
Article https://doi.org/10.1038/s41467-023-43785-z

Second quantization of many-body
dispersion interactions for chemical
and biological systems

Matteo Gori1,2 , Philip Kurian 2 & Alexandre Tkatchenko 1

The many-body dispersion (MBD) framework is a successful approach for
modeling the long-range electronic correlation energy and optical response of
systems with thousands of atoms. Inspired by field theory, here we develop a
second-quantized MBD formalism (SQ-MBD) that recasts a system of atomic
quantum Drude oscillators in a Fock-space representation. SQ-MBD provides:
(i) tools for projecting observables (interaction energy, transition multipoles,
polarizability tensors) on coarse-grained representations of the atomistic
system ranging from single atoms to large structural motifs, (ii) a quantum-
information framework to analyze correlations and (non)separability among
fragments in a given molecular complex, and (iii) a path toward the applic-
ability of the MBD framework to molecular complexes with even larger num-
ber of atoms. The SQ-MBD approach offers conceptual insights into quantum
fluctuations in molecular systems and enables direct coupling of collective
plasmon-likeMBD degrees of freedomwith arbitrary environments, providing
a tractable computational framework to treat dispersion interactions and
polarization response in intricate systems.

Noncovalent interactions1–4 play a key role in determining physico-
chemical properties, given that they influence the structure5,
stability6,7, dynamics8–10, and electric11 and optical12 responses in a wide
range of molecules and materials13–15. In particular, van der Waals
(vdW) dispersion interactions and long-range electron correlation
energy must be treated with quantitative many-body methods16–24.
Different methods25–29 have been proposed to include dispersion
interactions in the form of non-local vdW density functionals. The
many-body dispersion (MBD) framework30,31 has been firmly estab-
lished as an efficient and accurate approach. In MBD, the electronic
responseproperties of each atomare representedby aquantumDrude
oscillator (QDO)32. The long-range correlations among the electronic
fluctuations emerge from the dipolar coupling between theQDOs. The
MBD method can be now routinely applied to systems with up to
N ~ 104 atoms9, a size limitation owing to the N3 computational scaling
of MBD. Furthermore, MBD effects have been shown to extrapolate to
mesoscale processes33,34, including solvation and folding of proteins9,35

and the delamination of graphene from surfaces36, demonstrating the
interplay between MBD modes and collective nuclear vibrations34,37.
These findings suggest that MBD interactions contribute to coopera-
tive effects between electronic and nuclear degrees of freedom in
complex chemical and biophysical systems. These effects include non-
local allosteric pathways in enzymes from coordinated electronic
fluctuations38–40 and the emergenceof giant electric-dipoleoscillations
in biomolecules that mediate long-range intermolecular
interactions41,42. Pursuing the study of MBD effects in realistic systems
in complex environments requires simulations with millions of atoms,
which are infeasible at the moment even with stochastic
implementations35,43. The development of a coarse-grained MBD
model would be a compelling strategy to provide a conceptual and
computational leap to extend the applicability ofMBD to systemswith
a large number of atoms. With this goal in mind, we propose here a
second quantization formulation of the MBD model (SQ-MBD) that
considerably simplifies the calculation of the fragment contributions
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to observables stemming from collective MBD modes, enhances phy-
sical intuition on howMBD effects operate to connect different length
scales in atomistic systems and establishes a strong connection
between the MBD method and quantum information theory. For
instance, the fragment contribution to the total MBD energy could be
used as reference data for machine-learned force fields44–46, while
coarse-grained fragment contributions to transition dipole elements
of excitedMBD states could yield effectivemodels to predict collective
optical response in biomolecular complexes47–50 and J-aggregates51,52.
In addition, quantum information observables calculated from the SQ-
MBD Hamiltonian indicate that specific structural elements (e.g., cer-
tain aminoacids in aprotein) playa key role in the structural stability of
folded states and might contribute to improve our understanding of
the role ofmutations and intra- and intermolecular allosteric pathways
in biomolecules.

Results
The MBD method in a nutshell
We investigate non-covalent dispersion interactions, specifically
interatomic interactions resulting from correlations among quantum
fluctuations of electronic charge density. The adiabatic connection
fluctuation-dissipation (ACFD) theorem provides an exact formula
expressing the correlation-dissipation energy as a function of the
electronic density response of non-interacting and mutually interact-
ing electrons53,54. For systemswith bound electrons, the ACFD theorem
can be reformulated using the non-local polarizability tensor, denoted
as AðλÞ, as follows:

Ec =
1
2π

Z 1

0
dλ
Z +1

0

Z
R3

dr
Z
R3

dr 0 Tr AðλÞðr,r 0,iωÞ+
�h

�Að0Þðr,r 0,iωÞ
�
Tðr,r 0Þ

i
dω

ð1Þ

where the non-local polarizability AðλÞ =Að0Þ �Að0ÞðλT+∇r �
∇r0 f

λ
xcÞAðλÞ is the solution of the Schwinger–Dyson equation with

exchange-correlation functional f λxc and the dipole–dipole potential
T (see the “Methods” section for further details). Adopting the
random phase approximations (RPA), i.e. f λxc = 0, the dispersion
energy for a system of N atoms with fixed nuclear positions fRAgNA = 1
can be accurately and efficiently estimated by representing the
valence electronic response properties of atom A by a 3D isotropic
QDO parametrized by its angular frequencyωA, massmA, and electric
charge ZAe. The approximation of isotropic QDOs is widely accepted
in the framework of the range-separated self-consistent screening
MBD@rsSCS method that we have adopted in our work. The
hypothesis of an isotropic atomic response yields the assumption
that the step function included in the potential for the range
separation depends only on the interatomic distance. Including
anisotropic QDO polarizability would yield an anisotropic step
function for the range separation, i.e., depending on both the
direction and modulus of the interatomic distance vector. The
solution of the technical aspects related to a consistent extension of
the range-separation method to such a case is beyond the scope of
the present work but has been suggested in ref. 55. Within this
framework, the polarizability of non-mutually interacting valence
electrons can be effectively represented by a localized field of QDOs,
i.e. Að0Þðr,r 0,iωÞ=Að0Þ

A ðiωÞδ3ðr � RAÞδ3ðr � RBÞδAB where Að0Þ
A ðiωÞ=

Að0Þ
A ð1 +ω2=ω2

AÞ
�1

is the QDO polarizability. It has been proved that
for a set of QDOs, the correlation energy can be calculated from an
equivalent Hamiltonian formulation56.

