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Nuclear RPSA senses viral nucleic acids to
promote the innate inflammatory response

Yan Jiang1, Siqi Sun1, Yuan Quan1, Xin Wang1, Yuling You1, Xiao Zhang1,
Yue Zhang1, Yin Liu1, Bingjing Wang1, Henan Xu2 & Xuetao Cao 1,2

Innate sensors initiate the production of type I interferons (IFN-I) and proin-
flammatory cytokines to protect host from viral infection. Several innate
nuclear sensors that mainly induce IFN-I production have been identified.
Whether there exist innate nuclear sensors that mainly induce proin-
flammatory cytokine production remains to be determined. By functional
screening, we identify 40 S ribosomal protein SA (RPSA) as a nuclear protein
that recognizes viral nucleic acids and predominantly promotes proin-
flammatory cytokine gene expression in antiviral innate immunity. Myeloid-
specific Rpsa-deficient mice exhibit less innate inflammatory response against
infection with Herpes simplex virus-1 (HSV-1) and Influenza A virus (IAV), the
viruses replicating in nucleus. Mechanistically, nucleus-localized RPSA is
phosphorylated at Tyr204upon infection, then recruits ISWI complex catalytic
subunit SMARCA5 to increase chromatin accessibility of NF-κB to target gene
promotors without affecting innate signaling. Our results add mechanistic
insights to an intra-nuclear way of initiating proinflammatory cytokine
expression in antiviral innate defense.

Host cells express various innate sensors for recognizing viral nucleic
acids to trigger innate signaling cascades1,2. Several innate sensors in the
cytoplasm have been reported to activate innate immune responses
by jointly initiating the expression of type I interferons (IFN-I)
and proinflammatory cytokines once recognizing viral nucleic acids.
These cytoplasmic innate sensors include Cyclic GMP–AMP Synthase
(cGAS)3, Toll-like receptor-9 (TLR-9)4, Z-DNA binding protein 1 (ZBP1)5,
Interferon-gamma inducible protein 16 (IFI16)6, Interferon induced with
helicase C domain 1 (MDA5)1 and retinoic acid-inducible gene I (RIG-I)7.
Some nuclear acids sensors, such as cGAS and RIG-I, have also been
found to be translocated to the nucleus and initiate innate immune
responses against virus infection8–10. In a previous study, we reported
the heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) as a
nuclear DNA sensor for the induction of IFN-I in response to DNA virus
infections11. Nevertheless, whether and how viral nucleic acids are
recognized in the nucleus to selectively induce the transcription of

proinflammatory cytokinegenes for enhancing antiviral innate response
is still largely unknown.

Inflammation is indispensable for the host to resist viral infection.
Once recognizing the invading virus, the innate immune systems can
initiate either inflammatory signaling pathways such as NF-κB or
inflammasome responses such as NLRP3 and AIM2 for activating
antiviral inflammatory responses12,13. In acute hepatitis B virus (HBV)
infection, the DNA virus usually inadequately induces expression of
type I/III interferons and ISGs but induces expression of proin-
flammatory cytokines14, which have been reported to inhibit HBV
infection in an interferon-independent manner and reduce host
susceptivity15–17. Moreover, the proinflammatory cytokines are critical
in clearing viral infections by inducing effector lymphocyte activation
and recruiting neutrophils18. Efficient launching of inflammatory
response is essential for the host anti-virus process. DNA viruses, such
as herpes simplex virus type 1 (HSV-1), mainly release their genomes

Received: 25 February 2023

Accepted: 20 November 2023

Check for updates

1Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical
Sciences, Beijing 100005, China. 2Frontiers Science Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin
300071, China. e-mail: xuhenan_immuno@nankai.edu.cn; caoxt@immunol.org

Nature Communications |         (2023) 14:8455 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9677-7647
http://orcid.org/0000-0001-9677-7647
http://orcid.org/0000-0001-9677-7647
http://orcid.org/0000-0001-9677-7647
http://orcid.org/0000-0001-9677-7647
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43784-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43784-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43784-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43784-0&domain=pdf
mailto:xuhenan_immuno@nankai.edu.cn
mailto:caoxt@immunol.org


from their capsids directly into the nucleus after invading host cells19,
which can inhibit the activation of innate signaling pathways in the
cytoplasm to escape from host immune discrimination20,21. Viral DNA
in the nucleus can also hijack host histones to form nucleosome
structure, subsequently keeping the host in immune silenced status22.
RNA viruses like Influenza A virus (IAV) also replicate in the host
nucleus. Identification and a more comprehensive investigation of
innate sensors in the cell nucleus, previously known or unknown, for
launching innate immune responses is essential for a better under-
standing of how host cells defend against viral infection and also
helpful in designing therapeutic strategies for infectious diseases.

The multifunction molecule 40 S ribosomal Protein SA (RPSA) is
implied to be an HSV-1 DNA binding protein candidate in the host
nucleus11. Here, by functional screening, we report the identification of
RPSA as a nuclear innate sensor that selectively induces the tran-
scription of proinflammatory cytokines genes, which is dependent on
NF-κB signaling. We show that, upon sensing of nucleic acids from
HSV-1 or IAV, nucleus-localized RPSA is selectively responsible for
starting epigenetic modification reconstruction and enhancing
P65 subunit enrichment at proinflammatory cytokine gene promoters
but not affecting NF-κB signaling cascades in launching antiviral innate
responses. Our study sheds light on the understanding of host-virus
interaction by unveiling a new nuclear innate sensor RPSA which
selectively promotes NF-κB-triggered proinflammatory cytokine
expression through modulating epigenetic modification. Our results
also provide a potential target for the control of viral infectious
diseases.

Results
Nuclear RPSA is a viral nucleic acids-binding molecule
To explore the potency of the 23 viral DNA-binding nuclear protein
candidates we obtained previously11 in regulating proinflammatory
cytokine expression, we used HSV-1-infected mouse peritoneal mac-
rophages (PMs) as a model to perform the functional screening with a
small RNA interference library. The screening revealed that knocking
down Rpsa robustly repressed HSV-1-induced expression of Il1b, the
typical anti-viral cytokine, aswell as a set of proinflammatory cytokines
genes, suggesting RPSA as an important molecule in virus infection-
triggered innate inflammatory response (Fig. 1a and Supplementary
Fig. 1a, b). Notably, knocking down Rpsa had no impact on the intra-
cellular level of HSV-1 DNA and the gene expression of Ifnb or ISGs,
suchas Ifit1 andRsad2 (Supplementary Fig. 1c). Broadly, in tetracycline-
induced Rpsa deficient RAW264.7 cells (Supplementary Fig. 1d),
proinflammatory cytokine gene expression was robustly decreased
due to Rpsa depletion in both HSV-1 and IAV infection (Supplementary
Fig. 1e, f). In human A549 epithelial cells, knocking out RPSA impaired
the proinflammatory cytokine and chemokine gene expression in HSV-
1 or IAV infection without reducing the IFNB expression and the virus
levels (Fig. 1b, c). Co-immunoprecipitation assays using an RPSA-
specific antibody and the nuclear lysate from viral-infected mouse
bone marrow-derived macrophages (BMDMs) showed that RPSA was
capable of interacting with both HSV-1 DNA and IAV genome RNA in
infection (Fig. 1d, e). Strikingly, the immunofluorescence assay exhib-
ited thatRPSAco-localizedwith EdU-labeledHSV-1 genomeDNAor the
EU-labeled IAV genomeRNA (gRNA)within the host nucleus (Fig. 1f, g).
Consistent, the in situ association of RPSA with EdU-labeled HSV-1
genome DNA was observed during infection in DNA pull-down assay
(Fig. 1h). The interaction of nuclear RPSA with biotinylated DNA could
be blocked by the unlabeled DNA (Fig. 1i). These data suggested that
nuclear located RPSA bound viral nucleic acids during infection.

