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Deep learning-based phenotyping
reclassifies combined hepatocellular-
cholangiocarcinoma

A list of authors and their affiliations appears at the end of the paper

Primary liver cancer arises either from hepatocytic or biliary lineage cells,
giving rise to hepatocellular carcinoma (HCC) or intrahepatic cholangio-
carcinoma (ICCA). Combined hepatocellular- cholangiocarcinomas (cHCC-
CCA) exhibit equivocal or mixed features of both, causing diagnostic uncer-
tainty and difficulty in determining proper management. Here, we perform a
comprehensive deep learning-based phenotyping of multiple cohorts of
patients. We show that deep learning can reproduce the diagnosis of HCC vs.
CCA with a high performance. We analyze a series of 405 cHCC-CCA patients
anddemonstrate that themodel can reclassify the tumors asHCCor ICCA, and
that the predictions are consistent with clinical outcomes, genetic alterations
and in situ spatial gene expression profiling. This type of approach could
improve treatment decisions and ultimately clinical outcome for patients with
rare and biphenotypic cancers such as cHCC-CCA.

Primary liver cancer is the fourth leading cause of cancer-related death
worldwide and an increasing public health problem1. The two most
common types of primary liver cancer are hepatocellular carcinoma
(HCC), which derives from hepatocytes, and intrahepatic cholangio-
carcinoma (ICCA), which is thought to originate from biliary epithelial
cells1. These two entities represent the two ends of the primary liver
tumor spectrum and have completely different risk factors, clinical
outcomes, treatment strategies and genetic/molecular features1,2.

Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a
rare variant of liver cancer which can present as a mixture or a coex-
istence of tumor tissue with hepatocellular and biliary morphological
differentiation3. Most cases, however, display equivocal features that
cannot be easily classified as either HCCor ICCA. This explains why the
diagnosis is often very difficult for pathologists. Clinical management
of patients with cHCC-CCA is also highly challenging, and, due to the
rarity of this cancer, there are no consensus guidelines. Treatment
strategies are usually extrapolated from HCC and ICCA, but the reg-
ulatory approval of modern therapies is usually restricted to “pure”
HCCs or ICCAs. As a result, patients with cHCC-CCA often do not
respond well to therapies and have detrimental clinical outcomes3.
Interestingly, several studies showed that cHCC-CCA displays over-
lapping genetic alterations and gene expression profiles with those of

HCC or ICCA, and it is debated whether cHCC-CCA represents a true
molecular entity3–5. A recent study has suggested that cHCC-CCA arise
from liver progenitor cells, and that its development is dependent on
IL-6 trans-signaling6. Another hypothesis is that these tumors may
indeed arise from the dedifferentiation or transdifferentiation of a
preexisting conventional HCC or ICCA, but maintain a phylogenetic
proximity to their ancestral differentiation3.

Artificial intelligence (AI) is widely used in pathology image ana-
lysis. We and others have applied AI to digitized whole slide images
(WSI) of different cancers, including primary liver tumors, and showed
that AI can extract clinically actionable information directly from
routinely available tissue slides stained with hematoxylin and eosin
(H&E)7–10. In this work, we aim to determine if AI allows the reclassifi-
cation of cHCC-CCA as pure HCC or ICCA (Fig. 1A), and if this classi-
fication has both a clinical (in terms of prognostication) and a
molecular (in terms of concordance with genetic defects and spatial
molecular profiles) relevance.