The MBD Hamiltonian takes the form

ĤMBD =
1
2

XN
A= 1

k p̂Ak2 +
X
B≠A

q̂AVABq̂B

" #
ð2Þ

where q̂A =
ffiffiffiffiffiffiffi
mA

p
r̂A = ðq̂Ax1

,q̂Ax2
,q̂Ax3

Þ is the (mass-weighted) displace-
ment operator of the QDOs associated with atom A, and the momen-
tum operator p̂A is the associated canonical conjugate variable.

The interaction potential is described by the 3 × 3 matrices
VAB =ωAωB½IδAB +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Að0Þ

A Að0Þ
B

p
TABðRABÞ� where I and TABðRABÞ are,

respectively, the 3 × 3 identity matrix and the dipole–dipole coupling
between QDOs of atom A and atom B (RAB =RB−RA). It should be
stressed that the dipole–dipole approximation has been used in writ-
ing theMBDHamiltonian in Eq. (2). An active area of research concerns
methods to accurately and efficiently estimate the effects on correc-
tions to the MBD energy of higher-order terms from the multipolar
expansion of coupling between quantum electronic density
fluctuations57–59. In this work, we will apply the MBD method to study
highly polarizable supramolecular systems and a small protein repre-
sentative of larger biomolecular systems. At the first order in pertur-
bation theory, it has been shown that multipolar effects are negligible
for small biological dimers57. As multipolar effects tend to be short-
ranged, it can be safely assumed that they can be neglected in larger
biomolecular complexes57. In supramolecular 3D complexes, it has
been demonstrated that the multipolar terms make a significant con-
tribution to the binding energy, but their magnitude remains below
15−20% of the contribution due to dipole–dipole interactions57. Such a
level of accuracy is sufficient for this work, which focuses on the
insights that a second-quantized reformulation of the MBDmodel can
afford.

TheHamiltonian in Eq. (2) is quadratic in theQDOvariables so that

it can be reduced to the normal form ĤMBD = ð1=2Þ�P3N
k = 1 ~̂p

2

k + ~ω2
k ~̂q

2

k

�
where ~̂qk ,~̂pk ,~ωk are, respectively, the displacement, the momentum,
and the angular frequency of the kth normalmode.We assume in what
follows that 0 < ~ωk ≤ ~ωk + 1 for all k = 1, . . . , 3N. The canonical transfor-
mation from the atomic-based operators fq̂A,p̂AgA to the 3N MBD

normal-mode variables f~̂qk ,~̂pkgk is determined by the orthogonal
matrix O that diagonalizes the potential matrix in the MBD Hamilto-
nian (see Fig. 1a). In this framework, the MBD energy is given by the
energy difference between the interacting QDOs and the QDOs at

infinite separation, EMBD = ð_=2Þ�P3N
k = 1 ~ωk � 3

PN
A= 1 ωA

�
. Although the

coupling among QDOs is pairwise in the MBD Hamiltonian in Eq. (2),
the MBD eigenfrequencies depend on all the atomic coordinates,
~ω2
k = ~ω2

kðR1,:::,RNÞ. Consequently, the MBD energy exhibits a many-
body nature, being contingent upon the overall system configuration
and not reducible to a summation of individual pairwise contributions
among the atoms, i.e., EMBD = EMBD(R1, . . .RN) ≠∑A,B f2(RA,RB). The
results presented in the following sections have been obtained using a
version of the MBD Hamiltonian in Eq. (2) modified according to the
widely adopted range-separated self-consistent screening MBD
(MBD@rsSCS) method (see the “Methods” section for further details).
Such a modification consists essentially of a reparametrization of the
atomic QDOs and the addition of a damping factor to the
dipole–dipole interaction matrix. These adjustments serve the dual
purpose of avoiding divergences from short-range interactions and
correctly reproducing the screening effects induced by the local
atomic environment.

Second quantization formulation of theMBDmethod (SQ-MBD)
Although the orthogonal matrix O and the set of eigenenergies _~ωk

fully characterize the MBD ground state, such a first quantization
approach is not optimal to analyze how collective quasi-plasmonic
modes emerge from the correlations among atomicQDOs excitations.
From a computational perspective, this yields a cumbersome calcula-
tion of matrix elements of localized observables, i.e. depending on
atomic QDOs degrees of freedom, in the MBD Hamiltonian eigen-
states. A possible strategy to highlight the connection between local
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and global fluctuations of the QDO charge density consists of repre-
senting the quanta of collective MBD normal modes (the MBD
plasmon-like quasiparticles) as a linear combination of the non-
interacting atomic QDOs Hamiltonian eigenstates.

