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Exploring interactions between
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Climate change is leading to more extreme weather hazards, forcing human
populations to be displaced. We employ explainable machine learning tech-
niques to model and understand internal displacement flows and patterns
from observational data alone. For this purpose, a large, harmonized, global
database of disaster-induced movements in the presence of floods, storms,
and landslides during 2016–2021 is presented. We account for environmental,
societal, and economic factors to predict the number of displaced persons per
event in the affected regions. Here we show that displacements can be pri-
marily attributed to the combination of poor household conditions and
intense precipitation, as revealed through the interpretation of the trained
models using both Shapley values and causality-based methods. We hence
provide empirical evidence that differential or uneven vulnerability exists and
provide a means for its quantification, which could help advance evidence-
based mitigation and adaptation planning efforts.

Throughout history, climate has played a role in influencing human
mobility, with populations often resorting to movements as an adap-
tive response to environmental changes, seeking to enhance their
prospects for survival1. Notably, current observations suggest that
recent changes in climate may also be influenced by anthropogenic
factors, which have the potential to disrupt traditional lifestyles2–5. The
rapidly evolving climate, characterized by an increasing frequency and
severity of extreme weather events, may pose challenges to the
effective implementation ofmitigation and adaptationmeasures6–10. In
light of these factors, the likelihood of an increased incidence of dis-
placement as a response to these adversities deserves
consideration11,12. Disaster displacement involves situations where
individuals are forced to leave their usual residential areas due to a
natural or anthropogenic hazard13. Yet wealth and resources are not
equally distributed, and the population is concentrated in low and
middle-income countries14–16. This could exacerbate existing chal-
lenges in these regions, making it harder for them to cope with the
effects of environmental hazards and climate stressors17–21.

It is undeniable that the relation between weather and population
movements is complex22–27. Despite thewidespreadquest for onemain
trigger, human mobility has a multi-causal nature28. There is never a
single reason why people move but rather an intricate tangle of het-
erogeneous and interacting factors4,29,30. Further complexity is added
by the confounding role that natural hazards play in damaging local
livelihoods, economic activities, and infrastructures. Also, the rela-
tionship between humans and the environment is mediated by how
people perceive their environmental context, including subjective
factors that may pose challenges when incorporating them into sta-
tistical models31–36. Ultimately, increased insecurity, such as armed
conflict, food andwater scarcity, andother life-threatening conditions,
can lead to forcibly displaced people. Casting disaster risk as the
intersection between hazard, exposure, and vulnerability can be par-
ticularly useful to examine the linkage between displacements and
environmental stress10,29,37–41. In this context, vulnerability refers to
conditions that can increase a community’s likelihood of experiencing
adverse effects from natural or human-induced hazards, including
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physical, social, and economic factors, such as poverty or inadequate
infrastructure. Exposure pertains to human assets in hazard-prone
areas, such as people, structures, cropland, homes, andmanufacturing
capacity, which could be affected by disasters. The more severe a
weather event, the greater its impact could be on human displace-
ment, provided that vulnerable people and livelihoods are exposed in
the affected area. Then, whether there will be weather-induced dis-
placements in response to a hazard and, if so, the number of people
moving will depend crucially on the economic resources and the
adaptive capacity of the impacted community42–44.

Past research has rarely considered together all these three
dimensions of the problem, and analytic models have often assumed
simple linear relationships (with some notable exceptions45–52), often
neglecting the intrinsic non-linearity of the problem53. It is worth
noticing that many research studies focus on international
migration54,55. However, weather hazards most likely generate internal
displacements, i.e. short-distance movements typically from rural to
urban areas within the borders of a country53,56–59. Depending on the
definition of the target variable of interest, the results point toward
moderate or no evidence for environmental factors as humanmobility
drivers55. Yet another major limitation is represented by the lack of
data in terms of availability, completeness, and reliability60. Collecting
reliable data on people’s movements is notoriously difficult. Only in
the last years, more systematic monitoring programs at a large scale
have been launched61. Among other factors, the results of the study
depend on the selected countries, the type ofmobility in question, the
period considered, and the chosen predictors. What are the most
relevant data to analyze the problem remains an open debate.

