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Environmental modulation of global
epistasis in a drug resistance fitness
landscape

Juan Diaz-Colunga 1,2,4 , Alvaro Sanchez 2,4 &
C. Brandon Ogbunugafor 1,3

Interactions between mutations (epistasis) can add substantial complexity to
genotype-phenotype maps, hampering our ability to predict evolution. Yet,
recent studies have shown that the fitness effect of a mutation can often be
predicted from the fitness of its genetic background using simple, linear
relationships. This phenomenon, termed global epistasis, has been leveraged
to reconstruct fitness landscapes and infer adaptive trajectories in a wide
variety of contexts. However, little attention has been paid to how patterns of
global epistasis may be affected by environmental variation, despite this var-
iation frequently being amajor driver of evolution. This is particularly relevant
for the evolution of drug resistance, where antimicrobial drugs may change
the environment faced by pathogens and shape their adaptive trajectories in
ways that can be difficult to predict. By analyzing a fitness landscape of four
mutations in a gene encoding an essential enzyme of P. falciparum (a parasite
cause of malaria), here we show that patterns of global epistasis can be
strongly modulated by the concentration of a drug in the environment.
Expanding on previous theoretical results, we demonstrate that this modula-
tion can be quantitatively explained by how specific gene-by-gene interactions
are modified by drug dose. Importantly, our results highlight the need to
incorporate potential environmental variation into the global epistasis fra-
mework in order to predict adaptation in dynamic environments.

The topography of genotype-phenotype maps has critical con-
sequences for the predictability of evolutionary trajectories. This
topography emerges from complex interactions between genetic ele-
ments, from single nucleotides to protein residues and metabolic
pathways1–5. Despite this complexity, recent work has shown that
epistasis—the nonlinear interaction between parcels of genetic infor-
mation—often has a “global” component6–15, emerging in the form of
simple relationships between the fitness effect of a mutation and the
fitness of the genetic background where it arises (Fig. 1a–c). Global

epistasis has become a central concept in modern conversations sur-
rounding the fundamentals of evolutionary processes. Negatively
sloped correlations have been more commonly reported, both in the
form of diminishing returns and increasing costs epistasis (where the
fitness effect of a mutation becomes less beneficial or more deleter-
ious, respectively, in fitter genetic backgrounds)6–8, 11–13. Positive slopes
(increasing returns or decreasing costs epistasis) have also been found
in low-dimensional landscapes7,16,17, and theory suggests they may be
more common near fitness peaks5,18,19.
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The emergence of global epistasis evidences the existence of
regularities in genotype-phenotype maps6–10, which have been lever-
aged in recent methodologies to infer complete adaptive landscapes
under defined, steady environmental conditions20–22. Yet, the magni-
tude of mutational fitness effects23–26 and epistatic interactions27–32,
and thus the topography of fitness landscapes33–35, can generally
depend on environmental variables. Populations are often subject to
natural or anthropogenic environmental fluctuations which can dic-
tate their evolutionary fate26, 29,36,37. Importantly, this effect has been
widely described in the evolution of antimicrobial resistance
(AMR)29,32,38–40. Learning how global epistasis patterns may be shaped
by environmental factors is therefore critical to our ability to predict
adaptation in changing environments, and especially in the context of
AMR evolution. This is yet an open question largely because under-
standing how global epistasis emerges from fine-grained genetic
interactions (which might be subject to environmental regulation) is
still in its early days.

To address these questions, here we analyze a previously pub-
lished fitness landscape31,34,41 consisting of 15 genotypes of the P. fal-
ciparum malaria parasite. Each genotype carries a different
combination of four mutations (amino acid substitutions C59R, I164L,
N51I and S108N) at four sites of the P. falciparum gene for the dihy-
drofolate reductase (DHFR) enzyme, which confers resistance to sev-
eral antifolate drugs (Fig. 1a). These particular four mutations have
been associated to antimalarial drug resistance in numerous studies
across multiple geographical locations42–45. The 15 genotypes were

cultured in a concentration gradient of pyrimethamine or cycloguanil
(antifolate drugs commonly used to treat malaria), and fitness was
quantified as the growth rate relative to that of the slowest growing
genotype in the absence of drug. Notably, epistasis makes it so the
genotype carrying all four mutations has lower fitness than the sum of
all mutations' individual fitness effects at the highest drug concentra-
tions (which can be explained by resistance mutations often being
redundant46,47); but also reduces the deleterious effect of the four
mutations when there is no drug in the environment (Supp. Figure 1).
This observation highlights the need to characterize how drug dose
modulates epistasis in this particular landscape in order to understand
the emergence and prevalence of resistant P. falciparum genotypes.

We thus asked whether the concentration of drug in the envir-
onment may modulate the patterns of global epistasis observed for a
particularmutation and, if so, whether we can trace back the origins of
this modulation to specific gene-by-environment interactions. For
eachof the fourmutations, we focusedon (a) towhat extent thefitness
effect of the mutation depends on its genetic background (i.e., how
much epistasis there is), (b) how correlated the fitness effect of the
mutation is with the fitness of its genetic background (i.e., to what
degree epistasis is global), and (c) what the shape of global epistasis is
(e.g., diminishing returns, accelerating returns, etc.).