The second quantization framework (SQ-MBD) developed here
overcomes these issues, providing a description of the degrees of
freedom of the atomic QDOs and of the MBD collective plasmonic
modes in terms of the algebra of ladder operators for isolated QDOs

fâAxi
,ây

Axi
g
A,i

with the associated basis set jni= NA,i

��nAxi

�
, and the

algebra of ladder operators for coupled QDOs fb̂k ,b̂
y
kgk with the basis

set ~n
�� � = Nk ~nk

�� �
. Owing to the linear transformationM(ω)( ~Mð~ωÞ) from

atomic QDO (normalmode) displacements/momenta operators to the
corresponding set of ladder operators for the collectiveMBDmodes, it
is possible to construct the commutative diagram reported in Fig. 1a,
with an explicit expression for the mapping between the two algebras
of creation/annihilation operators, in terms of the orthogonalmatrixO
and two sets of eigenfrequencies fωAgA and f~ωkgk , given by

b̂

b̂
y

 !
=

X Y

Y X

	 

â

ây

	 

, ð3Þ

where X ðO,ω,~ωÞ,Y ðO,ω,~ωÞ are 3N × 3N real matrices (see section I of
the Supplementary Discussion for further details). The linear map in
Eq. (3) is a multimodal Bogoliubov transformation60,61, preserving the
canonical commutation relations of the ladder operator algebra.

Bogoliubov transformations in finite quantum systems admit a unitary
representation61Ŝ

�1
= Ŝ

y
such that b̂

ðyÞ
k = ŜâðyÞ

Axi
Ŝ
�1

for k = 3(A−1) + i, con-
necting the ground state 0j i= NA,i 0Axi

��� E
of the uncoupled atomic

QDO system with the collective MBD ground state

~0
��� E= Ŝ 0j i= e

1
2

PN
A,B= 1

P3
i, j = 1

ây
Axi

ΘAxi
Bxj

ây
Bxj

det1=4ðXXTÞ
0j i, ð4Þ

whereΘ = X−1Y is a 3N × 3N symmetric realmatrix. Equations (3) and (4)
represent the information encoded in the MBD ground state in terms
of the excited states of the atomic QDOs. The SQ-MBD Hamiltonian
thus reads

ĤSQ�MBD =
X3N
k = 1

_~ωk b̂
y
k b̂k +

1
2

	 

: ð5Þ

In what follows, we present applications of the SQ-MBD frame-
work to the analysis of the MBD ground state properties in supramo-
lecular and biological systems. For all the results that we present, the
atomic QDOs frequencies ω, the MBD eigenfrequencies ~ω and the
orthogonal matrix of MBD eigenvectorsO have all been derived using
the current state-of-the-art MBD@rsSCS approach (see the “Methods”
section for further details). This ensures the consistency of our total
SQ-MBD energies with the MBD@rsSCS method.

a) b)

M
B

D
Atomic QDOs displacements Collective MBD displacements

(Normal Modes)
S

Q
-M

B
D

c)

Fig. 1 | Theory and practice of the second quantization formulation of the
many-body dispersion (SQ-MBD) method. Panel a illustrates a commutative
diagram outlining the connection between the original many-body dispersion
(MBD) framework and its second-quantized formalism (SQ-MBD). Within the MBD
method, the electric response characteristics of atom A positioned at RA can
effectively be described using a quantum Drude oscillator (QDO). Many-body dis-
persion interactions originate from correlation among QDOs due to dipole–dipole
interactions represented by the tensor TABðRABÞ. In first-quantization formalism,
the normalmodes displacements ~̂q andmomenta ~̂p of theMBDHamiltonian can be
expressed in terms of the atomic QDOs degrees mass-weighted displacement
operators q̂ and their conjugatemomenta p̂, throughanorthogonal transformation
represented by the matrix O. In the SQ-MBD framework, the creation/annihilation
operators b̂,b̂

y
of the MBD collective modes can be expressed in terms of the

creation/annihilation operators â,ây of the atomicQDOs.M and ~M matrices denote
transformation matrices between first- and second- quantization representations
for the atomic QDOs and the collective MBDmodes, respectively. The SQ-MBD the
dipole–dipole coupling operator can be written asTðSQÞ

AB ðRABÞ. Thematrices X and Y
define the Bogoliubov transformation between the creation/annihilation operators
of the atomic QDOs and the collective MBD modes. Panel b shows the mean
excitation numbers of atomic QDOs in the MBD ground state for the supramole-
cular complex of C70 fullerene surrounded by a cycloparaphenyl ring composed of
8 units ([8]-CPPA). Panel c shows the normalized covariance matrix of excitation
numbers for interacting atomic quantum Drude oscillators (QDOs), decomposed
into single Cartesian components. The index 3(A−1) + i is assigned to the QDO
associated with the displacement of the Drude particle on the Ath atom along the
ith Cartesian direction. Source data are provided as Source Data files.
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Visualization of the MBD ground state
We first analyze the excitation numbers of atomic QDOs in themany-

body state defined as hN̂ Ai~0 =
P3

i = 1h~0jây
Axi

âAxi
j~0i as well as the pair-

wise correlations between excitation numbers of atomic QDOs

Cov~0ðN̂ Axi
N̂ Bxj

Þ= hN̂ Axi
N̂ Bxj

i
~0
� hN̂ Axi

i
~0
hN̂ Bxj

i
~0
, which are reported

in Fig. 1b and c for a complex of C70 fullerene surrounded by an [8]-
CPPA molecular ring. The C70-CPPA system constitutes a benchmark
for the calculation of the dispersion energy57, given that it is essen-
tially homonuclear and highly polarizable. The correlations have