Here, we study human internal displacement induced by sudden-
onset hazards at a global scale with data-drivenmachine learning (ML)
algorithms. We employ ensemble models, specifically random forests
(RFs)62 and gradient boosting machines (GBMs)63, to predict the
number of new displacements of people (NDP)61 registered in

concomitancewith each hazard (flood, storm,or landslide) in the years
2016−2021. NDP refers to the estimated number of individuals who
have been internally displaced from their habitual places of residence
during a specific time period. We compare the performance of these
models with a baseline linear model. Our prediction models utilize a
diverse set of socioeconomic and environmental drivers on a national
and disaster-specific scale (see details in Material and methods, cf.
Fig. 1, and Supple. Information). The proposed approach avoids strong
assumptions of variable relations or relevance and solely relies on
observational data. In addition, being based on explainable AI (XAI)64

and methods for causal effect estimation65,66 (see details in Material
andmethods and Supple. Information), our analysis sheds light on the
complex interactions between the involved and often mediating pro-
cesses and drivers of people movements.

Results
The multivariate disaster-driven displacement problem
Understanding hazard-induced internal displacement is a multivariate
complex problem. To alleviate the sufficiency assumption, asserting
that all relevant variables influencing the target have been included, we
collected a set of potentially explanatory covariates of different types
(economic, weather, land specific) and granularity levels (polygon or
national scale) for each disaster event (see Fig. 2). The hazard com-
ponent is represented by precipitation67 and wind speed (WS)67;
exposure is given by nonlinear normalized difference vegetation index
(kNDVI)68, the fraction of agricultural land (%AgriLand)69, elevation70,
affected area of the polygon (accounting for both exposed assets and
people)71 and population as a measure of human exposure72; finally,
vulnerability is characterized by education expenditures (%EduExp)69,
Absolute Wealth Index (AWI)73, global human modification (gHM)
index as ameasure of the anthropogenic action on land74, and fatalities
resulting from conflicts75 (see details in Material and methods, cf.
Table 1, and Supple. information). We select all those countries for

Fig. 1 | Spatial distribution of newly displaced people (NDP) per sudden-onset
disasterover selected countries for years 2016–2021.AColors represent the sum
of NDP per country registered in the years under consideration; pie charts indicate

the event counts and percentages with respect to the global number of events.
BThe total number of NDP per continent and hazard type occurred in the periodof
interest.
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which the above data are available (see, in particular, AWI specifics73),
avoiding gap filling and imputation of missing values. Due to these
constraints and availability limitations, our focus is exclusively on low
and middle-income countries as defined by the Demographic and
Health Surveys Program73, which are widely recognized as being par-
ticularly susceptible to the impacts of climate change14–20,54.

To detect linkages between human mobility and weather
hazards, a variety of indicators of populationmovements have been
suggested, but their suitability has been challenged76. Here, we
focus on NDP registered by the Internal Displacement Monitoring
Centre (IDMC)61 concomitantly with three forms of sudden-onset
disasters, namely storms, floods, or landslides. IDMCdatabase is the
only aggregator of internal displacement data, with global coverage
by type of disaster hazard and a consistent data model77. Displace-
ment data are collected from January to December of each year. It is
worth noting that the figures may include individuals who have
experienced displacement more than once. Our dataset contains a
total of 2400 disaster events in the period 2016−2021 (see details in
Material and methods, and Fig. 1).

Aggregation of NDP at a continent level shows that Asia is by far
the most impacted continent regardless of the type of disaster, see
Fig. 1. This is particularly evident in themost densely populated coastal
regions, often affected by severe storms. North America is also affec-
ted mainly by storms, but the impact of total movements of people is
about a factor of 102 lower compared to Asia. The other continents
have more NDP associated with floods. Landslides represent a mar-
ginal component of displacements in all continents with respect to
floods and storms.

