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Blazed oblique plane microscopy reveals
scale-invariant inference of brain-wide
population activity

Maximilian Hoffmann1,4,5, Jörg Henninger 1,5, Johannes Veith 1,2,
Lars Richter 3 & Benjamin Judkewitz 1

Due to the size and opacity of vertebrate brains, it has until now been
impossible to simultaneously record neuronal activity at cellular resolution
across the entire adult brain. As a result, scientists are forced to choose
between cellular-resolution microscopy over limited fields-of-view or whole-
brain imaging at coarse-grained resolution. Bridging the gap between these
spatial scales of understanding remains a major challenge in neuroscience.
Here, we introduce blazed oblique plane microscopy to perform brain-wide
recording of neuronal activity at cellular resolution in an adult vertebrate.
Contrary to common belief, we find that inferences of neuronal population
activity are near-independent of spatial scale: a set of randomly sampled
neurons has a comparable predictive power as the same number of coarse-
grained macrovoxels. Our work thus links cellular resolution with brain-wide
scope, challenges the prevailing view that macroscale methods are generally
inferior to microscale techniques and underscores the value of multiscale
approaches to studying brain-wide activity.

Our current knowledge about brain function covers different spatial
scales, ranging from the microscopic to the macroscopic level. On the
macroscopic level, advances in human brain imaging, such as fMRI,
have increased our knowledge about the roles of different brain
regions, their functional networks and global activity patterns1–4.
Despite the important insights that are being gained from such mac-
roscopic measurements, they can only provide a coarse-grained pic-
ture of a brain that is made of individual cells. For example, an fMRI
voxel contains thousands of distinct cells, whose activity is averaged
into one value5. In contrast, microscopic studies complement this
global picture by studying local brain circuits with single-cell resolu-
tion. Multi-electrode recordings and two-photon calcium imaging6–9

have uncovered a high diversity of functional properties even among
nearby cells and within local microcircuits. However, the field of view
(FOV) and penetration depth limit two-photon microscopy to only a

small part of the mammalian brain volume and even the latest multi-
electrode probes with thousands of channels can only record far less
than a percentage of all the cells in themammalian brain (7 × 107 in the
mouse). As a result, both macroscopic as well as microscopic record-
ings represent a severe spatial subsampling of total brain activity, be it
by local averaging or by extreme selection.

Howmuch canwe learn about the dynamics of thewhole system if
we only record a small fraction? If we are forced to subsample, what
type of subsampling should we choose? Given a limited number of
recording channels, are single cells or large voxels more predictive of
brain-wide cellular activity? Answering these questions requires com-
bining microscopic single-cell resolution with a macroscopic brain-
wide range. This, until now, has only been possible in invertebrates or
developing zebrafish larvae10–13, but has not been achieved in any adult
vertebrate.

Received: 5 May 2023

Accepted: 17 November 2023

Check for updates

1Einstein Center for Neurosciences, NeuroCure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany. 2Department of Biology, Hum-
boldt University Berlin, Berlin, Germany. 3Department of Chemistry and Center for NanoScience, LudwigMaximilians University, Munich, Germany. 4Present
address: Rockefeller University, New York, USA. 5These authors contributed equally: Maximilian Hoffmann, Jörg Henninger.

e-mail: benjamin.judkewitz@charite.de

Nature Communications |         (2023) 14:8019 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7307-1569
http://orcid.org/0000-0002-7307-1569
http://orcid.org/0000-0002-7307-1569
http://orcid.org/0000-0002-7307-1569
http://orcid.org/0000-0002-7307-1569
http://orcid.org/0009-0008-7238-6391
http://orcid.org/0009-0008-7238-6391
http://orcid.org/0009-0008-7238-6391
http://orcid.org/0009-0008-7238-6391
http://orcid.org/0009-0008-7238-6391
http://orcid.org/0000-0003-0819-9248
http://orcid.org/0000-0003-0819-9248
http://orcid.org/0000-0003-0819-9248
http://orcid.org/0000-0003-0819-9248
http://orcid.org/0000-0003-0819-9248
http://orcid.org/0000-0002-8570-3869
http://orcid.org/0000-0002-8570-3869
http://orcid.org/0000-0002-8570-3869
http://orcid.org/0000-0002-8570-3869
http://orcid.org/0000-0002-8570-3869
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43741-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43741-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43741-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43741-x&domain=pdf
mailto:benjamin.judkewitz@charite.de


Addressing this limitation, we and others recently introduced the
teleostDanionella cerebrum (DC) as a newmodel for neuroscience14–18.
DC has the smallest known adult vertebrate brain which, at ~2mm
length, is only twice as long as that of a 5-day-old zebrafish larva. The
brain is transparent and optically accessible from the top, as it is not
covered by a dorsal skull.

However, light-sheet microscopy (LSM)19, the established
method for volumetric imaging in zebrafish larvae, requires samples
to be transparent from multiple sides. In DC, the excitation light
would have to be sent through the scattering lateral skull, not the
dorsal natural window. As a result, there is no suitable high-speed
volumetric recording technique that can cover a major part of the
adult brain.

Here, we develop blazed oblique plane microscopy, which over-
comes these limitations and enables us to perform the first brain-wide
cellular activity measurements in an adult vertebrate at cellular reso-
lution. Using this technique, we measure spontaneous activity across
the brain of adult DC and investigate the relationship between cellular
activity and macroscopic phenomena. We artificially subsample and
voxelize the data to ask whether microscopic or macroscopic features
are more informative of brain-wide population activity.