been normalized as follows Cov~0ðN̂ Axi
,N̂ Bxj

Þ=Cov~0ðN̂ Axi
,N̂ Bxj

Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hN̂ Axi

i
~0
hN̂ Bxj

i
~0

r
. Such a normalization gives Cov~0ðN̂ Axi

,N̂ Axi
Þ= 1 in

the case of a Poissonian distribution for excitations in a single QDO.
For all the atomic QDOs in the complex, the values of the atomic
mean excitation number are below 10−2, suggesting that the dipolar
interactions in the MBD ground state act as a perturbation on the
uncoupled atomic QDO system. Such an observation is confirmed by
the strength of normalized correlations between QDOs not exceed-
ing 0.2. The QDOs on the fullerene have higher mean excitation
numbers, and their mutual correlations are stronger compared with
the atomic QDOs associated with the carbon atoms in the CPPA
molecule. This suggests that collective effects are stronger in a
compact quasi-spherical homonuclear fullerene. The asymmetry of
the fullerene position with respect to the CPPA ringmanifests itself in
an enhancement of the excitation of the C70 QDOs located closer to
the phenyl rings. This can be interpreted as a polarization effect on
the fullerene due to the CPPA acting as an external environment.
Similar conclusions are reached when the fullerene is considered as
an external environment acting on the CPPA. Excitation number
analysis in the SQ-MBD framework can be easily extended to more
complex systems, providing a useful tool to investigate the effect of a
general environment on coupled QDOs, which can be used for the
development of effective models of MBD interactions in open
systems.

Local contribution to MBD interaction energy in biomolecular
complexes
The SQ-MBD framework also considerably simplifies the calculation of
operator expectation values between fragments in the collective MBD
state. Let us consider a partition fF αg

Nfrag

α = 1 of the whole system,
S = ∪ αF α , each fragment being specified by a set of atomic QDOs,
F α = fA1,:::,ANα

g. For such a partition, it is possible to define the single-
and pair-fragment contributions to the totalMBDenergy of the system
E,

EMBD =
XNfrag

α,β= 1

ðEMBDÞαβ =
XNfrag

α = 1

EðfragÞ
MBD

� �
α

ð6Þ

where ðEMBDÞαα = ðUMBDÞα = h~0jĤMBDjFα
j~0i � ð_=2ÞPA2αωA is the inter-

nal MBD energy of the αth fragment, ðEMBDÞαβ = ðVMBDÞαβ =
1=2 × h~0jĤMBDjF α ∪Fβ

j~0i is themutualMBD interaction energy between

the αth and βth fragments with α ≠ β, and ðEðfragÞ
MBD Þα =

PNfrag

β= 1 ðEMBDÞαβ is

the total contribution of the αth fragment to the total MBD energy.We
stress that such quantification of the fragment contribution to the
collective MBD energy is not unique since there are multiple ways to
partition the pair-fragment contributions. However, the proposed
fragment-basedprojection scheme canbe straightforwardly applied to
largemolecular systemswith arbitrary levels of coarse-graining62–64. As
a case study, here we consider crambin (see Fig. 2), a protein with 46
amino acid residues exhibiting essentially all relevant secondary-

structure motifs, and that has been extensively used as a model for
crystallography, NMR technique development, and folding studies65.
The energy scale of single-residue contributions to the MBD energy is

jðEðfragÞ
MBD Þαj∼0:1� 1 eV, while for larger secondary-structure elements

jðEðfragÞ
MBD Þαj∼0:5� 9 eV—as strong as covalent bonds. This reinforces

the relevance of dispersion interactions and their interplay with
covalent bonding in driving the dynamics of biomolecular systems.
Interestingly, there are fragments exhibiting a positive internal MBD
energy both in the case of residues (see Fig. 2b) and of secondary
structures (see Fig. 2e). In particular, the residues with a positive
internal MBD energy represent a large majority (33 of 46), while the
only secondary structure motif with positive ðUMBDÞα is the link2
structure. This effect can be interpreted as the screening of the
intrafragment MBD interactions due to the presence of the external
environment, leading to a blueshift of atomic QDO frequencies not
compensated by the negative energy contribution due to the mutual
dipolar interactions between QDOs inside the fragment. However, the
total single-fragment contribution to the MBD energy for all the
fragments in the biomolecule is negative for the considered coarse-
graining schemes (see Fig. 2a and d). Particularly suggestive is the case
of the phenylalanine residue (PHE13) located at the center of the
longest alpha-helix: it is a fragment with a high positive internal MBD
energy (ðUMBDÞPHE13 ∼0:13 eV), and it is also the residuewith the largest

negative single-fragment energy contribution(ðEðfragÞ
MBD ÞPHE13 ∼ � 1:1 eV).

This can be interpreted as a fingerprint of the strong coupling of the
fragment with the external environment: the correlations among
atomicQDOs inside the fragment are disturbed in favor of establishing
a stronger correlation with the rest of the protein. On the other hand,
the difference between single-fragment contributions to MBD and the
internal MBD energy for the longest helix in the complex is ~−2.2 eV
compared with ðUMBDÞhelix1 ∼ � 6:3 eV. This means that the QDOs
inside the alpha-helix are strongly correlated and interacting,
constituting a fragment weakly coupled to the rest of the protein.
This analysis suggests a possible strategy to develop a coarse-grained
model of MBD interactions similar to existing quantum embedding
methods66–69: identifying the fragments with stronger internal correla-
tions and interactions among atomic QDOs, solving the coupled QDOs
inside these fragments and treating the weaker interactions with the
rest of the system in a perturbative way, in analogy with the orbital
hybridization description of covalent interactions. The Nfrag ×Nfrag

matrixVMBD and theNfrag-dimensional vectorsUMBD, E(frag) provide low-
rank representations of MBD interactions and could be used to
develop these coarse-grained models, which can serve as inputs to
machine-learned force fields44–46. Finally, it is worth to notice the
directional and selective character of the coarse-grained MBD
interactions in crambin. On one side, in fact, certain residues exhibit
significantly stronger inter-fragment interactions compared to others,
thereby exhibiting a selectivity condition. On the other side, the
interaction energy among residues is not isotropic, further indicating
the presence of directionality.