Here, the question is about what conditions and combinations of
drivers give rise to higher NDP and if these reveal to some extent the
presence of differential vulnerability, a concept which already
appeared in the literature53,78–81. To answer these questions, we adopt a
rather agnostic data-driven modeling approach based on combining
ML models with XAI and causality techniques.

Modeling and understanding displacements with explainable AI
We trained RFs and GBMs to estimate the logarithm of NDP using the
set of covariates listed in Table 1, and then compared their perfor-
mance to a linear regression (LR) baseline model. Models were
extensively cross-validated, and test data bootstrapped to robustly
estimate the performances (see Material and methods). Ensemble
models achieved better goodness-of-fit R2 and accuracy RMSE values
in comparison with the LR baseline (see results in Fig. 3 and Table 2).
Our results are comparable to results reported in similar analyses
elsewhere50,53,55, albeit direct comparability is not possible since dif-
ferent targets and data are used.Moreover, weobserved a quantitative
andmeasurable effect of weather variables on themodel predictability
(note the degradationof performance scores in Table 2 and the shift of
the R2 distribution in Fig. 3B). To estimate the statistical significance of
this drop in the mean R2, we counted how many times the hold-out R2

of the RF without weather variables is equal or better than that of the
RF trained with all covariates and obtained a p-value of 0.05. This
supports the relevance of the predictors accounting for weather
conditions.

The previous metrics tell us about the overall prediction per-
formance only. Still, we are interested in understanding how the

Fig. 2 | Map of the areas impacted by sudden-onset hazards. Polygons are given at the administrative level 1 or 2 or by a combination of the two, depending on the
disaster-affected area. Color represents the total sum of newly displaced people (NDP) produced by hazards in each polygon in years 2016–2021.

Table 1 | Features used to predict NDP

Variable Temporal aggregation Spatial aggregation Granularity Source

1. AWI Max Max Polygon Meta Data4Good73

2. Precipitation Max Sum Polygon ERA5-Land (GEE)67

3. 10m Wind Speed Max Max Polygon ERA5-Land (GEE)67

4. kNDVI Mean Mean Polygon MODIS TERRA (GEE)105

5. Population Mean Mean Polygon GPWv472

6. gHM Mean Mean Polygon CSP74

7. Elevation Mean Mean Polygon NASA/CGIAR (GEE)70

8. Conflict fatalities Sum Sum Polygon ACLED75

9. Area – – Polygon OpenStreetMap71

10. Education expenditures – – National SDG API69

11. % Agricultural Land – – National SDG API69
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model utilizes different factors to predict the NDP per event and
separate the impact of various displacement drivers. The field of XAI
helps get insight from non-parametric ML models82. Figure 4
reports the Shapley values83–86 for the GBM (B) and the RF (C), a
popular metric of XAI (see Methods section and Supple. informa-
tion), to further understand the model mechanisms and the most
relevant covariates. A positive Shapley value for a predictor means
that such a predictor raises the value of the target, while negative
values tend to lower it. Instead, the feature importance for the LR
(A) is calculated simply by multiplying the weights by the corre-
sponding predictor values for each instance.

Looking at the ranking in Fig. 4, we first notice that, overall, in
agreement with previous studies53, the vulnerability (e.g. AWI) and
hazard (e.g. precipitation) variables are the most important, followed
by exposure factors (e.g. area). This confirms that socioeconomic
conditions play a crucial role in the magnitude of displacements.
Indeed, the poorest areas (those with the lowest values of AWI) are
prone to experience higher NDP per disaster, while higher AWI is
usually associated with lower NDP. Weather factors, especially pre-
cipitation levels, have a clear impact. More extreme hazards, char-
acterized by high precipitation levels and strong wind speed, translate
into more displacements (see Fig. 4, Fig. 5A, and Supple. information).