RPSA direct binding to HSV-1 DNA was further proved by immu-
noprecipitation assay using recombinant mouse RPSA (rmRPSA) and
biotin-labeled HSV-1 DNA, and their binding could be blocked by the
unlabeled HSV-1 DNA in a dose-dependent manner. The mouse naked
genome DNA, but not nucleosomes, also competitively blocked RPSA

binding tobiotin-HSV-1DNA (Fig. 1j). EMSA revealed that thebindingof
RPSA to the biotin-HSV-60 probe could be competitively blocked by
unlabeled HSV-60 itself as well as by VACV-70 dsDNA, poly dA:dT and
poly dI:dC (Supplementary Fig. 1g). Mammalian RPSA is sequence
conserved. Recombinant human RPSA (rhRPSA) protein also bound
HSV-60dsDNAor IAV gRNA,whichwas blockedby different sources of
DNA or the free IAV gRNA, respectively (Fig. 1k, l). RPSA consists of 295
amino acids (a.a), and its N-terminus, a.a. 1–209, is mainly involved in
the composition of the ribosome structure. The C-terminus of RPSA,
a.a. 210–295, is primarily engaged in laminin properties and interac-
tions with other proteins or rRNA. Pull-down experiments showed that
only the full-length RPSA interacted with HSV-1 DNA (Fig. 1m).

Thus, our data demonstrated that RPSA directly binds viral DNA
and RNA in the nucleus during HSV-1 and IAV infection.

RPSA accelerates proinflammatory cytokine expression upon
recognizing viral nucleic acids within the nucleus without
affecting IFN-β production
To clarify the function of RPSA in the innate response against viral
infection, we disturbed the endogenous Rpsa expression in multiple
cell types. The myeloid-specific Rpsa deficient mice were generated
(Supplementary Fig. 2a–c). Conditional loss of Rpsa did not affect the
development of immune cells, as the percentages of F4/80+CD11b+

macrophages, granulocytes, dendritic cells were comparable in the
spleens of Rpsafl/flLyz-Cre+ mice and Rpsafl/fl littermates (Supplemen-
tary Fig. 2d). UponHSV-1 challenge, BMDMs from Rpsafl/flLyz-Cre+ mice
expressed lower levels of Il1a, Il1b, Il6, Tnfa, and Il12b mRNAs and
secreted lower levels of corresponding cytokine proteins.Notably, loss
of Rpsa rarely affected the expression of Ifnb (Fig. 2a, b).

Overexpression of RPSA upregulated proinflammatory cytokine
gene expression inMEFs upon HSV-1 infection (Fig. 2c). Similarly, HSV-
1-induced proinflammatory cytokine expression also decreased sig-
nificantly in Rpsa deficient murine lung epithelial-12 (MLE-12) cells,
which could be restored by ectopic expression of RPSA (Fig. 2d, Sup-
plementary Fig. 3a). The results indicated a broad role of RPSA in
promoting proinflammatory cytokine expression against HSV-1 infec-
tion in various cell types. Correspondingly, the unbiased RNA-seq
analysis of tetracycline-induced Rpsa deficient RAW264.7 cells, with or
without HSV-1 infection for 4 h, revealed that the loss of Rpsa impaired
the expression of more than 1500 genes (Supplementary Fig. 3b, c),
which were enriched in pathways related to defense response to the
virus and inflammatory response indicated by KEGG enrichment ana-
lysis (Supplementary Fig. 3d). Figure 2e shows the heatmap of
immune-related genes whose expression was downregulated after
HSV-1 infection due to Rpsa deletion. These results proved that RPSA
selectively promotes the expression of proinflammatory cytokine
genes but not IFN-I during infection with HSV-1 in the nucleus.

Importantly, nucleofection of naked dsDNA or dsRNA activated
Il1b and Il6mRNA expressions in RAW264.7 cells, which were reduced
by Rpsa deficiency (Fig. 2f, g). However, Rpsa deficiency had little
effect on proinflammatory cytokine expression upon cytoplasmic
transfection of either TLR9 ligand CpG oligonucleotide (Supplemen-
tary Fig. 3e), poly dA:dT (Fig. 2h), TLR3/RIG-I ligand poly I:C (Fig. 2i).
Also, the loss of or overexpression of RPSA did not affect the proin-
flammatory cytokines gene expression upon TNF-α or cGAMP stimu-
lation (Supplementary Fig. 3f, g). Taken together, the results further
confirmed that nuclear RPSA promotes the expression of proin-
flammatory cytokines by sensing viral nucleic acids within the nucleus.

RPSA preferentially increases chromatin accessibility of proin-
flammatory cytokine gene promotors after HSV-1 infection
Viral entry of host cells can immediately trigger proinflammatory gene
expression by the activation of NF-κB and MAPK signaling cascades
mainly depending on TAK1 mediated TLR pathways and cGAS-STING
axis. However, both pathways inWTandRpsadeficient RAW264.7 cells
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were comparable in response to HSV-1 infection (Supplementary
Fig. 4a).Moreover, loss of Rpsa neither affect the nuclear translocation
of phosphorylated P65 (Supplementary Fig. 4b, c), P42/44, P38 and
IRF3 (Supplementary Fig. 4b), nor affect apoptosis, pyroptosis or
necroptosis upon HSV-1 infection (Supplementary Fig. 4d). Further
investigation showed that the enhanced Il1b and Il6 expressions by

RPSA overexpression was vanished in MLE-12 cells once treated with a
combined inhibitor of TAK1 and STING (pan-inhibitor). Notably, the
overexpression of RPSA could restore the proinflammatory cytokine
gene expression when the inhibitor blocked one single pathway
(Fig. 3a). Consistently, inhibition of STING in RPSA knocking downed
PMs further reduced Il1b and Il12b expression in HSV-1 infection