"Bonding” and “anti-bonding” contributions from SQ-MBD
analysis of supramolecular complexes
The methods presented in the previous subsection provide a decom-
position of the interaction energy contained in the fully coupled MBD
state of the whole system without the need for arbitrary projections
intoMBD eigenstates of isolated fragments, as it is usually done9,70. Let
us consider, for instance, the ðV̂MBDÞAB operator describing the inter-
action between two monomers A and B in a supramolecular dimer.
Thanks to the SQ-MBD expression of ðVMBDÞAB = h~0jðV̂MBDÞABj~0i, it is
possible to evaluate the contribution of each MBD mode to the inter-
fragment MBD energy ðVMBDÞAB =

P3N
k = 1 ðVMBDÞAB,k (see section III of

the Supplementary Discussion). The significance of this analysis lies in
identifying the key collective MBD modes responsible for the
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interfragment MBD energy within a specific geometry, eliminating the
need to compute and project intoMBDmodes for isolated systems. To
illustrate the insights that can be derived from such an analysis, we
consider two supramolecular complexes: the C70@[8]-CPPA complex
considered in Fig. 1, and a “tweezer” complex dominated by dispersion
interactions taken from the S12L database, already studied in ref. 70.

It is important to emphasize that our proposed SQ-MBD analysis
for assessing theMBDeigenmodes contribution to interfragmentMBD
energy only involves computing the MBD eigenmodes for a single
geometry. This approachdiffers qualitatively fromotherMBDanalyses
on supramolecular complexes, such as the one presented in ref. 70.
The latter focuses on the most significant MBD eigenmode contribu-
tions to the MBD-binding energy, which is a distinct observable com-
pared to the interfragment MBD potential energy, and requires
comparing a given configurationwith another one involving fragments
at an infinite distance.

Figure 3 presents the SQ-MBD analysis of the MBD eigenmode
contribution to the mutual MBD energy between monomers,
ðVMBDÞAB,k = ðVMBDÞABð~ωkÞ for both considered structures. The first
observation is that the total mutual interaction energy among the
fragments is negative

P3N
k = 1 ðVMBDÞAB,k <0 for both structures. For

instance, in the “tweezer” complex (~102 atoms), the totalMBD-binding
energy is Ebind,MBD≈ −0.818 eV, while the interfragment interaction
energy in theMBDground state is ðVMBDÞAB≈� 1:67 eV. This difference
arises because in SQ-MBD we compute the expectation value of the

interfragment interaction energy evaluated on the fully coupled MBD
state. The second (deeper andhighly nontrivial) insight is that theMBD
eigenmodes canbe distinguished as either “bonding”MBDmodeswith
a negative contribution to the interaction energy (ðVMBDÞAB,k <0) or
“antibondin”MBDmodeswith a positive contribution (ðVMBDÞAB,k >0).
Furthermore, in both systems, we observe a clear pattern in the dis-
tribution of contributions to the interfragment potential energy
ðVMBDÞAB,k as a function of the eigenfrequencies ~ωk . The most sig-
nificant bondingMBDmodes tend to occur at lower eigenfrequencies,
while themost significant antibondingMBDmodes are found at higher
MBD eigenfrequencies. In the intermediate frequency range, there is a
high density of modes that contribute almost zero to the interaction
energy (see Fig. 3). It is interesting to notice that there is no evident
asymmetry between the bonding and antibonding MBD modes.
Moreover, the SQ-MBD formalism not only allows identification of the
bonding/antibonding character of the noncovalent MBDmodes, but it
also allows calculation and visualization of the contribution of each
pair of atomic QDOs to ðVMBDÞAB,k for a given MBDmode, as reported
in the insets of Fig. 3. These help to identify which constituents con-
tribute most significantly to the quantum collective fluctuations and,
consequently, the most relevant electronic degrees of freedom that
participate in defining the dimer geometry.

These insights onMBD eigenmodes and their contributions to the
binding energy could be used to develop advanced coarse-graining
procedures, per the analysis shown in Fig. 2. Hence, SQ-MBD offers a

Fig. 2 | Contributions to the many-body dispersion (MBD) energy for the
crambin protein [PDB ID: 2FD7] from two different coarse-grained partitions
(fragments) of atomic quantum Drude oscillators (QDOs). In the left panels,
a the interfragment contribution (VMBD) to the mutual interaction energy between
fragments in MBD, b the internal MBD energy of each fragment (UMBD), and c the

total fragment contribution to the MBD energy (EðfragÞ
MBD ) are presented for a parti-

tions of the considered crambin structure into residues. The same quantities are
presented in panelsd–f for the specified secondary-structure fragments. All energy
values are expressed in meV. Source data are provided as a Source Data file.
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clear advantage over its first-quantized counterpart in identifying
noncovalent orbitals that significantly determine interactions in rea-
listic chemical and biological systems.

SQ-MBD analysis of collective plasmon-like modes
Finally, we demonstrate insights into electronic and quantum-
information properties enabled by the SQ-MBD method. MBD transi-
tion dipoles are relevant quantities required to calculate the static and
dynamic polarizabilities of the coupled QDOs.

Due to Fock-state selection rules, transition dipoles in a system of
linearly coupledQDOs are allowedonly between theMBDground state
j~0i and singly excited states, ~1k

��� E
= ~01,:::,~1k ,:::~03N

��� E
. The xith Cartesian

component of the electric transition dipole between the ground state
and the state with a single excitation in the kth MBD mode is given by
ðμxi

