mL 
ethanol and sonicated for 10 min, followed by addition of 
3.2g MgO and sonicated for another 10 min. Then the 
mixture was stirred under reflux at 60°C overnight. After 
ethanol was removed by rotary evaporation, the oven was 
then heated to 600°C in nitrogen atmosphere at a ramp of 
2°C min−1 and was held at 600°C for 2 h. The resultant 
sample is labeled as Ni-N-C. 

Synthesis text

Heterogeneous SAC model (ACE) 
Model

Clear Submit

Fig. 3 | User interface of the machine-reading platform. a Software interface
illustrating the model capabilities, users input synthesis paragraphs in the left
panel, and the model output in sequential actions are displayed in the right panel.
b The annotation tool for adding and editing action items corresponding to a

synthesis sentence, displaying the complete list of action terms (blue panel). The
sentence to annotate is displayed on the left, while the annotation procedure is
depicted on the right. Selection of the edit property button opens a separate tab
where the action can be edited.
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language models often treat them as distinct substances. This issue
becomes increasingly complex when dealing with multiple such pre-
cursors, solvents, and associated chemicals presented under various
nomenclatures. Similarly, we notice that the term ‘heating’ is synony-
mously used for pyrolysis, carbonization, or annealing, thereby ren-
dering challenges for themodel to determine the appropriate thermal-
treatment method. Developing a language model capable of accu-
rately identifying and accounting for all such chemical entities andunit
operations is formidable. In light of these challenges, we emphasize
the critical importance of data standardization in scientific publica-
tions. Only through enhanced data uniformity canwe pave the way for
broader applications of language models in chemistry and catalysis-
related tasks, thereby advancing interdisciplinary research and inno-
vation in these fields.

Model adaptability and limitations
Visualizing the data extracted by the model sheds valuable insights into
theunit operations related to synthesis across publications. Ourfindings
reveal a close alignment between the distribution of action terms pre-
dictedby theACEmodel and theannotated synthesis steps, also referred
to as ground truth (Fig. 5a). Notably, the ACE model demonstrates a
remarkable accuracy in predicting action terms such as ThermalTreat-
ment, SynthesisProduct, Centrifuge, Transfer, etc. Furthermore,we note
the recurrent presence of action terms such as Add, Stir, MakeSolution,
ThermalTreatment, DrySolid, Wash, and Concentrate, etc., in the dis-
tribution list. This observation aligns with our initial manual analysis,
where we statistically inferred the predominance of solution-phase and
high-temperature procedures and their hybrid forms in SAC synthesis,
and these encompass the aforementioned action terms. This, in turn,
demonstrates the model’s prediction prowess.

Here, we rationalize that since theACEmodel is purely data-driven
and effectively identifies action steps related to solution-phase and
high-temperature synthesis methods, its predictive capabilities should
not be limited to SAC protocols. Instead, it has the potential to be
adapted for a broader category of heterogeneous catalysts that are
prepared by similar synthetic routes. Within heterogeneous catalyst
research, supported mono-, bimetallic, and promoted systems are
amongst the most investigated materials, often prepared using wet-
chemistry techniques like precipitation, impregnation, and sol-gel
methods, among others. Extending the model’s application to extract
synthetic protocols of these catalysts would prove its ability to gen-
eralize across various catalyst types.

To test this hypothesis, we selected a randomized subset of
18 synthesis paragraphs from the literature on a few prominent reac-
tions, including CO2 hydrogenation, acetylene hydrochlorination, and
Fischer-Tropsch synthesis. These paragraphs were subjected to the
ACE model prediction, resulting in 202 action sequences (Supple-
mentary Note 6). To determine the model accuracy, we devised a
simple yet effective evaluation metric, termed human machine-
readability index (HMI) (see Methods for details). Here, we observed
that of the total sample size, the ACE model could predict 125 actions
correctly, inclusive of all essential information, 28 sentences were
partially correct, while 49 sentences were predicted wrongly, resulting
in the HMI of 69%. (Fig. 5b) To put into context, this inferred that the
model could extract approximately 69% of information from the
evaluated paragraphs, implying that it could generalize and extract
synthesis details with accuracies similar to SAC synthesis as described
in the earlier section. These findings quantitatively prove that the ACE
model can be extended to extract operations from texts of other
families of heterogeneous catalysts with minimal training data or the
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definition of new action types to cover different catalytic reactions of
interest.

