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Local energetic frustration conservation in
protein families and superfamilies

Maria I. Freiberger 1,8, Victoria Ruiz-Serra 2,8, Camila Pontes 2,
Miguel Romero-Durana 2, Pablo Galaz-Davison3,4,
Cesar A. Ramírez-Sarmiento 3,4, Claudio D. Schuster 5, Marcelo A. Marti 5,
Peter G. Wolynes 6, Diego U. Ferreiro1, R. Gonzalo Parra 2 &
Alfonso Valencia 2,7

Energetic local frustration offers a biophysical perspective to interpret the
effects of sequence variability on protein families. Here we present a metho-
dology to analyze local frustration patterns within protein families and
superfamilies that allows us to uncover constraints related to stability and
function, and identify differential frustration patterns in families with a com-
mon ancestry. We analyze these signals in very well studied protein families
such as PDZ, SH3, ɑ and β globins and RAS families. Recent advances in protein
structure prediction make it possible to analyze a vast majority of the protein
space. An automatic and unsupervised proteome-wide analysis on the SARS-
CoV-2 virus demonstrates the potential of our approach to enhance our
understanding of the natural phenotypic diversity of protein families beyond
single protein instances. We apply our method to modify biophysical prop-
erties of natural proteins based on their family properties, as well as perform
unsupervised analysis of large datasets to shed light on the physicochemical
signatures of poorly characterized proteins such as the ones belonging
to emergent pathogens.

Families of proteins originate from a common ancestor and develop
over evolutionary timescales through various mechanisms of
sequence variability at the domain level1. The effects that these varia-
tions have on phenotypic traits such as protein stability and biological
function may conflict with one another, restricting evolutionary tra-
jectories in theprotein sequence space2.Multiple sequence alignments
(MSAs) of protein families show that there are certain positions under
strong evolutionary pressure that have little variability while other
positions undergo neutral evolution. The latter ones allow protein

sequences to diffuse in sequence space as long as the mutations pre-
serve the structure of their ground states along with their thermo-
dynamic stability and kinetic accessibility while not compromising
function3. Superfamilies, families, and subfamilies are terms that have
been coined to organize the different levels of sequence, structure,
and functional similarity as evolution progresses and phylogenetic
trees grow. The MSAs of superfamilies show distinctive patterns of
differentially conserved residues that modulate the specificity of bio-
logical function within different subfamilies. Methods that represent
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proteins, with their sequences as vectors in a generalized sequence
space4 can identify “Specificity Determining Positions” (SDPs)5, i.e.,
positions that are differentially conserved within distinct subfamilies.
Nevertheless, interpreting SDPs from sequence alone remains chal-
lenging. Energy-based structural approaches become useful, since
sequence diverges faster than structure6, and structural comparison
has facilitated to group evolutionarily related protein families into
superfamilies, even in the absence of detectable sequence similarity7.

Sequence variations can be linked with their structural, functional,
and dynamic consequences using the concept of local energetic
frustration8, derived from the energy landscape theory of protein fold-
ing. According to the “Minimal Frustration Principle”, possible strong,
energetic conflicts between different residues are minimized in the
native states of foldable proteins, unlike random heteropolymers.
Nevertheless, some conflicts may have been positively selected by
evolution due to functional requirements. These conflicting signals have
been shown to be enriched around residues that are associated with
different functional aspects of proteins, such as the binding to small
ligands or cofactors as well as protein-protein interactions8, allosterism9,
catalytic sites10, disorder/order transitions11 or the existence of fuzzy
regions12. Because amino acids at those positions are selected for
functional reasons, they can often lead to more rugged energy land-
scapes, resulting in a trade-off between molecular function and local
stability13. Many proteins have been shown to have reduced activity
when stabilizing mutations are introduced at functional sites, showing
the delicate equilibrium between stability and function and the func-
tional importance of local frustration14,15. Such local frustration can be
quantifiedwith the frustratometer algorithm16,17 by comparing the native
energy of individual residues or pairs of residues to a random back-
ground energy distribution that results from generating a set of decoys.

Here we explore the concept of local energetic frustration in the
evolutionary context of protein families, going beyond single protein
instances. The analysis of the conservation of local frustration levels
permits the identification of common and differential patterns among
evolutionary-related proteins. Our rationale is that the conservation of
minimally frustrated interactions within a protein family over extended
evolutionary timescales implies their crucial role in foldability or local
stability. Furthermore, the conservation of highly frustrated interactions
suggests that such local, unfavorable energetic conditions are required
by specific functional requirements that have persisted over the evolu-
tionary history of the family.We show the usefulness of the evolutionary
analysis of frustration in protein families to address several questions
using both experimental structures as well as structural models. We
used such an analysis to retrieve experimental measurements of phy-
sicochemical changes in proteins belonging to the PDZ, SH3, and KRAS
families; and study the functional and structural divergence of related
protein families such as α and β globins and the RAS subfamilies.
Moreover, we illustrate the general applicability of these ideas by
developing an unsupervised strategy to rapidly uncover sequence and
energetic constraints in large datasets like the entire SARS-CoV-2 pro-
teome. Finally, we provide an example of how such strategy can guide
attempts to modify the biophysical behavior of the metamorphic RfaH
protein based on its family frustration conservation patterns.

In this work, we show how the analysis of frustration in an evo-
lutionary context can provide valuable insights into the conservation
and divergence of structural and functional properties within protein
families. The recent advances in protein structure prediction18,19 that
have made high-quality structural models available to most known
proteins have unlocked the applicability of our methodology to most
protein families that are deposited in bioinformatic databases.

Results
The conservation of frustration in protein families
We have developed a methodology, implemented in a tool that we
name FrustraEvo, to measure the conservation of local energetic

frustration over aligned residues or contacts in a protein family. Local
energetic frustration measures how well optimized for folding the
energy of a given residue-residue interaction is in comparison to the
random interactions that would occur within the polypeptidic chain in
non-native conformations. See the Methods section for more com-
plete details on how local frustration is calculated.

Local frustration conservation analysis can be carried out using
any of the 3 Frustration Indexes (FIs). For simplicity, we next explain
the methodology based on the Single Residue FI (SRFI) although the
same analysis can be generalized to the pairwise contacts FIs. Given an
MSA and the corresponding structures for each sequence contained in
it, wecan compare the local frustration values fromall of the structures
at each aligned residue within the MSA. In Fig. 1a, we show this map-
ping for a regionof the ɑglobin family. Somecolumns in theMSA show
more frustration conservation compared to others. We can quantify
the evolutionary significance of such conservation by calculating the
Information Content (IC) for each MSA column (see Methods), based
on the distribution of local frustration states (FrustIC). The more
conserved the frustration state is at a givenMSAposition, the higher its
FrustIC will be, and conversely, the lower the FrustIC is the more
similar the distribution of frustration states at that MSA position is to
the background distribution. In Fig. 1b, we show the SRFI for the
human ɑ globin protein (FrustratometeR results17) as well as the Frus-
tIC values computed from the ɑ globins MSA (FrustraEvo), mapped on
top of the human ɑ globin structure. While some frustration states at
the individual protein are consistent with the ones being conserved at
the family level, others are not, reflecting protein-specific, perhaps
evolutionarily divergent characteristics (Fig. 1b). Similarly to con-
servation states, we calculate SeqIC, which measures the conservation
of amino acid identities within the MSA columns. A schematic view of
FrustraEvo’s workflow is shown in Fig. 1c (see Methods for details).

Evolutionary analysis of frustration unveils stability constraints
within protein folds
To investigate the evolutionary role of frustration in foldability, sta-
bility, and function, we analyze three specific family cases for which
double-deep protein fragment complementation (ddPCA) experi-
ments have been performed and are available. This experimental
method has been used to quantify the effects of amino acid variation
on protein stability (abundance) and function (binding)20,21. For each
position of the C-terminal SH3 domain of the human growth factor
receptor-bound protein 2 (GRB2-SH3), the third PDZ domain of the
adaptor protein PSD95 (PSD95-PDZ3) and theGTPaseKRas (KRAS), the
experiments have produced two scores (ddPCA phenotype scores),
corresponding to the effect of variations on stability and function.