Þ~0~1k =
PN

A= 1h~1k jμ̂Axi
j~0i: We introduce the scalar quantity

j�μ~0~1k
j2 = 1

3

XN
A,B= 1

X3
i= 1

μ~0~1k ;Axi
μ*
~0~1k ;Bxi

ð7Þ

that we will refer to as the isotropic (orientationally averaged) square
modulus of the transition dipole associated with the kth MBD normal
mode and that can be interpreted as the contribution of a specific MBD
normal mode to the isotropic polarizability of the system. In Fig. 4, the
plot of j�μ~0~1k

j as a function of the normalized eigenenergy _~ωk=ð_~ω1Þ
(adimensionalized by the lowest MBD eigenenergy units) associated
with the kth MBD normal mode for crambin is shown. The MBD normal
modes in the range between 1� 2:5 ~ω1 exhibit a rather high isotropic
transition dipole moment ~6−8D on average, of the same order of
magnitude as the transition dipoles of organic fluorophores47,49,71,72. A
single mode near 1:06 ~ω1 has a much larger transition dipole ~12D,
arising from a strong collective atomic response. In many practical
applications, it is relevant to ascertain how strongly correlated are
transition dipole elements between specific residues. With this aim in
mind, we introduce the two-fragment contribution to the effective

square modulus of the isotropic transition dipole. In the insets of Fig. 4,
plots of the matrix defined in Eq. (7) are reported for two MBD normal
modes: the low-frequency mode with the highest transition dipole
(k= 13) and the highest-frequency MBD mode (k= 1926) having a much
smaller total transition dipole. The results show that the low-frequency
mode strongly correlates dipole fluctuations over many residues of the
whole molecule, while the high-frequency mode correlates fluctuations
essentially of a single residue. The previous considerations and analysis
can be extended to the calculation of higher-order transitionmultipoles.

Quantum mutual information of atomic QDOs in the MBD
ground state
In the previous sections, we have elucidated how the SQ-MBD frame-
work facilitates the estimation of fragment contributions to MBD-
related observables, such as MBD energies and transition dipoles
within a given system partition. This suggests an MBD coarse-graining
approach for largemolecular systems by partitioning each system into
fragments, including elements of a complex environment, subse-
quently employing a high-level methodology to compute the dyna-
mical polarizability and MBD energy for each fragment and finally
resolving fragment interactions through a lower-level method. This
strategy draws a parallel with quantum-embedding techniques
employed in electronic structure theory69. However, such a coarse-
graining scheme raises the challenge of defining an optimal strategy
for partitioning a quantum system composed of quantum degrees of
freedom under the constraint of minimizing interfragment correla-
tions. For this purpose, quantum information methods can be applied
to study the correlations amongQDOsubsets in theMBDground state.

Quantum information methods have recently found successful
applications in studying electronic correlation properties, in particular
for the construction of a distinctive class of correlation energy func-
tionals in the reduced density matrix functional theory73,74.

In the MBD framework, mutual information can be used to par-
titiona given system into fragments thatminimize inter-fragmentMBD

Fig. 3 | "Bonding” and “anti-bonding” noncovalent many-body dispersion
(MBD) eigenmodes in supramolecular dimers. In the left panel a, the contribu-
tion of each MBD eigenmode to the interfragment MBD energy ðVMBDÞAB between
the twomonomersA and B for the same geometry of the C70@[8]–CPPA complex
in Fig. 1 is reported vs. the single-excitation energy _~ωk (being ~ωk the eigen-
frequency of the kth mode) of the kth MBD mode. The blue dashed line indicates
the most significant “bonding” noncovalent MBD mode, whereas the red dashed

line indicates the corresponding most “anti-bonding” MBD mode. The insets
represent the contributions of themost significant bonding and anti-bondingMBD
modes to the interatomic MBD energy VMBD. In the right panel b, the analogous
analysis is reported for the"tweezer” complex with 1,4-dicyanobenzene, dominated
by dispersion interactions. All the energies are expressed in eV. Source data are
provided as a Source Data file.
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interactions. In particular, the unitary representation of Bogoliubov
transformations in Eq. (4) shows that the MBD ground state is a mul-
timodal Gaussian state of the same type as the ones used in
continuous-variable quantum information theory75,76. The quantum
information-derived observable quantifying correlations among two
parts of a given quantum system is the quantum mutual information,
defined as

ðM:I:Þαβ = S½ρ̂α �+ S½ρ̂β� � S½ρ̂αβ�, ð8Þ

where S½ρα �= � Tr½ρ̂α log ρ̂α � is the von Neumann entropy of the
reduced density matrix ρ̂α =Trγ≠αðj~0ih~0Þ, and ρ̂αβ =Trγ≠α,βðj~0ih~0jÞ. The
method used to evaluate the von Neumann entropy for a fragment F α

relies on the symplectic spectrum of the correlation matrix Σ(α)

ΣðαÞ =
hâα � âαi~0~0 hâα � ây

αi~0~0

hây
α � âαi~0~0 hây

α � ây
αi~0~0

 !
ð9Þ

(see refs. 75,76 and section VI of the Supplementary Discussion for
further details). In the inset of the left panel of Fig. 5a, the results of the
calculation of mutual information between pairs of residues in the
MBD ground state are reported. Our analysis suggests that a strong
connection exists between mutual information among QDOs in dif-
ferent residues and the interfragment contribution to the MBD
potential energy: both quantities, in fact, are determined by the cov-
ariance matrix in Eq. (9). In particular, as expected, the mutual infor-
mation between residues strongly correlates with the inter-residue
distance d. Figure 5a reveals that MI scales as ~d−6.16±0.04, albeit with a
substantial scatter. This scaling law follows the inter-residue vdW
interaction energy; in fact, the mutual information between pairs of
residues and the mutual interaction energies VMBD for the same pairs

are strongly correlated (see section IV of the Supplementary
Discussion).

The inter-fragmentmutual informationmatrix can also be used to
construct graphs representing the correlations among quantum elec-
tronic density fluctuations represented by atomic QDOs. In fact, the
mutual information matrix can be interpreted as the adjacency matrix
of weighted graphs whose nodes are the fragments. Since the entries
of the mutual information matrix are non-negative, it is possible to
assign a centrality measure to each fragment using, for instance, the
eigenvector centrality sα, defined as77

sα =
1

λðMIÞ
max

XNfrag

β= 1

ðM:IÞαβ sβ,
XNfrag

α = 1

k sαk2 = 1, ð10Þ

where λðMIÞ
max is the largest eigenvalue of the mutual information matrix.