However, it should be noted that the automated extraction of
action sequences for SAC synthesis is a first step in this direction, an
ongoingeffortwith its limitations, including the current accuracy level,
inability to extract details of grouped information, and failure to cap-
ture gas and vapor phase and electrochemical routes (Supplementary
Note 7). For instance, when themodel encounters a synthetic protocol
where the catalysts are prepared with different metal contents or
activated at different temperatures, where all the experimental details
are written in parenthesis, the model typically retrieves one of the
given values or assigns an arbitrary value to the respective action term.
Furthermore, the predictive prowess of the model is inherently com-
promised on encountering less standard synthesis protocols, for
example, gas-phase or electrochemical. Based on the model predic-
tion, it is evident that essential procedures like plasma treatment and
configuration of the plasma chamber for gas-phase and details
including type of electrodes, calibrations, and cycles for electro are
currentlynotwell captured. Thepoor generalization is primarily due to
the absence of these steps as action terms due to the scarcity of these
methods in the training set of paragraphs for annotation. This is a
significant limitation to bear in mind when using the model for pre-
diction or extraction in these areas. Nevertheless, we believe that
curating action terms specific to these routes and supplementing the
model training with these potential new terms will scale its accuracy
proportionately.

Improving machine-readability through protocol
standardization
Examination of the incorrect predictions of the ACEmodel reveals that
the errors are oftenminor, involving the omission of one or two action
terms. These errors are frequently acceptable alternatives to the
ground truth. To improve the model performance, we propose two
systematic approaches. First, we recommend increased annotation of
synthesis paragraphs followed bymodel retraining and the addition of
new annotation terms corresponding to synthesis steps where the
model is least confident. Second, we advocate for standardizing the
way synthesis protocols and experimental results are reported in lit-
erature to facilitate efficient text mining and automated data analysis.
Towards this goal, we offer eight guidelines to standardize synthesis
paragraph writing (Fig. 6a, b).
(i) Publishers and journals should require detailed synthesis proto-

cols as Supplementary Information to free authors from word
limits and (self-)plagiarism constraints, allowing for more

accurate descriptions, which would improve synthetic reprodu-
cibility and model training. (ii) Chemical composition and tar-
geted properties (e.g., metal nuclearity in supported metal
catalysts) of synthesized catalysts the procedure used to prepare
them should be explicitly mentioned to ensure accurate correla-
tion of synthesis details with samples.

(ii) Supplier details and grade of all chemicals used in the study
should be given in a uniform format. For our model, providing
themas a single sentence at the beginning of the paragraph rather
than listing them at the first occurrence of the chemical entity
improves the performance.

(iii) Specify exact quantities of chemicals rather than writing mathe-
matical expressions in ratios will improve machine readability,
which would otherwise require the development of specific cal-
culations to decode the formulation, entailing separate
challenges.

(iv) Keep protocols concise, excluding elaborated discussion of
choices of synthetic steps. Additionally, separate descriptions of
characterization techniques from synthesis paragraphs.

(v) Provide details on all samples reported rather than focusing on
the best-performing catalyst. If multiple samples, for example of
distinct composition, are prepared following the same synthetic
procedure, we propose that such details and the speciation of
these SACs be separately listed in a tabular format after the
synthesis paragraphs.

(vi) Use standardized terms for synthesis steps and catalyst vocabu-
lary. This requires more effort from the scientific community to
develop and adopt standardized definitions.

(vii) Publish all synthesis-related datasets with every manuscript for
transparency and reproducibility.
We performed a demonstration test to evaluate our premise

that protocol standardization can improve machine-readability
(Supplementary Note 8). From the pool of SAC literature compiled
in this study, we randomly selected 11 paragraphs, where the SACs
were prepared by wet-chemistry routes and labeled them as pristine
paragraphs. Subjecting these paragraphs to the ACE model resulted
in 151 action sequences, where we observed fully correct and par-
tially correct predictions on 99 and 19 actions, respectively, while 33
were predicted incorrectly, resulting in an HMI of 72%. We then
modified the pristine paragraphs to comply with the first five pro-
posed guidelines, which are straightforward to implement, and
termed them as standardized paragraphs. On assessing the model
on these paragraphs, 156 actions sequences were generated, com-
parable to the pristine action set. Interestingly, here, the correct
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Fig. 5 | Predictive and generalization capabilities of the ACE model.
a Distribution of action types for the test set, determined by ground truth (human
annotation) and by the ACE model. The action terms are ordered in decreasing
frequency of the ground truth. b Generalization of the model to a broader class of

heterogeneous catalysts. A sample of 18 paragraphs encompassing synthetic pro-
tocols on mono-, bimetallic, and promoted catalysts with 202 action sequences
resulted in an HMI of 69%. Source data are provided in the source data file.
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The Fe-SAC was prepared by impregration
followed by thermal treatment.