Fig. 1 | RPSA binds to viral nucleic acids and activates proinflammatory cyto-
kine expression in macrophages. a qRT-PCR analysis of Il1b mRNA in peritoneal
macrophages (PMs) infected with HSV-1 for 8 h after interfering with the indicated
genes (n = 3). b, c Wild-type and RPSA-KO A549 epithelial cells were infected with
HSV-1(MOI,10) (b) or IAV (MOI, 1) (c) for 10 h, then qRT-PCR determined levels of
indicated mRNAs (n = 3). d PCR analysis of HSV-1 DNA in the complex immuno-
precipitated by an anti-RPSA antibody or IgG from the nucleus of bone marrow-
derivedmacrophages (BMDMs) infectedwith HSV-1. eRT-PCR analysis of IAV gRNA
immunoprecipitated by an anti-RPSA antibody from IAV-infected BMDMs nucleus.
f, g Co-localization of RPSA (green) and EdU-labeled HSV-1 genome (red) (f) in
BMDMs or RPSA (red) and EU-labeled IAV genome (green) in A549 (g) without or
with infection for indicated times were examined by confocal microscopy. Nuclei
were stained with DAPI (blue). Scale bar = 10μm. h Proteins pulled down from the
nucleus of BMDMs infected with unlabeled or EdU-labeled HSV-1 for 2 h were
analyzed by immunoblot. i Nuclear complexes obtained by nuclear acid affinity

purification were examined by immunoblot in the absence or presence of unla-
beledHSV-1 DNA. jRecombinantmouse RPSA (rmRPSA) was incubatedwith biotin-
labeled HSV-1 DNA without or with mouse naked genome DNA or nucleosomes, or
increasing concentrations of unlabeled HSV-1 DNA, and pull-downed RPSA was
detected by immunoblot. k Recombinant human RPSA (rhRPSA) was incubated
with biotin-labeled HSV-60 dsDNA without or with the indicated unlabeled nucleic
acids, and then the pull-downed RPSA was detected by immunoblot. l rhRPSA was
incubated with biotin-labeled IAV gRNA without or with increasing concentrations
of unlabeled IAVgRNA, nuclear acidwas affinity purified, and RPSAwasdetected by
immunoblot.m Flag-tagged full-length or truncated RPSA proteins were incubated
with biotinylated HSV-1 DNA and DNA-bound proteins were examined by immu-
noblot. Similar results were obtained for three independent experiments. One
representative experiment is shown. Data in a–c are shown as mean± s.e.m. The P
values were calculated by a two-tailed unpaired Student’s t-test. Source data are
provided as a Source Data file.
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(Supplementary Fig. 5a). Collectively, the results indicated that RPSA
enhancement of proinflammatory cytokine gene expression depends
on and makes up for the innate signaling cascade activation without
affecting the signal transduction.

Digital genomic footprinting of transposase accessible chromatin
with high throughput sequencing (ATAC-seq) assay exhibited reduced
peak enrichment levels around the transcription start site (TSS) in
Rpsa-iKO RAW264.7 cells than that in WT cells infected with HSV-1
(Supplementary Fig. 5b). Figure 3b showed the clustering results
of differential ATAC-peaks in WT and Rpsa-deficient RAW264.7
cells after HSV-1 infection. The line graph confirmed a reduced
ATAC-seq signal in the promoter regions of Il1b but not the Ifnb gene
(Fig. 3c). KEGG functional enrichment analysis showed that differential

peak-associated genes whose enrichment levels were reduced by Rpsa
deletion mainly concentrated in innate immunity and inflammation-
related diseases as well as downstream genes in signaling pathways of
NF-κB, TLR and TNF (Supplementary Fig. 5c). The DNase I hypersen-
sitivity assay further verified the ATAC-seq data. The loss of Rpsa sig-
nificantly reduced the chromatin accessibility at Il1b, Il6, Il12b and Tnfa
promoter regions but did not affect the Ifnb promoter in RAW264.7
cells upon HSV-1 infection (Fig. 3d). We also checked chromatin
accessibility in HSV-1 infected Rpsa-iKO RAW264.7 cells pretreated
with or without STING inhibitor (Supplementary Fig. 5d). The results
indicated that the inhibitor treatment showed little effect on the
DNase sensitivity of Il1b, Il12b and Tnfa promoter regions. Accom-
panying theDNase I accessibility assays in cGAMP-stimulatedRpsa-iKO
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Fig. 2 | Nuclear RPSA senses viral nucleic acids and accelerates proin-
flammatory cytokine expression upon HSV-1 infection. a, b BMDMs derived
from Rpsafl/fl Lyz-Cre+ mice and the littermates were infected with HSV-1 for the
indicated times and then analyzed for Ifnb, Il1a, Il1b, Il6, and Il12bmRNAsbyqRT-PCR
(a) (n= 3) and for protein levels in the cell culture supernatant by ELISA (b) (n = 3).
c MEFs transfected with empty vector (Vec) or RPSA-expressing plasmid for 24 h
were infectedwithHSV-1 then Tnfa, Il1b, and Il6mRNA levels were examined by qRT-
PCR (n= 3). d Wild-type and Rpsa-iKO MLE-12 cells were reconstituted with RPSA-
expressing plasmid followed by qRT-PCR analysis of Il1b and Il6mRNAs after HSV-1
infection for 6 h (n = 3). e Heatmap of downregulated immune and inflammatory

response genes inRpsa-iKORAW264.7 cells relative to inwild-typeRAW264.7 cells in
response to HSV-1 infection. f, gWild-type and Rpsa-iKO RAW264.7 cells were
nuclear transfected with poly dA:dT (f) or poly I:C (g), and Il1b and Il6mRNAs were
analyzed by qRT-PCR 6h later (n = 3). h, i qRT-PCR analysis of Il1b and Il6mRNAs in
wild-type andRpsa-iKORAW264.7 cells with liposomedA:dT transfection (h) or poly
I:C (i) for the indicated times (n= 3). Similar results were obtained from three
independent experiments andone representative experiment is shown (a–d and f–i).
Data in a–d, f–i are shown as mean ± s.e.m. The P values were calculated by a two-
tailed unpaired Student’s t-test. Source data are provided as a Source Data file.
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and the wild-type controls (Supplementary Fig. 5e), our data showed
that RPSA promoted chromosome accessibility independent of STING
activation. Thus, RPSA promoted HSV-1-induced expression of proin-
flammatory cytokine genes by enhancing chromatin accessibility of
the promoter regions.

The tri-methylation of histone H3 at lysine 4 (H3K4me3) around
the TSS of target genes was the hallmark of the effectively dis-
criminating genes with high transcriptional activation23. Analysis of
H3K4me3 ChIP-seq data from HSV-1 infected WT and Rpsa-deficient
RAW264.7 cells showed that 20% of the differential peaks were dis-
tributed in promoter regions (Supplementary Fig. 5g). The heat map
showing the enrichment of H3K4me3 around the TSS of WT and Rpsa-
deficient cells revealed that the loss of Rpsa reduced the enrichment,

suggesting decreased transcriptional activity (Fig. 3e). The line graph
confirmed reduced H3K4me3 levels in the promoter regions of
Il1b, and Il6, further supporting that Rpsa deficiency reduced the
transcription of proinflammatory cytokine genes but not Ifnb genes
(Fig. 3f). The KEGG pathway analysis of differential peaks showed that
the loss of RPSA reduced the expression of many genes involved in
inflammatory diseases like rheumatoid arthritis and Alzheimer’s dis-
ease (Supplementary Fig. 5f). The significantly reduced enrichment of
H3K4me3 in the promoter regions of Il1b, Il12b, Tnfα and Il6, rather
than Ifnb, in the absence of Rpsawas also confirmed by the ChIP-qPCR
assay (Fig. 3g).

