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Microplastic burden in marine benthic
invertebrates depends on species traits and
feeding ecology within biogeographical
provinces

Adam Porter 1 , Jasmin A. Godbold 2, Ceri N. Lewis 1, Georgie Savage 1,
Martin Solan 2 & Tamara S. Galloway1

The microplastic body burden of marine animals is often assumed to reflect
levels of environmental contamination, yet variations in feeding ecology and
regional trait expression could also affect a species’ risk of contaminant
uptake. Here, we explore the global inventory of individual microplastic body
burden for invertebrate species inhabiting marine sediments across 16 bio-
geographic provinces. We show that individual microplastic body burden in
benthic invertebrates cannot be fully explained by absolute levels of micro-
plastic contamination in the environment, because interspecific differences in
behaviour and feeding ecology strongly determine microplastic uptake. Our
analyses also indicate a degree of species-specific particle selectivity; likely
associated with feeding biology. Highest microplastic burden occurs in the
Yellow and Mediterranean Seas and, contrary to expectation, amongst omni-
vores, predators, and deposit feeders rather than suspension feeding species.
Our findings highlight the inadequacy of microplastic uptake risk assessments
based on inventories of environmental contamination alone, and the need to
understand how species behaviour and trait expression covary with micro-
plastic contamination.

Despite ambitious waste management strategies designed to reduce
plastic litter1, it is anticipated that the introduction of plastic to the
marine environment will continue to rise for decades2, exacerbating
any effects that plastic pollution may have on species and
ecosystems3,4. Like all particulate matter, the fate of marine micro-
plastic (<5mm) is to sink to, and accumulate on the seafloor5,6, a
habitat that harbours high levels of biodiversity7,8. As these accumu-
lations of microplastics comprise a complex mix of heterogeneous
particles with a range of shapes, sizes, colours, polymers, and
additives9,10 that match the size spectrum of typical prey items and
food parcels11,12, they are bioaccessible to a range of benthic
invertebrates13,14. Mean microplastic concentrations in soft sediment

habitats can be close to (continental slope, 502 microplastic kg−1), or
greatly exceed (hadal trenches, 2782 microplastics kg−1 15) estimated
safe limits (540 microplastic particles kg−1 16), particularly in areas that
accumulate organic matter17. However, the uptake (here defined as
adhesion, entanglement, and/or ingestion) of microplastic by species
is unlikely to be a universal function of absolute levels of microplastic
contamination or inter-specific differences in body size18,19 because the
way in which species interact with the sediment environment is highly
dependent on taxonomic position13,20,21, feeding and foraging strategy
and individual species behaviours13,20,22,23, all of which can be popula-
tion dependent andmodified by abiotic (nutrient enrichment24; flow25;
temperature26) and/or biotic (e.g. predation27) circumstances28. Even
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closely related species can behave differently29, such that realised
levels of microplastic uptake can be highly variable both within and
between species30–32.

Despite growing knowledge of the ecological effects of
microplastic3,33, assessment of the risks posed by exposure and uptake
is hindered by major gaps in our understanding of when, how and
which species are most likely to interact with microplastic10,34. Resol-
ving species-microplastic interactions is fundamental to setting
appropriate contamination thresholds35, designing innovative solu-
tions and predicting the most likely ecological consequences of
microplastic contamination, but the relationship between the func-
tional role of species and microplastic contamination at regional to
global scales remains unknown. Here, we combine a comprehensive
global inventory (55 studies; 244 locations, 412 unique observations;
69.08˚N–73.49˚S, 171.15˚W–170.22˚E) of microplastic body burden in
sediment-dwelling marine invertebrates, with taxonomic information,
to investigate whether global patterns of microplastic burden are
associated with species traits (size, habit, mobility, feeding type, and
environmental positioning) and/or differ across 16 biogeographic
provinces36,37. Our focus was to establish whether commonly used
taxonomic considerations of risk provide consistent and relevant

information that will reduce uncertainty in projecting which species
are most at risk of microplastic exposure38,39. Given the diversity of
feeding modes, we expected that gut morphologies and gut retention
times in marine invertebrates40,41, as well as changes in species beha-
viour that depend on the biotic and/or environmental conditions they
experience28,42,43 would be important in determining microplastic
burden. We demonstrate that feeding mode (in particular predatory,
omnivorous, and deposit-feeding organisms), rather than environ-
mental microplastic loading, coupled with geographical location,
determine invertebrate microplastic body burden.