Weautomatically retrievedhomologousproteins for the 3 studied
proteins, although for KRAS we also analyzed a highly curated dataset
from Rojas et al.22 (see Methods). We analyzed the relationship
between the calculated SeqIC and FrustIC (Fig. 2a and Supplementary
Fig. 1a, b) values for individual MSA positions with the ddPCA experi-
mental abundance scores derived for the individual proteins. Sur-
prisingly, even when ddPCAmeasures global properties of the studied
systems and frustration a local one, we found that FrustIC is a good
predictor of the experimental ddPCA phenotype scores for stability
and function for SH3 (r = −0.79, p value = 9.5e-05) and PDZ (r = −0.82,p
value = 7.6e-08) (Fig. 2c, e and Supplementary Fig. 2a, d). The SeqIC
score is also correlated with the ddPCA phenotypes although with a
slightly lower Pearson correlation coefficient (r = −0.63, p value = 2.5e-
07 and r = −0.69, p value=6e-13, respectively) (Fig. 2b, d, Supplemen-
tary Fig. 2b, e). Furthermore, SeqIC and FrustIC are correlated to each
other in both proteins (Supplementary Fig. 2c, f). On the other hand,
KRAS shows no significant correlation between the ddPCA scores and
SeqIC (Fig. 2f) but has a significant and moderate correlation with
FrustIC for theminimally frustrated and conserved residues (r = −0.47,
p value = 0.00012) (Fig. 2g). The correlation between SeqIC and
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Fig. 1 | Analysis of frustration in protein families. a Multiple Sequence Frus-
tration Alignment (MSFA) that consists of the SRFI computed from individual
protein structures mapped into the MSA (see Methods). Residues in the
MSA are colored according to their SRFI in the corresponding structures.
Magenta inverted triangles mark frustrationally conserved residues (high
FrustIC), and blue ones mark non-frustrationally conserved residues (low
FrustIC). Minimally frustrated residues are colored in shades of green, neutral
in gray and highly frustrated in red. b Comparison between SRFI values as

calculated by FrustratometeR (left) and the conservation of frustration states
based on their FrustIC values as calculated by FrustraEvo (right) visualized in
the same structure (human ɑ globin, PDB 2DN1, chain A). Residues are colored
according to their frustration states in the FrustratometeR representation.
Residues with FrstIC > 0.5 are colored according to their most informative
frustration state in the FrustraEvo representation, while residues with
FrstIC ≤ 0.5 are colored in black. c Overview of the FrustraEvo workflow to
analyze a single protein family.

Fig. 2 | FrustIC correlates with experimentally measured protein stability
changes. a Sequence and Frustration logo plots showing SeqIC and FrustIC
values per MSA column, respectively for GRB2-SH3. The numbering of the plot
corresponds to the sequence of reference (chain A from PDB 2VWF in the case
of GRB2-SH3). Positions containing a gap in the sequence of reference are not

considered in the plot. b–f Pearson correlation between ddPCA abundance
scores vs SeqIC and FrustIC for GRB2-SH3 (b, c), PSD95-PDZ3 (d, e) and KRAS
(f, g). P value corresponds to a two-sided test. Error bands in the correlation
plots correspond to a 95% confidence interval. Source data are provided as a
Source Data file.
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FrustIC is also weaker (Supplementary Fig. 2i). Most residues with
FrustIC values close to the theoretical maximum (log2(3) = 1.58, see
Methods) are located in the hydrophobic core of the protein (Sup-
plementary Fig. 1c). Because they can vary between the hydrophobic
types of amino acids without affecting stability toomuch, their FrustIC
values correlate better with abundance ddPCA score than the SeqIC
values (Supplementary Fig. 1b). Relationships between SeqIC, FrustIC
and the ddPCA binding score are shown in Supplementary Fig. 2.

Both SH3 (Fig. 2a) and PDZ domains (Supplementary Fig. 1a) do
not have highly frustrated conserved positions (FrstIC >0.5). As these
are protein-protein interactors with no localized function, highly fru-
strated residues are not aligned in the family MSAs and hence their
signal gets averaged out. In contrast, KRAS has one highly frustrated
conserved position (FrustIC >0.5, Supplementary Fig. 1b), K117 (KRAS
numbering), which is one of the seven conserved residues that interact
with the nucleotide substrate23. Remarkably, K117 has a very high
ddPCA value. This means that most mutations in that residue improve
the protein foldability and stability, reinforcing that functional signals
often conflict with foldability and stability ones at that locus. As
explained in the methods, substrates are invisible to the frustration
calculations (as they are not parametrized in the energy function of the
algorithm), and therefore the energy at the siteswhere they bind to the
proteins is not compensated, resulting in the presence of highly fru-
strated interactions that otherwise would be minimally frustrated in
their presence. It is interesting, however, that fromall the residues that
are in contact with the substrate, our analysis highlights K117 as the
most important one, as known from biochemical assays.

The KRAS results that have been discussed correspond to the
curated dataset from Rojas et al. We further repeated the analysis
using the automatic retrieval of homologous proteins (see Meth-
ods) and found that the same trends were recovered although the
correlation between FrustIC and the abundance ddPCA score is
weaker (Supplementary Fig. 3b). This might be because the
homologous relationship in the Rojas et al. dataset (36 proteins)
was defined by phylogenetic studies while in the other (1354 pro-
teins) it was assumed after performing Blast and simple quality
filters (see Methods). This highlights that although our strategy can
retrieve meaningful results from automatically generated datasets,
highly curated ones, with a fine-tuned definition of the family, will
perform better.

The correlation values between ddPCA scores and FrustIC are not
as high as they could be (~0.8 for PDZ and SH3 and 0.47 for KRAS),
meaning that other factors beyond local frustration need to be taken
into consideration to predict global stability as captured by ddPCA.
However, the correlation is good enough and significant to showcase
the usefulness of FrustIC as a decent in silico prediction of stability
related to specific residues when no experimental data is available.

Frustration signals conserved at the family level have
appeared in the ancestor of the family and have been maintained
invariantly since then for foldability or stability (minimally fru-
strated levels) or functional requirements (highly frustrated
levels). Conversely, if a position shows large variability, it suggests
that no strong constraints exist in that position, and therefore,
sequence identity can drift. In the case of protein interactors, like
the SH3 and PDZ domains, the binding interfaces have adapted to
the binding of different partners or ligands by each family mem-
ber, rendering a lack of conservation of highly frustrated posi-
tions. For the contrary, what remains conserved across the family
are the common folding and stability properties, that are detected
as minimally frustrated positions. We observed a similar situation
for members of the Ankyrin repeat protein family24 that mainly
function as protein-protein interactors. In contrast, KRAS has a
localized function to bind a nucleotide and cofactors, probably
involving other mechanisms such as allosteric regulation. Because
these functional signals are localized consistently in specific sets

of residues within the MSA, their conflictive signals affect the
overall stability of the protein, being a cause for the lower FrustIC-
ddPCA correlation. We have also reported similar trends for two
enzymatic protein families, i.e., Beta Lactamases and Aldolases10.

Differential frustration conservation patterns reveal family-
specific functional adaptations within protein superfamilies
We further investigated the link between sequence divergence and the
divergence of local energetic frustration by analyzing variability
among evolutionarily related, but distinct, protein families. By com-
paring frustration conservation patterns between evolutionary-related
families, differences can be interpreted as the result of functional
adaptations in each of them since diverging from their common
ancestor. We analyzed the common and differential frustration con-
servation patterns for two very well-studied examples; first comparing
the ɑ and β globins, which are parts of the hemoglobin biological unit,
and then examining the human RAS superfamily. The globins are
relatively closely related to each other, while the RAS superfamily has
experienced wide sequence divergence.