Taken together, our data have demonstrated that RPSA, sensing
nucleic acids in the host nucleus, then selectively promotes the
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proinflammatory cytokine gene transcription through epigenetically
remolding chromosome accessibility in response to viral infection.

RPSAenhancesproinflammatory cytokinegene transcriptionby
interacting with SMARCA5
To further elucidate the underlying mechanism, we performed co-
immunoprecipitation-mass spectrometry (CoIP-MS) analysis to
identify RPSA-interacting proteins. Using unlabeled quantitative
proteomics analysis, we found that 316 proteins associated with
RPSA were up-regulated and 621 were down-regulated in macro-
phages upon HSV-1 infection (Supplementary Fig. 6a). Protein
domains with increased interaction with RPSA included bromodo-
mains, nuclear SNF2-related domains, and other domains associated
with chromatin remodeling proteins (Supplementary Fig. 6b), sug-
gesting that RPSA might be involved in the interaction with chro-
matin remodeling complexes. By integrating the mass spectrometry
analysis of differential bands by CoIP-MS and quantitative pro-
teomics results, the top 10 protein candidates overlapped. The SWI/
SNF-related matrix-associated actin-dependent regulator of chro-
matin subfamily A member 5 (SMARCA5) was identified as the most
substantial RPSA-interacting protein candidate with the highest
score and coveragepercentage (Supplementary Fig. 6c, d), whichwas
further confirmed by nuclear co-immunoprecipitation (Fig. 4a). In
line with the previous phenotypes, we detected RPSA/SMARCA5
interacted with NF-κB P65 subunit after HSV-1 infection, while IRF3
was excluded from the complex, further indicating Ifnb was not a
target gene of RPSA/SMARCA5 axis (Fig. 4a). Consistently, the
interaction of RPSA with SMARCA5 was also increased in macro-
phages upon IAV infection (Fig. 4b).

SMARCA5 is the core catalytic unit of the ISWI (Imitation Switch)
chromatin-remodeling complex that facilitates the transcriptional
initiation of immune molecules, including proinflammatory
cytokines24. ChIP analysis showed that SMARCA5 was enriched at the
promoter regions of Il1b, Il6 and Il12b in macrophages after HSV-1
infection, which was significantly reduced in Rpsa deficient macro-
phages (Fig. 4c). In HSV-1-infected MLE-12 cells, higher Il1b and Il6
expressions rescued by SMARCA5 overexpression were vanished by
deletion of RPSA. Nevertheless, SMARCA5 enhanced Ifnb expression
independent of RPSA (Fig. 4d). Therefore, the ISWI chromatin remo-
deler SMARCA5 was required for RPSA-promoted transcriptional
activation of proinflammatory cytokine genes.

RPSA phosphorylation at Tyr204 is required for its interaction
with SMARCA5
Post-translational modifications play important roles in the regula-
tionof protein function. Tyrosine phosphorylationof RPSA increased
significantly while serine/threonine phosphorylation and acetylation
of RPSA did not change significantly after HSV-1 infection (Fig. 4e).
The enhanced tyrosine phosphorylation showed independent of
cGAMP stimulation (Supplementary Fig. 6e). More importantly, dif-
ferent from cytosolic RPSA, only nuclear RPSA showed an increase in
tyrosine phosphorylation in HSV-1 and IAV infection within 4 h
(Fig. 4f, g). Of note, the cytoplasm-replicated vaccine virus (VACV)
infection could not enhance the tyrosine phosphorylation events
(Supplementary Fig. 6g).

Mutation analysis of tyrosines within RPSA revealed that the
mutation of Tyr204 to alanine (Y204A) abolished Il1b expression and
tyrosine phosphorylation induced by HSV-1 infection, indicating that
Tyr204 was vital for RPSA to promote the expression of proin-
flammatory cytokines after HSV-1 infection (Supplementary Fig. 6f and
Fig. 4h). In contrast towild-type RPSA, ectopic expressing RPSA-Y204A
inRpsa-deficientMLE-12 cells did not rescue the expression level of Il1b
in HSV-1 or IAV infection. On the other hand, overexpression of RPSA-
Y204D, mimicking persistent tyrosine phosphorylation, significantly
up-regulated Il1b expression induced by HSV-1 and IAV infection.

Significantly, Il1b level was not affected by expressing RPSA-Y204A but
was still up-regulated by expressing RPSA-Y204D after cytoplasmic
CpG ODN stimulation, confirming nuclear RPSA was required for
boosting inflammatory factor gene expression in conjunction with
cytoplasmic immune signals (Fig. 4i).

The interaction of RPSA-Y204A with SMARCA5 was significantly
reduced in HEK293T cells upon HSV-1 infection as compared with
RPSA-WT,whereasRPSA-Y204Dpersistently interactedwith SMARCA5
(Fig. 4j). Together, phosphorylation at Tyr204 is vital for RPSA to
interact with SMARCA5 for promoting the expression of proin-
flammatory cytokines upon HSV-1 infection.

RPSA facilitates P65 enrichment at proinflammatory cytokine
gene promotors
As we aligned the motifs enriched by these differential peaks of H3K4
ChIP-seq data and found that the H3K4me3 level of NF-κB-binding
motifs was reduced (Fig. 5a). Further investigation showed that the
restored Il1b and Il6 expressions by RPSA overexpression vanished in
Rpsa-iKO MLE-12 cells once treatment with NF-κB inhibitor (BAY11-
7082) (Fig. 5b), indicating that RPSA enhancement of Il1b and Il6
expressions totally depends onNF-κB signaling cascade activation. We
supposed that deficiency in Rpsa reduced interaction between chro-
matin remodeling complexes and NF-κB. The Co-IP result demon-
strated that SMARCA5 binding to P65 was increased upon HSV-1
infection (Fig. 5c) but not upon VACV infection (Supplementary
Fig. 7a). Strikingly, the interaction between SMARCA5 and P65 was
indeed lost in Rpsa deficient cells (Fig. 5c). In further, the interaction
between RPSA and P65 vanished when SMARCA5 was knockdown,
suggesting that recognition of nucleic acids and interaction with ISWI
chromatin remodeling complex is critical for RPSA to facilitate P65
binding to proinflammatory factor promoters (Fig. 5d).

The ChIP-seq results showed that the P65 enrichment around
TSS significantly reduced in the absence of Rpsa (Fig. 5e). The clus-
tering of differential enrichment peaks showed loss of Rpsa pre-
ferentially reduced P65 enrichment at the proinflammatory cytokine
gene promoters rather than the interferons after HSV-1 infection
(Supplementary Fig. 7b). KEGG pathway analysis showed that
reduced enrichments of P65 with the loss of RPSA were associated
with many signaling pathways related to the expression of proin-
flammatory cytokines, including the NF-κB signaling pathway and
inflammatory diseases (Fig. 5f). We then performed ChIP-qPCR ana-
lyses of NF-κB P65 subunit. The Rpsa deficiency significantly reduced
the enrichment levels of P65 in the promoter regions of Il1b, Il6, and
Il12, rather than Ifnb in RAW264.7 cells and BMDMs inHSV-1 infection
(Fig. 5g, Supplementary Fig. 7c). We also performed ChIP-qPCR
analyses of RNA polymerase II (Poly II). The enrichment levels of poly
II in the promoter regions of Il1b, Il6, Il12b, andTnfa in RAW264.7 cells
andBMDMs in response toHSV-1 infectionwere significantly reduced
in the absence of Rpsa (Fig. 5h, Supplementary Fig. 7d). Of note,
enrichment of poly II at Ifnb promoter remained unchanged in Rpsa-
deficient RAW264.7 cells upon infection (Fig. 5h). Taken together,
decreased expression of proinflammatory cytokines due to Rpsa
deletion is on account of reduced enrichment of P65 at proin-
flammatory cytokine gene promoters, rather than impairing P65
activation.