Results
Global inventory of invertebrate microplastic burden
Our analysis reveals that records of microplastic burden are dis-
tributed across 16 biogeographical provinces, but that there are sub-
stantive gaps in spatial and seasonal coverage of invertebrate
microplastic burden across all major oceans, and a global paucity of
data beyond shelf depth (Fig. 1). Thedata showeda strongbias towards
the Northern Hemisphere and, in particular, the coastal regions of
North America, Europe and Southeast Asia. Remote locations, such as
the Pacific, South Atlantic, Indian Ocean and the Poles, were either

Fig. 1 | A map to show the global spread of marine benthic invertebrates bur-
dened with microplastics. (a) The global distribution includes 412 study locations
(purple dots) that report the presence of microplastic in marine benthic inverte-
brates. Detailed panels of the North-East Atlantic and Mediterranean (b) and (c)
South-East Asian regions show data spread. Colour shading depicts model100

predictions of microplastic particle distribution (number per km2; key located in
China (Panel c)) and boundaries of biogeographical provinces (36,37 ocean boundary
lines) are indicated. Maps were drawn using ArcGIS Desktop105 and country bound-
aries are provided by ESRI using data from Esri; Garmin International, Inc.; U.S.
Central Intelligence Agency (The World Factbook); National Geographic Society.
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inadequately constrained or lack information. Nevertheless, taxo-
nomic coverage within the 8353 sampled individuals was reasonable,
representing 141 species across 6 phyla (Mollusca, 57.4%, n = 4799;
Crustacea, 16%, n = 1338; Echinodermata, 10.5%, n = 880; Cnidaria, 4%,
n = 338 Annelida, 9.4%, n = 786; Arthropoda, 2.5%, n = 212; Fig. 2).

The presence of microplastic was common (microplastic burden
>0 in 93% observations) across all phyla, but highly variable (mean
particles ind.−1 = 0, n = 29; mean particles ind.−1 = < 1, n = 121; mean
particles ind.−1 = 1–294, mean 8.3 ± 1.70; median, 2.95, n = 262) (coeffi-
cient of variation: Mollusca, 124.22%; Crustacea, 307.30%; Echino-
dermata, 277.12%; Cnidaria, 74.99%; Annelida, 90.85%; Arthropoda,
160.27%), indicating that the risk of uptake to microplastic differs
between individuals and between taxonomic groups. Within quality
control guidelines (see methods and Supplementary Table 1), we
found ~2230 microplastic particles, of which 51.4% was measured
within Crustacea, followed by the Echinodermata (30%), Mollusca
(9.2%), Annelida (6.8%), Arthropoda (1.5%) and Cnidaria (1.2%). The
highest burden of microplastic was found in decapod crustaceans,
Crangon affinis, collected from the South Yellow Sea, China (294
microplastics ind.−1), and Aristeus antennatus, from the NW Medi-
terranean Sea (164 microplastics ind.−1). The latter exclusively con-
tained fibrous microplastic particles.

Patterns of invertebrate microplastic burden
To separate any effect of broad habitats and species lifestyles on
microplastic body burden, whilst retaining sufficient discriminatory
power, we used Spalding’s biogeographical province and Class.

Effects of biogeographical province
Invertebratemicroplastic body burden differed with the biogeographic
province (L-ratio = 138.359, d.f. 15, p<0.0001; Fig. 3); individuals col-
lected from the Cold Temperate Northwest Pacific (Yellow Sea [56
locations] and Japan Trench [1 location]) had the highest mean (±s.e.)
individual microplastic body burden (25.41 ± 10.71 ind−1), followed by
theMediterranean Sea (8.18 ± 4.02 ind−1, 41 locations, incorporating the
Eastern coastline of Spain across to the Turkish Aegean Sea), whilst
individuals collected from Northern New Zealand (0.15 ±0.15 ind−1, 2
locations) and Southern New Zealand (0.24 ± 10.71 ind−1, 14 locations)
showed the lowest mean individual microplastic body burden.