In the context of our investigation, we present a case study involving
the structural analysis of crambin partitioned into individual residues.
The results of this analysis are depicted in Fig. 5b. Notably, our findings
highlight phenylalanine (PHE13) as the most central residue, reaffirm-
ing its unique characteristics regarding its contribution to the MBD
energy. Through quantum mutual information analysis, we explicitly
unveil its significant interactions with the protein environment, as
suggested by the analysis of the intra- and interfragment contributions
to MBD energy previously discussed. Specifically, PHE13 exhibits
coordination with residues situated on the same alpha-helix, such as
the arginines (ARG10 and ARG17), as well as with residues on the sec-
ond alpha-helix, notably threonine (THR30). This observation suggests
a potentially central role played by PHE13 in shaping the protein’s
overall structure. Such an analysis will find applications in future stu-
dies on intra- and intermolecular allosteric pathways supported by
quantum electronic density fluctuations, and could also be used to
identify the criticality of single-point mutations for the structural
integrity of de novo protein designs. Finally, a more advanced analysis
can be developed in the same SQ-MBD framework, examining
multifragment correlations among QDOs and generalizing mutual
information concepts to multipartite-entangled systems78,79.

Discussion
In summary, wehave presented a formulation of theMBDmodel in the
second quantization picture (SQ-MBD), leading to computational and
conceptual insights into coupled QDOs in intricate molecular systems.
The presented method allowed us to investigate the ground state of
the MBD Hamiltonian in terms of the superposition of QDO excited
states. Owing to the Fock space representation in the SQ-MBD fra-
mework, it becomes possible to simplify the calculation of expectation
values of observables in and between MBD ground and excited states.
In fact, the SQ-MBD formalism makes clearer the connection not only
between the non-interacting and the interacting ground state for the
system of QDOs but also between the atomic QDO excitations and the
MBD collective plasmon-like quasiparticle excitations.

The analysis based on the SQ-MBD approach combines well-
known methods from different areas of physics spanning atomistic
and field perspectives (including MBD, electronic structure theory,
Bogoliubov transformations, field theory, and quantum information
tools) into an original method of analysis for correlations among
quantumelectronic density fluctuations in largemolecular complexes,
a hitherto unsolved problem in achieving computational efficiency. In
particular:

• SQ-MBD provides a suitable framework to compute and analyze
the contribution of arbitrary sub-fragments to many important
properties of the whole system, including the total MBD energy
or the transition dipoles of MBD modes. This class of results
opens an avenue for coarse-grained and field-excited MBD

Fig. 4 | Transition dipoles of the many-body dispersion (MBD) modes for
crambin. The figure illustrates the orientationally averaged transition dipole
moment denoted as j�μ~0~1k

j for the kth MBD eigenmode as a function of the corre-
sponding MBD excitation energy _~ωk . The MBD energies on the x-axis are
expressed in units relative to the lowest frequencyeigenmode, i.e. _~ω1. In the insets,
the matrix elements of the square of the orientationally averaged transition dipole
for the interacting residues. In particular, for two fixed residues α and β,
ðj�μ~0~1k

j2Þ
αβ

= 1=3
P

A2Fα ,B2Fβ

P3
i = 1 μ~0~1k ;Axi

μ*
~0~1k ;Bxi

are shown. Transition dipoles are
expressed in Debyes. Source data are provided as a Source Data file.
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models in the established area representedby researchonmany-
body van der Waals interactions;

• SQ-MBD enhances our understanding of the properties of MBD
modes that recent results suggest strongly correlate with
exciton and optical modes in molecular systems12, and it allows
for equivalent treatments of the electromagnetic field and its
interactions with intricate matter; and

• SQ-MBDprovides a natural approach to connect theMBDmodel
of coupled QDOs with quantum information theory, which can
be used for the development of straightforward methods to
analyze correlations and (non)separability among different
fragments in complex molecular systems. These results thus
represent the starting point for the development of computa-
tionally efficient strategies to enable the application of MBD
interactions tomolecular complexeswith an even larger number
of atoms.

Moreover, the possibility to easily compute matrix elements of
higher-order terms in the multipole expansion of the Coulomb inter-
action potential among QDOs would be a first step for an extension of
the method proposed in ref. 57 for the evaluation of MBD energy
beyond the dipole–dipole approximation. The SQ-MBD approach
could be extended to periodic systems akin to its parent MBD
Hamiltonian15, where cooperative effects among atomic QDOs (medi-
ated by plasmon-like MBD modes) may provide enhanced insights
owing to the high symmetry of Bloch states in such systems.

Methods
The MBDmethod is currently built on top of a given DFT method and
encodes properties of the ground state electronic density function in
the parameters of QDOs, i.e. the frequenciesωA and the polarizabilities
Að0Þ

A . The parameterization of quantum Drude oscillators (QDOs)
adopted in this paper is based on a two-step procedure. First, the
polarizability AA (expressed in volume units), the C6,AA dispersion
coefficient, and the van der Waals radius RvdW,A of each atom A in the

system were calibrated via the Tkatchenko–Scheffler method80

CðaimÞ
6,AA =η2

AC
ð0Þ
6,AA

AðaimÞ
A = ηAAð0Þ

A

RðaimÞ
vdW,A =η

1=3
A Rð0Þ

vdW,A

8>><
>>: ð11Þ

where ηA = hA/ZA is the ratio between the on-site contribution hA to the
Mulliken population (corresponding to the atom-projected trace of
thedensitymatrix) and the atomic chargeZA in the caseof a free atom81

applied to electronic structure calculations from density functional-
based tight binding (DFTB) including electrostatics and Pauli repul-
sion. The estimation of the ηA ratios is a key step in setting the
parameters of the atomic QDOs. In order to refine the estimation of
non-local effects for atom-in-molecule (AIM) response properties, the
natural orbital functional theory framework could provide an alter-
native choice, taking into account the contribution to AIM electric
response properties of the off-diagonal density matrix elements. The
second step is the initialization of the MBD Hamiltonian and its
diagonalization. TheCðaimÞ