Results
AI model performance in differentiating HCC and ICCA
To investigate whether an AImodel can re-classify cHCC-CCA tumors
into “pure” HCC or ICCA categories, we trained an AI pipeline based
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on a self-supervised feature extractor11 with an attention-MIL aggre-
gation model12–14 (Fig. 1B) to distinguish pure HCCs (785 WSIs from
n = 424 patients) from pure ICCAs (239 WSIs from n = 167 patients)
(Methods, Supplemental Tables 1 and 2). In this cohort (“Discovery
cohort”, Fig. 1C), themodel achieved a cross-validated area under the
receiver operator characteristic curve (AUROC) of 0.99 [ ±0.01],
corresponding to an almost perfect separability of the classes
(Fig. 2A), reaching a sensitivity of 97.9% and specificity of 97.6%. As
another piece of evidence for the plausibility of the model’s predic-
tions, we subsequently evaluated the model on another patient
cohort, the publicly available TCGA cohort, which was composed of
n = 333 HCCs (TCGA-LIHC) and n = 27 ICCAs (TCGA-CHOL). The
labels of the TCGA cohort were not seen by the model during train-
ing, however the training was exposed to some TCGA image data
during self-supervised pretraining, which might affect an inter-
mediary result but not the subsequent results. We found that the
model reached an AUROC of 0.94 [ ±0.05], representing a very good
generalizability to this additional dataset (Fig. 2B). Next, we asked
which tissue structures were used by the model to make its predic-
tion and found that themodel placed a high attention to areaswith an
ICCA-like phenotype (glandular structures and fibrous stroma)
(Supplemental Fig. 1). Together, these data show that the AI model
can robustly distinguish pure HCC from pure ICCA tumors (Fig. 2C).

We used this model as the starting point for our subsequent
experiments.

AI model application on cHCC-CCA samples
Subsequently, we applied the trained model to a large multicentric
cohort of cases which were initially diagnosed as cHCC-CCA (Supple-
mental Table 3). We investigated the spatial prediction maps and
found that, generally, regions with HCC-like morphology were
assigned a high “HCCness” by the model, while regions with ICCA-like
morphology were assigned a high “ICCAness” by the model (Fig. 3A).
For tumors with a significant proportion of equivocal or intermediate
features, it was however much more difficult for pathologists to
determine the morphology and proportion of areas with high
“HCCness” or “ICCAness”. As region-specific predictions are not clini-
cally actionable, we further investigated the patient-level prediction
scores. We found that these scores followed a bimodal distribution,
with a subset of cases peaking at a high HCC prediction and the
remainder of the cases peaking at a high ICCA prediction (Fig. 3B).
Importantly, there was no association between the predictions and the
clinical centers managing the patients (p = 0.62). Together, these data
show that the AI model can process tissue samples of cHCC-CCA cases
and re-classify them as HCC or CCA. We then sought to determine if a
simple pathological reclassification of cHCC-CCA tumors by
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Fig. 1 | Deep Learning-based classification of HCC versus ICCA. A Clinical pro-
blem: combined HCC-CCA tumors are a diagnostic dilemma and only poor evi-
dence is available to guide treatment in these patients. We hypothesize that an AI
system can reclassify all cHCC-CCA cases into either category. B Technical
approach: a two-step pipeline is used to transform image tiles into feature vectors
by model 1 (M1), a pre-trained feature extraction model. A bag of feature vectors is

subsequently aggregated into a call for a given patient by model 2 (M2), the
aggregation model. C Experimental approach: a binary prediction model was
trained to distinguish HCC fromCCA andwas evaluated via cross-validation and by
external validation. Subsequently, the trained model was applied to a multicentric
cohort of cHCC-CCA tumors and its predictions were comprehensively validated
with a multimodal approach.
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microscopic examination was associated with AI predictions. To this
aim, all cases were reviewed in a blinded way by an expert liver
pathologist (JC) and cHCC-CCA were reclassified as HCC or ICCA
according to the more abundant morphological component (Meth-
ods). Interestingly, only a slight concordance was observed between
the pathological analysis and the model’s predictions (Cohen’s Kappa
0.19, Supplemental Fig. 2), indicating that the AI model does not
simply assess the more abundant tissue component in the way a
human pathologist would.

Clinical outcomes based on AI-based reclassification
Next, we investigated the potential clinical and biological relevance of
the AI-based reclassification of cHCC-ICCAs. One of the major differ-
ences between HCC and ICCA is their clinical outcome, with worse
overall 5-year survival rates for patients with ICCA3. We thus aimed to
determine if our reclassification had an impact on the prognosis.
Indeed, patients with cHCC-CCA reclassified as ICCA had a shorter