Results
Blazed oblique plane microscopy
In order to record cellular activitywith calcium sensors throughout the
brain of adult DC we need to sample a volume of approximately
2.2 × 1.2 × 0.65mm3 at ≥ 1 Hz.

Raster scanning microscopy, such as two photon imaging6,9,20, is
one of the most widespread techniques for fluorescence imaging of
microscopic brain activity, but its speed and signal level are limited by
the need for point-scanning, by the fluorescence lifetime and by
thermal damage thresholds of the tissue. Light sheet microscopy
(LSM)19, overcomes this limitation by capturing entire planes of the
specimen at once using a camera, but the need for an orthogonal
excitation arm limits its use to small samples that are transparent from
multiple sides—excluding nearly all vertebrates.

Oblique plane microscopy (OPM), a variant of LSM, circumvents
these constraints by exciting and imaging oblique planes in the spe-
cimen through the same objective21–30 (Fig. 1a). Because the resulting
image plane is also oblique, it cannot be imaged onto a camera sensor
using conventional approaches. OPMs therefore employ a remote
refocusing step (Fig. 1b) in which an intermediate image of the oblique
plane is created using a secondary microscope objective (Obj2). This
intermediate image plane is aligned into the focal plane of a tertiary
detection objective (Obj3), imaging it onto a camera sensor.

The magnification between the specimen and the intermediate
image plane is typically chosen to fulfill the condition of unit angular
magnification31 (M = n1/n2, the ratio of refractive indices at the sample
and intermediate image plane, respectively). This ensures that first-
order spherical aberrations are canceled32 and even the points of the
oblique plane that are outside of the native focal plane are imaged
accurately. The refocusing step, however, leads to a loss of light: Some
light will necessarily propagate outside of the acceptance cone of Obj3
(Fig. 1b). This implies that this re-imaging solution cannot be used
below an NA of 0.5·n for Obj1 and Obj2, because the loss would
become total (Fig. 1c, green curve, Supplementary Fig. 1a). At the same
time, due to the constraints of optical design, the achievable FOV is
inversely proportional to the NA of an objective (Fig. 1c, blue dots).
This relationship limits the achievable FOV of conventional OPM to
about 1mm (Fig. 1c)33,34.

Multiple strategies have recently been proposed to mitigate this
trade-off. Objectives with a high index of refraction immersion med-
ium at Obj3 can increase the light efficiency by refracting the light
cone, but their FOV is still limited to <1mm27,35,36. Alternatively, the
sample can be de-magnified onto Obj2, but the deviation from unit
angular magnification rules out aberration-free imaging37. A recent
approach using reflective diffraction gratings is limited to only oper-
ating at low NAs (NA <0.3)38. As a result, none of the existing approa-
ches are suitable for imaging the entire DC brain at cellular resolution.

We reasoned that, to efficiently reimage the oblique image plane
with minimal loss, we need to tilt the illumination cone without
affecting the image intensity distribution. In terms of wave optics, this
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Fig. 1 | Blazedobliqueplanemicroscopy. a Fluorescence is excited by a light sheet
(blue) focused through the primarymicroscope objective (Obj1) at an angleφ. The
imaged plane (white circles) in the medium of refractive index n1 is therefore
oblique. Emittedfluorescence (green) is then collected through the same lens.b To
image the oblique plane onto a camera, an intermediate image (white circles) is
created by a secondary objective (Obj2) at an angle θ in a medium with refractive
index n2. This plane is then brought to lie in the image plane of a tertiary micro-
scope objective with an acceptance angleϕ. This leads to loss of light (red) for allϕ
<90°. c The overall efficiency of the re-imaging strategy is critically dependent on
the NA of Obj2 and Obj3 (green curve). At the same time, the FOV scales inversely

with the objective NA, shown in blue for selected, commonly used microscope
objectives. d Blazed OPM employs a custom fiber optic faceplate (FP) with a core
refractive index ncore, that is cut at an angle α. α is chosen tominimize the coupling
losses into the array ofmulti-modefibers. The angled facet of FP is positionedat the
intermediate image plane after Obj2. The intensity distribution at the intermediate
image plane is then transmitted to the other end of the FP, where it is imaged by
Obj3. e Complete setup consisting of the microscope objective lenses (Obj1-3),
relay lenses (L1-L4, f = 200mm), scan mirrors (SMX/SMY), the excitation laser, the
fiber-optic faceplate, and a high-speed camera. Inset: photograph of the FP placed
on a printout of a checkerboard pattern, illustrating its image transfer capability.
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implies applying a strong phase ramp (also “blazed” phase) to the
intermediate image, without changing its amplitude. Blazed OPM
achieves this goal via a specially fabricated (but easily mass-pro-
ducible) fiber optical faceplate (Fig. 1d, e). This faceplate (FP) is a rigid
array of small optical fibers with a diameter of 2.5 μm (Fig. 1e inset). It
can transfer light intensity distributions from one plane to another
without any additional optical system, while applying a phase ramp
from the input to the output plane. If the intermediate imageplane of a
blazed OPM is brought to lie coplanar to the oblique surface of the FP,
single fluorescence foci are coupled into the individual fibers of the FP.
The opposite end of the FP can then be imaged onto a camera by the
collection imaging system consisting of an objective (Obj3) and a tube
lens (L5).