6,AA coefficient and the polarizabilitiesAðaimÞ
A are

rescaled according to the “range-separated self-consistent screenin”
procedure (the ‘rsscs’ option in libMBD82) to account for electro-
dynamic screening using the short-range part of the range-separated
dipole tensor for quantum harmonic oscillators (see ref. 83). In this
way, the parametersASCS

A ,CSCS
6,AA,R

SCS
vdW,A of each atom A have been fixed,

taking into account both the atom-in-molecule features and self-
consistent screening. It has been shown that the MBD@rsSCSmethod
could exhibit qualitative problemswith ionic and hybridmetal-organic
systems, as a poor prediction of ionic polarizabilities and the so-called
phenomenon of polarization catastrophe in the transition-metal
dichalcogenides. The fractional ionic approach for the polarizability
of ions84 and theMBD-NLmethod85 have been proposed to solve these
issues. We emphasize that the SQ-MBD formalism can be easily
extended to the MBD-NL method without any particular modification.
However, we do not expect qualitative differences for the specific

Fig. 5 | Quantum information analysis of theMBDground state in crambin. Left
panel a shows the scatter plot of the mutual information (MI) for pairs of residues
vs. the distance d between their centers of mass. Distances are expressed in ang-
strom. In the inset, the mutual information of each residue pair is shown. Right

panel b shows the weighted graph whose adjacency matrix coincides with the
mutual information matrix reported in the inset of panel a). The color and the size
of each node are proportional to the eigenvector centrality of each residue. Source
data are provided as a Source Data file.
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systems investigated in our manuscript between the more accurate
MBD-NL method and the MBD@rsSCS method.

The dipole–dipole potential between a pair of three-dimensional
QDOs is given by the rank-2 (3 × 3) tensor

TABðRABÞ=∇RA
� ∇RB

jRABj�1 =
ðI� 3R̂AB � R̂ABÞ

jRABj3
ð12Þ

where RAB =RB−RA is the distance vector between atoms A and B.
According to the MBD@rsSCS method, the dipole-dipole coupling
tensor used in the MBD Hamiltonian is modified compared to the one
in Eq. (12): for each couple of atomic QDOs, the tensor TAB is
multiplied with a function denoted as grs,AB(∥RAB∥), dampening the
potential at short distances. Such a modification of the dipole–dipole
potential prevents the double-counting of dipole–dipole interactions
at short distances, as these effects are already considered through the
self-consistent rescaling of the QDOs parameters. Adopting the
notation presented in ref. 83, the damping function for each atomic
oscillator pair’s range-separated potential was chosen to be

grs,ABðk RAB kÞ= 1� 1

1 + e�a½kRABk=ðβRðaimÞ
vdW,AB

Þ�1�
, ð13Þ

where RðaimÞ
vdW,AB =R

ðaimÞ
vdW,A +R

ðaimÞ
vdW,B and the parameters a = 6.0 and β =0.83

have been fixed. The characteristic angular frequency of the atom A is
given by

ωA =
4
3
C6,AA

_A2
A

: ð14Þ

The diagonalization of the 3N × 3N MBD Hamiltonian matrix was per-
formed using libMBD software, thus obtaining the orthogonal trans-
formationO between atomic QDOs andMBD normalmodes, as well as
the 3N eigenvalues ~ωk corresponding to these MBD eigenmode
frequencies.

The matrix M(ω) maps from the first- to second-quantized
representation for the atomic QDOs and takes the form

MðωÞ= Maq Map

Mayq Mayp

 !
=

1ffiffiffiffiffi
2_

p D1
2ðωÞ iD�1

2ðωÞ
D1

2ðωÞ �iD�1
2ðωÞ

 !
, ð15Þ

where DðωÞ=diagðω1,ω1,ω1,:::,ωN ,ωN ,ωNÞ is a 3N × 3N diagonal matrix
of QDO eigenfrequencies. ~Mð~ωÞ maps from first- to second-quantized
representation for the MBD normal modes. The X,Ymatrices in Eq. (2)
of themain text define the linear transformation between the creation/
annihilation operator algebra for the atomic QDOs and the one for the
MBD normal modes. These matrices can be expressed in terms of the
orthogonal matrices O and the transformation matrices MðωÞ, ~Mð~ωÞ:

X = ~Mb~qð~ωÞO~qqM
�1
qaðωÞ+ ~Mb~pð~ωÞO~ppM

�1
paðωÞ

h i
=
1
2

~D1=2OD�1=2 + ~D�1=2OD1=2
h i

Y = ~Mb~qð~ωÞO~qqM
�1
qaðωÞ � ~Mb~pð~ωÞO~ppM

�1
paðωÞ

h i
=
1
2

~D1=2OD�1=2 � ~D�1=2OD1=2
h i

:

ð16Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study and reported in Figures and Supple-
mentaryDiscussion are provided in the SourceData file. Themolecular
structures and the data generated in this study have been deposited
in86. Source data are provided with this paper.

Code availability
The software used to derive the CPA ratios required byMBD@rsSCS is
an adapted version of the software package DFTB+87 developed by M.
Stöhr and available on Github repository88. The diagonalization of the
MBD Hamiltonian was executed using the software library libMBD82,89.
Python and Mathematica90 scripts for data analysis and figure gen-
eration are available from the authors.
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