median survival (29months) than patients with a tumor reclassified as
HCC (median survival not reached, p =0.052, hazard ratio = 1.76 95%CI
0.98-3.14, Fig. 3C and Supplemental Table 4). Survival prediction is
particularly relevant in patientswho receive a liver transplant, as donor
organs should be prioritized for patients with a good prognosis. A
diagnosis of cHCC-CCA is currently considered a contra-indication to
this therapeutic modality which remains a curative option for patients
with HCC. As observed for resection, patients with cHCC-CCA reclas-
sified as HCC showed a prolonged 5-year overall survival (76.4% sur-
vival rate, median survival not reached), which is similar to that usually
observed inpatientswith conventionalHCC (Fig. 3D andSupplemental
Table 5). Transplanted patients with an incidental diagnosis of cHCC-
CCA at transplant, which were re-classified as ICCA by the AI model,
had a poor median survival of 48months and a 5-year overall survival
of only 45.4% (hazard ratio = 2.69, 95% CI 1.15-6.31). As opposed to
resected patients, the prognostic impact remained significant on
multivariate analysis. This observation may be explained by the fact
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Fig. 2 | Development of a deep-learning model for HCC/ICCA classification.
A Receiver operator curve (ROC) for the internal validation of binary classification
of HCC and iCCA cases. B ROC curve for the external validation of binary classifi-
cation (HCC vs. ICCA) task on TCGA dataset. The error band shows the 1000 fold
bootstrapped 95% confidence interval. CH&E slide of two randomly selected cases

for HCC and ICCA. Attention map of the model and the class prediction scores are
used as explainability methods to check the capability of the trained model in
detecting the correct features within the WSI. The class prediction heatmap is
weighted by the attention. Source data are provided as a Source Data file. This
analysis was repeated independently with similar results five times.
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that the competing mortality from cirrhosis and the risk of tumor
recurrence are minimized by liver transplantation, as the whole dis-
eased liver is replaced by the intervention. We also observed differ-
ences inpatient characteristics according to the 2different therapeutic
modalities: transplanted patients were more frequently male
(p = 0.039), cirrhotic (p <0.001), with a higher frequency of alcohol
consumption (p < 0.001) and a lower rate of HBV infection (p =0.004)
(Supplemental Table 6).

We further aimed to determine if the conventional reclassification
of cHCC-CCA (according to themoreabundant contingent assessedby
a blinded pathologist) yielded any prognostic value, but observed that
it had not a significant impact on survival in either resected (p =0.16)
or transplanted (p =0.32) patients (Supplemental Figs. 3 and 4). In
order to assess the degree of inter-observer variability of this histolo-
gical reclassification, slides were also reviewed by another pathologist.
The overall agreement was only fair (Cohen’s Kappa of 0.37), sup-
porting the use of a more standardized and reproducible system such
as our model. Altogether, these data suggest that our AI-based
reclassification of cHCC-CCAallowsus tomakemore clinically relevant
predictions about disease outcomes than a classical pathological
assessment.

AI-based reclassification and genomic alterations
We next investigated if the model’s predictions were concordant with
known genetic differences of HCC and ICCA. We performed targeted
next-generation sequencing with a panel that includes all major genes
involved in HCC or ICCA development for n = 104 randomly selected

cases. We identified several cases with alterations in TERT promoter,
CTNNB1 and NFE2L2, which typically occur in HCCs, and several cases
with FGFR2 fusions and IDH1/2, KRAS,NRAS, BRAF andHER2mutations,
which typically occur in ICCAs. We found that all genetic alterations in
HCC-specific genes occurred in the tumor subset which the AI model
had re-classified as HCC (Fig. 3E). Eleven out of 16 genetic alterations
which are typical for ICCA occurred in tumors thatwere re-classified as
CCA. In other words, the AI predictions match the genomic alterations
of cHCC-CCA (p =0.0009 in Fisher’s exact test), suggesting that the
model detects patterns directly linked to the genetic defects identified
by genomic profiling of the tumor tissue.