The geometryof the FP needs to beoptimized to ensure thatmost
of the light is propagating within the coupling angle. During coupling,
the light is refracted at the boundary between the surrounding med-
ium (air, n2 = 1) and thefiber core (ncore = 1.81). Assuming that themean
incidence angle of the incoming cone is the acceptance angle θ,
selecting the face angle α to be α = arcsin cos θð Þ � n2=ncore

� �
ensures

that the light is optimally coupled into the faceplate (Supplementary
Fig. 1b). Under these conditions, wemeasured its light efficiency to be
at 48% (See Methods).

Blazed oblique plane microscopy can be combined with different
primary objectives (Obj1, Supplementary Fig. 2), which are close to the
required unit angular magnification that ensures the cancellation of
first-order spherical aberrations, but here we use a 16×/0.8 NA objec-
tive for optimal trade-off between FOV and axial resolution. To assess
the performance of this configuration, we imaged a sample of fluor-
escent beads (⌀ = 1μm) (Supplementary Fig. 2) and determined a
resolution of 2.8 ± 1 × 2.4 ± 0.9 × 13.2 ± 2.8μm3 (FWHM, n = 17684
beads) across a FOV of 2.1 × 1.7 × 0.8mm3, along x, y, and z, respec-
tively. This resolution is consistent with the limit imposed by the fiber
pitch (in this case: 2.5μm, demagnified onto the sample by factor 1.6).
Optical sectioning is important for volumetric imaging of densely

labeled objects. We quantified the sectioning capability in Supple-
mentary Fig. 3.

Using this approach, we imaged the brain of adult DC at a volume
rate of 1 Hz. With transgenic animals expressing a nuclear-localized
calcium indicator (elavl3:H2B-GCaMP6s × tyr−/−), we recorded sponta-
neous activity from up to 41 k active neurons throughout distant brain
regions up to a depth of ~400–500μm, including the brainstem, tec-
tum, pallium, and diencephalon, excluding the ventral hypothalamus
(Fig. 2a–d, Supplementary Figs. 4–7 and Supplementary Movie 1).
Blazed OPM thus enabled the first brain-wide recording of cellular
activity in an adult vertebrate.

Spatial scale of correlations
To understand how the activity of sparsely sampled cells or coarse-
grained voxels relates to brain-wide population activity, we started by
characterizing functional coupling across spatial scales. In macro-
scopic studies, such as fMRI or wide field calcium imaging, functional
coupling (FC) between pairs of brain regions or voxels is commonly
quantified by pairwise Pearson correlations, also referred to as “func-
tional connectivity”.

To investigate such correlations across scales, including cellular
resolution, we recorded calcium signals from ~150 k neurons in 6
animals (17 k – 41 k spontaneously active neurons per animal, of an
estimated total 650 k neurons14). Analyzing FC across ~109 pairs of
individual cells, we found that its distance-dependent decay can be fit
by a power law (a line on a log–log plot), ranging from microscopic
scale tomacroscopic, brain-wide distances (Fig. 3a). This is in line with
macroscopic fMRI studies in humans that reported scale-free correla-
tion decay at a millimeter resolution39, and demonstrates that the
power-law relationship extends from the global level down to the
microscopic level40 in a mature circuit. To visualize the scale and
spatial granularity of correlations, we created maps of brain-wide FC
values for individual cells (shown in Fig. 3b–d for three example cells
with local and long-range coupling).
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Fig. 2 | Brain wide imaging of Danionella cerebrum (DC). a Orthoprojections
(maximum intensity) of the time series mean of an adult DC (line elavl3:H2B-
GCaMP6s x tyr-). The recording lasted 38min at a volume rate of 1 Hz. The FOV
encompassed major brain regions, such as the telencephalon (Tel), optic tectum
(TeO), cerebellum (Cb) and hindbrain (HB). b Local temporal correlation map

serving as the segmentation map of the brain. c Fluorescence dynamics from ten
neurons at different locations marked in (b). d We segmented ~ 40 k putative
neurons and extracted their time dependent fluorescence (centered dF/F, dis-
played between 0 and 30%; cells sorted by 1D embedding; white bands: excluded
frames due to motion artifacts). Scale bar: 500μm.
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We then sought to understand the link betweenmicroscopic FC at
cellular resolution and macroscopic FC values one would obtain from
larger voxels. We created a synthetic dataset by averaging traces of
nearby cells within a given radius. This dataset has the same number of
traces as the original data, yet each trace no longer represents a single
cell, but the average activity of all cells within a given radius from the
single cell. This manipulation allowed us to compare FC values
between pairs of cells to FC values between pairs of corresponding
voxels that are centered on the same locations. Density plots com-
paring ~109 microscopic FC values with their corresponding macro-
scopic FC values are shown in Fig. 3e. For small voxel radii (<10μm),
microscopic and “macroscopic” FC values are identical, because voxels
contain only one cell. However, once the voxel size increases beyond
cell scale, macroscopic FC values begin to increase, and deviate from
their microscopic counterparts. Thus, the secondary correlation
between microscopic and macroscopic FC values rapidly drops as the
voxel size increases (Fig. 3f).

The observation that spatial averages only poorly represent
cellular-level activity could lead to an interpretation that macroscale
measurements “destroy” information about the microscale. However,
the fact that there is no direct correspondence between macroscale
and microscale activity need not imply that voxels cannot be used to
make inferences about cellular-level brain activity. For example, the
activity of cells that are functionally coupled to multiple other cells
across multiple brain regions might still be well predicted by spatially
averaged brain-region activity traces.