Table 2 | Performance of themodels – coefficient of determination R2, rootmean square error (RMSE) andmean error (ME)– on
the test (hold out) set obtained with bootstrapping using Linear Regression (LR), Random Forest (RF), and Gradient Boosting
Machine (GBM)

Metric LR (all) GBM (all) RF (all) LR (no weather) GBM (no weather) RF (no weather)

1. R2 0.19 ± 0.02 0.36 ±0.02 0.37 ± 0.02 0.16 ± 0.02 0.32 ± 0.02 0.33 ±0.02

2. RMSE 1.02 ± 0.02 0.91 ± 0.02 0.90 ±0.02 1.04 ±0.01 0.93 ±0.02 0.93 ± 0.02

3. ME −0.001 ± 1.0 −0.003 ±0.91 −0.006 ±0.90 −0.001 ± 1.02 −0.002 ± 0.93 −0.005 ±0.93

Results obtainedwith all covariates are comparedwith those foundwhenexcludingextremeweather factors represented byprecipitation andwind speed. Averageperformances and their standard
deviation have been calculated by using bootstrapping.

Fig. 3 | Performance of the trained RandomForestmodels. A Predictions versus
true values in logarithmic scale were obtained by averaging over all test batches in
the bootstrapping. The color levels show the density of points. The Pearson cor-
relation is 0.57.BDistributionof the R2 on the hold-out set for all the bootstrapping

iterations. The blue density is obtained with all the covariates, while the red one is
obtained by excluding the two weather variables, namely maximum precipitation
accumulation and maximum 10m wind speed.

Fig. 4 | Relation between the input features and their importance scores
averaged over the different test batch configurations in the bootstrapping.
The horizontal axis represents the normalized feature values. At the same time, the
color scale is given by the mean product between the weights of the linear model

(A) and the feature value or the mean Shapley value per event for the Gradient
Boosting Machines (B) and Random Forests (C). The covariates are displayed in
decreasing order of importance.
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Interestingly, LR downplays the importance of precipitation and
assigns greater importance to wind speed. In contrast, ML methods
emphasize a stronger association between hazard and displacement;
as highlighted by the Shapley values for both GBM and RF models,
precipitation is consistently identified as one of the top two influential
predictors. This can be attributed to the non-linear relationship
between NDP and precipitation, further compounded by its interac-
tions with vulnerability variables (see discussion below and also Fig. 5).
Linear models are then insufficient for capturing these complex pat-
terns, highlighting the necessity for ML approaches.

The third most important factor identified by the RF (second for
the LR, and first for the GBM) is exposure given by the size of the
affected area.Allmodels predict a higherNDPwhen the affected area is
more significant, as evidenced by Fig. 4 and 5B. Similar conclusions
hold for the population covariate (see Supple. information), although
it is classified as less important. This is likely due to the fact that it only
considers human exposure, whereas affected area might also capture
infrastructure and crop damage, which could worsen the severity of
displacement. Numerous studies have revealed that violent conflicts
serve as stressors. Similarly, critical situations such asweather-induced
disasters can exacerbate these stressors, creating a vicious
cycle29,51,87–89. Consistently, all models associate a higher NDP with a
higher number of conflict fatalities (see Fig. 4, and Supple.
information).

Regarding land-type exposure, Shapley values of the average
elevation capture that high-altitude regions are less exposed since
storms and flooding mainly hit coastal areas or villages around
rivers (see Fig. 4 and Supple. Information), which are typically also
the most densely populated. The models also capture that