Effects of Class
There were consistent differences in individual microplastic body
burden between the four classes in our study that included more than

Fig. 2 | A summary of the marine benthic invertebrates investigated for
microplastic burden globally. The (a) number of individual records (observa-
tions) and (b) reported values of individual microplastic body burden (mean

number of microplastic particles ind.−1, horizontally jittered for clarity) are pre-
sented for each Phylum.
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30 observations (L-ratio = 24.957, d.f. = 3, p <0.0001; Fig. 3). The
highest mean (±s.e.) individual microplastic body burden occurred in
the Malacostraca (15.44 ± 5.96 ind−1), followed by the Bivalvia
(2.88 ±0.24 ind−1), Gastropoda (2.23 ± 0.41 ind−1), and Polychaeta
(1.02 ±0.17 ind−1).

Furthermore, when analysing the full dataset, save for the Mala-
costraca, the faunal classes identified to have significantly higher body
burdens of plastic were the Asteroidea, Cephalopoda, Echinoidea,
Holothuroidea, and Ophiuroidea (Fig. S1) which were also those
underrepresented in the literature (<14 observations per Class).
Indeed, of the 29 non-symbiont phyla that exist in marine systems44,45,
only 5 (Mollusca, Echinodermata, Cnidaria, Crustacea, Annelida) are
represented, constituting a significant knowledge gap.

Effects of species traits
We investigated the role of species traits in determining whether the
patterns we observe in invertebrate microplastic body burden were
constrained by taxon-specific physiological or morphological limita-
tions imposed by phylogenetic history or by the functional role of
individuals, irrespective of taxonomic identity. We found that indivi-
dual microplastic body burden was dependent on feeding mode
(F6,358 = 4.41, p < 0.001), but not position within the sediment
(F2,358 = 1.19, p =0.31), mobility (F5,358 = 0.69, p =0.60), habit
(F3,358 = 0.11, p = 0.97), or the wet weight of an organism (F1,358 = 0.59,
p =0.45). The highest mean (±s.e.) individual microplastic body bur-
den occurred in omnivores (20.72 ± 12.42 ind.−1, n = 15) and predators
(15.11 ± 5.57 ind.−1, n = 71), followed by herbivores (4.16 ± 1.03 ind.−1,
n = 11), grazers (3.72 ± 0.7 ind.−1,n = 12), suspension feeders (2.80±0.23
ind.−1, n = 197), deposit feeders (2.03 ± 0.41 ind.−1, n = 90), and sca-
vengers (1.35 ± 0.31 ind.−1, n = 15) (Fig. 4). However, mean individual
microplastic body burden was associated with some variance, often
driven by species with disproportionately high microplastic body
burdens, in particular, the predators (CV = 310%), omnivores (CV =
232%) and deposit feeders (CV = 194%), relative to the remaining
groups (suspension feeders, 117%; scavengers, 89%; herbivores, 82%
and grazers, 65.3%). Indeed, the highest observed individual micro-
plastic body burden counts represented a limited number of species