RPSA is required for antiviral innate response in vivo
To evaluate the physiological importance of RPSA in the host defense
against nuclear-replicating virus infection, we first infected Rpsafl/flLyz-
Cre+ mice and littermates with HSV-1. The viral load was significantly
higher in the lung and brain (Fig. 6a), and Il1b, Il6, and Tnfa mRNA
levels were significantly lower in the blood of Rpsa-deficient mice than
those in littermates after HSV-1 infection (Fig. 6b). Accordingly, levels
of IL-1β, IL6, and TNFα in sera were significantly lower in Rpsa-deficient
mice. Still, the IFN-β levels were similar (Fig. 6c).
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Compared with littermates, the expression of Il1b, Il6, and Il12b
in the brain (Fig. 6d) and the expression of Il1b, Il6, and Tnfa in the
lung (Fig. 6e) and liver (Fig. 6f) of Rpsa-deficient mice were sig-
nificantly decreased. The hematoxylin-eosin (HE) staining showed
lower severity of inflammation in the lung and liver (Fig. 6g, and
Supplementary Fig. 8a). Consistently, immunohistochemical analysis
of the lung of Rpsa-deficient mice showed that the levels of IL-1β
(Fig. 6h) and IL-6 (Fig. 6i) were reduced. Thus, RPSA is required for
the efficient induction of the innate inflammatory response against
HSV-1 infection in vivo.

Moreover, we infected Rpsafl/flLyz-Cre+ mice and littermates with
IAV. The IAV load was significantly increased in the lung (Fig. 6j) and
Rpsafl/flLyz-Cre+ mice also showed reduced inflammatory responses to

IAV infection with comparable levels of IFN-β (Fig. 6k, l). Taken toge-
ther, nuclear sensor RPSA is essential for host defense against nuclear-
replicating virus infection in vivo.

Discussion
How host cells accurately recognize viral nucleic acids and initiate
innate responses to defend against viral infection remains to be fully
understood. Here, we identified nuclear RPSA as an innate sensor that
promotes the host’s innate inflammatory response against virus
infection (Supplementary Fig. 8b). This study improves our under-
standing of the innate inflammatory responses that start from the host
nucleus. Also, it suggests a complex regulatory mechanism in the
nucleus to help the host respond to viral infection.
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Inflammation is integral to the host’s response to viral infection.
Proinflammatory cytokines are essential in the antiviral host defense25

by inducing the expression of part of interferon-stimulated genes
(ISGs), and retraining viral infection in an interferon-independent
manner26,27. The timely start of inflammatory response is also vital for
facilitating immunocyte recruiting to infection sites. For example, TNF-
α and IL-1 are actuators for accelerating adhesion molecule expression
on the cell surface, thus enrolling types of immune cells to infection
sites to restrain IAV spread28. Aside fromenhancingpathogenclearance,
the continuous inflammatory response also results in immunopatho-
logical changes and tissue damage29,30. Chronic virus infection can

induce cancer by activating the inflammatory response to stimulate the
growth of infected cells and inhibit apoptosis. An aberrant activated
inflammatory response correlated with disease severity in patients with
SARS-COVID-19 infection31,32. In this study, we demonstrated that RPSA
resists viral infection by selectively promoting proinflammatory cyto-
kines expression, where we put forward a hypothesis that RPSA may
synergize with other innate sensors to fight the virus. Our study also
provides potential intervention approaches and therapeutic targets for
inflammation-related diseases caused by virus infection.

Several innate sensors have been reportedwithin the cell nucleus.
HnRNPA2B1 and IFI16 are nuclear inducers of IFN-I production by
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RAW264.7 cells infected with HSV-1. f KEGG pathway analysis of genes associated
with differential peaks from P65 ChIP-seq assay of wild-type and Rpsa-iKO
RAW264.7 cells infectedwith HSV-1. gChIP-qPCR assay of P65 recruitment to Il1b,
Il6, Il12b and Ifnb promoter regions in wild-type and Rpsa-iKO RAW264.7 cells
infected with or without HSV-1 (n = 3). h ChIP-qPCR assay of RNA polymerase II
recruitment to Il1b, Il6, Il12b, and Ifnbpromoter regions in wild-type and Rpsa-iKO
RAW264.7 cells (n = 3). Similar results were obtained for three independent
experiments (b–d, g, h), and one representative experiment is shown. Data in
b, g, h are shown as mean ± s.e.m.. The P values were calculated by a two-tailed
unpaired Student’s t-test. Source data are provided as a Source Data file.
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directly recognizing viral DNA in the nucleus6,11. Upon sensing viral
DNA in the nucleus, hnRNPA2B1 and IFI16 translocate into the cyto-
plasm and initiate the STING-dependent activation of the TBK1/
IRF3 signaling pathway33. Nuclear-resident RIG-I recognizes viral RNA
in the nucleus, cooperating with its cytoplasmic counterpart to
initiate an MAVS-dependent signaling cascade and IFN induction8. In
this study, we identify that nuclear innate sensor RPSA employed an
intra-nuclear way for accurately enhancing host inflammatory
responsewithout affecting the cytoplasmic innate immune signaling,
which suggests the host has evolved diverse nuclear nucleic acid
sensing mechanisms to surveillance invaded pathogens. The cGAS34

and RIG-I35 were well reported to recognize the self-genome DNA and
self-RNA and lead to pathological states of the host. Whether RPSA is
essential for the cell-autonomous inflammatory program is an
interesting question. NF-κB is a crucial transcription factor that

fundamentally controls Ifnb and proinflammatory cytokine gene
expression. During infection, several virus-derived molecular con-
stituents activate the host NF-κB signaling pathway, including gly-
coproteins recognized by TLR2 on the cell membrane, viral DNA
recognized by TLR9-dependent or non-TLR DNA sensors, and dsRNA
and ssRNA recognized by TLR3, TLR7/836,37 and the non-TLR RNA
sensors. Our data showed that RPSA accelerates proinflammatory
cytokine gene expression depending on the classical innate immune
signaling, those triggered by the cGAS-STING pathway or TLR-TAK1
axis in HSV-1 infections. However, whether RPSA differentially con-
tributes to each classical pathway is potentially to be answered.
Besides signaling transduction, recruitment of NF-κB to target loci
to subsequently induce transcriptional events is also actively
controlled. Our results demonstrate that RPSA directly promotes
the activated P65 subunit binding to the proinflammatory cytokine