agriculturally dependent countries usually are associated with
higher NDP (see also Supple. information), which has been reported
already in several works90–93. When livelihoods strongly depend on
agriculture, weather hazards force people to move to seek other
means of subsistence. According to all models, both gHM and
kNDVI play a marginal role. However, to some extent, the fact that
rural regions are more impacted can also be observed in their
trends. Other human impacts on landscape captured by high gHM,
such as infrastructures, electricity lines, and so forth, are a sign of
more developed regions that are more resilient and less vulnerable
(see also Supple. information). Events associated with higher kNDVI
values, in turn, occur in more vulnerable areas, including cultivated
fields, which are also among themost exposed94,95. Once exposed to
a weather-related disaster, people’s decision to leave is strongly
influenced by adaptation, which is mainly driven by the skills of the
affected community to diversify their income or even change their
lifestyles. This is well-captured by the model as more NDP are
generally associated with events in countries with lower education
expenditures (cf. Fig. 4). Using data, we support previous expecta-
tions that higher investments in education could serve as an effec-
tive adaptation strategy96–99. Education works as a multiplier, as
better-informed and risk-aware communities can be more resilient
and more likely to adapt and react to environmental stressors.
Furthermore, national education expenses may serve as proxies for
other critical factors like governance quality and the effectiveness
of a country’s disaster response. These elements are crucial for a
comprehensive understanding of vulnerability, resilience, and
coping capacity, but obtaining them with adequate quality and
coverage is often challenging100.

Fig. 5 | Scatter plots of Shapley values versus precipitation (A) and area (B), and
box plots of the treatment effects obtained with causal forests (C, D). In the
upper plots (A,B), the color scale is givenby the value of the AbsoluteWealth Index
(AWI). The blue and red curves are smoothed averages of the Shapley values for

instanceshavingAWI < 650USdollars andAWI > 650USdollars, respectively. In the
bottom graphs (C, D), we show the distribution (median and spread) of the causal
relationship between the target (i.e., NDP) and each of the covariates considered
one by one as treatments.
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To further confirm the claim of differential vulnerability, we
focus on the interaction between AWI, precipitation, and area. In
Fig. 5, we show the Shapley values of precipitation (A) and area (B)
as a function of both weather and exposure, respectively, and AWI
(more examples in Supple. information). Firstly, let us stress the
non-linearity of the relation between NDP (quantified by the Shapley
values) and both hazard and exposure factors. In particular, we
observe an effect of saturation of the Shapley values in the high
precipitation regimes and also for large areas but with a less steep
growth, even if, at this stage, it is still not clear to what extent this
reflects a property of the hazard-induced mobility phenomenon
(e.g. due to the fact that the maximum impact is limited by the
totality of the exposed elements) or possible biases in the input data
(e.g., due to imperfect matching between polygons extracted and
impacted area, see also Materials and methods). Then, we notice
that the AWI does not have a discriminating power for events with
lower precipitation and area. In contrast, it impacts events in the
most extreme weather regime and with the largest affected areas.
Hazards characterized by the same high levels of precipitation
result in greater NDP when they occur in poorer areas with lower
AWI (Fig. 5A). Insightful observations can also be obtained by
looking at the intersection between vulnerability and exposure
(Fig. 5B). Given areas with similar extents, more NDP occur when the
AWI is lower, further confirming the hypothesis of a differential
mechanism in place. Finally, to control for correlations and inter-
actions among the covariates, we present in Fig. 5C and D the
median of the causal effect of each predictor estimated using the
causal forest algorithm65. The individual contributions are isolated
by considering each covariate as a treatment. Its causal effect is
determined by the variation in outcome conditioned on the
remaining predictors66 (see Materials and Methods and Supple.
information for more details). Remarkably, the results match the
Shapley values in showing which way the causal effect goes and
which factors aremost important. Still, it is worth noting that, based
on the current dataset, none of the causal effects reach statistical
significance (see also Supple. Information). The identification of
these interactions has been made possible through the integration
of ML models, which can capture intricate non-linear inter-
dependencies, alongside XAI techniques and causal arguments. It’s
important to underscore that this approach uncovered data-driven
patterns without necessitating any prior assumptions, and its
effectiveness could be enhanced with the inclusion of more data
over time.