The ɑ and β globin subfamilies have a common origin, but despite
their very similar structures, they have different and well-studied
functions, as part of the hemoglobin ɑ2β2 tetramer25. We used a non-
redundant set of experimental structures that correspond to 21
mammalian hemoglobins (see Methods). Figure 3a shows the frustra-
tion conservation patterns, based on the SRFI, for the ɑ and β families
grouped into a single dataset (ɑ/β dataset). Frustration level is mostly
conserved (FrustIC >0.5) at minimally frustrated positions (n = 35,
mean FrustIC = 1.02) and at neutral positions (n = 34, mean FrustIC =
0.85). Only 3 positions are highly frustrated (mean FrustIC =0.72).

Some positions in the ɑ/β MSA show changes in their amino acid
identity that result in different frustration states being conserved
between the ɑ and β families. For example, position 39 (numbering
corresponds to the reference structure, PDB ID: 2DN1, which is posi-
tion 40 in the uniprot entry) in the ɑ/β MSA, corresponds to a highly
frustrated Lys in the α family (Lys40ɑ) (Fig. 3b) but to a neutral Gln in
the β family (Gln39β) (Fig. 3c). This suggests that a functional adap-
tation occurred at thatposition after the divergence of the two families
with more functional constraints in ɑ globins compared to β globins.
To further study such types of positions we have used the S3Det
software5 to detect SDPs between the two globin families and to ana-
lyze their relationship with frustration conservation. There are 15 SDPs
between α and β globins of which only 6 differ in their frustration
states (Supplementary Table 1). Interestingly, such energetics are not
trivially explainable from sequence identity. Some SDPs maintain
consistent energetic levels and conservation despite changing iden-
tity. Position 32 shows minimal frustration both in α globins (F) and in
β globins (L). Other SDPs differentiate clusters based on frustration
levels, like position 57 being neutrally conserved (S) in α globins and
maximally frustrated (N) in β globins. However, someSDPs of the same
amino acid type, do not exhibit consistent frustration conservation,
such as position 140 being minimally frustrated (V) in α globins and
neutrally frustrated (A) in β globins.

As mentioned earlier, highly frustrated interactions are usually
suggestive of local, functional requirements. In total, there are 12
highly frustrated positions in α globins (mean FrustIC = 0.87, Fig. 3b)
and 8 in β globins (mean FrustIC = 0.88, Fig. 3c) with only two residues
(Q54α, K59β and Y140α, Y145β) being common to both families. This
points out at differential functional adaptations that have happened
independently within each family after diverging from their common
ancestor. Several of these loci correspond to residues involved with
the asymmetric interactions of each subunit within the tetrameric
structure of hemoglobin, i.e., K39α, and Y42α and W37β, N57β, E101β
and N108β. Other highly frustrated residues correspond to the dif-
ferential function and structural details of each subunit type, e.g.,
K99α and S124α interact with the αHb-stabilizing protein (AHSP), a
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chaperone that prevents α-globin toxicity when isolated26,27 (Supple-
mentary Table 2), a function that is not shared with the β subunits. In
addition, K7α, E27α, and E30α form intra-subunit salt bridges (as
shown in Fig. 3)28 that are critical for allostery and the Bohr effect as
explainedbyPerutz29 (Fig. 3b, Supplementary Table 2). The Bohr effect
is tightly related to allosteric tensed (T) or relaxed (R) states equilibria,
which shift towards the T state due to reduced pH and higher CO2

partial pressure, resulting in better oxygen release in the tissues.
Therefore it is tightly related to the ɑ/β interface. Indeed, several of the
highly frustrated, high frustIC residues identified in both subunits are
key for the switch, such as K40α, Y42α and W37β and E101β. Inter-
estingly, other residues showing high SRFI and FrustIC, such as K127α
or N57β are located at positions where mutants have been shown to
subtly change oxygen affinity (see Supplementary Table 2), thus sug-
gesting they are also involved in this allosteric equilibrium.

Our approach can be applied to much more complex examples.
We have analyzed the human RAS superfamily, composed of 5 sub-
families (RAS, RHO, RAB, ARF, and RAN) that have undergone exten-
sive sequence and functional diversification. All the subfamilies share a
common structure and enzymatic activity related to GTP hydrolysis.
The GTP-binding site, consisting of five motifs (G1–G5), plays a crucial
role in GTPase activity. Analysis using the SRFI shows little conserva-
tion for the G1-G5 motifs (Supplementary Fig. 4) with only a few
positions with conserved minimal or neutral frustration values
(FrstIC >0.5) across all families (Supplementary Fig. 5a). Instead, we
explored frustration conservation at the level of residue-residue con-
tacts based on the mutational FI. A network of highly frustrated
interactions mainly involving residues that interact with the substrate
(e.g., Lys16 (G1), Asp57 (G3), and Lys117 (G4)) is conserved in all four
subfamilies. These residues appear as highly frustrated because the
substrate is not parameterized in the FrustratometeR energy function
and is invisible during the energetic assessment. Therefore, the energy
is not compensated as it would be if interactions with the substrate
were explicitly considered (see Methods). In an uncharacterized
family, the presence of such a conserved network would point out

functional requirements that could be further explored. Interest-
ingly, many SDPs are part of this network and it can be seen that the
changes in amino acid identities among the subfamilies are trans-
lated into changes in frustration levels. As an example, SDP 83 (RAS
numbering) is a highly conserved Asp with highly frustrated inter-
actions (Supplementary Fig. 5b) in ARF and RAB. In contrast, it is a
conserved Ser in RHO that establishes minimally frustrated interac-
tions. The identity of the residue is not conserved in RAS, having a
mixture of both highly frustrated and minimally frustrated interac-
tions. A more detailed analysis of the Ras superfamily is explained in
Supplementary Note 1.

Frustration conservation analysis allows one to interpret
sequence diversity among evolutionarily related families and to link
this diversity with functional adaptations within divergent protein
families. In some cases, as for the globins, frustration conservation
analysis using the SRFI is sufficient to uncover these stability and
functional signals, while in more divergent examples, conservation
analysis using the pairwise contacts FIs is more enlightening.

Large-scale application of frustration conservation analysis in
coronaviruses
Avaluable useof analyzing the conservationof frustration is to provide
insights about proteins that are still poorly characterized in the
laboratory, such as those from emergent pathogens. To illustrate this
application, we have automatized the steps of generating MSAs, clus-
tering the resulting subfamilies based on the SDP methodology5 and
have used structural models predicted by AlphaFold2 and combined
these steps with the use of FrustraEvo using the SRFI. We applied this
workflow to the full SARS-CoV-2 proteome in the context of the entire
Coronaviruses phylogeny (see Methods; data available in Zenodo, see
Data availability). Although there is a significant correlation between
SeqIC and FrustIC (Fig. 4a; r = 0.69, p value = 2.6e-14), many proteins
deviate from the expected values due to factors such as the presence
of disordered regions or the diversity of the MSAs (Supplementary
Fig. 9). In addition, different families within SARS-CoV-2 show large

Fig. 3 | Differential frustration conservation patterns unmask functional con-
straints in the hemoglobin subunits. FrustraEvo results based on the SRFI for
a ɑ/β-globins, b only ɑ, and c only β. Rectangles denote functionally relevant
positions explained in more detail in Supplementary Table 2. In blue asterisks, we

marked position 39 in the ɑ/β MSA, which corresponds to a highly frustrated
Lys40ɑ but to a neutral Gln39β. The reference structure for this analysis corre-
sponds to the Human Hemoglobin PDB 2DN1. Source data are provided as a
Source Data file.
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differences in terms of the proportion of positions that are energeti-
cally constrained suggesting differential evolutionary pressure on
them (Fig. 4b). When comparing protein families across different
Coronaviruses we also observed a large variability between different
subfamilies. Somepositions in someproteins are conserved across the
entire phylogenetic tree, while others have energetic signatures that
are specific to some subfamilies like the Sarbecoviruses or to specific
viruses like the SARS-CoV-2. See Supplementary Note 2 for a more
detailed analysis of the results for the 29 proteins or protein domains
contained within the SARS-CoV-2 full proteome and comparison
across the Coronavirus phylogeny.