Our results show that drug concentration strongly modulates
global epistasis in this particular landscape. Extending previous theo-
retical results, we demonstrate that this modulation can be explained
by specific gene-by-gene interactions and how they are affected by the
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Fig. 1 | Mutations exhibit variation in the strength of global epistasis. a We
reanalyzed a dataset consisting of 15 genotypes of the P. falciparum parasite, each
carrying a different combination of four mutations: C59R, I164L, N51I and S108N.
b We examined the fitness effect of a focal mutation (in this illustration, mutation
C59R) in different genetic backgrounds carrying combinations of the other three
mutations. Here, colored/gray loci represent the presence/absence of the muta-
tion. c In the absenceofpyrimethamine, a negative correlation is observedbetween

the fitness effect of mutation C59R and the fitness of its genetic background. We
quantify the strength of epistasis as the variance in the mutation’s fitness effects
relative to the variance in fitness across its genetic backgrounds (varΔf / var f(B)).
The degree towhich epistasis is global is quantified as theR2 of the linear regression
between the fitness effect of themutation and the fitness of its genetic background.
d The variance ratio and the R2 can be seen as a mutation’s “coordinates” in a
conceptual “epistasis map''.
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environment. In particular, we mathematically define a set of “effec-
tive” genetic interactions, showing that their distribution determines
the strength and shape of global epistasis across drug doses. Our
results highlight an avenue for quantitatively connecting fine-grained
gene-by-environment and gene-by-gene-by-environment interactions
with the emergence of global epistasis and the topography of fitness
landscapes.

Results
Mutations exhibit variation in the strength and shape of global
epistasis
We first asked to what extent mutations in our landscape exhibit
variable fitness effects depending on their genetic background, that is,
what the magnitude of epistasis is in this system. For a given mutation
(which we denote as the focal mutation i), we refer to the set of gen-
otypes not carrying that mutation as the genetic backgrounds (Fig. 1b).
We denote f(B) the fitness of one of such backgrounds B. Calling B+i
the genotype resulting from adding mutation i to the genetic back-
ground B, the fitness effect of mutation i is quantified simply as:
Δfi = f(B + i)−f(B), that is, the difference in fitness between genotypes B
+i andB (see Fig. 1b for an illustrationwith C59R as the focalmutation).
If a mutation had only weak epistatic interactions with other loci, we
would see that its fitness effect Δfi remains roughly constant across all
genetic backgrounds (i.e., the effect of the mutation is essentially
additive). On the other hand, high levels of epistasis would make this
fitness effect largely dependent on the presence or absence of other
mutations, exhibiting large variation across backgrounds. We thus
quantified the strength of epistasis for a focal mutation i as the var-
iance of Δfi relative to the variance in fitness across the genetic back-
grounds of that mutation: varΔfi/var f(B) (see Fig. 1c for the case with
C59R as the focal mutation).

We also asked the extent to which the fitness effect of a mutation
may be well predicted by a simple linear model linking it to the fitness
of its genetic background, that is, to what degree is epistasis global.
Note that, in general, the relationship between Δf and f(B) need not
always be truly linear, and other studies have found different types of

relationships between the two magnitudes14,15. The linear fits to our
data should be interpreted simply as themost parsimonious statistical
models one can use to link the fitness effect of a mutation to the
background fitness.

If epistasis was strong for a given mutation (large varΔfi/var f(B))
and we observed a high correlation between f(B) and Δf, we would
interpret this as epistasis being largely global: while thefitness effect of
the mutation strongly depends on the genetic structure of its back-
ground, it can still be well estimated from the background fitness
through a simple linear model (Fig. 1c). If, on the other hand, the
correlation between f(B) and Δf was weak, epistasis would be largely
idiosyncratic (as opposed to global). We quantified the degree to
which epistasis is global for a given mutation as the coefficient of
determination (R2) of the regression between f(B) and Δf for that
mutation (Fig. 1c).

We propose that these two quantities (the variance ratio varΔfi/
var f(B) and the R2) define a “map of epistasis” in which different
mutations may occupy different positions. The edges of this map
correspond to limit cases where epistasis is either very strong or very
weak, and either entirely global or entirely idiosyncratic (Fig. 1d). Inour
system, and when there is no drug in the environment, we observed
that the strength of epistasis is similar for all mutations (varΔfi/var
f(B)∼1 for all four), but the degree to which this epistasis is global
exhibits substantial variation (R2∼0.7 for mutation C59R to R2∼0.2 for
mutation S108N).

Drug dose modulates the strength and shape of global epistasis
To analyze how the environment may modulate epistasis in our sys-
tem, we considered every concentration of pyrimethamine ranging
from 10−2μM to 103 μM, as well as the no drug control, in the dataset
described above (Fig. 2a). We found that the strength and shape of
global epistasis varied substantially for all mutations as the con-
centration of pyrimethamine increased. As an illustration, in Fig. 2b we
show that mutation C59R goes from exhibiting a pattern of diminish-
ing returns (smaller fitness effects in higher-fitness backgrounds) at
low drug doses to exhibiting increasing returns (larger positive fitness
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Fig. 2 | The environmentmodulates the strength and shape of global epistasis.
aWeanalyzed howan environmental perturbation (in the formof a pyrimethamine
concentration gradient) affects the global epistasis patterns observed in our four-
mutation landscape. b As an example, we show that increasing drug dose alters the
global epistasis pattern for mutation C59R, going from diminishing returns to
increasing returns. c Drug concentration affects epistasis differently for each

mutation, which can be thought of as mutations following different paths in our
“epistasis map''. Arrows follow the direction of change as drug dose increases from
0 to 103 μM. d–f The strength of epistasis (variance ratio varΔf/var f(B)), the degree
to which epistasis is global (R2) and the shape of global epistasis (slope of the
regression between Δf and f(B)) are modulated differently for each mutation.
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effects in higher-fitness backgrounds) at high doses. For other muta-
tions, epistasis is modulated differently (Supp. Figure 2).