Scale-invariant predictions of brain activity
We therefore asked how well cellular activity can be predicted from
voxels and how different scales of spatial granularity—from single
cells to large voxels—compare in terms of their predictive power. We

started by quantifying the dimensionality of our dataset using bi-
cross-validated principal component regression41,42 to predict the
activity of all recorded cells. This analysis revealed a lower bound of
400 ± 100 (mean + std, n = 6 animals) predictive dimensions,
explaining over 30% of the variance of the brain-wide spontaneous
activity in the held-out dataset. To understand how well brain
activity can be predicted from limited amounts of data at varying
spatial scale, we then subsampled and discretized our data (Fig. 4a),
and tested predictive power with linear ridge regression. Our per-
formance measure was the fraction of variance explained when
predicting global brain activity at single-cell resolution (i.e. the
variance-weighted average R2 of all recorded cells). First, we used
sets of randomly sampled cells as predictors. As expected, the pre-
dictive power increased as a function of predictor cell number
(Fig. 4c). We then discretized our predictor dataset into non-
overlapping macrovoxels, while keeping the same prediction target:
all cellular-resolution activity that was recorded across the brain. In
the resampled predictor dataset, the activity of all cells assigned to a
given voxel was averaged into one-time trace. We observed that
prediction power decreased when the voxel size increased from
cellular scale (~5–10 μm) to hundreds of μm (Fig. 4b). This effect
could have different reasons: loss of microscale information, or the
reduction of predictor count (the brain fits more small voxels than
big voxels). To distinguish these two, we plotted the data as a
function of voxel number and observed that the variance explained
by a given voxel number was close to the variance explained by the
same number of randomly selected single cells (Fig. 4c; cell/voxel R2-
ratio of 1.0 ± 0.1, n = 6 animals). In this analysis, voxel size and voxel
number are still linked because a given voxel size will parcellate the
brain into a set number of voxels. To decouple both quantities, we
decided to compare random samples of non-overlapping voxels at
varying sizes (Fig. 4d). Remarkably, we found that the R2 remains
near-constant for a given number of predictor channels, irrespective
of spatial granularity. For example, 500 randomly sampled cells
have a comparable predictive power as 500 macrovoxels of 100 μm
side length (Fig. 4d, Fig. 4f). We observed this effect across a wide
range of tested predictor numbers, with higher numbers limiting the
size of non-overlapping macrovoxels.

How can these results be explained? An intuitively appealing
hypothesis is that the predictive power of voxels is related to the
spatial structure of correlations: as we show above (Fig. 3a), nearby
cells are highly correlated and the decay of average correlations over
distance can be approximated by a power law function. The scale-
invariant predictions could be a corollary of this spatial organization.
Scrambling of spatial structure should then abolish our ability to
predict brain activity with voxel averages.

The alternative hypothesis is that our results are independent of the
spatial structure of brain activity. In this view, voxel traces, which are
averages of local assemblies, should be as informative as averages of
spatially randomassemblies. A sampling of k cells, k voxels, or k random
assembly averages can all be interpreted as a form of dimensionality
reduction or projection into a k-dimensional space. Recent work43,44

argued that neuronal subsampling can be modeled as random projec-
tion, a well-studied dimensionality reduction technique45–48, under the
simplifying assumption that high-dimensional brain activity is randomly
oriented with respect to the projection axes. To the extent that this
model holds for the different types of subsampling, they might all pro-
vide equivalent results in the prediction of brain-wide activity.

To distinguish between these two hypotheses, we repeated the
coarse-graining analysis of Fig. 4d for a spatially shuffled dataset, in
which we randomized the assignment between cell traces and cell
coordinates. In this analysis, a “voxel” trace no longer corresponds to
the average activity of a local cell assembly, but to the average activity
of a spatially random assembly containing the same number of neu-
rons. We found that spatially random assemblies reach a comparable
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Fig. 3 | Spatial scale of correlations: the relationship between microscale and
macroscale functional coupling. a Average pairwise Pearson’s correlation as a
function of distance, for 6 animals and their mean, power law fits dashed in red
(exponent 0.28 ± 0.09 (mean ± std). b–d Maps of brain-wide FC values for three
example cells with local and long-range coupling (cell location marked by cyan
dot). e Scatter across ~109 FC values (normalized density), where each point
represents a pair of cellular and corresponding voxel FC values—for three different
neighborhood radii. For small voxel radii, the local neighborhood activity trivially
corresponds to single cell traces (left). As the neighborhood size increases, FC
values increase and deviate from their cell-scale counterparts. f Secondary Pearson
correlation between the cell and voxel FC values (the correlation of the scatter in e)
as a function of neighborhood size for all animals in a overlayed with the mean
decay. Source data are provided as a Source Data file.
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R2 as same-size voxels (R2-ratio 1.0 ± 0.1; Supplementary Fig. 9; Fig. 4d,
dashed lines).

In summary, predictive power is maximized by maximizing pre-
dictor number, highlighting the benefit of brain-wide recordings at
cellular resolution. However, in a scenario where the number of pre-
dictors is limited, as in the vast majority of neuronal recordings in
vertebrates, we observed that randomly sampled cells are nearly as
predictive of brain-wide activity as macrovoxels. This effect was not
abolished by spatial shuffling of brain activity.

Scale-invariant distortion of neuronal population geometry
Time-varying neuronal population activity can be viewed as a trajec-
tory of the population activity vector through a high-dimensional state
space,whosegeometry is the subject of an active area of research8,49–56.
It is therefore natural to ask whether the scale-invariance we observed
during prediction also applies to measures of neuronal population
geometry.