Fig. 6 | In vivo deficiency of Rpsa reduces innate resistance against viral
infection. a–i Rpsafl/fl Lyz-Cre+ mice and the littermates was intravenously (i.v.)
challenged with HSV-1 at 8 × 107 plaque-forming units (PFU) (n = 5 mouse/group)
for the indicated times. qRT-PCR analysis of HSV-1 mRNA in the lung and the brain
(a). qRT-PCR analysis of Il1b, Il6, and Tnfa mRNAs in peripheral blood (b). ELISA
assayof IL-1β, IL-6, TNF-α, and IFNβ in peripheral blood (c). qRT-PCRanalysis of Il1b,
Il6, and Il12bmRNAs in the brain (d). qRT-PCR analysis of Il1b, Il6, and TnfamRNAs
in the lung (e) and the liver (f). HE staining of the lung was shown in (g). Immu-
nohistochemical analysis for IL-1β (h) and IL-6 (i) in the lung. j–l Rpsafl/fl Lyz-Cre+

mice and the littermates were intranasally infected with IAV at 100 plaque-forming
units (PFU) (n = 5 mouse/group). qRT-PCR analysis of IAV NP mRNA in the lung (j).
qRT-PCR analysis of Ifnb, Il1a, Il1b, and Il6mRNAs in the lung (k). Protein levels of
cytokines in lung homogenate were determined by ELISA (l). Similar results were
obtained for two independent experiments and one representative experiment is
shown. Data in a–f, j–l shown are shown as mean± s.e.m.. The P values were cal-
culated by a two-tailed unpaired Student’s t-test. Source data are provided as a
Source Data file.
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gene promoters without infecting NF-κB signaling transduction.
It would be of interesting to further investigate the crosstalk between
nuclear RPSA-controlled and cytoplasm-started inflammatory
signals and the involved mechanisms. NF-κB together with IRFs
and cJun, are integrated into an intact multiprotein complex
known as “enhanceosome”, which is assembled on the IFN enhancer
and required for initiating transcription38. In this study, RPSA
was identified to selectively interact with P65 but not IRF3, indicating
the regulation of Ifnb transcription was independent of this
innate nuclear sensor. Moreover, the NF-κB pathway is activated in
multiple solid cancers, and crosstalk with a set of signaling pathways,
such as P53 and AP1, subsequently enhances cell proliferation and
anti-apoptotic gene expression39. Whether RPSA is potent for dis-
turbing NF-κB transcriptional activity in cancers still needs to be
investigated. The underlying mechanism would raise a therapeutic
opportunity.

Posttranslational modifications (PTM) of proteins, particularly
phosphorylation, acetylation, and ubiquitination, exert diverse effects
on pattern recognition receptor (PRR) -dependent inflammatory
responses40. Once sensing viral DNA, hnRNPA2B1 demethylated at
Arg226 and subsequently initiated IFN-β expression11. IFI16 acetylation
is required for its innate responses of inflammasome activation and
IFN-β production41. Deacetylation of RIG-I mediated by HDAC6 is cri-
tical for its viral RNA-sensing activity42. We find that HSV-1 infection-
induced phosphorylation of RPSA on tyrosine 204 is vital for boosting
proinflammatory cytokines expression, but the phosphokinase
responsible for this phosphorylation remains to be identified. Impor-
tantly, constituted activation of RPSA on Y204 promoted Il-1b
expression and enhanced binding of SMARCA5, even though there
were no viral nucleic acids in the presence in the cell compartment
(Fig. 4i, j). It suggests this key PTM is critical for RPSA triggering epi-
genetic modification of target gene sites but may not be responsible
for sensing viral nucleic acids. It is urgent to elucidate the underlying
mechanism of how RPSA senses nucleic acids.

Epigenetic regulation is a critical way of controlling inflammatory
cytokines expression, and has become an intervention strategy for
inflammatory-relateddiseases43,44. The ISWI complexATP-dependently
mobilizes nucleosomes and remodels chromatin, thereby regulating
the transcription of target genes45. The ISWI complex has been shown
to enhance NF-κB transcription activity, thus playing a vital role in
tumor growth and in the expression of proinflammatory cytokines
following virus infection46. The nuclear matrix protein scaffold
attachment factor A (SAFA) interacts with the ISWI chromatin remo-
deling complex upon recognition of viral RNA, subsequently improv-
ing chromatin accessibility in enhancer and super-enhancer regions of
interferon andproinflammatory cytokine genes47. In this study,we find
that RPSA is required for SMARCA5 complex anchoring on the pro-
inflammatory gene promotors and epigenetically enhancing gene
expression, highlighting a crosstalk mechanism between chromatin
modifiers and innate immune response. The structure basis of the
interaction among RPSA, NF-κB and SMARCA5 is worthy of further
investigation. In addition, whether RPSA affects chromatin accessi-
bility in other DNA cis-regulatory elements, such as enhancers or
super-enhancers, remains to be further elucidated. Accumulating evi-
dence suggests that epigenetic reprogramming organized “innate
immune memory”, accompanied by groups of chromatin marks, such
as H3K4me3, after HSV-1 infection48. There is great interest in RPSA-
triggered epigenetic remolding in establishing trained immunity that
protects the host against secondary infection.

Ribosomal proteins play an important role in viral infection by
participating in the replication and transcription of viral genes and the
translation of viral proteins49. In addition, ribosomal proteins have
been shown to be involved in the regulation of antiviral innate immune
signaling pathways50,51. RPSA, also known as the 37/67-kDa laminin
receptor, has been found to be related to a variety of diseases,

including infections, tumors and neurodegenerative diseases52,53. RPSA
mutations also lead to congenital asplenia, illustrating the role of RPSA
in tissue differentiation51. Nuclear and nucleolar localization of RPSA
was noted early. It was reported thatRPSA serves to sequester theDNA
damage repair proteins RNF8 (ring finger protein 8) and BRCA1 (breast
cancer 1) to a waiting reserve in the nucleolus54. However, the role and
underlying mechanisms of RPSA in virus infection and inflammation
remain unclear. In this study, we find that the nuclear RPSA interacts
with the NF-κB P65 subunit after virus infection and participates in
promoting the transcription of proinflammatory cytokine genes.
Recently, the chemical compound PAC5 was identified as the agonist
of nuclear DNA sensor hnRNPA2B1 to launch the anti-virus effects of
the hosts55. It is also interesting to explore the protein druggability of
the nuclear RPSA, especially to find the druggable pocket around Y204
amino acids. Our study provides valuable insight into the new
mechanism in the regulation of nuclear-controlled innate immunity
and inflammation by ribosomal protein and deepens our under-
standing of the non-canonical function of ribosomal proteins in the
antiviral innate immune response.

Taken together, we have revealed the function and the mechan-
ism of RPSA in the host response to viral infection. Upon recognizing
viral nuclear acid, phosphorylated RPSA regulates the chromatin
accessibility by interacting with the ISWI chromatin remodeling com-
plex and activates the expression of inflammatory factors synergisti-
cally with activated transcription factor NF-κB. Although there are
remaining unsolved questions, RPSA evidently has an important con-
tribution to innate immune defense.