To better exemplify the impact of our approach to provide
functional insights about specific proteins, we analyzed in more detail
one of the viral domains of higher functional relevance: the Papain-like
Protease (PLPro) protease domain. PLPro catalyzes the proteolysis of
the viral polyproteins30. Moreover, PLPro interacts with at least two
host proteins, ubiquitin-like interferon-stimulated gene 15 protein
(ISG15) and ubiquitin (Ub), to evade or at least hamper the host
immune response31. SARS-CoV-2 PLPro homologous proteins were
automatically divided into 4 subfamilies that reflect the Betacor-
onavirus subgenera classification, i.e., Sarbecovirus (n = 31), Nobe-
covirus (n = 11), Merbecovirus (n = 35) and Embecovirus (n = 45)
(Supplemental Table S4). Additionally, we have manually analyzed a
fifth group that only contains experimental SARS-CoV-2 PLPro struc-
tures (n = 29) to quantify frustration conservation specific to this virus.
We compared frustration conservation between the 4 PLPro sub-
families to disclose functional diversity related to differential infec-
tivity or virulence (Fig. 4c). At the catalytic site, the SDP Trp106, which
facilitates catalysis31 by stabilizing the catalytic triad, is conserved both
in sequence and in its highly frustrated state only in the Sarbecoviruses
group. In that same position, Merbecoviruses have a conserved Leu
that is not energetically conserved, which is reported tomake catalysis
less efficient32. When Leu 106 is replaced by a Trp in MERS, catalysis is

enhanced, suggesting that increased local frustration may be related
to the improvement of the catalytic function. In contrast, the catalytic
residue Cys111 isminimally frustrated and conserved in all subfamilies,
reflecting the functional importanceof local stability at that position to
the full phylogeny. In the SARS-CoV-2 set of structures, this position
appears neutral, due to the occurrence of a subgroup that contains
the Cys111Ser mutation, which introduces local instabilities. Likewise,
the four cysteines (Cys189, Cys192, Cys224, and Cys226) that coordi-
nate the binding of an ion of Zinc, indispensable for the functioning of
the protein33, are all minimally frustrated and conserved inmost of the
coronavirus subfamilies, suggesting a strong stability requirement in
that region (Fig. 4c).

Additionally, the PLPro binding sites to ISG15 and Ub host pro-
teins (S1 and S2, respectively), are differentially conserved between
the four Betacoronavirus subfamilies (Fig. 4c). The SARS-CoV-2
S1 site contains more highly frustrated residues while the S2 site
contains more minimally frustrated residues than the other viruses.
This could explain the differential preference that PLPpro has for
binding to ISG15 or Ub in SARS-CoV and SARS-CoV-234. For instance,
some positions within the S1 region are highly frustrated only at the
SARS-CoV-2 level. Positions 225 and 232 (SARS-CoV-2 numbering)
(Fig. 4c) correspond to neutral Val and Gln in Sarbecovirus but to
highly frustrated Thr and Lys in SARS-CoV-2. It has been shown that
these changes affect Ub association, explaining the differential
activity on Ub substrates but not on ISG1531. Thr225 is only present in
SARS-CoV-2 and in RaTG13 (Supplementary Fig. 11), the latter being a
likely bat progenitor of the COVID-19 virus35. Moreover, the bat-
derived viral strains, Rc-o319, and bat-SL-CoVZXC21, contain a Met in
that position that is even more frustrated (Supplementary Fig. 11).
This may point to a position of concern for novel human-infecting
variants that could acquire this change of identity. Lys232 is unique
to SARS-CoV-2 within the Sarbecovirus family, suggesting a recent
gain of function event.

Fig. 4 | Large-scale application of frustration conservation analysis in cor-
onaviruses. a Pearson correlation plot showing mean FrustIC vs mean SeqIC per
S3Det cluster computed for Coronavirus proteins (see Methods). P value corre-
sponds to a two-sided test. Error bands in the correlation plots correspond to a 95%
confidence interval. b Distribution of frustrationally conserved residues (Frus-
tIC > 0.5) for each S3Det cluster containing the corresponding SARS-CoV-2 protein.
We considered frustration conservationwhenFrustIC >0.5. The proportion of each

protein is normalized by its length (Supplemental Table 3). c MSFA showing Frus-
traEvo results for selected functional domains in PLPro. Cells that are colored
correspond to FrustIC > 0.5, while white cells mean that FrustIC ≤0.5. Color of the
cells represents the median SRFI value computed with FrustratometeR (see
methods for frustration states definitions). The amino acid identities correspond to
the consensus sequence, and the size of the letter is proportional to SeqIC. Source
data are provided as a Source Data file.
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Perturbing conserved frustration patterns to engineer con-
formational changes in a metamorphic protein
The C-terminal domain (CTD) of RfaH, a bacterial elongation factor,
undergoes a large, reversible structural rearrangement from an α-
hairpin (αCTD) into a β-barrel (βCTD) upon interacting with RNA
polymerase and specific DNA elements called ops36. In the absence of
ops elements, RfaH αCTD is autoinhibited by being bound to the
N-terminal domain (NTD) hence, preventing the correct interactions
with the RNA polymerase. On the other hand, NusG, a non-
metamorphic paralog from which RfaH is believed to have origi-
nated via gene duplication divergence, only exists in its βCTD fold37. As
the RfaH capacity to undergo metamorphosis seems to have occurred
after its divergence from NusG, we used FrustraEvo to find the con-
straints that are present in theRfaHsubfamilywhen in its autoinhibited
αCTD conformation and explored which perturbations would facil-
itate its transition into the βCTD fold.

We retrieved a set of non-redundant, evolutionarily related RfaH
protein sequences (see Methods), predicted their structures with
AlphaFold2 (see Methods), and computed their frustration conserva-
tion patterns using both the SRFI and the mutational and configura-
tional pairwise contacts FIs. Based on the SRFI, only two residues are
consistently frustrated across all family members (predominantly red
positions in Supplementary Fig. 12 with FrustIC >0.5). Their structural
location, far away from the metamorphic domain (residues 110-162),
suggests that they donotplay a role in RfaH fold-switching. In contrast,
based on the configurational and mutational FIs, we found a group of
highly conserved and minimally frustrated contacts located at the
interdomain interface between the αCTD and NTD domains (Fig. 5a).
This is consistentwith the stabilization via interdomain interactions38,39

which trigger the RfaH fold-switch towards the βCTDconformation40,41

when disrupted. We selected 9 interdomain residues (L6, F51, L96,
F126, I129, L141, L142, L145, I146) according to their contribution to the
interdomain interface stabilization between RfaH NTD and αCTD (see
Methods) and used FrustratometeR17 to predict the changes in frus-
tration when individually mutating them to all other 19 amino acids

(Supplementary Fig. 13). Figure 5b illustrates how the local frustration
changes upon mutation between F51 and all the residues with which it
interacts. Most of the 21 contacts formed by F51 (Fig. 5b, blue letters)
are minimally frustrated, with the exception of 5 that are neutral.
Overall, some mutations yield similar frustration values across all
contacts (e.g., F51M), while others switch from minimally frustrated
interactions to neutral or highly frustrated (e.g., F51K). The same effect
is observed when repeating the analysis for the remaining 8 inter-
domain residues (Supplementary Fig. 13), leading to the identification
of two types of possible mutations: 1) “Similar Frustration Mutations''
(SFMs), which would maintain the stabilizing nature of the native
amino acid identities (L6I, F51M, L96W, F126W, I129V, L141V, L142V,
L145M, I146V) and 2) “Highly Frustrated Mutations'' (HFMs), which
would maximize the local frustration index with their neighboring
residues (L6D, F51K, L96K, F126N, I129E, L141D, L142K, L145E, I146D).
We generated two E. coli RfaH mutant sequences containing all SFMs
or HFMs and predicted their structures with AlphaFold2 (see Meth-
ods). Structures with SFMs show a similar structure to the wild-type
with anαCTD conformation (Fig. 5c), while the ones containing the set
of HFMs show a conformational change similar to βCTD (Fig. 5d). The
latter suggests that evolution may have positively selected such
favorable interdomain interactions that would in turn favor the αCTD
conformation foldability over the βCTD one. In turn, this would have
enabledmetamorphosis as a regulatorymechanismwhere interactions
with the ops elements, with RFaH in its inhibited conformation, would
have a destabilizing effect on the interface between NTD and αCTD
triggering its metamorphosis towards the βCTD conformation to be
able to interact with the RNA.