Whenever the number of recorded channels is smaller than the
number of neurons in the brain, ameasurement can be seen as a low-

dimensional embedding of the high-dimensional full brain activity
(Fig. 5a). Conceptualizing subsampling and coarse-graining as
forms of dimensionality reduction suggests that they could be
compared by the commonly used distortion measure45,57, which
quantifies how the pairwise Euclidean distances in the original space
are distorted in the embedded space (see Methods). We measured
the distortion for subsampled and coarse-grained data and found
that the distortion for a given predictor count was comparable
between cells and voxels. For a given predictor count, the ratio of
cell to voxel distortion (1.2 ± 0.2, mean ± std.) was close to unity
(Fig. 5b, c).

As an alternativemeasure, we quantified howwell subsampling or
coarse-graining preserves the correlations between pairs of time
points, an approach that is analogous to representational similarity
analysis58. We calculated the time-by-time correlation matrices for
subsampled data and quantified their similarity to the original (non-
subsampled data) correlation matrix. Here, too, we found that the
similarity ratio between cells and voxels (0.9 ± 0.1, mean ± std.) was
close to unity.
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Thus, consistent with our results on prediction, sparse sampling
was comparable to coarse-graining in preserving the geometry of high-
dimensional brain activity.

Discussion
It is a widely held59,60, but not uncontested61 belief that the totality of
neuronal activity represents one of the most important levels of
description for understanding brain function. Yet in the vast
majority of vertebrate models it is currently not possible to record
even a percentage of all neurons. Recording a large part of rodent or
primate neurons will likely stay impossible for the foreseeable
future. Thus, any recording is an implicit subsampling of the total
activity, be it by local averaging (e.g. mesoscopic calcium imaging,
fMRI, functional ultrasound), local sampling (e.g. multi-photon
microscopy), or spatially distributed sparse sampling (e.g. electrode
arrays)6,8,62–66.

Howmuchof the total information does subsampling capture and
do the different subsampling methods differ? We found that a given
number of randomly sampled neurons provides similar information
for inferring brain-wide activity as measuring the same number of
macrovoxels. This finding has practical implications for scientists
working on other vertebrates, who are not able to record brain-wide
cellular activity, but have to make choices between microscopic and
macroscopic methods. Beyond practical implications for scientists,
subsampling also poses an implicit challenge for neuronal wiring. Like
scientists, neurons and local assemblies cannot directly sample from
the entire brain, but receive inputs from a sparse selection of pre-
synaptic cells via local and long-range connections43.

Our study challenges the common notion that macroscale
approaches are generally inferior tomicroscale techniques, but it does
not suggest that they are equivalent. Voxels will never be able to
compete with cellular-resolution measurements when it comes to
characterizing the function of individual cells. However, a growing
number of studies8,49–56 investigate brain activity in the framework of
neuronal population geometry and activitymanifolds,which no longer
refer to individual cells, but to their collective high-dimensional
activity and its evolution over time. In this framework, our results

suggest that the number of randomly sampled channels matters more
than their spatial resolution.

In small animals, the number of recorded channels is maximized
by high-resolution brain-wide microscopy. In the majority of verte-
brates, however, non-trivial trade-offs have to be made between
resolution, field-of-view, and the number of parallel recordings. In this
case, the highest resolution may not always provide the best estimate
of neuronal population geometry.

To achieve brain-wide imaging in DC, we developed blazed OPM,
which reaches multi-millimeter FOVs at cellular resolution. In contrast
to conventional OPM21, whose efficiency approaches zero as the NA/n
decreases towards 0.5, our approach allows us to refocus the oblique
plane at all NAs. We therefore are able to choose primary objectives
with intermediate NA and achieve imaging volumes up to 4mm3 (in
clear media), larger than in previous high-NA OPMs23,26,27,29.

These advantages enabled the first volumetric recording of brain-
wide neuronal activity in an adult vertebrate, opening up a range of
possible studies that link microscopic and macroscopic scales67,68. In
this study, blazed OPM allowed us to investigate the effect of spatial
granularity on our ability to infer brain-wide activity. Because predic-
tion involves knowledge of data covariance, this question could not be
answered by tiling sequential recordings over limited fields-of-view,
which would lack simultaneity. Nor could it be answered by global
recordings at a coarse-grained level because they lack cellular
resolution.

Calcium imaging comes with common caveats that should be
considered when interpreting our results. As with other linear
microscopy techniques, the depth penetration of OPM is limited by
optical scattering, which prevents us from recording cells in dense
nuclei and ventral most areas of the brain below 400–500 μm, such
as the ventral hypothalamus (see Supplementary Figs. 4-7). The
temporal resolution of our recordings is limited by the dynamics of
the sensor (~4 s decay time for the sensor used here), limiting us to
statements about slowly varying activity. With faster sensors for
calcium69, neurotransmitters70,71, or voltage72, blazed OPM could be
operated at higher speeds, constrained mainly by the desired
exposure time and camera frame rate. Future studies might then be
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Fig. 5 | Scale-invariantdistortionofneuronalpopulationgeometry. aSchematic
of dimensionality reduction (here: from 3D to 2D), which can distort the geometry
of the original data. bDistortion as a function of predictor number, for subsampled
cells or subsampled 50μm voxels. c Comparison between cell and voxel distortion
across predictor numbers in b, voxel sizes (50μm, 100μm, 150μm) and animals.

d Similarity as a function of predictor number, for subsampled cells or subsampled
50μm voxels. e Comparison between cell and voxel similarity across predictor
numbers in d, voxel sizes (50μm, 100μm, 150μm) and animals. Source data are
provided as a Source Data file.
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able to extend our analysis to the subsecond range and also study
the interdependence between spatial and temporal resolution when
predicting brain-wide activity.