(omnivores, the decapod, Oregonia gracilis, from the Yellow Sea, 141
and 137 particles ind.−1; predators, the Crustaceans, Crangon affinis,
294 particles ind.−1 and Romaleon gibbosulum 158 particles ind.−1, the
Echinoderms, Ophiura sarsii, 108 particles ind.−1 and Luidia quinarian,
134 particles ind.−1 and, from the Mediterranean off the coast of Bar-
celona, the Crustacean Aristeus antennatus, 164 particles ind.−1).
Removal of these high counts from the analyses reduced mean indi-
vidual microplastic body burden for the predators (3.26 ±0.6 s.e.
particles ind.−1) and omnivores (2.52 ± 0.76 s.e. particles ind.−1). In
contrast, although there were only 15 records and 3 species (the
amphipods, Hirondellea dubia, Hirondellea gigas, and Eurythenes
gryllus), scavengers were found to have the least individual micro-
plastic body burden (range of 0.9–3.3 particles ind.−1). Deposit feeders
show high variance, despite a comparatively low mean (±s.e.) indivi-
dual microplastic body burden (2.03 ±0.41 ind.−1). For example, there
were 6 species (2molluscs and 4 crustacea) with nomicroplastic body
burden, but also 5 observations of the Japanese sea cucumber (Apos-
tichopus japonicus) with an individual microplastic body burden ran-
ging from 6.08–24.2microplastic particles ind.−1 (Fig. 4). Overall, there
were consistent effects of feeding traits on individual microplastic
body burden, but with varying degrees of confidence across taxo-
nomicand functional groupings thatmost likely relate todifferences in
sampling effort.

Relationship between risk factors
Geographic location, Class, and feeding mode were correlated with,
and are therefore, potential drivers for, individual microplastic body
burden. Geographical location explained the most variance (11%), fol-
lowed by Class and feeding mode, each explaining ~6% of the data. In
addition, therewas a significant interaction between feedingmode and
province, feeding mode and Class, and province and Class.

Effects of microplastic shape, size and colour
Most observations (n = 412) reported the shape (93%), size (90%),
colour (57%) and polymer type (88%) of the recovered microplastic.
Our results showed that fibres were the most commonly reported
shape (99% of studies), followed by fragments (66%), pellets (32%),

Fig. 4 | Observedmean (± s.e.) microplastic burden individual−1 for contrasting
feedingmodes ofmarine benthic invertebrates. The statistical method used was
a one-way ANOVA, with a Tukeys post-hoc test; (F(6, 405) = 4.182, p <0.001).

Statistically significant groupings are indicated by letters. Different colours are
used only for illustrative purposes to indicate different feeding modes.
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films (28%), spheres (15%) and other miscellaneous forms (foams and
‘other’, 5%) (Supplementary Table 2). The size of microplastics ranged
froma0.2 µmfragment (in the polychaeteHediste diversicolor, Tunisia)
to a 17 cm fibre (in the decapod Nephrops norvegicus, Irish Sea). The
most common colour was blue (28%), followed by clear (20%), black/
grey (16%), white (14%), red (11%) and miscellaneous colours (greens,
oranges, yellows and ‘other’, range 2–4%). The predominant polymers
were cellulose (37%), polyethylene terephthalate (16%), polyethylene
(12%), polyamide nylon (8%), polypropylene (7%) and 10 other poly-
mers (range, 0.2–4%) (Supplementary Table 2). Therewere differences
in the mean size ( ± s.e.) of microplastic particles between trophic
groups (F5,224 = 2.35, p = 0.042; Fig. 5A), with herbivores retaining the
largest microplastic particles (1362.6 ± 123.8 µm) followed by pre-
dators (1180.3 ± 160.1 µm), deposit feeders (840.5 ± 73.2 µm) and
omnivores (799.3 ± 150.7 µm). There was no strong evidence that the

size of microplastic related to individual body size (Pearson’s corre-
lation: wet weight (g), r (226) = −0.05, p =0.409, n = 214; body size
(mm), r (212) = 0.29,p<0.001,n = 214), indicating that species handle a
range of microplastics (Fig. 5a). We also found differences in micro-
plastic shape between trophic groups; predators and deposit feeders
primarily retained fibres, whilst suspension feeders retain fibres and
fragments (ratio of fibres:fragments; predators, 14.3:1; deposit feeders,
20.5:1; suspension feeders, 2.37:1; Fig. 5b).