Discussion
Population movements induced by weather hazards are affecting
millions of people globally, and this is expected to be exacerbated in
the following decades, according to climate change projections10.
Understanding the driving mechanisms is complicated because of the
non-linear and largely unknown interactions between environmental,
societal, and economic factors which traditional parametric models
cannot capture18,22,23,50. To overcome the assumptions that limit
mechanistic models, such as linear relationships or explicit functions
for the interactions terms, we proposed data-driven machine learning
techniques to model and explain human flows due to natural hazards
from observational data alone. We focused on new internal displace-
ments in the presenceof sudden-onset disasters and exploitedXAI and
causal methods to unravel the main drivers of the phenomenon. A
displacement dataset at a sub-national level was presented. The
models identified structural factors that dominated the magnitude of
movements and highlighted the relevance of socioeconomic condi-
tions and hazard exposure factors. Relying solely on data, we showed
that variables related to weather hazards were useful predictors
and that the amount of NDP depends on the interactive effects of
precipitation and local wealth status. These findings match

previous studies53,78–81,101–103 reporting that the impact of environmental
stressors on displacement is crucially interconnected with the socio-
economic conditions of the affected area as well as with its exposure
and additional exacerbating factors like the presence of conflicts.

Alternative ways of characterizing the hydro-climatic dimension
of the phenomenon should be considered. Indeed, choosing weather
variables with high predictive power is non-trivial since, inmany cases,
people’s movements occur even in non-anomalous weather condi-
tions, and lagged effects over longer time scales can also be present. In
this regard, obtaining geolocated displacement data is crucial to
advance research in human mobility studies. Even when approximate
information on the location is present, there is no unique way of
defining the affected area. Thus, additional efforts should be made to
improve the identification of the polygons of interest with the highest
possible accuracy. Other data gaps must also be addressed as the
information available is often limited to aggregated levels, typically on
a national scale. Further components, such as the coping capacity,
could also be considered to improve the characterization of human
displacement risk. Ultimately, to make substantial progress, high-
quality and high-resolution variables are required. However it is also
important to acknowledge that, while this study employs a top-down
analytical approach to examine displacement flows, peoplemovement
decisions are the result of multiple individual considerations, which
maynot be entirely capturedbyquantitative variableswithin the scope
of statistical analysis.

In conclusion, the concept of differential vulnerability was evi-
denced, inferred, and quantified by the machine learning model from
observational data alone, without assumptions or preconceived rela-
tions. In this way, hypotheses, expectations, and qualitative analyses
by domain experts found further empirical confirmation. Most
importantly, XAI allowed us to shed light on the intricate interplay
among the three dimensions of disaster risk, overlooked in conven-
tional multi-hazard risk models, which often treat hazard, exposure,
and vulnerability as independent components. Given that, our study
and methodology can be a stepping stone for advancing evidence-
based mitigation strategies and policies in the future, capitalizing on
current strides in both modeling techniques and data accessibility.

Methods
Building a global dataset of displacements
For each storm, flood, or landslide in the years 2016−2021, the target is
given by the number of NDP as reported in the Global Internal Dis-
placement Database by IDMC61 for that specific event. “New Dis-
placement" refers to the number of new cases or incidents of
displacement recorded over the specified event104 From the names of
the impacted location, geo-referenced polygons were extracted with
the OSMnx Python library, which is based on OpenStreetMap71. In
some cases, a polygon was not found. Thus, the smaller matching
administrative level area, including the affected region, was con-
sidered. This can introduce bias in the variables extracted at polygon
resolution since the polygon would be greater than the affected area.
However, polygons with areas covering entire countries were dis-
carded to reduce such aggregation bias. Areas for each polygon were
calculated by projecting the polygon into the UTMCRS zone where its
centroid lies. NDP data were integrated and harmonized with satellite-
derived variables, weather information, and socioeconomic data to
construct the modeling input database. In particular, Google Earth
Engine (GEE) was used to extract the weather covariates within the
polygons. The values of 10m wind speed in m/s (v and u component)
and precipitation inm are obtained from the ERA5-Land hourly dataset
from the Latest Climate Reanalysis Produced by ECMWF by the
Copernicus Climate Change Service67 from the GEE repositories. They
have hourly temporal resolution and a spatial resolutionof about 9 km.
The total wind speed was computed as the square root of the sum of
the squares of u and v. Wind Speed, precipitation, and kNDVI variables