We also investigatedwhich sequence changes were introduced by
evolution between RfaH and NusG, its non-metamorphic homolog. Six
of the 9 interdomain residues change their identity in the RfaH/NusG
sequence alignment (i.e., NusG-likemutations: L6V, I129V, L141V, L145I,
I146F and L142S, Supplementary Fig. 14a). We introduced these
mutations into the RfaH sequence and found that 4 out of 5 of the top
AlphaFold2 structure predictions display a βCTD-like fold

Fig. 5 | Frustration analysis of a metamorphic protein conformational change.
a FrustraEvo Mutational index results. Red lines correspond to highly frustrated
interactions, and green lines to minimally frustrated interactions (see Methods).
Orange backbone corresponds to the interdomain region (CTD), and residues in
blue and sticks are the nine interface residues. b Frustration changes upon muta-
tion for Phe 51 using FrustratometeR. The x axis shows the residues with which the

residue, either wild-type (Phe) or mutated, establishes contacts in the structure. In
the y axis, we show themutational frustration index for the contacts. The wild-type
amino-acid identity is shown inblue, and the variants are colored according to their
frustration state. c AlphaFold2 top five predicted models superimposed for RfaH
containing different sets of mutations for SFMs and d HFMs. Source data are pro-
vided as a Source Data file.
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(Supplementary Fig. 15a). The local frustration profiles of these
mutations (Supplementary Fig. 14b) show that 4 of them are SFMs
(L6V, I129V, L141V, L145I), one changes the frustration values from
minimal to neutral (146F) and only one (L142S) is an HFM.When L142S
alone is introduced in RfaH, AlphaFold2 returns 1 model with an αCTD
fold, 2 with loop-like CTD structures and 2 with a βCTD fold (Supple-
mentary Fig. 15a). From the 115 residues that change their identity in
the RfaH/NusG sequence alignment, L142S is the only case where the
αCTD changes to adopt a βCTD-like conformation (Supplementary
Fig. 15b) upon AlphaFold2 structure prediction. The CTD conforma-
tion adopted by the L142S mutant is less similar to the one of NusG
when compared to that obtained when the 6 NusG-like mutations are
introduced. Therefore, it seems that not only is the introduction of
frustration necessary to trigger a conformational change in RfaH but
also there is a need tofine-tune theminimally frustrated contacts in the
interdomain region.

This example illustrates how conserved frustration patterns can
be used to generate hypothesis-driven experiments to modify specific
biophysical properties in the context of protein engineering strategies.

Discussion
We have introduced the analysis of energetic patterns across protein
families based on the conservation of frustration levels. These patterns
reveal conserved physicochemical constraints related to protein sta-
bility and function, providing a biophysical interpretation of the
impact of sequence divergence over evolutionary timescales. Proteins
evolve constrained by the need tominimize energetic conflicts related
to folding and stability42 while paying an energetic cost to maintain
functional sites2,43–45. By collectively analyzing frustration in proteins
with common ancestry, we have previously shown the presence of
energetic constraints that exist to preserve stability and function in
protein families. We observed the presence of mainly foldability con-
straints in the Ankyrin Repeat Protein family24 where consensus iden-
tities in the MSAs correlated with high stability signals. As a
consequenceof functional promiscuity and non-conserved interaction
interfaces with their targets, there are no conserved and highly fru-
strated signals in the family. In contrast, highly frustrated interactions
are found, mainly involving the catalytic residues, in globular cases
such as the Beta Lactamases10. But beyond catalysis, we also found
noncatalytic residues being highly frustrated that when mutated
would have consequences on fitness and antibiotic resistance. This
suggested that frustration conservation analysis would have broader
applications to the study of protein physiology.

Here, we have shown that the analysis of conserved frustration
patterns in individual protein families leads to the identification of
functional constraints that correlate with changes either in stability
(PDZ, SH3 and KRAS, Fig. 2c, e, g), function (PDZ, SH3 and KRAS,
Supplementary Fig. 2) or structural conformation (RfaH, Fig. 5). The
comparison of frustration patterns across protein families points to
regions of functional diversity (hemoglobins, Fig. 3, RAS family Sup-
plementary Fig. 4 and SARS-CoV-2 Fig. 4a, b) and specificity (SARS-
CoV-2, Fig. 4c). In the case of the SH3 domain, FrustIC values of
minimally frustrated residues, although not perfectly, correlate with
experimental ddPCAfitness values (Fig. 2c). For themetamorphic RfaH
protein, the analysis of conserved frustrated contacts led to the iden-
tification of key residues involved in conformational transitions. The
best example is Leu142, which is proposed to play an important role in
holding the metamorphic domain from transitioning from the all-ɑ to
the all-β conformation.

In the case of the closely related ɑ and β globin families that
constitute the hemoglobin molecule, the differential roles in the
transport of oxygen and contribution to the assembly of the qua-
ternary complex is translated into a significant difference in the
number and location of energetically conserved positions corre-
sponding to protein-protein interaction sites and salt bridges

independently acquired during their divergent, evolutionary trajec-
tories (Fig. 3). Relevant common and divergent features can be
obtained even for largely diverse protein families, like the RAS super-
family, where sequence and functional conservation starts to vanish.
There, conservation can be detected at the level of pairwise contacts
instead of single residues, some of which constitute specific networks
that are maintained in the entire RAS superfamily (Supplementary
Fig. 6), while others are subfamily-specific. Some specific interactions,
involving residues within the active site and associated with the com-
mon GTP-binding function, are systematically frustrated (mostly
involving Asp57 and Lys117) in all families showing strong evolutionary
pressure to maintain those conflicts despite sequence and functional
divergence. Additionally, SDPs found in these protein families define
differentially conserved specificity sites, whose interpretation in
functional terms can be better understood when frustration is con-
sidered as an additional and complementary layer of information.
Finally, we have shown how a comparative analysis of frustration
conservation can be performed in an unsupervised and automatic
manner, leading to the identification of potential functional adapta-
tions of protein families. As an example, we performed an analysis for
22 Coronavirus protein families. Despite an observable correlation
between average FrustIC and SeqIC across protein families, the rela-
tionship between these two quantities is modulated by different
aspects such as the phylogenetic diversity of the family or their pro-
pensity to protein disorder. By taking these factors into account and as
shown with the PLPro example, frustration conservation analysis can
be used for identifying positions that are likely relevant either for
stability or function.

This study does not come without limitations. For proteins with
multiple conformations associated with their function, unsupervised
modeling can predict distinct conformations that could be associated
with different frustration patterns and therefore no energetic con-
servation might be observed unless the different conformations are
clustered and analyzed separately, even in the presence of high
sequence conservation. Future developments in our strategy should
take into account the conformational diversity of the native state of
proteins to account for this. In the same note, frustration states are
defined according to thresholds on a continuous score (i.e. the frus-
tration indexes). Therefore, residues with frustration values close to
the thresholds that are used to define the frustration classes can show
heterogeneous frustration states across proteins, while having similar
continuous values. For this reason, when no frustration conservation is
observed but there is a hint of functional importance, supplementary
analysis on the continuous frustration scale could be useful. Also, in
many of our examples, we performed unsupervised clustering of
sequences to create the families datasets, as well as generated MSAs
automatically. In order to exploit the capabilities of our strategy to its
maximum, researchers are encouraged to invest a good amount of
effort into curating the family datasets as well as manually curating
MSAs so the signal is not buffered out.