Methods
Ethical Statement
All animal experiments conformed to Berlin state, German federal, and
European Union animal welfare regulations and were approved by the
LAGeSo, the Berlin authority for animal experiments.

Optical setup
Our design consists of three 4 f imaging systems. As the primary
microscope objective (Obj1) facing the specimen, we employ either a
10x (f = 10mm,NA=0.5, water-immersion, CFI Plan Apochromat 10XC
Glyc) or a 16× (f = 12.5mm, NA =0.8, water-immersion, 16X CFI LWD
Plan Fluorite, Nikon) objective lens. The excitation laser (06-MLD,
488 nm, Cobolt) hits a scanning mirror (SMX, 6mm, 8315 K, Cam-
bridge Technology) and is subsequently reflected into themicroscope
via a pick-off mirror (PM). The center of SMX is imaged onto the back-
focal aperture (BFP) of Obj1 - via two 4-f systems (L1-L2, L3-L4, all
TTL200MP, Thorlabs Inc., f = 200mm). SMX is positioned off-axis in
order to create the oblique plane. A fast-scanning SMX, therefore,
creates an oblique light sheet within the specimen, exciting fluores-
cence. The laser beam forming the light sheet had a waist of
ω10x = 7.9μm and ω16x = 7.3μm (excitation NA ~0.033) resulting in a
calculated Rayleigh range of 400μm and 350μm respectively. The
angle of the oblique plane in the specimen was φ10x = 21° and
φ16x = 33°. This oblique plane is then imaged onto the intermediate
imaging plane of Obj2 (CFI Plan Apo Lambda 10X, f = 10mm, NA =
0.45) at an angle of θ = 27°.

If the intermediate image plane of an OPM is brought to lie co-
planar to the oblique surface of the faceplate (FP, custom-made,
material: 24AS, Schott AG, ncore = 1.81, ncladding = 1.48, NA 1.0, dia-
meter 2.5 μm, core-cladding ratio 0.7, cut angle α =35�), single
fluorescence foci are coupled into the individual fibers of the FP. The
FP material was chosen as the one with the smallest available glass
fiber pitch. The opposite end of the FP can then be imaged onto a
camera (CB262CG-GP-X8G3, Ximea, pixel pitch = 2.5 μm, 5120 ×5120
pixel) by the collection imaging system consisting of an objective
(Obj3, CFI Plan Apo Lambda 10×, f = 20mm, NA = 0.45) and a
tube lens (L5, XLFLUOR 4X, f = 45mm, NA = 0.28, Olympus). The
effective magnification of 2.25 guarantees that each fiber is imaged
at the Nyquist criterion.

Volumetric imaging is enabled by a second galvanometric mirror
(SMY, 25mm diameter, 6240H, Cambridge Technology), which is
conjugated to the BFP of the primary objective and allows to scan the
light sheet throughout the specimen and to de-scan the emission light
onto the static intermediate image plane. The synchronization of
scanning and camera image acquisition are controlled via custom
software (Python) and a data acquisition card (NI USB-6363, National
Instruments).

All camera images are recorded with an exposure time of 3ms
with an additional read-out time of 0.145ms. Our camera has a 10-bit
range at the read-out layer. The acquired data is mapped onto a 8-bit
range before being transferred to the host computer using a custom
linear LUT that fixes the gain to around 5e−/count.

To reach a desired optical resolution, fiber diameter and pixel
size need to be chosen accordingly, considering the Nyquist sam-
pling limit. The fiber pitch should be chosen to fulfill p ≤M·r/2, where
p is the fiber pitch, M is the magnification from the sample plane to
the faceplate surface and r is the size of the smallest object to be
resolved. Similarly, the camera pixel size and the magnification of
the tertiary imaging system should be chosen such that the magni-
fied fiber pitch on the camera surface corresponds to ~2x the pixel
pitch or more.

Characterisation of image transfer efficiency
In order to characterize the efficiency of FP-based image transfer, we
used a fiber-coupled green laser (532 nm, MGL-DS-532, CNI, coupled
via P3-405BFC, Thorlabs). The output of the fiber was then collimated
using amicroscope objective (2X, 0.1 NA, 56.3mmWD, Thorlabs), with
the same 20mm back focal aperture diameter as objective Obj2. This
collimated output was then coupled into the system at the back focal
aperture of Obj1. The intensity of the resulting laser focus at the
intermediate imaging plane was measured using our tertiary imaging
systemwithout the FP (coaxially aligned with the incoming beam). We
then inserted the FP andmeasured the intensity of the light as it would
be imaged with blazed OPM. The tertiary imaging system was posi-
tioned such that the laser was spread out over multiple fiber cores at
the front of the FP to ensure that themeasured efficiency accounts for
the fill fraction and related losses.

Characterisation of resolution
Fluorescent beads (diameter 1μm) were dispersed in a poly-
acrylamide gel between a glass slide and a coverslip, separated by a
silicon spacer. A stack of thewhole accessible image volumewas taken.
The stack was then processed as described below, but not decon-
volved. The stack was thresholded at the 99.99th percentile and all
connected components were segmented out within a ROI of 33 × 33 ×
303 μm3 (X × Y × Z) For the quantification of the lateral resolution each
ROIwasmaximum intensity projected along z. The lateral resolution in
x and y were determined as the full width at half maximum (FWHM) of
the Gaussian fit through the line plot along the maximum of this pro-
jection. For each bead the axial sectioning capability was determined
as the FWHMof the Gaussian fit of the sum of all pixel values along the
XY planes. Beads were randomly distributed in space, andwith respect
to fiber facets.