Spatial transcriptomics analysis and AI predictions
To gain further insights into the in situ relationships between the
models prediction and the underlying biology, we performed spatial
transcriptomics on tissue sections obtained from formalin-fixed, par-
affin embedded blocks of 6 randomly selected cHCC-CCA cases. We
then applied our model on the corresponding WSI and matched the
prediction heatmaps with the gene expression profiling data. We
investigated, within each case, the differences between the 100 image
tiles most highly associated with a prediction of ICCA and the 100 tiles
most highly associatedwith a prediction of HCC.We observed that the
model’s predictions matched the underlying in situ gene expression
profiles of the tumors. For Sample #A4 (Fig. 4A and B), areas predicted
as ICCA-like were indeed associated with increased expression of
genes related to cholangiocyte differentiation (e.g EPCAM, HNF1B and
KRT7) and decreased expression of well-known hepatocytic markers
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Fig. 3 | Reclassification of combined hepatocellular-cholangiocarcinomas.
A Example of a HE slide of a cHCC-CCA and its associated attention and prediction
heatmaps. This case features relatively distinctHCC and ICCA components, both of
which are identified on the attention maps (attention is however higher in ICCA
areas). The class predictions match the HCC and ICCA morphological contingents.
This analysis was repeated independently with similar results five times.
B Distribution of the raw outputs/predictions from the model: the scores follow a

bimodal distribution, with a majority of cases peaking at a high HCC or ICCA.
C Reclassification of cHCC-CCA as HCC or CCA has an impact on overall survival of
patients treated by surgical resection. D Importantly, the prognosis value of the
reclassification is validated in patients who underwent liver transplantation. E The
model predictions match with the underlying alterations identified in cHCC-CCA
(p =0.0009, Fisher’s exact test). Statistical tests were two-sided and not adjusted
for multiple testing. Source data are provided as a Source Data file.
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(ALB, FABP1 and APOB) (Fig. 4B and Supplementary Data 1). Similar
findings were obtained for 2 additional cases (#A1 and #A2), while the
results for remaining samples were less clear with few significantly
dysregulated genes (#A3, #A5 and #A6) (Supplementary Data 1), pos-
sibly due to the constraints of performing spatial transcriptomics
analyses on formalin-fixed paraffin-embedded material.

Discussion
In summary, our study shows that AI-based reclassification of cHCC-
CCA into one of the “pure” HCC or CCA categories could improve
prognostication, which is critical given the therapeutic implications,
and also help to determine if a given cHCC-CCA tumor is genetically
more similar to HCC or ICCA. A diagnosis of cHCC-CCA remains a
formidable challenge for physicians and little or no evidence is
available to guide the treatment options for the patients. Hence,
oncologists often recommend treatment according to HCC or CCA
therapeutic strategies, but the responses are often poor and their
outcome dire3,15. Recent large scale molecular studies of cHCC-CCA
have failed to demonstrate any specific genetic alterations, and
most cases have a similar gene expression profile to that of HCC or

ICCA3,4. This reclassification could be performed by genetic profil-
ing, however these approaches are not universally available and are
lengthy and costly. By definition, routine histopathological slides
are available for every single one of these patients as histopatholo-
gical evaluation is needed to make a diagnosis of cHCC-CCA in the
first place.

Here, we have shown that an AI system can make a clear call for
either HCC or ICCA. Reclassifying tumors as ICCA could be clinically
useful as some of the associated alterations, including FGFR2 fusions
and BRAF and IDH mutations, can be targeted by specific drugs. Mea-
surable antitumor activity has indeed been reported with pemigatinib,
futibatinib (FGFR inihbitors), ivosidenib (IDH1 inhibitor) or neratinib
(pan-HER tyrosine kinase inhibitor)16–18. The standard of care for
patients with advanced disease is also different between HCC (atezo-
lizumab plus bevacizumab or durvalumab plus tremelimumab) and
ICCA (durvalumab plus chemotherapy), and prospective clinical trials,
although very challenging to carry out, are needed to determine if
patients with cHCC-CCA may benefit from our reclassification
approach to be allocated the systemic treatment that fits with the
predicted class.
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Fig. 4 | Combination of deep-learning heatmaps with spatial transcriptomics
unravels the gene expression profile of areas that markedly impact the pre-
dictions. A Example of a case processed by spatial transcriptomics: the HE section
and its corresponding prediction heat map are presented, with the upper left area
being considered as ICCA-like. This analysis was repeated independently with
similar results for two other cases, as mentioned in the section “Spatial