Mutations can be seen as describing a “path” through the map of
epistasis wedefined above (Fig. 2c) as the environment changes, i.e., as
drug concentration increases. For instance, mutation S108N becomes
largely idiosyncratic, moving to the bottom-right corner of the map.
Epistasis for mutation N51I becomes weaker as drug dose increases,
i.e., thismutation describes a path towards the left side of themap. For
mutations C59R and I164L, the strength of epistasis remains roughly

constant across drug concentrations (variance ratio varΔfi/var f(B)∼1),
but epistasis becomes more global (higher R2) for I164L and more
idiosyncratic (lower R2) for C59R at intermediate drug doses. Beyond
modulating the variance ratio (Fig. 2d) and the R2 (Fig. 2e), drug dose
also changes the shape of global epistasis. Interestingly, while the
slopes of the linear regressions between f(B) and Δf are similar for all
mutations at low doses, they become substantially different at higher
concentrations (Fig. 2f). Note that these three quantities (variance

BOX 1

Effective genetic interactions
Recent work has demonstrated that global epistasis patterns can
emerge as a result of just a few14, or multiple widespread48, gene-by-
gene interactions. In the latter case, a recent study has found an
explicit quantitative relationship connecting the shape of global epis-
tasis to pairwise and higher-order interactions between mutations48.
Theory has suggested that this relationship may hold even when such
interactions are sparse asopposed towidespread49. In particular, these
works show that the global epistasis slope of a focal mutation i
(denotedbi) canbe approximatedby a sumof contributions fromevery
other mutation j ≠ i as48,49:

bi≈
X

j≠i

ωij βij ð1Þ

where ωij and βij are defined as

βij �
hϵiji
hΔf ji

ð2Þ

ωij �
hΔf ji2P
k≠ihΔf ki2

ð3Þ

The term 〈Δfj〉 represents the average fitness effect of mutation j
across all backgrounds that do not carrymutations i nor j. The term 〈ϵij〉
represents the average pairwise epistasis between mutations i and j,
defined as the deviation between the fitness of the doublemutantwith
respect to the expectation that mutations i and j do not interact.

As an illustration, the figure in this Box shows the case where the
genetic background corresponds to the genotype carrying only
mutation N51I. In the illustration, mutation i is I164L and mutation j is
C59R, which has a positive fitness effect (Δfj > 0) in this background.
Whenbothmutations are introduced, the resultingfitness is lower than
the addition of the two separate fitness effects, indicating negative
epistasis (ϵij <0). The terms 〈Δfj〉 and 〈ϵij〉 can be computed by quanti-
fying Δfj and ϵij in every possible genetic background which does not
carry any of the two mutations, and averaging them.

The expressions above result from writing the variances of Δf and
f(B), aswell as the covariance between the twomagnitudes, in terms of
the presence or absence of eachmutation48; and then truncating those
expressions at the lowest-order terms (see refs. 48 & 49 and Supple-
mentary Notes for a more detailed derivation). This is approximation
partially neglects the effect of higher-order interactions (HOIs): while,
in principle, HOIs can make the magnitude of pairwise epistasis (ϵij)
vary depending on the presence/absence of additional mutations, this
variation is averaged across all backgrounds (as 〈ϵij〉) in equations 2 and
3. If we did not explicitly neglect higher-order terms, equations 1–5
would contain additional terms depending on 〈ϵijk〉 (defined as the
average deviation in fitness of the triple mutant with respect to the
additive expectation from each of the three single mutants), 〈ϵijkl〉, etc.

(Supplementary Notes). The larger the magnitude of such terms, the
moresubstantial thedeviationwewill observebetween the empirically
measured variance ratio, R2, and slope and the values estimated by
equations 1-5.

We propose that the term βij may be interpreted as the quantifica-
tion of an “effective interaction” between mutations i and j. In turn, ωij

can be seen as a “weight” which captures the fraction of fitness var-
iance due to the presence/absence ofmutation j across the genotypes
that do not carrymutation i49. Thus, equation 1 indicates that the global
epistasis slope formutation i (bi) can be estimated as theweighted first
moment (i.e., the weighted mean) of the distribution of effective
interactions for that mutation: bi ≈ ∑j≠iωij βij = 〈 β 〉ω.

Extending this theoretical framework (Supplementary Notes), one
can readily derive that the variance ratio (varΔf/var f(B)) and theR2 for a
focal mutation i can be approximated respectively as

varΔf i
var f ðBÞ ≈

X

j 6¼i

ωij β
2
ij = hβ2iω|fflffl{zfflffl}

Weighted2ndmoment

of β

ð4Þ

Ri
2≈

P
j≠iωijβij

� �2

P
j≠iωij β

2
ij

=
1

1+CV2
ωðβÞ

ð5Þ

whereCVω is theweighted coefficient of variation of the distribution of
effective interactions, i.e., itsweighted standarddeviation relative to its
weighted mean.