Article https://doi.org/10.1038/s41467-023-43809-8

Nature Communications |         (2023) 14:8004 6



had tobe temporally and spatially aggregated, and the reportedperiod
of each disaster is 20days on average. For wind speed, the maximum
value over the hazard duration and eachpolygonwere considered. For
precipitation, the sum over the hazard duration and the maximum
value of this sum per polygon was computed (i.e., maximum pre-
cipitation accumulation). An analogous procedure was followed to
aggregate the spatial and temporal mean of kNDVI105, elevation70,
population counts72 and gHM74, characterizing vegetation dynamics,
topography, human exposure, and proxy to the anthropogenic action
on land respectively. The AWI was derived from the Relative Wealth
Index from Meta’s Data4Good73, a finely-grained sub-national poverty
index combining connectivity, satellite, and household survey infor-
mation. The index is available in a 2.4 km grid. The aggregation was
conducted by intersecting the grid with the disaster polygons and
taking themaximum index values. The area71 of the polygons inm2 was
added as a covariate to provide an approximate characterization of
exposure not only in terms of persons but also of exposed assets,
buildings, facilities, infrastructures, and so on. The Education Expen-
diture (as a percentage of theGNI) and Percentage of Agricultural Land
over a country were collected from the United Nations Statistics
Division SDG API69. The last year’s value was considered when the
indicator’s value was missing for a specific year. We introduced the
conflict dimension of displacement by taking the annual sum of
fatalities resulting from conflict events over a polygon from the
ACLED75 database. This completed the harmonization of the database
at a disaster level. Note that we included only the countries for which a
harmonized database for the selected variables could be constructed;
therefore, not all countries from the IDMC database could be included
in the study. Currently, AWI data is exclusively accessible for low-
middle-income countries73. This leads to a dataset that is uniform in its
composition for analysis. However, it may introduce a bias based on
income when attributing the impact of hazards on a global scale.
Furthermore, we acknowledge that certain chosen variablesmay act as
proxies, potentially correlating with other underlying factors like the
effectiveness of disaster management or the community’s coping
capacity. Additionally, there is a potential for confounding effects
among these variables, which we have partially investigated through a
predominantly data-driven approach. This highlights the importance
of thoroughly addressing any data gaps associated with potentially
explanatory variables and processes. These aspects, though often
challenging to observe, hold significance in comprehending the phe-
nomenon. Such efforts are essential to guarantee that the sufficiency
assumption is adequatelymet. The predictors and data granularity are
summarized in Table 1.

Data pre-processing and machine learning model training
Data was standardized via a z-score procedure (subtract the mean
and divide by the standard deviation). To account for the skewness
of the distribution and reduce the weight of outliers, the target was
computed as the logarithm of the NDP. We also tried an alternative
choice for the target by re-scaling the number of NDP by the
population of the polygon without taking the logarithm. Still, the
performance of the RFs was much lower. The same log transfor-
mation was applied to the total population variable and conflict
fatalities before scaling all covariates. We implemented both GBM63

and RF62 regression models to estimate NDP from predictors in
Table 1. RFs are nonparametric models that do not assume any
particular structure on the data and can capture nonlinear rela-
tionships and interactions between the covariates. They are also
suitable for heterogeneous input variables. RF models can handle
high-dimensional problems while minimizing the risk of overfitting.
They do this by combining many trees operating with different
feature subsets randomly picked. Through the so-called recursive
partitioning, RF builds a decision tree out of the strongest available
predictors. The RF method does this repeatedly and then averages