Transcriptomics Analysis and AI Predictions”. B Predictions matches the in situ
gene expression profile with the ICCA like area showing upregulation of biliary/
cholangiocytic genes (EPCAM,HNF1BandKRT7) anddownregulationof hepatocytic
genes (ALB, FABP1 and APOB). Raw data are available online as described in the
“Data Availability” Section.
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A limitation of our study is that by the nature of this problem,
there is no ground truth for our proposed reclassification.We rely on a
combination of clinical and genomic markers to demonstrate the
plausibility and utility of our proposed reclassification scheme. We
further observe that as for any biomarker, model predictions close to
the decision cutoff are associated with a higher ambiguity. For such
cases falling in the mid-range of the AI score, pathologists could
integrate other factors such as clinical probability or imaging results to
enhance the prediction confidence. Our software is currently suitable
for research use only, and regulatory approvals will be needed to
ensure its reliability and efficacy. The sharing of our source code
however encourages further development and application by the
wider research community.

The next step for the implementation of suchmodels will be their
validation on biopsies, as they are the only type of samples that can be
obtained before surgery (resection or transplantation) or in patients
with advanced disease not amenable for curative therapies. It may be
challenging as biopsy is rarely performed due to the existence of non-
invasive HCC diagnostic criteria. There is however a renewed interest
in biopsy, in particular in the context of clinical trials, and this valida-
tion process could be undertaken in the near future. This could also be
an opportunity to determine whether the addition of biological fea-
tures (AFP/CA 19-9) or radiological findings may improve the
classification.

In conclusion, our study demonstrates that AI may be useful for
tumors that do not fit into common nosological frameworks. Devel-
oping evidence-based guidelines for such rare and challenging entities
is indeed difficult (if not impossible). Our method could be applied to
other cancer subtypes with mixed or biphenotypic differentiation that
present a therapeutic challenge, such as combined adenocarcinomas /
neuroendocrine tumors or adenosquamous carcinomas. We also
believe that the combination of deep-learning heatmaps with spatial
transcriptomics is a useful approach to provide insights into the
molecular profile of highly predictive areas, and thus demonstrates
that AI can be used as a tool for understanding tumor tissue in a
research context.

Methods
Ethics statement
This study reports a retrospective analysis of tissue samples of archival
tissue of primary liver tumors which was collected in a multicentric
way. The protocol was approved by the review board of Université
Paris Est Creteil, France (ID n° APHP22012), conducted in accordance
with the Declaration of Helsinki and the legislations of each partici-
pating center. In this international multicentric cohort informed con-
sents were obtained from patients when required by local regulations.
Centerswith informedwritten consent obtained: Hamburg, Barcelona,
Mondor, Chinese University of Hong Kong, Beaujon, Paul Brousse.
Centers with waiver of consent after IRB approval: University of Texas
Southwestern, Stanford, Aachen, Pitié-Salpêtrière, Michigan Uni-
versity, Chennai, Rouen, Saint Antoine, Lille, Angers, Milano, Amiens,
Hong Kong, Poitiers, St Louis University, Seoul National University
College of Medicine, Prince of Songkhla, Montpellier, Brest, Reims,
Yale School of Medicine, Bachmai Hospital, Mayo Clinic Rochester,
Regensburg.

Patients and samples
Slides used for training (pure HCC and iCCA) were obtained from the
archives of five pathology departments. Inclusion criteria were as fol-
lows: (1) patients with HCC or ICCA treated by surgical resection, (2)
lack of preoperative antitumor treatment and (3) available WSI and
baseline clinical, biological and pathological features. They were
scanned using a Hamamatsu Nanozoomer S360 (ndpi encoding for-
mat) or a Leica Aperio (svs encoding format) scanning device. For the

validation cohort, we used TCGA-LIHC and TCGA-CHOL cohorts (HCC
n = 333 and ICCA n = 27). Slides of cHCC-CCA were obtained from
European (n = 18), American (n = 6) and Asian (n = 6) liver centers.
Inclusion criteria were: patients treated by surgical resection or liver
transplantation, diagnosis of cHCC-CCA as defined by the World
Health Organization and available histological slides and baseline
clinical data.

Pathological reviewing
For all cases, an expert liver pathologist (JC) reviewed the cHCC-CCA
histological slides and quantified each contingent (HCC, ICCA, and
intermediate/equivocal). To compare the AI model’s prediction with a
conventional morphological reclassification, cHCC-CCA cases were
reclassified as HCC if the HCC contingent wasmore abundant that the
ICCA contingent or as ICCA if the ICCA was more abundant that the
HCC contingent.