These effective interactions result from the composition of two
contributions to the pattern of global epistasis for a given mutation.
This pattern emerges in the form of a relationship between the fitness
effect Δf of the mutation (represented on the y-axis) and the back-
ground fitness f(B) (represented on the x-axis). Intuitively, the terms 〈ϵij〉
generate “vertical” variation, making the fitness effect of mutation i
vary dependingon thepresenceor absenceofmutation j. The termsΔfj
generate “horizontal” variation infitness across backgrounds that carry
or donot carrymutation j.Whatwehere call an “effective interaction”β
(equation 2) and a “weight” ω (equation 3) are just convenient rear-
rangements of these terms that allow us to approximate the variance
ratio, R2, and slope in terms of the weighted moments of a common
distribution.

From equation 3, one might expect that considering additional
mutations beyond the four we analyze here will tend to decrease the
magnitude of most individual weights (as it will add more terms to the
denominator). This, however, does not mean that the overall strength
of global epistasis will necessarily decrease. Whether this is the case
will ultimately depend on how the focal mutation interacts with the
additional loci. Considering additionalmutations increases thenumber
of possible genetic backgrounds over which the terms 〈Δfj〉 are
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ratio, R2, and slope) are not independent, as they satisfy b2 =R2 varΔf/
var f(B) (where we have denoted the slope as b).

Using cycloguanil instead of pyrimethamine as the environmental
perturbation modifies the paths that mutations follow in the epistasis
map, but some qualitative behaviors are similar for both drugs: for
instance, epistasis for mutation S108N also becomes largely idiosyn-
cratic at high cycloguanil doses, while epistasis for mutation I164L
becomes strongly global at intermediate doses (Supp. Figures 3 and 4).
Together, these observations highlight the role of the environment in
dictating the strength and shape of global epistasis in this particular
system.

Environmental modulation of global epistasis is explained by
changes in background fitness effects and interactions
Can we attribute these environmental effects on global epistasis to
specific interactions between the fourmutations in this landscape?
Recent theory has shown that the slope of the regression between
Δf and f(B) for a given mutation can be quantitatively explained in
terms of fine-grained genetic interactions between that mutation
and every other loci in its genetic background48, 49 (equations 1 to 3
in Box 1). Here we show that the strength of epistasis (variance r-
atio var Δf/var f(B)) and the degree to which epistasis is global
(R2 of the Δf-vs-f(B) regression) can also be quantitatively
linked to specific gene-by-gene interactions (Box 1 and Supple-
mentary Notes).

For that, we define the “effective interaction” betweenmutations i
and j (denoted βij) as the average magnitude of epistasis for those
mutations (i.e., the average deviation between the fitness of a geno-
type carrying both mutations with respect to the additive expectation
that they do not interact, see Box 1) with respect to the average fitness
effect of mutation j across all genetic backgrounds of i (see equation 2
in Box 1). Expanding on previous theoretical results, in Box 1 we show
that the variance ratio, R2, and global epistasis slope for a focal muta-
tion i can all be quantitatively linked to the mean and standard
deviation of the distribution of that mutation’s effective interactions
(see also Supplementary Notes for a more detailed derivation of the
expressions in Box 1).

In light of equations 1 to 5 (Box 1), we may expect environmental
factors to modulate the strength and shape of global epistasis for a
focalmutation through twodifferentmechanisms: either bymodifying
the fitness effects of the background mutations, or by modulating the
interactions between them and the focal (Fig. 3a, b). To test these two
potentialmechanisms, we quantified the termsΔfj and ϵij for every pair
of mutations i and j in the dataset, in every possible genetic back-
ground and for every drug concentration between 0 and 103 μM. We
started by analyzing the case with C59R as the focal mutation i,

considering the other three mutations as non-focal background
mutations (j).

We quantified the fitness effects Δfj of each non-focal mutation in
every genetic background not carrying C59R (see Box 1). As shown in
Fig. 3a, drug concentration modulates these fitness effects differently
for each background mutation. For instance, mutation S108N has a
very small average fitness effect (〈ΔfS108N〉∼0) at low doses, which
becomes strongly positive (〈ΔfS108N〉 > 0) as the concentration of pyr-
imethamine increases in the environment (Fig. 3a, blue). On the other
hand,mutations I164L andN51I have small andnegative averagefitness
effects (〈ΔfI164L〉, 〈ΔfN51I〉 <0) at low doses, but the fitness effect of N51I
becomes slightly positive (〈ΔfN51I〉 >0) at high doses (Fig. 3a, yellow).

We then analyzed the average magnitude of epistasis (〈ϵij〉,
quantified as explained in Box 1) between the focal mutation C59R and
each of the three background mutations. Again, we found that the
environment modulates these epistatic effects differently for each
background mutation (Fig. 3b). For instance, mutation S108N goes
from exhibiting low positive epistasis with C59R (〈ϵC59R,S108N〉 > 0) at
low doses to exhibiting very large positive epistasis (〈ϵC59R,S108N〉 > >0)
with C59R at higher concentrations (Fig. 3b, blue). In turn, mutation
N51I exhibits, on average, moderate positive epistasis with the focal
mutation C59R (〈ϵC59R,N51I〉 >0) at low drug doses, and moderate
negative epistasis (〈ϵC59R,N51I〉 <0) at high doses (Fig. 3b, yellow).