Methods
Ethics statement
All animal protocols were approved by the Animal Care and
Use Committees of the Institute of Laboratory Animal Science of the
Chinese Academy of Medical Sciences (ILAS-GC-2015-002). All mice
were bred in specific pathogen-free conditions, housed in cages with
five mice per cage, and kept on in a regular 12 h light/12 h dark cycle
(lights on at 7:00 am). The temperature was 24 ± 2 °C and humidity
was 40–70%.

Mice, cells, and reagents
C57BL/6 mice were obtained from Beijing Vital River Laboratory Ani-
mal Technology Co., Ltd. (Beijing, China). Rpsafl/fl mice were generated
by the CRISPR–cas9 approach. To establish Rpsa-conditional-knock-
out mice, Rpsafl/fl mice were crossed with Lyz2-Cre mice. Exons 3 of
Rpsawere excised by CRE recombinase inmyeloid cells. The genotype
primers by q-PCR analysis were listed in SI, Table S3.

RAW264.7 cells, A549, MEF cells, MLE-12 cells, HEK293T cells, and
Vero cells were obtained from the American Type Culture Collection
(ATCC). Mouse BMDMs were prepared by culturing in DMEMmedium
with 10% FBS and 50 ng/ml of recombinant mouse macrophage
colony-stimulating factors (M-CSF; Perprotech). Mouse primary PMs
were obtained 3d after intraperitoneal injectionwith thioglycolate and
cultured with DMEM with 10% FBS.

The Rpsa-deficient cells were generated using CRISPR–iCas9 with
guide RNA containing plasmids (Table S2). Cas9 is induced by 100 ng/
ml of tetracycline (Selleck) for 14 h, the knockout efficiency was
determined by immunoblotting. RPSA-overexpressing RAW264.7 cells
were generatedby transfectionwith Flag-RPSA-pHAGEvector and then
puromycin (Sigma) selection. The reagents and antibodies used in this
study are listed in Table S4.

RNAi, plasmids, and virus
The 20nM siRNA was transfected into the indicated cells using stan-
dard procedures with Lipofectamine RNAiMAX Transfection Reagent
(ThermoFisher) according to the manufacturer’s instructions. The
sequences used for transient silence are shown in Table S1.
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The coding sequences of RPSA (gene ID: 16785) and SMARCA5
(gene ID: 93762) with distinct tags were amplified from macrophage
complementary DNAs. Then, the CDS of RPSA and SMARCA5 was
cloned into a pHAGE vector. Plasmidswere transiently transfected into
HEK293T cells, MLE-12 cells, or MEF cells with Lipofectamine 3000
Reagent (ThermoFisher) according to themanufacturer’s instructions.

HSV-1 was propagated and titrated by the plaque-forming assay
on Vero cells. For in vitro challenging, cells were infected with HSV-1 at
an MOI of 10. IAV was a gift from Dr. Shuo Liu (Peking Union Medical
College, Beijing, China). HSV-1 genome was labeled by adding EdU to
the Vero cell medium at 8, 24, and 48 h post-infection. On day 4, the
culture supernatant was collected and the labeled virus was purified.

Cytoplasm and nuclear separation
All nuclear extracts from the cells for immunoprecipitation were pre-
pared using the Nuclear Complex Co-IP Kit (ActiveMotif) according to
the manufacturer’s instructions.

HSV-1 DNA purification, biotin labeling, and nuclear acid affinity
purification
The method has been described earlier11. Briefly, HSV-1 genomic DNA
was purified by using ChargeSwitchg DNA Preparation Kit (Invitrogen)
and biotinylated with a biotin 3′-end DNA labeling kit (Pierce Bio-
technology). Nuclear extracts were incubated with biotinylated HSV-1
DNA at 4 °C overnight. Then complexes were precipitated on
streptavidin-coupled dynabeads and resolved on 10% SDS-PAGE gel.

EdU labeled HSV-1 viral DNA pull-down assay
The EdU-labeled viral genome DNA pull-down method was described
previously56. Briefly, mouse BMDMs were infected with unlabeled or
EdU-labeled HSV-1 (MOI, 10) for 2 h. To cross-link EdU labeled HSV-1
DNA with its interacting molecules, cells were treated with 1% for-
maldehyde for 10min at 4 °C. Unreacted formaldehydewas eliminated
with 0.125M glycine at 4 °C for 10min. Then, cells were harvested and
permeabilized with 0.1% Triton X-100 for 10min, then washed with
PBS. Biotin was connected to the EdU genome via a Click reaction
using sequential addition of (+)-sodium-L-ascorbate (10mM), biotin-
TEZ azide (0.1mM), and copper (II) sulfate (2mM) for 30min in dark,
then added 1% BSA and 0.5% Tween-20 for 10min. To separate un-
soluble DNA/protein complex, the cells were firstly resuspended in
500μl of cell lysis buffer (50mM HEPES, pH 7.8, 0.25% Triton X-100,
0.5% NP-40, 150mM NaCl, 10% glycerol plus protease inhibitors) and
centrifuged at 300 g. Subsequently, the pellet was resuspended in
500μl RIPA buffer (Thermofisher). DNA was then sheared by sonica-
tion and clarified by centrifugation (15,000×g) for 10min at 4 °C. In
total, 1mg of the extracts were pulled down with 50 μl of streptavidin
magnetic beads. Beads with bound complexes reversed protein-DNA
cross-linking with elution buffer (Cell Signaling Technology, 14231 s),
andproteinswereeluted in 1× Laemmlisample buffer (95 °C for 10min)
for immunoblotting.

DNA and RNA competition assay
HSV-1 genome DNA was biotinylated using a 3′-end DNA labeling kit
(Thermofisher) aspreviously described (11). RecombinantmouseRPSA
protein was incubated with biotinylated HSV-1 DNA (5 pmol) without
or with concentration-gradient unlabeled HSV-1 DNA (5 pmol, 2 pmol,
1 pmol), nakedmouse genomeDNAor nucleosomes (Sigma-Aldrich) at
4 °C overnight. The complexes were precipitated on streptavidin-
coupled dynabeads and resolved on 10% SDS-PAGE gel.

Recombinant human RPSA protein was incubated with biotiny-
lated HSV-60 (Invivogen) dsDNA at 4 °C overnight. The IAV gRNA was
purified using Trizol reagent and biotinylated with a biotin 3′-end RNA
labeling kit according to the manufacturer’s instructions (Pierce Bio-
technology). The complexes were precipitated on streptavidin-
coupled dynabeads and resolved on 10% SDS-PAGE gel. For the

competition, we used 60 bp HSV-60, 70 bp VACV-70 (Invivogen), poly
dA:dT (Invivogen), poly dI:dC (ThermoFisher), G3-YSD (Invivogen),
Escherichia coli ssDNA (Invivogen) and ISD (Invivogen) for DNA com-
petition. Using unlabeled IAV gRNA for RNA competition.

Electrophoresis mobility shift assay
In total, 60 bp HSV-60 was biotinylated with a biotin 3′-end DNA
labeling kit as a DNA probe. The DNA-binding reaction was carried out
with the LightShift Chemiluminescent EMSA kit (Thermo Scientific)
according to the manufacturer’s instructions. A recombinant mouse
RPSA-DNA complex was identified by electrophoresis on a 4% poly-
acrylamide gel. For the competition, we used 60bp HSV-60, 70 bp
VACV-70 (Invivogen), poly dA:dT, and poly dI:dC (Thermo) unlabeled
probes.