all the decision trees together to make a prediction62. GBMs are
ensemble methods that sequentially combine weak learners by
minimizing the error made by the previous ensemble at each step63.
For a standard machine learning task, the Global Internal Dis-
placement Database is of limited size. For this reason, boot-
strapping with ~103 iterations was used to estimate the statistical
scores, namely average accuracy, RMSE, ME, and goodness-of-fit
R2106. Both RF and GBMmodels were fitted using stratified sampling
with 70–30% train-test partitions. To stratify the splitting, we
employed the quantile binning strategy on the target variable to
include similar fractions of NDP values in both test and train data.
All RFs had the same hyper-parameters: ‘maximum depth of the
trees’ was set to 6, ‘the minimum number of samples in a node to
split’ to 4, the ‘maximum number of features’ to 3, and ‘the number
of trees’ to 40. All GBMs had the same hyper-parameters: the
‘number of estimators’ was set to 60, the ‘minimum samples per
split’ to 4, the ‘minimum samples per leaf’ to 2, the ‘maximumdepth’
to 4, and the ‘learning rate’ to 0.05. These hyper-parameters were
tuned by following a grid search to reduce overfitting defined as one
minus the ratio between R2

test and R2
train. The same training and

testing procedures and specifications were used with and without
the weather variables. The code for the machine learning modeling
is mainly based on the Python library scikit-learn and is available at
https://github.com/IPL-UV/AI4Migrations. See also Supple. Infor-
mation for additional details and other experiments performed
using different cross-validation strategies as well as subsets of the
data based, e.g., on the continent or hazard type.

Shapley values, causal treatment effects, and individual condi-
tional expectations
Shapley values were used to estimate how the input features affect the
predicted target83. They were first introduced in the context of game
theory84. Now, they are one of the most used XAI techniques for
ranking the input features and estimating their contribution to the
model’s predictions per instance. The total gain (i.e., the prediction) is
divided between the players (i.e., the covariates) by considering all
possible coalitions that can form and calculating the (average) change
in the outcome. In this way, the importance of each predictor is
properly weighted by considering the interactions between input
features. All computations and experiments were done with the
python package SHAP85. See Supple. information for additional details
on the formalism and theory. The causal forestmodel65,66 is specifically
designed to estimate conditional average treatment effects. To claim a
causal link, a treatment must produce a change in outcome while all
other covariates are held constant; this type of treatment-induced
change is known as an intervention. The average treatment effect
refers to the effect of a treatment on the outcome, taking into account
the other covariates. For each observation, the model can predict two
potential outcomes using two conditional mean functions, one for the
treatment group and one for the control group. The difference
between these potential outcomes represents the average causal
effect. All experiments have been performed using the EconML
package107. More information on causal forests and double ML are in
Supple. information. Finally, individual conditional expectation (ICE)
plots illustrate how a prediction varies for each instance when a spe-
cific feature is changed. To generate ICE plots108,109, we keep all other
features constant while producing variants of the instance by sub-
stituting the selected feature’s value with a set of values from a grid.
These newly generated instances are then used to create predictions
with the model, resulting in a set of points for each instance with the
feature value from the grid and the corresponding predictions. ICE
plots can provide further complementary insights, particularly in
scenarios where interactions between the features are present. Addi-
tional technical details and results are presented in Supple.
information.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data needed to support the conclusions in the paper are freely
available at https://www.internal-displacement.org/sites/default/files/
UVEG_IDMC_global_dataset_natcomm.xls. The harmonized dataset will
be regularly updated and maintained in collaboration with IDMC.
Displacement figures can be found at https://www.internal-
displacement.org/database/displacement-data. AWI data is available
at https://dataforgood.facebook.com/, and all the other covariates can
be downloaded from the links in the references. The analysis-ready
dataset used for this study can be downloaded at: https://zenodo.org/
records/10063853.

Code availability
The code and somedemoscontainingour experiments canbe found in
https://zenodo.org/records/10063853.
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