Using equations 2 and 3 in Box 1, we then quantified the magni-
tude of the effective interaction (β) between C59R and each of the
three non-focal mutations for every drug dose. We also quantified the
weight (ω) corresponding to each background mutation. In Fig. 3c we
show how the distribution of effective interactions of C59R changes as
pyrimethamine concentration increases. Most notably, at low doses
the effective interactions of C59Rwith I164L (green dots in Fig. 3c) and
N51I (yellow dots in Fig. 3c) have the largest weights, and are negative
as a result of 〈ϵij〉 and 〈Δfj〉 having opposite signs for these two muta-
tions. As drug concentration increases, however, the weight of the
positive effective interaction between C59R and S108N (blue dots in
Fig. 3c) becomes larger, since the average fitness effect of S108N
increases substantially.

As explained in Box 1, the (weighted) first and secondmoments of
the distribution of a mutation’s effective interactions modulate the
strength and shape of global epistasis for that mutation. In particular,
the weighted mean estimates the global epistasis slope (equation 1),
the weighted second moment estimates the variance ratio varΔf/var
f(B) (equation 4), and the coefficient of variation estimates the R2

(equation 5). In Fig. 3d–e we show that for mutation C59R, equations 1
to 5doagood job at capturinghow the slope andvariance ratio change
across drug concentrations. For the R2 (Fig. 3f) the quantitative
agreement is weaker, but the qualitative behavior is well captured —

averaged, and it also increases the number of terms in the sums in
equations 1, 4, and 5. Thus, mutations may exhibit strong global epis-
tasis even in very large combinatorial fitness landscapes14.
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namely, the R2 being high at low and high doses, and dropping at
intermediate concentrations.

This analysis allows us to identify the mechanisms underlying the
environmental modulation of global epistasis for this mutation. As we
had shown in Fig. 2b, C59R exhibits a pattern of diminishing returns at
low drug doses and a pattern of increasing returns at high doses. This
can be explained by the negative effective interactions of C59R with
I164L and N51I dominating at low pyrimethamine concentrations, and
thepositive effective interaction betweenC59R and S108Ndominating
at high drug concentrations (Fig. 3c).

Considering any of the other threemutations (instead of C59R) as
the focal yields a similarly good agreement of the empirically observed
variance ratio, slope, and R2 with the values estimated using equations
1 to 5. For every mutation in the dataset, we quantified its distribution
of effective interactions with all other mutations at all drug doses. In
Fig. 4 we show that the path described by each mutation in the
“epistasis map” closely matches the path expected from estimating
varΔf/var f(B) and R2 using the distribution of a mutation’s effective
interactions.

Equations 1-5 can generally provide accurate estimates for the
strength and shape of global epistasis across concentrations of pyr-
imethamine (Fig. 4b–d) or cycloguanil (Supp. Figure 5). Importantly,
however, these estimates sometimes deviate from the empirically
observed variance ratio, R2 and slope. This is perhaps most evident in
Figs. 3f and 4d (red dots), showing that the R2 for mutation C59R is
overestimated by equation 5 at high pyrimethamine doses. As
explained in Box 1, equations 1 to 5 result from partially neglecting the
effect of higher-order interactions (HOIs) between mutations. There-
fore, the deviations observed in this particular case point to mutation

C59R engaging in strong HOIs at high drug doses. Interestingly, these
deviations seem to be smaller for the cycloguanil data (Supp. Figure 5),
indicating a smaller effect of HOIs in the presence of this drug. Toge-
ther, these results highlight the utility of defining effective interactions
in order to uncover which fine-grained genetic interactions, and
through which mechanisms, play a more prominent role in shaping
global epistasis across environments.

Discussion
The observation that epistasis often has a global component has set a
stepping stone in our ability to understand and predict adaptation. For
instance, diminishing returns epistasis can explain the strikingly con-
served patterns of declining adaptability reported in long-term evo-
lution experiments7–9,50,51. While there have been increasing efforts to
understand how patterns of global epistasis emerge from fine-grained
genetic interactions13,14,48,49,52,53, less attention has been paid to how
they might be affected by the environment. This is particularly
important in the context of AMR evolution, where the use of anti-
microbial drugs can often exert evolutionary pressures that reshape
the topography of genotype-phenotype maps and drive the emer-
gence of resistant genotypes.

In this work, we have examined how the concentration of a drug
in the environment affects the patterns of global epistasis in a parti-
cular fitness landscape defined by four mutations often found
in resistant clones of the P. falciparum malaria parasite42–44. Our
results show that the strength of epistasis, the degree to which epis-
tasis is global, and the shape of global epistasis are stronglymodulated
by drug concentration in this landscape. Furthermore, we have
shown that the origins of this modulation can be attributed to
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expectation (seeBox 1).cDistributions of effective interactions (as defined in Box 1)
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proportional to the weight of that effective interaction (as defined in equation 3).
Black lines and error bars represent weighted means and weighted standard
deviations across the n = 3 background mutations. d–f As drug dose increases, the
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specific gene-by-environment and gene-by-gene-by-environment
interactions, expanding on previous theoretical results connecting the
emergence of global epistasis to pairwise and higher-order genetic
interactions48,49.While this connectionwasoriginally formulatedunder
the assumption of widespread epistasis48, theory had suggested that it
may hold even when genetic interactions are sparse49.