The evolution of protein families is constrained by both a narrow
margin of stability and foldability energetics in the context of
demanding functional requirements. In these margins, too many
minimally frustrated regions might hinder functional evolution, while
the presence of toomany highly frustrated regionswill prevent folding
from happening14. Frustration conservation analysis within protein
families can be used to define the theoretical limits to preserve func-
tion throughout evolution revealing the interplay between sequence,
structure(s), dynamic and function46. Now that high-quality protein
structure models can be obtained for the members of any protein
family, our frustration conservation analysis strategy stands as a
valuable tool to increase the level of functional annotation in biological
databases47. Future work would involve performing a large-scale study
across protein families in databases such as CATH48 that would permit
to provide functional predicted annotations to resources like the
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PDBe-KB database49. Similar to what was done some years agowith the
analysis of frustration across large datasets of single nucleotide var-
iants (SNVs) in humans50, our family-derived constraints could be used
to complement such analysis and provide an evolutionary context to
the impact of sequence variants in different diseases. The importance
of the evolutionary history of proteins in different diseases has been
recently highlighted in awide study in primates51. Finally, the examples
shown here illustrate how the approach we present can guide appli-
cations such as the construction of artificial proteins or the prediction
of the risk of emergent natural pathogenic protein variants.

Methods
Local frustration
The FrustratometeR algorithmallows one to localize and quantify local
energetic frustration in protein structures by calculating 3 different
frustration indexes, FIs8,16. Here wewill give a summarized explanation
of themethodology and a very detailed description of themethod can
be found in8,52.

Given a protein structure, a set of interacting residue pairs is
defined based on distance thresholds. Interactions are classified into
short-range (distances between Cβ below 6.5 Å), long-range (between
6.5 and 9.5 Å) or water-mediated (long range and exposure to solvent)
according to the contact distance and the solvent accessibility. This
classification is important as it will define which of the coarse-grained
AWSEM-MD energy functions (matrices)53,54 will be used to measure
the energy of the native interaction as well as the one of the decoys to
calculate the frustration indexes.

Depending on the heuristic that is used to derive the decoys,
againstwhich the native energywill be compared to,wecanobtain one
of the 3 different FIs, i.e., one of the pairwise indexes (mutational or
configurational) or the single residue frustration index (SRFI). For all
the FIs, 2000 decoys are generated. The native energy is compared
against the mean and standard deviation of such distribution by
computing a Z-score and therefore, the FIs are expressed in standard
deviation units, typically in the [-4, 4] range.

For the pairwise indexes, for a given pair of contacting residues,
their interaction energy is compared to the energies that would be
found by placing different amino acids in the same native location
(mutational frustration index, the native amino acid identities are
modified while the contacting residue, as well as the residues solvent
accessibility values, are fixed) or by creating a different environment
for the interacting pair (configurational frustration index, the native
amino acid identities as well as the interacting distance and solvent
accessibility values are modified). When comparing the native energy
to the energy distribution resulting from these decoys, the native
contacts are classified as highly, neutrally, or minimally frustrated
according to how distant the native energy is from the mean value of
the energy distribution of the decoys, taking into account the standard
deviation of the distribution as a normalizing factor (see thresholds in
the next paragraph). An analogous approach can be used to calculate
the FI for single residues (single residue frustration index, SRFI). In this
case, the set of decoys is constructed by shuffling the identity of only
one residue, keeping all other parameters and neighboring residues in
the native location, and evaluating the total energy change upon
mutation, i.e., integrating the interactions that the residue establishes
with all its neighbors. Specific details on how the decoys are generated
are found in ref. 8.

The configurational andmutational pairwise contacts FIs have the
following thresholds to define the different frustration states for the
interactions, as proposed by Ferreiro et al.8,16: if FI < −1 then the inter-
action is highly frustrated. If FI > 0.78 then the interaction is minimally
frustrated. If −1 < FI < 0.78 then the interaction is neutral. In the case of
the SRFI thresholds for single residues, if SRFI < −1 then the interaction
is highly frustrated. If SRFI > 0.55 then the interaction is minimally
frustrated. If −1 < SRFI < 0.55, then the interaction is neutral.

An advantage of the simple definition of the FrustratometeR
energy function is that it only has parametrization for the 20 canonical
amino acids within the AWSEM-MD energy function54. Substrates,
small ligands or any other modification to the canonical amino acids
are not considered, and therefore highly frustrated signals can appear
at the sites where these molecules bind or where post-translational
modifications occur. An example of the latter is enzymatic sites10. A
similar situation happens with protein-protein interactions when
frustration is calculated on isolated proteins. Interactions sites, which
otherwise would be energetically minimized at the quaternary struc-
tures, appear highly frustrated when frustration is calculated on the
monomers alone.

FrustraEvo’s pipeline
FrustraEvo calculates how conserved local frustration is in a set of
protein structures that belong to the same protein family. It can be
used in two different modes depending on which FI is used: (1) Single
residue mode: using the SRFI, (2) Contacts mode, which can be used
with either the configurational or mutational FIs.

The input consists of (1) a MSA in FASTA format with sequences
composed solely by the standard 20 amino acids code (other char-
acters accepted by FASTA are replaced by a gap), and (2) a set of
protein structures (experimental or models) in PDB format corre-
sponding to the same set of sequences contained in the MSA.

The ID of each protein sequence within the MSA should match its
corresponding structure file name (without the pdb extension).
Sequences within theMSA shouldmatch exactly the ones contained in
the PDB files.

Sequence and Frustration information content, SeqIC and FrustIC,
respectively, are calculated using information theory concepts. The
information content (IC) based on the distribution of states is calcu-
lated, as shown in Eq. (1), as the maximum possible entropy (Hmax)
minus theobservedentropy (Hobserved). SeqIC is calculated fromaligned
residues in the MSA, based on the distribution of amino acid identities.
It is calculated by the ggseqlogo R package55 using the MSA as input.

FrustIC is calculated for aligned residues in a MSA or equivalent
contacts across proteins in the MSA, based on the frustration states
mapped into the residues from the structures. A reference protein is
selected to define over which residues or contacts the conservation
calculations are calculated. The reference structure can be defined by
theuser or otherwiseFrustraEvo selects theprotein thatmaximizes the
sequence coverage of the MSA. All columns in which the reference
protein has a gap are removed from the MSA (ungapped MSA).

In FrustraEvo’s single residue mode, the Frustration Information
Content (FrustIC) for each column in the MSA is calculated based on
the Shannon entropy formula:

Hobserved = �
XM

i = 1

Pi log2 Pi ð1Þ

where Pi is the probability that the system is in frustrated state i. The
probabilities are normalized such as

PM
i = 1Pi = 1, whereM is the number

of possible frustration states. For the frustration index, we consider
minimally, neutral or highly frustrated states, therefore,M = 3. To take
into account background probabilities, the information content is
calculated as:

FrustIC =H max � H observed ð2Þ

Generally, it is considered that Hmax is reached for a uniform
distribution of states: then Pmax

i = 1
M and Hmax = log2ðMÞ. Nevertheless,

if states are not equally likely to occur a background probability dis-
tribution of states should be used to estimate Hmax. We used the dis-
tribution of states reported by Ferreiro et al.8 as background
frequencies to calculate theHmax for FrustIC calculations (background
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frequencies as follows: minimally frustrated = 0.4, highly frustrated =
0.1, and neutral = 0.5).