The first principal component (PC1) explained 86.6% of the var-
iation in the data and has a strong association with fibres and frag-
ments (Eigenvectors: 0.759 and −0.639, respectively), with PC2
explaining 12% driven predominantly by sphere data. Fragments,
whilst found in 66% of observations comprised, on average, 17%
( ± 1.16%) of the individual microplastic body burden. Very few indivi-
duals were burdened with spheres (≤4%, ± 0.71%) of microplastics
ingested), films (3%, ± 0.38%), pellets (2%, ± 0.15%), foams (0.1%, ±
0.02%), or’other’ shapes (0.01%, ± 0.01%) (Supplementary Table 2).

Discussion
Sea surfacemicroplastic concentrations are known to vary by at least 6
orders of magnitude across the global ocean46, with the frequency of
species-microplastic interactions often suggested (e.g.47,48), or expli-
citly linked to (e.g.47) these environmental levels. Our analyses of the
global inventory of marine invertebrate microplastic body burden
reveal that whilst geographical location contributed most to the like-
lihood of uptake for an organism, it only explains 11% of the data
variability, withClass and feedingmode eachexplaining a further 6%of
the data. This highlights the importance of local, yet undetermined,
environmental correlates and/or the role of organism-sediment inter-
actions in setting and influencing microplastic bioavailability49. Filter
feeders are often presented as the functional groupmost likely to be at
risk ofmicroplastic ingestion50,51 due to the high volumes of water they
process and the indiscriminate nature of filter feeding52. Such evi-
dence, however, is based on a limited range of species and/or polymer
types23,53,54. Further, there is a growingbodyof evidence to suggest that
the sorting and rejection of particles of specific size ranges or poly-
mers by filter-feeding bivalves may skew uptake data towards the
preferredparticle size for a given species55,56, and experimental designs
do not always consider the natural setting or the organisms being
tested57–59. Our analyses applied to the full global dataset do not sup-
port the view that filter feeders aremore prone tomicroplastic uptake
than other species, likely due to mechanistic differences between
species that alter microplastic capture and retention rates relative to
other groups60.

Compared to other groups, omnivores, predators and deposit
feedershadmuchhigherbodyburdens ofmicroplastic. It is reasonable
to consider therefore, that the bioaccumulation of microplastic is
associated with predatory and omnivorous lifestyles61. Evidence for
bioaccumulation of microplastic is not well supported empirically,
with very little additional evidence for the translocation of micro-
plastics into tissues; a pre-requisite for bioaccumulation62. Previous
laboratory-based work has suggested that lower trophic level benthic
organisms are at greater risk from microplastic exposure30, but the
higher body burdens in secondary consumers identified here suggest
the contrary. Our findings give credence to the view that more subtle
functional trait descriptors63 are required to explain the mechanistic
processes that determine uptake. Whilst the full risks of accumulating
microplastics remain to be determined, elevated microplastic body
burden remains an important measure of vulnerability30,31,64. Conse-
quently, whilst changes in environmental microplastic contamination
levels will have cascading effects on the microplastic body burden of
some species, the relative uptake of microplastic will reflect the
functional role and feeding modes of species within a community.

Recommendations for environmental monitoring of marine
microplastics often suggest that particles should be measured within
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defined size categories and be classified according to shape and
polymer type as a key component of assessing the risk that they pose
to wildlife9,65,66. The relevance of these particle characteristics for risk
assessment has been well demonstrated within controlled laboratory
ecotoxicology studies (e.g.10,67–69). Here, our analyses revealed that the
bulk of microplastic particles present within benthic invertebrate
species sampled globally were fibres. High numbers of fibres are
consistent with the seawater and sediment microplastic data for
coastal settings15 but, acknowledging that positive70 or negative71

detection bias cannot be ruled out, these findings do lend further
credence to the view that certain lifestyle characteristics can be
important in determining uptake, particularly if morphology and
shape of a microplastic particle alters the potential to be retained
within an individual relative to other shapes through selective feeding
or differences in particle handling. An alternative explanation may
relate to gutmorphology and the structural and functional complexity
of the microplastic particle. Species with differentiated or much-
folded digestive anatomy, such as crustacean amphipods and
decapods18,72–74, were strongly associated with an increased body bur-
den of microplastic fibres, indicating that fibrous material becomes
entangled and/or concentrated in morphologically complex anatomi-
cal features (Fig. 5b)74–78. The gastricmill in crustacea, in particular, can
act to shred fibres causing entanglement, leading to higher levels of
burden73,79. Retention of microplastic, however, also depends on the
ability to excrete microplastics80,81. Gut transit times vary due to the
presence and quality of food (e.g. in sea urchins)82, the size of an
organism (food takes longer to transit a longer gut)83, as well as the
complexity of an organism’s gut morphology84.