Our results provide direct empirical evidence of this theoretical
framework successfully explaining global epistasis patterns in a parti-
cular drug resistance fitness landscape, even when these are dominated
by a single interaction. We have shown that, at high drug doses, the
strength and shape of global epistasis for mutation C59R is dictated by
its interaction with a single background mutation (S108N). This is con-
sistent with recent work demonstrating that global epistasis can emerge
as a result of sparse genetic interactions14. More generally, we have
shown that the collective action of all mutations’ epistatic and fitness
effects determines the shape of a distribution of “effective interactions,”
which we have defined mathematically building on recent theory from
quantitative genetics. We have demonstrated that the moments of this
distribution determine the properties of global epistasis for a given
mutation — namely, its strength and the shape of the relationship
between the background fitness and the mutation’s fitness effect.

Here we analyzed a low-dimensional landscape, which allowed us
to directly test the fitness effect of every mutation, as well as every
possible epistatic coefficient between all pairs of mutations, in almost
every genetic background. Allmutations we considered correspond to
a same gene (encoding the DHFR enzyme of P. falciparum), and thus
we might expect interactions between them to be stronger than with

other potential mutations in more distal sites of the genome. Further
work will be required to determine whether effective interactions can
be reliably defined and quantified in higher-dimensional landscapes,
including mutations in different genes or pathways, where empirically
measuring thefitness of every genotype across environmentsmight be
more challenging. For instance, the contribution of each background
locus to the global epistasis pattern of a focal mutation can be
expected to become smaller (lower weight ω as defined in equation 3)
as the size of the landscape increases. Whether this results in stronger
or weaker global epistasis patterns will generally depend on the
structure of epistasis among all mutations considered, which can be
expected to vary across landscapes of different sizes. In addition, here
we have focused on two specific drugs as our environmental variables.
It will be important to test whether different forms of environmental
perturbations (e.g., temperature or pH variations), and within what
ranges, have the potential to modulate global epistasis in this land-
scape and others. Most importantly, our work suggests that the global
epistasis framework can be readily extended to account for environ-
mental variables, which might be critical to predict adaptive trajec-
tories under changing environments in the context of AMR evolution.

Methods
Data analysis
Data was obtained from the original publications31,34,41. The genotype
carryingmutations I164L and S108Nwas removed from thedata due to
having inconsistent fitness values across two no-drug controls. All
analyses were carried out using R version 4.3.1.
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Quantification of effective interactions
For a given pair ofmutations i and j, wedenote B a genetic background
not carrying any of the two. We denote B+i and B+j the genotypes
resulting from mutating i or j, respectively, in the background B. The
double mutant is denoted B+i+j. To compute the effective interaction
βij (see equation 1 in Box 1), we consider every possible background B
and quantify

Δf jðBÞ= f ðB+ jÞ � f ðBÞ ð6Þ

ϵijðBÞ= f ðB+ i+ jÞ � f ðB+ iÞ � f ðB+ jÞ+ f ðBÞ ð7Þ

We then compute 〈Δfj〉 and 〈ϵij〉 by averaging the expressions above
across every possible genetic background B. If any of the terms on the
right-hand side of the equations above were missing (due to incom-
plete data), we computed the averages across the known terms only.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data analyzed in this study were obtained from the original
publications31, 34,41 and is also available at https://github.com/jdiazc9/
env_global_epist54. Code used to generate all figures can be found in
the same GitHub repository.

Code availability
All code is available at https://github.com/jdiazc9/env_global_epist54.

References
1. Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Dar-

winian evolution can follow only very fewmutational paths to fitter
proteins. Science 312, 111–114 (2006).

2. De Visser, J. & Krug, J. Empirical fitness landscapes and the pre-
dictability of evolution. Nat. Rev. Genet. 15, 480–490 (2014).

3. Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein
Sci. 25, 1204–1218 (2016).

4. Kryazhimskiy, S. Emergence and propagation of epistasis in meta-
bolic networks. eLife 10, e60200 (2021).

5. Bank, C. Epistasis and adaptation on fitness landscapes. Ann. Revi.
Ecol. Evol. Syst. 53, 457–479 (2022).

6. MacLean, R., Perron, G. & Gardner, A. Diminishing returns from
beneficial mutations and pervasive epistasis shape the fitness
landscape for rifampicin resistance in pseudomonas aeruginosa.
Genetics 186, 1345–1354 (2010).

7. Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E. & Cooper, T. F.
Negative epistasis between beneficial mutations in an evolving
bacterial population. Science 332, 1193–1196 (2011).

8. Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D. & Marx, C. J.
Diminishing returns epistasis among beneficial mutations decele-
rates adaptation. Science 332, 1190–1192 (2011).

9. Perfeito, L., Sousa, A., Bataillon, T. & Gordo, I. Rates of fitness
decline and rebound suggest pervasive epistasis. Evolution 68,
150–162 (2014).

10. Kryazhimskiy, S., Rice, D. P., Jerison, E. R. & Desai, M. M. Global
epistasis makes adaptation predictable despite sequence-level
stochasticity. Science 344, 1519–1522 (2014).