Similarly to the single residue mode, in FrustraEvo’s contacts
mode, a reference structure is taken to define which residues will be
considered to evaluate contacts across proteins. Taking in considera-
tion that the MSA was ungapped according to the reference structure,
FrustraEvo calculates the frequency of having contact between col-
umns i, j in theMSA, on each structure in the dataset, where i, j∈ [1, N],
with N being the number of columns in the ungappedMSA. As a result
FrustraEvo will calculate, for each possible contact, according to pairs
of columns within the ungapped MSA, the information content con-
tributions from each frustration state. The FrustIC of a given contact
will be calculated as the sum of the individual contributions from each
frustration state. The background frequencies are the same as for the
single residue mode. Plots for the frustration and sequence logos and
contact maps are made using the ggplot2 R package.

Data visualization
We have developed the Multiple Sequence Frustration Alignment
(MSFA) visualizations to compare FrustratrometeR results across
multiple protein sequences (e.g., Figure 1a). This type of plot consists
of a heatmap forwhich each cell contains the residues in theMSA. Each
cell is colored according to its SRFI in the corresponding structures,
i.e., minimally frustrated residues are colored in shades of green,
neutral in gray, and highly frustrated in red.

In addition to the previous, we designed the Consensus MSFA to
summarize and visually compare the FrustIC and SeqIC, frommultiple
MSFAs frommultipleprotein families. In this case, each cell depicts the
consensus sequence of the MSA of each protein family and the letter
size is proportional to its SeqIC value. The cells’ background color
corresponds, in shades from green through gray to red, to the median
frustration value of that residue across all structures in the family. The
background of the cell is white when FrustIC≤0.5.

AlphaFold2 structure predictions
Unless mentioned, for all analyses, the 3D structure of each sequence
contained in the final MSAs was determined using AlphaFold2 with
default parameters. The best-ranked model (rank1) was considered.

Structural and interface mapping
All mappings between sequence data and the corresponding PDB
structures and interfaces (when applicable) or Alphafold2modelswere
performed using the 3Dmapper tool56.

PDZ, SH3, and KRAS workflow/data
To analyze GRB2-SH3 and PSD95-PDZ3 protein domains and KRAS
with FrustraEvo, we generatedMSA alignments for each family. To this
extent, the sequences of reference, chainA fromPDB2VWF, in the case
of GRB2-SH3, chain A from PDB 1BE9 in the case of PSD95-PDZ3 and
P01116-2 for KRAS, were blasted against the non-redundant NCBI
protein database (from April 2021) using Blast v2.11.0 with default
parameters. Hits with e-value ≥0.05, query coverage <70%, and hits
containing the words “artificial”, “fragment”, “low quality”, “partial”,
“synthetic” were filtered out. The remaining hits were clustered using
CD-Hit57 with default parameters. Representative sequences were then
aligned using MAFFT v7.45358 in the case of the SH3 and PDZ families
and using HMMer’s hmmalign method in the case of KRAS, both with
default parameters. The resulting MSAs contained 173, 679, and
2500 sequences for GRB2-SH3, PSD95-PDZ3, and KRAS, respectively.
For each of the sequences, AlphaFold2 models were produced. Their
mean pLDDT values considering only residues that are contained in
the alignment region of the reference structure were 89.3, 78.3, and
81.6 for SH3, PDZ3, and KRAS, respectively. Finally, the MSAs and the
AlphaFold2 models were analyzed with FrustraEvo.

To calculate the correlation between experimentally determined
stability and binding scores and FrustraEvo results, we used the ddPCA
fitness scores from Faure et al.20. From the supplementary files pro-
vided, we used

• “JD_PDZ_NM2_bindingPCA_dimsum128_filtered_fitness_replicates.
RData” and“JD_PDZ_NM2_stabilityPCA_dimsum128_filtered_fitnes
s_replicates.RData”

to extract the results for PSD95-PDZ3 and
• “JD_GRB2_epPCA_bindingPCA_dimsum128_fitness_replicates.

RData” and
• “JD_GRB2_NM2_stabilityPCA_dimsum128_fitness_replicates.

RData”

to extract the results for GRB2-SH3. In all cases, when loading the
data files in R, only the dataframe “singles'' was used in our analysis.We
modified the numbering of PSD95-PDZ3 dataframes (column “Pos”) to
start in 15 andend in98 insteadof 1 and84 tomatch the realpositionof
the domain in the protein sequence of reference (chain A from PDB
[1BE9). For each position of both protein domains, the mean fitness
value for each protein position is considered in the comparison to
SeqIC and FrustIC. For the KRAS example, fitness values were obtained
from Supplementary Table 4 (sheet 2) from the work of Weng et al.21

and the mean fitness value was calculated for position and type of
assay (AbundancePCA and all BindingPCA assays). Finally, we calcu-
lated the Pearson correlation between the mean fitness stability and
binding data of GRB2-SH3, PSD95-PDZ3, and KRAS individually and
their corresponding FrustIC or SeqIC values computed with
FrustraEvo.

Hemoglobins workflow/data
We have retrieved all non-redundantmammalian hemoglobins (n = 21)
present in PDB (by April 2022; Supplemental Table S6), splitted them
into two non-redundant structure sets of α- and β-globins and calcu-
lated their frustration patterns using FrustratometeR17. Three MSAs
were built, containing: all the α and β-globins together, only α-globins,
andonlyβ-globins, the last two subsetted from thefirstone. Finally, for
each MSA, we computed SeqIC and FrustIC values using FrustraEvo
single residue mode.

RAS superfamily workflow/data
A totalof 160humanprotein sequence IDs of theRAS superfamilywere
extracted based on Fig. 3 from the work of Rojas et al.22 Nine proteins
were not included in the analysis as they were no longer present in
Uniprot or their IDs did not match any entry. The sequences are
grouped into ARF (n = 26), RAB (n = 64), RAN (n = 1), RAS (n = 38) and
RHO (n = 22). Since theRAN familyonly contains one human sequence,
it was discarded from our analysis. Sequences were aligned with
MAFTT v7.45358 with default parameters, and their models were gen-
erated with AlphaFold2 (mean pLLDT scores are ARF = 86.3, RAB =
77.4. RAS = 83.5, RHO=82.6).

Unsupervised analysis of the SARS-CoV-2 and related cor-
onaviruses proteins
We retrieved all homologs to proteins within the SARS-CoV-2 pro-
teome with known sequences across coronaviruses (see following
subsections) andgeneratedmodelswithAlphaFold2. Afterfilteringout
those proteins for which the structural models did not have enough
quality, we processed a total of 22 protein families (Supplemental
Table S4). We applied the S3Det software5 to subdivide the set of
proteins into subfamilies and find their SDPs. Finally, we used Frus-
traEvo to obtain SeqIC and FrustIC values for each subfamily. The
different steps of the pipeline are explained in more detail in the next
sections.
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Coronaviruses homologs retrieval and MSAs building. Reference
sequences for all SARS-CoV-2 proteins were retrieved from the refer-
ence genomeMN985325 according to the annotations of the genbank
file from the supplementary data provided in the work of Gordon
et al.59 (strain USA-WA1, a file called “2020-03-04719B-Gordon et al.
2020 - SARS-CoV-2 USA-WA1 Genome Annotation.gb”), with the fol-
lowing correction in line 408 “13442..16236” changed for
“join(13442..13468, 13468..16236)”. Then each nucleotide reference
sequence was translated and blasted against the non-redundant NCBI
protein database (from March 2021) using Blast v2.11.060 with default
parameters, amaximumof 100,000 hits, and e-value < 0.05, excluding
taxids 2697049, 2724902, 2724903, 2724904 which correspond to
SARS-CoV-2 related sequences and taxid 32630 which corresponds to
artificial sequences. Afterwards, the hits that were not from the Cor-
onaviridae family were also filtered out. Hits with less than 70% query
coverage and hits containing the words “artificial”, “fragment”, “low
quality”, “partial”, “synthetic”, “Severe respiratory syndrome cor-
onavirus 2” or “SARS-CoV-2” in the descriptionwere also excluded. The
remaining hits were aligned using MAFFT v7.45358 with default para-
meters. In the case of the non-structural proteins (nsp), some of the
hits retrieved corresponded to the whole orf1ab, so the alignment was
trimmed to the region containing each specific nsp according to the
SARS-CoV-2 reference. Afterwards, the sequenceswere clustered using
CD-Hit57 with parameters -c 0.98 -s 0.90 and the representative
sequences were aligned with MAFFT.