Immunofluorescence microscopy
Mouse BMDMs were seeded on glass chamber slides (ThermoFisher
Scientific) infected with or without HSV-1 (MOI, 10). Cells were then
washed and blocked using Image-iT signal enhancer (Life Technolo-
gies) for 20min, followed by incubation with primary antibody (Invi-
trogen, PA5-86634), and then incubated with secondary antibodies
conjugated with fluorescent dye. To detect EdU labeled viral genome,
cells were fixed, permeabilized, and blocked with Image-iT signal
enhancer for 20min. ACLICK reactionwas performed for 30min at RT
using Click-iT EdU reaction additive (Life Technologies), copper sul-
fate, EdU reaction buffer, and Alexa Fluor 555 azide (ThermoFisher
Scientific). To detect EU-labeled IAV, a CLICK reaction was performed
using Click-iT EU reaction additive (Life Technologies), copper sulfate,
EU reaction buffer, and Alexa Fluor 488 azide according to the man-
ufacturer’s instructions (ThermoFisher Scientific). Cells were observed
by Olympus FV100MPE microscope, and analyzed with FV10-
ASW_Viewer imaging software.

Nucleofection
Raw264.7 cells were transfected with 1μg of poly dA:dT (Invivogen) or
1μg of poly I:C (Invivogen), via Amaxa Nucleofector following the
manufacturer’s instructions.

ELISA
Cell culture supernatants from uninfected or virus-infected cells were
collected and levels of IL-1α, IFN-β, IL-1β, IL-6, IL-12b, and TNFα
secretion were measured with precoated kit (DAKAWE) or microplate
(R&D SYSTEMS) follow the manufacturer’s protocol.

Immunoprecipitation (IP)
For immunoprecipitation, the harvested cells were lysed using IP
lysis buffer (25mM Tris-HCl, pH7.5, 150mM NaCl, 1% NP40, 1mM
EDTA, and protease inhibitor mixture) and 150–200μg of precleared
whole cell lysates or extracted nuclear fractions were incubated
overnight with primary antibodies at 4 °C. The antibody from Santa
Cruz Biotechnology was used to capture endogenous RPSA. The
immune complexes were captured using Protein A/GMagnetic Beads
(Thermo Scientific, 26162), washed thrice in 150mM low salt wash
buffer and thrice in 500mM high salt wash buffer, then examined by
immunoblotting.

Todetect viral nucleic acids bound toRPSA, the captured immune
complexes were treated with a solution of phenol-chloroform-isoamyl
alcohol (for DNA, pH = 8.8; for RNA, pH = 4.5). The extracted HSV-1
DNAwasdetectedby PCR. The extracted IAVRNAwasdetectedby PCR
after reverse transcription into cDNA.

For unlabeled quantitative proteomics, the captured immune
complexes from extracted nuclear fractions were run 1.5 cm into the
polyacrylamide gel by electrophoresis and cut off for mass spectro-
metry detection. For differential binding bands analysis, the captured
immune complexes were run into the polyacrylamide gel by
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electrophoresis, and the differential binding bands were cut off for
mass spectrometry detection after sensitive silver staining.

DNase I sensitivity assay
Cells were infected with HSV-1 or treated with the corresponding
inhibitors. The cells were lysed with 0.1% NP40 in PBS, then treated
with DNase I at 37 °C for 30min and stopped by EDTA. Genome DNA
was extracted and subjected to qRT-PCR assay for detection of
proinflammatory cytokines promoter regions. The results have been
calculated the results with the 2-dCT method relative to those unin-
fected samples.

Chromatin immunoprecipitation (ChIP)
ChIP assay was performed using the SimpleChIP Enzymatic Chro-
matin IP kit (Cell Signaling Technology) according to the manu-
facturer’s instructions. After being infected with HSV-1, cells were
cross-linked with 1% formaldehyde and then subjected to nuclear
extraction and chromatin digestion with micrococcal nuclease. For
immunoprecipitation, digest chromatin was incubated with 7 μg of
antibodies overnight at 4 °Cwith rotation. After that, magnetic beads
were added to the immunoprecipitation reaction for 2 h of incuba-
tion. After being washed four times with wash buffer, immunopre-
cipitated chromatin DNA was eluted and quantified by PCR or
sequencing (Novogene). Primers used for ChIP quantification are
shown in SI, Table 3.

ATAC-seq
For ATAC-seq, we used the TruePrep DNA Library Prep Kit V2 for Illu-
mina and TruePrep Index Kit V2 for Illumina (Vazyme) according to the
manufacturer’s instructions. Briefly, the Rpsa-iKO and wild-type
RAW264.7 cells were seeded and infected with HSV-1(MOI = 10) for
4 h. Then, 5 × 104 cells were centrifuged at 300g for 5mins at 4 °C, then
resuspended in 50μl pre-cold lysis buffer (10mM Tris-HCl, pH7.4,
10mMNaCl, 3mMMgCl2, 0.1% lgepal CA-630) for 10min on ice. For the
transposition reaction, nuclei were collected by centrifugation at 500g
at 4 °C and resuspended in 50μl TTE Mix V50 buffer. After reaction at
37 °C for 30min, the fragments were purified with magnetic beads
(Vazyme, N411-01). The transposed DNA fragments then were amplified
to build a library after purification for sequencing (Novogene).

Flow cytometry analysis
Single-cell suspension of splenocytes obtained from 6-week-old
Rpsafl/fl Lyz-Cre+ mice and littermates were labeled with fluorescently
labeled antibodies. Then cells were washed with PBS, and immune-cell
propagation was analyzed by LSRFortessa (BD Biosciences).

In vivo viral infection
Rpsafl/flLyz-Cre+ mice and littermates were infected intravenously (i.v.)
with 8 × 107 PFU of HSV-1 viruses. Serum IFN-β, IL-1β, IL-6, TNFα con-
centrations were determined by ELISA. Total RNA of blood, liver, lung,
and brain were extracted with TRIZOL and subjected to a Quantitative
RT-PCR assay for detection of proinflammatory cytokine expression.

Mice were infected with IAV (100 PFU) by intranasal delivery for
72 h. The total RNA of the lung was extracted with TRIZOL and sub-
jected to qRT-PCR assay for detection of proinflammatory cytokine
expression. IL-1α, IL-1β, IL-6 and IFN-β in lung homogenate supernatant
were determined by ELISA.

Statistical analysis
Results are provided asmeans ± the standard error. All data are fromat
least three (in vitro) or two (in vivo) independent experiments. Com-
parisons between the two groups were performed using a two-tailed
unpaired Student’s t-test. All statistical tests were two-sided, and sig-
nificance was assigned at P < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The RNA seq/ATACseq/ChIP seq data from the present study are
deposited in theNationalCenter for Biotechnology Information’sGene
Expression Omnibus (GEO) under accession code GSE204895. All
other study data are included in the article and/or Supplementary
Information. Source data are provided in this paper.
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