The catalyst was prepared following the
method previously reported.

All chemicals used in this study were obtained
from company X, with a purity > 98%.

Cu(NO3)2·5H2O (0.1 g, 99% company X) was
dissolved in 2 mL DMF (company Y >99%).

The sample was refluxed in a 100 ml round
bottom flask for 12 h at 60°C in air.

The sample was sonicated and refluxed
overnight.

The sample was centrifuged, pellets were
collected and washed with ethanol.

The solids was separated by centrifugation
and washed.

Sample A (0.35 g) and sample B (4.52 g)
were mixed in 400 mL of water.

Sample A and B were mixed in molar ratio
1:3 before dissolving in 400 mL of water.

Sample was annealed at 600°C at 2°C min−1.
Other temperatures are listed in Table A.

The sample was annealed at 500°C, 600°C,
and 700°C at 2°C min−1. 

a

b

c Pristine paragraphs, 151 action sequences Standardized paragraphs, 156 action sequences

65%
13%

22%

HMI = 72% HMI = 86%

83%

5%

12%

Lack of standards impedes 
reproducibility and learning

Roadmap towards data and
protocol standardization

Fig. 6 | Standardizationof synthesis protocols for enhanced textmining. aA set
of eight guidelines are identified and recommended as the outcomeof this study to
assist text mining endeavors in catalysis. b Specific examples outlining best prac-
tices in writing synthetic protocols that comply with the recommended guidelines.
The green and red circles to the left of each example represent compliance and

non-compliance to the guidelines cModel performance using the humanmachine-
readability index (HMI) on 11 paragraphs before and after standardization. The
color codes used include red, yellow, and green for incorrect, partially correct, and
correct predictions, respectively. Source data are provided in the source data file.
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action sequences increased to 130, while the partially correct and
incorrect actions were reduced to 8 and 18, respectively. This, in
turn, resulted in an HMI of 86% - a significant 14% increase compared
to the pristine counterpart (Fig. 6c). It is worth mentioning, in
comparison to increasing training set size or synthetic data aug-
mentation as discussed in the earlier section, where we notice
meager increments in model performance (c.a. 2–3%) under various
scenarios, data standardization offers a more promising alternative
to improve model fidelity and machine-readability. More impor-
tantly, as a proof-of-concept, we successfully demonstrate the sig-
nificance of protocol standardization and its indispensable role in
machine-reading and NLP-related tasks in chemistry and catalysis.

The guidelines proposed for protocol standardization are not
limited to the above cause but can be conveniently translated to
manage data in heterogeneous catalysis as per the FAIR (Findable,
Accessible, Interoperable, andReusable) principles44,46. For instance, in
addition to the synthesis protocols beingwritten in the Supplementary
Information, authors can also submit the same in online repositories
for easier and enhanced accessibility. Along with the metadata of the
protocols including, but not limited to who, when, and where the
synthesis was performed, details on the supplier and grade of the
chemicals and equipment or reactors used during synthesis will allow
for greater reproducibility of the protocols complying with FAIR
principles. An alternative to online repositories would be to list the
details of the synthesis protocols, including catalyst properties and
synthesis approach, quantities of precursors, solvents, and supports,
and the respective unit operations in a succinctmanner in Excel sheets
or customized electronic lab notebooks (ELNs) in tabular formats,
such that all the above information are efficiently managed through
the life-cycle of the project. These synthesis datasets should be pub-
lished with every manuscript. Furthermore, details of similar proce-
dures could be seamlessly listed in tabular formats within ELNs,
making data interoperable. Here we highlight that the objective of
protocol standardization by nomeans intends to limit the creativity of
the experimental researcher, but rather encourage scientific writing
and data reporting practices, so that it can be translated to meet the
requirements of text mining approaches. Another forward looking
alternative would be to write synthesis procedures as a sequence of
actions rather than plain texts. We believe, such practices if fostered,
would encourage experimentalists to list procedures in the correct
sequence of actions, along with all necessary details essential to
replicate the experiment. Such formats would not only benefit the
experimental community, but also be greatly advantageous for text
mining and language models endeavors. Overall, through such pro-
tocol and data reporting standardization efforts, which inadvertently
improves the quality of data, we anticipate text mining approaches, be
it natural language processing, association rule learning, sequential
pattern mining, pattern tracking, etc., to effectively work with small
datasets and minimal training, ultimately leading to their greater
acceptance is chemistry and catalysis research.