Classification into subfamilies and SDPs detection. The software
S3Det5 was used to classify the protein datasets into subfamilies and
detect SDPs for each viral protein, following the same steps as in61.
Supplemental Table S2 specifies the number of clusters determined
per viral protein as well as the depth and length of each protein MSA.

Structural modeling and models quality filtering. Structure models
for all proteins contained in the MSAs were generated using
AlphaFold218 with default parameters. To ensure the high quality of the
models, eachMSA was trimmed to fit the length of a PDB of reference
of SARS-CoV-2 proteins. When more than one PDB structure was
available, the one thatmaximized theMSA coverage was selected. The
reference PDBs for each MSA and the trimming positions are in Sup-
plemental Table S3. Transmembrane proteins M, nsp4, and nsp6 did
not have a PDB available and were removed from the analysis. Finally,
only high-quality models, i.e.: mean pLDDT per SDP subfamily ≥80,
were considered in the frustration analysis (Supplemental TableS4 and
Supplementary Fig. 7).

Phylogenetic balance. We calculated the phylogenetic diversity of
each S3Det cluster of the 22 families of viral proteins (Supplementary
Fig. 8). The phylogenetic balance is represented by the standard
deviationof the subgenus classes proportions across the cluster.When
the standard deviation is low, it means that the cluster is balanced in
terms of phylogenetic variability, i.e.: if there are 2 or more subgenus
classes present, they are in similar proportions. On the contrary, when
the standard deviation is high, the cluster is unbalanced, i.e.: the
cluster is mostly represented by one of the subgenus classes.

The PLpro example. A total of 122 non-redundant PLPro coronavirus
homologous sequences were obtained and divided into four sub-
families which coincided with the following subgenera in Betacor-
onavirus: Sarbecovirus (n = 31), Nobecovirus (n = 11), Merbecovirus
(n = 35) and Embecovirus (n = 45) (Supplemental Table S4). In addition,
and bymaking use of the extensive amount of experimental structures
that are available for SARS-CoV-2, we retrieved all deposited PLPro
structures in the PDB (n = 29) and used them as an additional dataset
that we also processed with FrustraEvo. The rationale behind this is
that analyzing local frustration patterns across multiple structures

from the sameprotein allowsus to study the energetic determinants of
the protein taking into consideration the conformational diversity of
its native state. Flexible regions that exist in various frustration states
across different structures will not show a high conservation signal,
while those that do not vary much will.

Metamorphic protein workflow/data
Orthologs selection.WhileEscherichia coliRfaH (UniProtID: P0AFW0)
is the only protein with available structures for both metamorphic
folds, further proteins were selected as metamorphic RfaH orthologs
basedon the following criteria frombibliography. Four orthologs from
Salmonella typhimurium (sequence identity: 88%), Klebsiella pneumo-
niae (80%), Vibrio cholerae (64%), and Yersinia enterocolitica (43%)
have been demonstrated to be able to substitute E. coli RfaH function
in vivo61. Additionally, deleterious mutation of RfaH in Y. pestis and Y.
pseudotuberculosis exhibits lipopolysaccharide defects similar to E. coli
ΔrfaH and, therefore, metamorphic behavior62. Therefore, all protein
sequences for theseRfaHorthologswere retrieved for further analysis.

Selecting metamorphic orthologs for RfaH is not a straightfor-
ward task, as experimental confirmation is lacking for the majority of
RfaH-related sequences. We first retrieved all sequences from the
IPR010215 entry in the InterPro database63 and clustered them at 90%
identity using CD-HIT56, which gave us a total of 1004 sequences. As a
strategy to determine which sequences are likely to be metamorphic
homologs for RfaH in E. Coli we followed these criteria: (i) for each
RfaH sequence, there must be at least one reported NusG sequence in
the same organism in the Uniprot database64, (ii) the full-length RfaH
protein sequence must be predicted to fold into the autoinhibited, α-
folded C-terminal domain (CTD) structure for RfaH (PDB 5OND); and
(iii) the isolated CTD of RfaH must be predicted to fold into the
canonical βCTD fold (PDB 2LCL, 2JVV). The CTD was considered to
start from the first residue forming a secondary structure in the PDB
2LCL (residue 115, patternKVII).We randomly selected sequences from
the 1004 total set of entries in the redundancy-reduced IPR010215 set
until we completed 30 proteins that fulfilled the above-mentioned
criteria. In order to assure a high-quality set of potentially meta-
morphic homologs, we manually confirmed that each instance to be
added to the analysis fulfilled the mentioned criteria.

Finally, AlphaFold2 models (mean pLDDT= 71.97 ± 3.8) were
generated for each sequence in the ortholog set; min = 65.1, max =
79.4). It is worth noticing that metamorphic proteins use to contain
regions with lower pLDDT (linkers and the metamorphic domain)
scores due to their conformational diversity. For this reason we con-
sidered all structures without applying any further quality filter based
on their mean pLDDT score.

Interface residues identification. To detect those residues potentially
involved in the fold-switch (the 9 interdomain residues, we selected
those residues that: (1) establish interdomain residue contacts
between the two domains according to the contact maps obtained
with FrustratometeR and further processed by FrustraEvo; (2) are
located in themetamorphic region and their FrustIC≥0.5 basedon the
contacts mode; (3) are present in more than 50% of the analyzed
models; (4) have >50% of their interactions minimally frustrated; and
(5) have at least 3 minimally frustrated interactions with other CTD
residues. A total of 9 interdomain residues satisfied the previous cri-
teria: L6, F51, L96, F126, I129, L141, L142, L145, I146.

SFM and HFM E. coli RfaHmutant sequences. For each interdomain
residue that was detected, as mentioned before, we used the Frus-
tratometeR module to predict the frustration change upon mutating
the native identity by all the other possible non-native amino acids. For
each residue, we selected an amino acid identity that wouldmaintain a
frustration value as similar as possible to the native identity (SFM) and
another one that would introduce as much frustration as possible
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(HFM). We generated RfaH mutants containing both the set of 9 SFMs
and the 9 HFMs.

NusG-like RfaH. We aligned the RfaH andNusG sequences from E. Coli
(Supplementary Fig. 13a) andobserved that 6 out of 9 of the previously
identified interdomain residues have different identities between the
two proteins. We generated a “NusG-like” RfaH sequence by replacing
the 6 residue identities from NusG into RfaH.

Computational infrastructure and software requirements
Data was processed using the Marenostrum4, Minotauro, and
Power9 supercomputers at the Barcelona Supercomputing Center.
Computational resources from CCAD-UNC, which is part of SNCAD-
MinCyT, Argentina were also used. Plots were produced with ggplot2
and ggpubr R packages. In this project, we have used the Frus-
tratometeR package to calculate the local frustration patterns for all
the presented analysis17.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All input data needed to reproduce the main results of this article as
well as the intermediate outputs are available at this ZENODO reposi-
tory https://zenodo.org/records/10093060, https://doi.org/10.5281/
zenodo.10093060). Source data are provided in this article for
figs. 2A–G, 3A–C, 4A, B, 5A–C, 6A, B Source data are provided with
this paper.

Code availability
FrustraEvo code, written in Python 3 and R 4.1.2 programming lan-
guages, is available at: https://github.com/proteinphysiologylab/
FrustraEvo. A Docker container is also available at (https://hub.
docker.com/r/proteinphysiologylab/frustraevo).
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