11. Schoustra, S., Hwang, S., Krug, J. & de Visser, J. A. G. Diminishing-
returns epistasis among random beneficial mutations in a multi-
cellular fungus. Proc. Royal Soc. B: Biol. Sci. 283, 20161376 (2016).

12. Johnson, M. S., Martsul, A., Kryazhimskiy, S. & Desai, M. M. Higher-
fitness yeast genotypes are less robust to deleterious mutations.
Science 366, 490–493 (2019).

13. Wei, X. & Zhang, J. Patterns andmechanisms of diminishing returns
from beneficial mutations. Mol. Biol. Evol. 36, 1008–1021 (2019).

14. Bakerlee, C. W., Ba, A. N. N., Shulgina, Y., Echenique, J. I. R. & Desai,
M. M. Idiosyncratic epistasis leads to global fitness–correlated
trends. Science 376, 630–635 (2022).

15. Johnson, M. S., Reddy, G. & Desai, M. M. Epistasis and evolution:
recent advances and an outlook for prediction. BMC Biol. 21,
120 (2023).

16. Chou, H.-H., Berthet, J. & Marx, C. J. Fast growth increases the
selective advantage of a mutation arising recurrently during evo-
lution under metal limitation. PLoS Genet. 5, e1000652 (2009).

17. Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring the shape
of global epistasis. Proc. Natl Acad. Sci. 115, E7550–E7558 (2018).

18. Greene, D. & Crona, K. The changing geometry of a fitness land-
scape along an adaptive walk. PLoS Comput. Biol. 10,
e1003520 (2014).

19. Blanquart, F., Achaz, G., Bataillon, T. & Tenaillon, O. Properties of
selected mutations and genotypic landscapes under fisher’s geo-
metric model. Evolution 68, 3537–3554 (2014).

20. Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein
fitness landscape with gaussian processes. Proc. Natl Acad. Sci.
110, E193–E201 (2013).

21. Tonner, P. D., Pressman, A. & Ross, D. Interpretable modeling of
genotype–phenotype landscapes with state-of-the-art predictive
power. Proc. Natl Acad. Sci. 119, e2114021119 (2022).

22. Tareen, A. et al. Mave-nn: learning genotype-phenotypemaps from
multiplex assays of variant effect. Genome Biol. 23, 98 (2022).

23. Turner, P. E. & Elena, S. F. Cost of host radiation in an rna virus.
Genetics 156, 1465–1470 (2000).

24. Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. &
Petrov, D. A. Genomic evidence of rapid and stable adaptive
oscillations over seasonal time scales in drosophila. PLoSGenet. 10,
e1004775 (2014).

25. Rodríguez-Verdugo, A., Carrillo-Cisneros, D., González-González,
A., Gaut, B. S. & Bennett, A. F. Different tradeoffs result from alter-
nate genetic adaptations to a common environment. Proc. Natl
Acad. Sci. 111, 12121–12126 (2014).

26. Cvijović, I., Good, B. H., Jerison, E. R. & Desai, M. M. Fate of a
mutation in a fluctuating environment. Proc. Natl Acad. Sci. 112,
E5021–E5028 (2015).

27. You, L. & Yin, J. Dependence of epistasis on environment and
mutation severity as revealed by in silico mutagenesis of phage t7.
Genetics 160, 1273–1281 (2002).

28. Flynn, K. M., Cooper, T. F., Moore, F. B. & Cooper, V. S. The envir-
onment affects epistatic interactions to alter the topology of an
empirical fitness landscape. PLoS Genet. 9, e1003426 (2013).

29. Lindsey, H. A., Gallie, J., Taylor, S. & Kerr, B. Evolutionary rescue
from extinction is contingent on a lower rate of environmental
change. Nature 494, 463–467 (2013).

30. Hall, A. E. et al. Environment changes epistasis to alter trade-offs
along alternative evolutionary paths. Evolution 73,
2094–2105 (2019).

31. Ogbunugafor, C. B. The mutation effect reaction norm (mu-rn)
highlights environmentally dependent mutation effects and epi-
static interactions. Evolution 76, 37–48 (2022).

32. Ghenu, A.-H., Amado, A., Gordo, I. & Bank, C. Epistasis decreases
with increasing antibiotic pressure but not temperature. Philos.
Trans. Royal Soc. B 378, 20220058 (2023).

33. Oomen, R. A. &Hutchings, J. A. Genetic variability in reaction norms
in fishes. Environ. Rev. 23, 353–366 (2015).

Article https://doi.org/10.1038/s41467-023-43806-x

Nature Communications |         (2023) 14:8055 8

https://github.com/jdiazc9/env_global_epist
https://github.com/jdiazc9/env_global_epist
https://github.com/jdiazc9/env_global_epist


34. Ogbunugafor, C. B., Wylie, C. S., Diakite, I., Weinreich, D. M. & Hartl,
D. L. Adaptive landscape by environment interactions dictate evo-
lutionary dynamics in models of drug resistance. PLoS Comput.
Biol. 12, e1004710 (2016).

35. Bajić, D., Vila, J. C. C., Blount, Z. D. & Sánchez, A. On the deform-
ability of an empirical fitness landscape by microbial evolution.
Proc. Natl Acad. Sci. 115, 11286–11291 (2018).

36. Mustonen, V. & Lässig, M. From fitness landscapes to seascapes:
non-equilibrium dynamics of selection and adaptation. Trends
Genet. 25, 111–119 (2009).