There is a weight of evidence from laboratory ecotoxicology
studies that interactions with microplastics can impair survival,
development, reproduction, growth and feeding3,30,31,85 and alter bio-
geochemical processes in the sediment86,87. Hence, understanding
which, and when, organisms may be at greater risk from microplastic
exposure will help with modelling the ecosystem consequences of
microplastic contamination into the future. The lack of correlation
between individual microplastic body burden and environmental
position (demersal, infaunal, and epifaunal) aligns with findings
reported elsewhere (reviewed in Bour et al.20), and suggests that more
subtle processes, such as, food availability88,89, biofilm formation90,91,
and interactions with species (predator-prey49) or the sedimentary
habitat, determine microplastic uptake14,92. Few studies (7% of those
considered here) reported microplastic body burden alongside
environmental contamination levels, so partitioning between organ-
isms and their environment is not possible. Further, the paucity of
studies that measure the excretion rates of organisms limits our
understanding of net exposure (the number of particles passing
through an organism over time) that organisms experience in their
natural settings.

This analysis emphasises significant gaps in knowledge about the
distribution of microplastic. Completion of a global inventory of
microplastic contamination will require the development of more
rapid, high throughput methods combined with models that incor-
porate environmental correlates and important aspects of species
behaviour that alter the likelihood of microplastic uptake. Here, we
proposea hierarchy for prioritising future research, identifying species
groupsmost at risk from enhancedmicroplastic body burdens. First, a
list of species should be identified for the geographical region of
interest, after which taxonomic screening could be used to target
those species most at risk, guided by the outcomes of this analysis.
Combining these data with faunal behaviour, environmental context,
and physiological factors, such as excretion rate, will hasten under-
standing of the mechanistic processes that determine net uptake in
marine benthic invertebrates. Only by adopting a holistic view of
ingestion, retention and/or excretion mechanisms that considers
individual particle toxicity9, species-specific sensitivity to microplastic

and associated contaminants16, and the likelihood of exposure, will
progress be made in determining the true extent of bioaccessibility
and, ultimately, the risk of microplastics.

Methods
We adopted the PICO method93 to develop a search strategy for our
analysis. Briefly, we used the Clarivate Web of Science (https://www.
webofknowledge.com/) to source peer-reviewed articles that con-
tained measurements of microplastic body burden using specific
search terms (listed in Supplementary Note 1).

Eligibility criteria
To be included in our quantitative synthesis, each study had to meet
the following criteria: (1) an empirical study focussing on marine
associated and benthic dwelling invertebrate species; (2) the focus was
on microplastic exposure; (3) the organisms must be field collected
organisms rather than laboratory studies; (4) the study must report
particles per individual or particles per gramofwetweight of tissue; (5)
evidence of quality assurances such as contamination control and
spectroscopic confirmation of plastic presence were required. For
more detail on the PICO exercise and our inclusion and exclusion
criteria see Supplementary Table 1.

Data curation and manipulation
Due to the wide range of reporting metrics and styles, several data
manipulations were necessary for the data recovered from our search,
and additional data were curated to complete the dataset, detailed as
follows. The taxonomy for all species was aligned to current accepted
status using the World Register of Marine Species ‘Match Taxa’ utility
(https://www.marinespecies.org/). Sampling locations (latitude/long-
itude) were taken from the manuscripts and when not provided, the
location of the samples was approximated using Google Maps94 uti-
lising the available information (descriptions and maps) in the manu-
script. When small numbers of individuals of a species in close
proximity were reported, or the reporting of data in the manuscript
represented a total population, study sites were pooled and the data
averaged.