Discussion
Our study demonstrates the tremendous potential of transformer
models to extract synthesis actions from heterogeneously catalyzed
experimental procedures. These tools pave the way for data-driven
design and guided synthesis of application-specific heterogeneous
catalysts. Importantly, this methodology is not restricted to a specific
class of catalyst, as demonstrated through various examples. While
text mining and automated data collection in catalysis offer immense
potential for driving the concepts of autonomous and robotic
experiments, existing limitations arising from the lack of standardi-
zation in reporting synthetic protocols must be addressed. Based on
theoutcomeof this study,webelieve that current literaturemaynotbe
sufficiently ready to capitalize on all the benefits of language models
and machine learning tools.

For the catalysis community to fully benefit from the rapidly
evolving data-driven technologies, significant efforts must be directed
toward data collection, curation, and reporting practices. While these
endeavors can be initiatedwith individual research groups, their global
awareness and adoption will be only possible through community
efforts led by national and international initiatives, including research
data management and standardization. Furthermore, as language
models become increasingly prominent, text mining in catalysis
should be a collaborative endeavor involving researchers developing
catalytic materials and experts in deep learning algorithms and text
mining pipelines. This partnership will drive the emergence of novel
concepts for digitized experiments. With improvements in language
models anddevelopments that enable reporting synthesis protocols in
standardized and machine-readable formats, we envision the rapid
growth of automated synthesis and data-driven discovery of catalysts,
promising anexcitingneweraof discoveries in catalysis and chemistry.
As a follow-up to this study, we aim tomake the ACEmodel generative
in nature. To accomplish this goal, we plan to standardize published
paragraphs based on the guidelines provided in this study via prompt
engineering in GPT-4, followed by retraining of our ACE model on the
modified paragraphs.

Methods
Article collection
A comprehensive screening of SAC literature was performed inWeb of
Science and Scopus for the data collection process. This was done
through keyword search, including terms such as (“single-atom cata-
lyst” AND “electrocatalytic OR “thermocatalytic” OR “photocatalytic”
OR “organic reactions”) and (“SAC” AND “electrocatalytic OR “ther-
mocatalytic” OR “photocatalytic” OR “organic reactions”) during the
period 2010–2021. The keyword search returned over 1200 works,
including experimental, computational, and review articles on the
topic. Since the main essence was to develop a text mining protocol
specific to the synthesis procedures, the purely computational and
review papers were discarded. At the same time, experimental works
were retained, bringing the effective collection to 569 articles. The
major publishers, including American Chemical Society (ACS), Royal
Society of Chemistry (RSC), Elsevier, Springer, and Wiley, accounted
for 97% of the publications. With support from the ETH library,
appropriate agreements were signed with all the publishers to ensure
freedom of text and data mining on these published articles and open
access to the data extracted from the reports. The papers were pro-
cured in electronic formats such as json, html, or txt.

Statistical analysis of synthesis methods
Based on the data compiled, a descriptive analysis to quantify various
synthesismethods and the application of SAC across thermo-, electro-,
or photocatalytic applications was performed on randomly selected
145 publications. The diverse synthesismethods were categorized into
eight classeswith an additional post-treatment stepbasedon literature
description and domain expertise (Supplementary Table 1).

Annotation
Annotation is the process of assigning meaning to natural language
text, which can apply to short phrases, long sentences, or entire
paragraphs. It provides the AI model with essential information to
learn themeaning or context of the text11. Text annotation parallels the
data labeling procedure in classical machine learning, as this infor-
mation is used to train the model and accurately interpret the text
under consideration. Herein, 33 action terms were utilized for anno-
tation, 27 of which were identified based on the most frequent action
items in wet-chemistry labs,17 and 6 catered to synthesis protocols
written in the heterogeneous catalysis community (Supplementary
Tables 2, 3). Once finalized, each sentence in the synthesis paragraph
was manually annotated using these action terms on the modular
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annotation framework based on the open-source tool doccano (Sup-
plementary Table 4). Details on the working philosophy of this tool are
described elsewhere17,47. Briefly, doccano offers a user-friendly web
interface, which allows the annotator/user to add, edit, reorder, and
confirm action steps on each of the sentences from the experimental
procedures that appear on the front screen. This tool also has a cus-
tomizable backend, offering greater flexibility for developers to add,
edit, and delete action terms relevant to the project scope. In this
study, 127 paragraphs, including 936 sentences, were manually anno-
tated, and an annotation guideline was developed to ensure con-
sistency throughout the study.