37. Iram, S. et al. Controlling the speed and trajectory of evolution with
counterdiabatic driving. Nat. Phys. 17, 135–142 (2021).

38. Palmer, A. C. & Kishony, R. Understanding, predicting and manip-
ulating the genotypic evolution of antibiotic resistance. Nat. Rev.
Genet. 14, 243–248 (2013).

39. Berendonk, T. U. et al. Tackling antibiotic resistance: the environ-
mental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).

40. Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. J. Environmental
factors influencing the development and spread of antibiotic
resistance. FEMS Microbiol. Rev. 42, fux053 (2018).

41. Ogbunugafor, C. B. & Eppstein, M. J. Competition along trajectories
governs adaptation rates towards antimicrobial resistance. Nat.
Ecol. Evol. 1, 1–8 (2016).

42. Tahar, R. & Basco, L. K. Molecular epidemiology of malaria in
cameroon. xxii. geographic mapping and distribution of Plasmo-
dium falciparum dihydrofolate reductase (DHFR) mutant alleles.
Am. J. Trop. Med. Hygiene 75, 396–401 (2006).

43. Gebru-Woldearegai, T., Hailu, A., Grobusch, M. P. & Kun, J. F.
Molecular surveillance of mutations in dihydrofolate reductase and
dihyropteroate synthase genes of Plasmodium falciparum in
ethiopia. Am. J. Trop. Med. Hygiene 73, 1131–1134 (2005).

44. Heidari, A. et al. Genotypes and in vivo resistance of Plasmodium
falciparum isolates in an endemic region of iran. Parasitol.Res. 100,
589–592 (2007).

45. Ahmed, A. et al. Quadruplemutations in dihydrofolate reductase of
Plasmodium falciparum isolates from Car Nicobar Island, India.
Antimicrobial Agents Chemother. 50, 1546–1549 (2006).

46. Porse, A., Jahn, L. J., Ellabaan, M. M. & Sommer, M. O. Dominant
resistance and negative epistasis can limit the co-selection of de
novo resistance mutations and antibiotic resistance genes. Nat.
Commun. 11, 1199 (2020).

47. Wong, A. Epistasis and the evolution of antimicrobial resistance.
Front. Microbiol. 246 https://doi.org/10.3389/fmicb.2017.
00246 (2017).

48. Reddy, G. & Desai, M. M. Global epistasis emerges from a generic
model of a complex trait. eLife 10, e64740 (2021).

49. Diaz-Colunga, J. et al. Global epistasis on fitness landscapes. Philos.
Trans. Royal Soc. B 378, 20220053 (2023).

50. Wiser, M. J., Ribeck, N. & Lenski, R. E. Long-term dynamics of
adaptation in asexual populations. Science 342, 1364–1367
(2013).

51. Lenski, R. E. et al. Sustained fitness gains and variability in fitness
trajectories in the long-term evolution experiment with escherichia
coli. Proc. Royal Soc. B: Biol. Sci. 282, 20152292 (2015).

52. Lyons, D. M., Zou, Z., Xu, H. & Zhang, J. Idiosyncratic epistasis cre-
ates universals in mutational effects and evolutionary trajectories.
Nat. Ecol. Evol. 4, 1685–1693 (2020).

53. Berger, D. & Postma, E. Biased estimates of diminishing-returns
epistasis? empirical evidence revisited. Genetics 198,
1417–1420 (2014).

54. Diaz-Colunga, J., Sanchez, A. & Ogbunugafor, C. B. Environmental
modulation of global epistasis in a drug resistance fitness land-
scape. Zenodo https://zenodo.org/doi/10.5281/zenodo.
10067162 (2023).

Acknowledgements
We thank members of the Sanchez and Ogbunu labs for helpful dis-
cussions. C.B.O. acknowledges support from National Science Foun-
dation’s Division of Environmental Biology Award Number 2142720 and
from the MLK Visiting Scholars and Professors Program at the Massa-
chusetts Institute of Technology. J.D.-C. & A.S. were partially supported
by grant PID2021-125478NA-100 funded by MCIN/AEI/10.13039/
501100011033 and by “ERDF: A way of making Europe.”

Author contributions
J.D.-C., A.S. and C.B.O. conceived the study. J.D.-C. analyzed and
interpreted data. J.D.-C.wrote the paper, with input fromA.S. andC.B.O.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43806-x.

Correspondence and requests for materials should be addressed to
Juan Diaz-Colunga, Alvaro Sanchez or C. Brandon Ogbunugafor.

Peer review information Nature Communications thanks Jacob Scott
and the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43806-x

Nature Communications |         (2023) 14:8055 9

https://doi.org/10.3389/fmicb.2017.00246
https://doi.org/10.3389/fmicb.2017.00246
https://zenodo.org/doi/10.5281/zenodo.10067162
https://zenodo.org/doi/10.5281/zenodo.10067162
https://doi.org/10.1038/s41467-023-43806-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Environmental modulation of global epistasis in a drug resistance fitness landscape
	Results
	Mutations exhibit variation in the strength and shape of global epistasis
	Drug dose modulates the strength and shape of global epistasis
	Environmental modulation of global epistasis is explained by changes in background fitness effects and interactions

	Discussion
	Methods
	Data analysis
	Quantification of effective interactions
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