Post-processing
After the data is acquired we execute several post-processing steps.
For every acquired frame, the camera background is subtracted and
multiplicative FP artefacts are corrected. FP artifacts stem from (a) a
mild Moire pattern due to the alignment between fiber faces and
camera pixels and (b) dust or surface defects. To correct for these
artifacts, a reference grid image is obtained by imaging a homo-
geneously fluorescent object or homogeneously illuminating the input
face of the FP with a green LED and recording a correction pattern on
the camera. The image is normalized to a maximum value of 1 and
clipped to contain values ≥0.5 (to avoid dividing by small values,
where dark pixels in the middle of a surface defect likely contain no
information). Each camera frame is then corrected by dividing the
background-subtracted frame by the correction pattern.

Each volume

Ishearðx,y0,z0Þ=
XNx

i= 1

XNy0

j = 1

XNz0

k = 1

δ x � ið Þ � δ y0 � jð Þ � δ z0 � kð Þ � Iijk ð1Þ

is natively recorded in a sheared coordinate systemby ourmicroscope
and needs to be unsheared for convenient analysis. Here δ x � ið Þ is the
Dirac delta function and Iijk are the measured image intensity values.
During this process, we simultaneously execute two other steps: (1)We
axially bin our volumes along z = z′ since the effective pixel pitch of the
camera (dz’=0.73μm) is smaller than the axial resolution. (2) We
upsample the volume along the y-direction to 1μm from the native
sheared Y’-direction, which is originally sampled at 3.5μm. This is
necessary and beneficial since the projection of the microscope PSF
onto the sheared Y’, a mixture of axial and lateral resolution, is larger
than onto the Y. During unshearing we can therefore recover inter-
mediate Y planes through interpolation.
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This is done by computing the unsheared upsampled and axially
binned volume at a new coordinate grid with voxel size
0.75 × 1.0 × 4.5μm3 (XYZ) by using the following interpolation kernel.

Iðx,y,zÞ= 1
2

Z
Ishear x,y0,z0ð Þtri z0 � z

s

� �h�
tri y� y0 � sz0ð Þ

+ tri y� y0 + 1� sz0ð Þ�idydz
ð2Þ

Here, triðxÞ= maxð0,1� xj jÞ and s is the slope of the oblique plane.
Lastly, in the case of neuro-imaging data, we deconvolve the data using
10 iterations of Richardson-Lucy deconvolution. The kernel was
empirically estimated froman average of previously imaged fluorescent
beads. The number of iterations of RL deconvolution depends on signal
to noise ratio and was manually set after visual inspection.

Neuroimaging
Danionella cerebrum (DC) were kept in commercial zebrafish aquaria
(Tecniplast) with the following water parameters: pH 7.3, conductivity
350 µS/cm, temperature 27 ◦C. We used adult male DC, expressing an
histone-tagged (nuclear-localized)73 GCaMP6s pan-neuronally
(HuC:H2B-GCaMP6s x tyr -/-), created by Tol2-mediated transgenesis
as described in ref. 14. Fishwere placed on a pre-formed agarosemold,
which allowed the gill covers to move freely, and immobilized with 2%
lowmelting point agarose. A flowof fresh, aerated aquariumwaterwas
delivered to their mouth. They were allowed to recover from anes-
thesia for 15min prior to experiment onset. After experiment onset the
intensity of the excitation beamwas gradually increased over 2min up
to a final power of ≈5.3mW after the imaging objective to allow for
slow habituation. The beam was scanned through one plane in 3ms
and coincidedwith the 3ms sensor exposures. Recording and read-out
of one plane took 3.1ms. We could therefore image 332 planes span-
ning 827.5μm at 1 Hz volume rate. After post-processing and un-
shearing (which involves upsampling along Y and binning along Z) the
datasets consisted of volumeswith a size of 3024 × 960× 144px (XYZ).

Image registration
In order to analyze time-lapse recordings of whole-brain imaging
datasets all volumes had to bemotion corrected. One volume from the
recording was selected as the template, on which all other volumes
were registered. Before estimation all volumes were band-pass filtered
with a difference of Gaussianfilter (σ0 = 2 px,σ1 = 5 px) to enhancehigh
frequency features and exclude residual grid artefacts introduced by
the face plate. The registration consisted of the estimation of an affine
and a non-rigid transformation from estimates of locally rigid dis-
placements. Practically, each volume was chunked into non-
overlapping blocks and the three dimensional rigid displacement for
each block was then determined via cross-correlation.

In the first iteration, a global affine transformation was fitted
onto the obtained coarse displacement field with a blocksize [604
px, 192 px, 28 px] (XYZ). After correction of the coarse affine warp,
the volume was again divided into smaller blocks of [32 px, 32 px, 16
px] (XYZ) to estimate a better resolved displacement field. From this
field, a full non-rigid displacement field was then obtained via
interpolation. Finally, the compound transformation consisting of
affine and non-rigid transformation was applied onto the original
volume using linear interpolation.We identified time points at which
registration failed despite motion correction by thresholding the
derivative of the registration metric (global Pearson correlation) at
1.5 standard deviations. These time points were excluded from
subsequent analyses.