Transformer model
The ACE model developed for translating experimental protocols to
action steps was based on the transformer architecture48. The algo-
rithm relies on the transformer encoder-decoder architecture, which
creates a latent vectorized representation of texts, and its ‘attention’
functionality facilitates recognition of the essential and core parts of a
sequence necessary for comprehending the textual meaning. The ACE
model was developed by transfer-learning from a previously reported
model,17 by fine-tuning the pretrainedmodel on a set of 936 annotated
sentences compiled from 127 SAC synthesis paragraphs and 2295
annotated sentences from the realm of organic chemistry17.

The ACE model is implemented using the OpenNMT-py library49

with specific architecture, implementation, and hyperparameters
(SupplementaryNote 3, SupplementaryTables 5, 6). The entire dataset
of 3231 annotated sentences was split into 80:10:10 ratios and labeled
as training, validation, and test sets, respectively. The training-
validation-test split was carried out in a randomized manner at the
sentence level through the following steps. First, the number of sen-
tences assigned to the train, validation, and test sets were determined
based on the desired sizes (as a percentage of the total). Second, the
full set of sentences and associated annotations were shuffled, ran-
domizing their order. Third, the shuffled dataset was split into three
contiguous subsets of the desired sizes for the respective splits. Fur-
thermore, the model was progressively evaluated on 25%, 50%, 75%,
and 100% of the total annotated data to evaluate the effect of data size
on performance. The effect of data augmentation was also examined,
where the size of the above-annotated sets was synthetically increased
by 10-fold. (Supplementary Note 4). For reference, a 10-fold augmen-
tation on 100% of the training data corresponds to 25820 synthetically
generated sentences with annotation17. The model was trained for
20,000 steps in all cases, and checkpoints were saved every
1000 steps. The model checkpoint leading to the highest accuracy in
the validation set was selected for analysis.

Performance metrics
This study used various performance metrics, including the BLEU
(Bilingual Evaluation Understudy), Levenshtein score, and the human
machine-readability index (HMI). The BLEU score is a metric for eval-
uating machine-translated text, where values of 40-50 infer high-
quality translations. At the same time, those below 25 imply poor
translation and are not recommended48,50 The Levenshtein score cal-
culates the similarity index between the synthesis procedure in the
actual paragraph and the action sequence predicted by the model17.
Thus, the 100%accuracy refers to the fractionof sentenceswherein the
entire action sequence was predicted correctly, along with the
respective properties. Though these metrics are conventional for NLP
tasks, their inherent limitation is the need for annotation on the
selectedparagraphs under investigation, asgenerating such annotated
datasets isusually time- and resource-intensive andmaynotbe feasible
in all cases. Moreover, the various synthesis-related parameters
extracted by the model, necessitate validation, best performed
through domain knowledge. However, currently, this scope is limited
by the aforementioned metrics.

To address these challenges, we developed an effective metric,
HMI, which brings forth the human factor in evaluating these model
predictions. Briefly, a human expert manually checks the synthesis
paragraphs and the corresponding sequence actions predicted by the
ACE model and grades the output depending on its accuracy as
described in Eq. 1.

HMI =
Ið0Þ+ PCð0:5Þ+Cð1Þ

AT
*100 ð1Þ

where, I = incorrect actions PC =partially correct actions C = correct
actions AT = total actions

Themodel is graded as per theHMI score in the followingmanner:
• If the model predicts the correct action terms and extracts the

corresponding material properties or unit operation values, it
gets a full score of 1.

• If the model predicts the correct action term, but extracts
incorrect material properties or unit operation values, then it
gets a score of 0.5.

• If the model predicts an action term incorrectly, it gets a
score of 0.

For example, if the output of a typical SAC synthesis paragraph
results in a sequence of 10 action terms with five correct, two par-
tially correct, and three incorrect predictions, this results in an
HMI of 60%.

Data availability
The curated dataset compiled in this study is open-sourced and
deposited at Zenodo (https://doi.org/10.5281/zenodo.10033139).
We released an open-source web application of our ACE model at
synthesis_protocol_extraction. Further data supporting the findings
of this study are available in the Supplementary Information. Source
data for all figures in the manuscript and Supplementary Informa-
tion are provided with this paper. Source data are provided with
this paper.

Code availability
A Python library with the definition of the new actions, the pre-
processing of the data, and fine-tuning of the transformer model can
be found on GitHub at https://github.com/rxn4chemistry/sac-action-
extraction.
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