As the biomass of an individual does not necessarily reflect an
organism’s functional biology95,96 (Fig. S2), or correlate with micro-
plastic body burden18,19 (Fig. S3), we express microplastic burden as
microplastic particles per individual (MP ind−1) andwe treat biomass as
a trait. This avoids standardising microplastic burden by whole
organism biomass, which assumes all biomass contributes to micro-
plastic uptake or retention, and allows us to test for an overall effect of
biomass in our analyses. Individual microplastic body burden was
derived from the mean number of reported microplastics for each
species record, regardless of the number of individuals reported in
each observation (range, 1 – 481 individuals).

The primary data needed for our analyses was the body burden of
microplastic particles. In the (micro)plastic literature, ingested parti-
cles are generally reported as MP ind−1 or items gram tissue−1 (wet
weight). In cases where only items per gram of wet weight was recor-
ded, the authorswere contacted for these data and, if not available, the
numbers per individual were calculated using the average items per
gram and multiplying by the wet weight of the species. Some studies
reportedMP ind−1for only thoseorganisms that had ingestedplastic.As
this is a poor representation of the data, these findings were adjusted
toMP ind−1 for the total population sampled. Ash-freedryweight or dry
weight were converted to wet weight using published conversion
factors97, following consultation with authors, or were inferred from
the wider literature using, where possible, data from the same geo-
graphic region and family level.

All microplastic sizes were converted to micrometers and mini-
mum, maximum and mean values were collected where reported.
Where ranges were reported the median value was recorded and

Article https://doi.org/10.1038/s41467-023-43788-w

Nature Communications |         (2023) 14:8023 6

https://www.webofknowledge.com/
https://www.webofknowledge.com/
https://www.marinespecies.org/


where percentages, size bins, or less than/more than values were
reported these size data were excluded.

Microplastic colours and polymer types were all converted to the
percentage contribution to the total amount of plastic recovered due
to the variety of reportingmethods.When reporting colours in groups,
these were divided up to an equal representation. For instance, when
reporting ‘red, blue and green particles made up 30% of the total’ each
colour was scored as 10%.

Where data were not presented, or were not provided by authors,
data were extracted from figures by A.P. using online software
WebPlotDigitizer98.

Trait attribution
Trait categories most likely to influence the likelihood of microplastic
ingestion by benthic invertebrate species were selected using the
BIOTIC framework produced by The Marine Life Information Network
for Britain and Ireland99. Specifically, we used the categories weight
(size), environmental position, feeding mechanism, mobility,
and habit.

Estimating levels of environmental contamination
Contamination of the sediment was rarely (12/55 studies) measured at
the same time as sampling the organisms. We used a global ocean
surface microplastic contamination model100 as a predictor of micro-
plastic contamination of the benthic realm. The model is designed for
sea surface contamination, but as all our records were taken in shelf
sea regions, we assume here that surface contamination is reflective of
the contamination levels of the seabed101 as the sinking rate of particles
in this model are consistent with observations of microplastic sinking
rates102–104. The average level of contamination in particles km−2 was
calculated for all points falling within 250km of a record using the van
Sebillemodel100 (1° × 1° resolution) and using ArcGISDesktop105 to help
smooth the interpolated model, although we acknowledge that high
levels of spatial heterogeneity can occur106 due to horizontal separa-
tion of particles associated with biogeographical context107,108, and
particle size class109, density104, and morphology102,110.

We ran linearmodels to investigate the relationships between the
number of microplastics individual−1 and the mean microplastic con-
tamination predicted by the Van Sebille model within a 250 km radius
of the sampled organism record, Longhurst Provinces, Spalding’s
Ecoregions (using realms andprovinces as independent variables), and
Class (Fig. S4). The van Sebille model, and Longhurst provinces were
not capable of explaining our geographic trends in contamination
levels but Spalding’s provinces, realms and Class were. As provinces
provided a greater number of geographic areas and still had significant
explanatory power these were used alongside Class in our analyses.
Other levels of taxonomy were explored but they either did not pro-
vide enough explanatory power or the number of data points was
insufficient at these lower taxonomic levels to form a rigorous statis-
tical analysis.