Development and validation of the deep learning model
Processing of WSIs was performed according to a pre-defined
protocol19. Digitized WSI were preprocessed by tessellation into non-
overlapping small patches of size 224× 224×3 pixels at an edge length
of 256 µm. Background and blurry tiles were removed in order to
provide the deep learning model with clean and informative input. As
described before, the Canny Edge detectormodulewith a threshold of
2 fromOpenCVwas used20. The primary analysis was carried out using
the raw image tiles, and was repeated after color-normalization with
the Macenkomethod to investigate potential batch effects21. Then, we
used our previously published pipeline “Marugoto” for supervised
Deep Learning12,13. The pipeline consists of a feature extractionmodule
which transforms each tile into a feature vector of size 1 × 2048. Fea-
ture vectors of all tiles for each slide are subsequenctly processed by
an aggregationmodulewhich outputs a single score for a givenWSI. As
the feature extraction module, we used a resnet50 which was pre-
trained in a self-supervised way with the RetCCL method in a previous
study11. Thepretraining includedTCGA imagedata but no labels. As the
aggregation module, we used a custom-built attention-based multiple
instance learning (attMIL)22. AttMIL incorporates an attention
mechanism that involves two fully connected layers that compute an
attention score for each tile, resulting in a bag-level feature vector
obtained by scaling the embeddings of each tile using the softmax of
its attention score, and adding them up22. This bag-level feature vector
is then transformed into a final classification through another fully
connected layer. To train themodel onmultiple patients in each batch,
a subset of tiles from each patient is considered sufficient, and in each
epoch, the tiles are re-sampled20,22. We trained the model for 100
epochs with a patient of 16 for an early-stopping callback. We used a
batch size of 64 for the training subset and defined a fixed bag size of
512. For every training epoch, the instances for each bag have been
randomly re-sampled.Weused all the tiles of theWSIs for prediction in
the test and validation cohorts, with a batch size of 1. In order to
evaluate the model’s internal performance, we performed a 5-fold
cross-validation at the level of patients.

Identification of molecular alterations
Tumor areas were first macro-dissected from formalin-fixed, paraffin
embedded tissue blocks, and mRNA and DNA extractions were per-
formed using theMaxwell RSC Plus DNA FFPE Kit IVD and theMaxwell
RSCRNA FFPE Kit IVD (Promega, France). Theywere further quantified
using a Qubit fluorimeter in combination with the Qubit™ dsDNA HS
Assay Kit and Qubit™RNAHS Assay Kit (ThermoFisher Scientific). RNA
was reverse transcribed to cDNA using SuperScript IV VILOMasterMix
(ThermoFisher Scientific). The Oncomine Comprehensive Library
Assay v3C was used to amplify 50 nanograms of DNA and RNA (as
measured by fluorimetry). Amplicons were digested, barcoded and
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amplified with the Ion Ampliseq Library and Ion Xpress barcode
adapter kits (ThermoFisher Scientific). After quantification, 50 pM of
each library were multiplexed and clonally amplified on ion-sphere
particles using a Ion Chef instrument (ThermoFisher Scientific). The
ISP templates were loaded onto an Ion-540 chip and sequenced using
an Ion S5 device and the Ion 540™Kit–Chef. The Ion Reporter Software
was used to assess performance and analyze sequencing data using
specific stringent filters (allele frequency between 5 and 90%; only
exonic location, read depth >300X).

Spatial transcriptomics
Samples were first screened for RNA quality (DV200 scores > 50%,
Tapestation), as recommended on the Visium Tissue Preparation
Guide (10X Genomics). Visium spatial gene expression slides and
reagents kits were used according to manufacturer instructions.

Five-micrometer thick tissue sections were cut from the FFPE
tumor block and placed within the fiducial frames (n = 4) of the FFPE
Visium Spatial Gene Expression Slide. Each capture areas has ~5000
gene expression spots that include a partial read 1 sequencing pri-
mer (Illumina TruSeq Read 1), 16 nt spatial barcode, a 12 nt unique
molecular identifier (UMI) and a 30 nt poly(dT) sequence (captures
ligation product). Spots provide a resolution of ~5–10 cells. Slides
were deparaffinized and stained. They were further coverslipped
and scanned at 40X resolution using a Hamamatsu S360 scanning
device. Coverslips were removed, and a decrosslinking step was
performed.