Segmentation and calculation of ΔF/F
To identify cell nuclei we used local maxima detection of the local
correlation12,13. Specifically, we computed the local correlation of voxels

with their 26-connectivity surroundings. The resulting map was con-
volvedwith a 3Ddifference of Gaussians kernel (σ0 = 1 px,σ1 = 4 px).We
then detected the local maxima within spherical neighborhoods (⌀
5μm), that roughly corresponded to the size of the cell nuclei. The
detected maxima were then globally thresholded based on visual
inspection. The temporal traceof the remainingpointswas extractedby
calculating the mean of a Gaussian footprint (FWHM=5μm) centered
at every point. For every trace a baseline was computed by con-
secutively filtering with amedian (7 s), minimum (101 s), and a Gaussian
filter (σ = 101 s). The ΔF/F was then computed with respect to this
baseline and centered. To reject noise traces we used a spectral SNR
criterion based on the fact that shot noise is broad-band and signals
tend to have more power in lower frequencies (we calculated the ratio
between average power at <0.25Hz and average power at ≥ 0.25Hz; we
set the inclusion threshold to ≥ 1.3). To filter out artifacts fromcells near
the edge of the FOV that are not visible in all frames due to the global
motion of the fish, we removed traces with dF/F values outside the
range −100%…2000%. This data was used for all subsequent analyses.

When showing traces in a 2D plot (also called “Rastermaps”74), we
used 1D Ward clustering to arrange traces by correlation.

Spatial scale of correlations
For each recording of n cells, we calculated the n×n matrix of pairwise
correlations, the n×n matrix of pairwise distances between their
coordinates (each matrix containing data from n·(n−1)/2 unique non-
identical pairs) and determined the average correlation value for each
distance bin.

To create the local neighborhood correlationmaps, we calculated
thepairwise correlation between a cell and the average activitywithin a
50μm distance from this cell—excluding cells closer than 25μm, a
conservative threshold to avoid possible influence from optical
cross-talk).

Prediction of brain-wide activity
All predictions of cellular activity were based on cross-validated
multivariate regression. To cross-validate, we split the data along the
time dimension into a training dataset (60% of time points), a held-
out validation dataset (20% of time points) and test set (20% of time
points). For every block of 5minutes, we assigned the first 3minutes
to training data, followed by 1min validation data and 1min test
data. We further split data along the cell dimension, randomly
selecting 10% of all cells as target cells, and using the remaining
90% of cells to create predictors. This analysis was repeated for
each fish.

In principal component regression, predictors consisted of
principal components of the training dataset. To create predictor
voxels, we discretized the brain into non-overlapping cubic bins,
averaged all cellular training dataset activity assigned to a bin, and
considered all non-empty bins as potential predictors voxels. For
Fig. 4b, c, we considered all non-empty predictor voxels and only
varied the spatial scale of discretization. For Fig. 4d we varied both
voxel size and predictor number, by random sampling among all
potential predictor voxels.

With the exception of principal component regression, we used
linear Ridge regression, predicting target cell activity as
Ypredicted =Xtest=validationðXT

trainXtrain +αIÞ
�1
XT
trainY train (X and Y are

matrices of shape timepoints × predictors and timepoints × targets, I is
the identity matrix) via double cross-validation.

Wedetermined the regularizationparameter ɑ via cross-validation
between training and validation dataset and used this parameter in a
second cross-validation step between training and test dataset. In case
in which we did not de-couple the voxel size from the predictor
number we scaled eachpredictor dataset by a global factor to have the
same average standard deviation as the raw dataset to avoid setting
individual ɑ parameters for different predictors. The variance
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explained per target cell was calculated as R2 = 1� SSres
SStot

, where SSres
corresponds to the sum of squares of the residuals
(ypredicted � ytest=validation) and SStot corresponds to the total sum of
squares of the held out data.

Random selection of 10% target cells (without replacement), and
prediction of their activity was repeated until all cells were covered.
This process was in turn repeated 10 times with new random seeds,
resulting in 100 batches. Brain-wide explained variance was calculated
as the variance-weighted average of cellular R2 values, averaged across
all batches.

Calculation of distortion and similarity measures
The dF/F traces of each recording constitute a t ×n matrix X . We fol-
lowed the general rationale of computing a t × t dimensional pairwise
distancematrixD between the t timepoints by randomly selecting 50%
of the population of cells. We then compared thismatrix with a second
distance matrix Dred computed from a subset of voxelised traces
belonging to the held-out 50% of the population.

For the distortion measure we computed matrices D and Dred by
computing the pairwise Euclidean distance of all t timepoints in
n=2-dimensional space. The distortion stress was then calculated asP

D� kDred

� �
2=

P
D2. Here k was the least-squares estimate of the

global scalar parameter obtained for each embedding.
In case of the representational similarity we computed D and Dred

as the Pearson correlation between the population vectors of all t
timepoints in n=2-dimensional space.We then computed the similarity
as the Pearson correlation between D and Dred .

Statistics & reproducibility
Werecorded froma total of ~150kneurons across6animals. Thenumber
of cells corresponds to the total number of cells detected (seeMethods).
The sample size was chosen based on the standards in the field. Time
points in which motion could not be corrected were excluded from the
analysis. We reproduced our findings across all experimental animals.
Randomization was used to create a control dataset in Fig. 4. There was
no group allocation which needs to be randomized. Therewas no group
allocation which would have required blinding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed calcium imaging data (activity traces and coordinates of
segmented cells) have been deposited in the G-Node at: https://gin.g-
node.org/danionella/hoffmann_et_al_2023 Source data are provided
with this paper.

Code availability
Code used for data analysis is available on GitHub at: https://github.
com/danionella/hoffmann_et_al_2023.
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