Using the Web of Science database, we identified 1519 studies, of
which 412 were relevant to our research question. Using a strict set of
inclusion and exclusion criteria (see Supplementary Table 1) we iden-
tified 55 studies that contained data in a usable format. The data span
16 provinces as defined by Spalding36,37 (Fig. 1, generated using Sha-
pefiles from Flanders Marine Institute111) with 90% of the records
located in the Northern Hemisphere, predominantly across Europe
and Southeast Asia.

Data analyses
We focussed our analysis on Classes with a minimum of 30 observa-
tions: Bivalvia (n = 192),Malacostraca (n = 69), Gastropoda (n = 54) and
Polychaeta (n = 31). MP ind−1 were grouped based on Spalding’s clas-
sification of biogeographical provinces37 to allow regional assessment
of MP ind−1 112. To determine the relationship of MP ind−1 Class−1

between provinces we used a two-way ANOVA with Class (4 classes)
and Province (15 provinces) as categorical explanatory variables. As the
graphical model validation procedure (residuals vs fitted values and
QQ-plot to assess the homogeneity of variances and normality) indi-
cated that the statistical assumption of homogeneity of variance was
not met, we continued with a generalised least-squares (GLS) estima-
tion procedure that incorporates a variance-covariance term (using
varIdent for categorical variables) to model the variance structure113.
To determine the optimal structure in terms of random components
we used restricted maximum-likelihood (REML) estimation and com-
pared the model without a variance-covariate term to alternate mod-
els, including either Class or Province as variance-covariates using AIC
and validation of model residual patterns. The optimal fixed-effects
structure was then determined by backward selection using a like-
lihood ratio test obtained by maximum-likelihood (ML) estimation114.
All analyses were performed using the nlme package115 in the R statis-
tical programming environment (v 4.1.2, R Core Team116).

To understand whether biological traits affect microplastic body
burden, we used a linear model, and the entire dataset, with wet
weight, environmental position, feeding mode, mobility, and habit as
the explanatory variables and MP individual−1 as the independent
variable. Insignificant variables were removed by backward selection
and and the comparison of AIC.

The relative contribution of our significant variables was deter-
mined by calculating the proportion of data explained by each variable
(scaling the sum of squares by 1 and dividing by their sum). Tukeys
HSD tests were performed using the agricolae package117 in R.

We used Pearson’s correlation (r) to assess whether organism size
(mm) or wet weight (g) influenced the size or number of microplastics
observation−1. Principle component analyses were carried out in PRI-
MER (version 6.3.13)118.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The research data supporting this publication are openly available
from Harvard Dataverse at: https://doi.org/10.7910/DVN/E57LOA. The
data for the Van Sebille 2015 model can be found at: https://figshare.
com/collections/data_of_Van_Sebille_et_al_2015_ERL_paper/5764184.
Ocean boundaries (Spalding’s Provinces) used in Fig. 1 are freely
available at: https://www.worldwildlife.org/publications/marine-
ecoregions-of-the-world-a-bioregionalization-of-coastal-and-shelf-
areas. Longhurst provinces used as a geographical variable in the initial
analysis are freely available from: https://www.marineregions.org/
gazetteer.php?p=details&id=22538. Theworld country shapefiles used
in Fig. 1 are available from ESRI at: https://hub.arcgis.com/datasets/
esri::world-countries-generalized/about and available for use under
the ESRI Master License Agreement. Taxonomy for all species was
verified and curated using theWorld Register ofMarine Speciesmatch
taxa function available at: https://www.marinespecies.org/aphia.php?
p=match. Biological trait categories were modified using those pro-
vided by the Marine Life Information Network (MarLIN) Biological
Traits Information Catalogue (BIOTIC) available at: https://www.
marlin.ac.uk/biotic/resources.php. Latitudes and Longitudes when
not specifically mentioned in the individual study were approximated
using Google Maps.
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