Probes were hybridized using the Visium Hybridization Mix.
After a post-hybridization wash (FFPE Post-Hyb Wash and SSC Buf-
fers), a ligase is added to seal the junction between the probe pairs
that have hybridized to RNA, forming a ligation product. The ligation
products were released from the tissue section upon RNase treat-
ment and permeabilization, and further captured on the slide. Probes
were extended by the addition of UMI, partial read 1 and spatial
barcodes. We then obtained spatially barcoded products for library
preparation.

A qPCR was performed to determine the cycle numbers, and the
ligated and spatially barcoded products underwent indexing via
Sample Index PCR.Sequencing of libraries was performed on a Next-
Seq 2000 instrumentwith a P3flowcell (100 cycles, Illumina,CA,USA).

Survival analyses
Statistical analysis and visualization were performed using R software
version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org) and Bioconductor packages (version 3.4).
Overall survivalwas defined by the interval between surgical resection/
liver transplantation and death or last follow-up. Survival curves were
represented using the Kaplan-Meier method compared with log-rank
statistics. Univariate analysis was performed using the Cox
proportional-hazards regression model with variables with a P-
value < 0.05 selected for multivariate analysis. All tests were two-tailed
and a P-value < 0.05was considered significant. For patients treated by
surgical resection, inclusion criteria were lack of pre-operative treat-
ment, lack ofmetastatic ormacroscopic residual disease at the time of
surgery, and uninodular tumors. For liver transplantation, all patients
with available clinical follow-up were included.

Statistics, reproducibility and other tools
Measurements were taken from distinct samples, i.e., the same sam-
ple was never measured repeatedly. For supervised classification
experiments, the primary endpoint was the area under the receiver
operating characteristic curve (AUROC) with 95% confidence intervals
obtained by 1000x bootstrapping. The MI-CLAIM checklist is pro-
vided in Supplemental Table 7. In accordance with the COPE (Com-
mittee on Publication Ethics) position statement of 13 February 2023
(https://publicationethics.org/cope-position-statements/ai-author),

the authors hereby disclose the use of the following artificial intelli-
gence models during the writing of this article. GPT-4 (OpenAI) for
checking spelling and grammar.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Some of the data that support the findings of this study are publicly
available, and some are proprietary datasets provided for this analysis
under collaboration agreements. All data (including histological images)
from the TCGA database are available at https://portal.gdc.cancer.gov.
Raw sequencing data for the proprietary cohorts have been uploaded to
the European Nucleotide Archive (ENA) (accession number
PRJEB62487). All other histopathology image data with accompanying
metadata are under controlled access according to the local ethical
guidelines and can only be requested directly from the respective study
groups that independently manage data access for their study cohorts.
The central data collection was managed by JC to whom sharing
requests can be directed and will be responded to within 4weeks.
Source data for figures are provided with this paper.

Code availability
The data was analyzed using custom-developed open-source software.
Our deep learning methods use Python with h5py v3.6, numpy v1.22,
openpyxl v3.0, pandas v1.4, torch v1.8, fastai v2.5, fire v0.4. The tran-
scriptomics analysis and statistical analysismethods use R v4.1.2, Seurat
v4.1.1 for differential gene expression analysis, Seurat v4.3.0 for visua-
lization, glmGamPoi v1.6.0, dplyr v1.0.10, crayon v1.5.2, ggplot2 v3.4.0,
gridExtra v2.3, MAST v1.20.0, ggrepel v0.9.2, readxl v1.4.3, survminer
v0.4.9, rms v6.4-1, survival v3.5-5, ComplexHeatmap v2.13.1, irr v0.84.1,
vcd v1.4-11. All source codes are publicly available: https://github.com/
KatherLab/preprocessing-ng for WSI tessellation, https://github.com/
KatherLab/preProcessing for color-normalization and https://github.
com/KatherLab/marugoto for model training and deployment and
https://github.com/qinghezeng/ST_cHCC-CCA for spatial tran-
scriptomics analysis.
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