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A colloidal viewpoint
on the sausage catastrophe
and the finite sphere packing problem

Susana Marín-Aguilar 1 , Fabrizio Camerin 1,2 , Stijn van der Ham 3,
Andréa Feasson3, Hanumantha Rao Vutukuri 3 & Marjolein Dijkstra 1,2

It is commonly believed that the most efficient way to pack a finite number of
equal-sized spheres is by arranging them tightly in a cluster. However, math-
ematicians have conjectured that a linear arrangement may actually result in
the densest packing. Here, our combined experimental and simulation study
provides a physical realization of the finite sphere packing problem by
studying arrangements of colloids in a flaccid lipid vesicle. Wemap out a state
diagramdisplaying linear, planar, and cluster conformations of spheres, aswell
as bistable states which alternate between cluster-plate and plate-linear con-
formations due to membrane fluctuations. Finally, by systematically analyzing
truncated polyhedral packings, we identify clusters of 56 ≤N ≤ 70 number of
spheres, excluding N = 57 and 63, that pack more efficiently than linear
arrangements.

The best way of packing spheres has a long history, dating back to the
works of Kepler, Gauss, and Newton, while the British sailor Raleigh
was also intrigued by this problem as he searched for an efficient way
to stack cannonballs on his ship1. Sphere packings also have applica-
tions in coding theory, wet computing, crystallography, and in
understanding mechanical and geometrical properties of materials2–7.
In 1611, Kepler conjectured that the densest packing of an infinite
number of identical, non-overlapping spheres in three-dimensional
(bulk) conditions is the “cannonball'' stacking or the face-centered
cubic (FCC) crystal, which fills space with an efficiency of ~74%. This
hypothesis was proven mathematically only recently8,9.

In reality, however, all packings are inherently finite, whichmeans
that their extension is limited in space. This raises the question of what
is the most efficient way to pack equally-sized spheres in either a
containerwith a predefined shape10–12, or inside aflexible container like
the smallest convex hull that encloses the spheres13. Surprisingly, the
densest packing of a number of spheres N within their convex hull is
not always a compact cluster of spheres. On the contrary, in 1975 the
mathematician Fejes Tóth conjectured14 that for dimensions d ≥ 5 the

densest packing is the onewhere the centers of the spheres are aligned
along a straight line, resulting in a so-called sausage configuration. This
conjecture, supported by other studies 15,16, was initially proven true
only for d ≥ 1338717 and subsequently for d ≥ 4218. No proof of its gen-
eral validity has thus been reported for lower dimensions.

For d = 4, a sudden transition in the packing density occurs from a
linear to a cluster arrangement, where the coordinates of the particles
extend in all three dimensions, and is typically referred to as the
“sausage catastrophe"19,20. The upper bound of N = 375769 that was
initially assigned to this transition21,22 has been recently reduced to
N = 33819623. For d = 3, different studies reported that the sausage
conformation minimizes the volume of the convex hull for N ≤ 55, and
for N = 57, 58, 63, 6419,24,25, while above this limit the densest config-
uration becomes a three-dimensional cluster, thereby avoiding the
plate conformationwhere the centers of the spheres are positioned on
a plane15,26. However, the precise structure of these clusters, which are
denser than the sausage, remains largely unknown. Furthermore, there
maybeother unidentified clusters thatpresent anevendenser packing
than the linear arrangement.
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Despite its fundamental importance, the finite sphere packing
problem has primarily been studied from a mathematical perspective,
and making an experimental realization, even for a limited number of
spheres, is still a significant challenge. On the other hand, colloidal
hard spheres serve as an ideal model system for investigating particle
packings27–29. By leveraging their excluded-volume interactions and
using an appropriate flexible container, we can explore the various
conformations that the spheres can adopt. In our study, we employ
giant unilamellar vesicles (GUVs), which are effectively large elastic
containers in which colloidal particles can be enclosed13,30–33. The
dynamics of GUVs can be studied using confocalmicroscopy, enabling
direct observation of their shapefluctuations32,34,35. Furthermore, GUVs
possess the ability to alter their shape in response to external stimuli
such as changes in osmotic pressure36–38 and forces exerted by
passive39 and active particles32,40,41. However, experimental realizations
of sausage- and plate-like arrangements remain elusive.

Here, we examine how membrane fluctuations, induced by
Brownian colloidal spheres inside the vesicle, affect the different
vesicle and colloid conformations. Combining experiments on silica or
polystyrene particles enclosed in GUVswith computer simulations, we
demonstrate that colloidal spheres can form stable linear, plate, and
cluster conformations under certain physical conditions. We sum-
marize our results for N ≤ 9 in a state diagram, which displays the
aforementioned conformations of spheres as a function of a single-
order parameter, allowing us to extract information about their
packing. Additionally, we discover bistable states in which the system
alternates between cluster-plate and plate-linear conformations. We
then determine whether the sausage catastrophe can be observed in
finite systems where the spheres are not close-packed, and that
accounts for the entropy of the positional degrees of freedom of the
colloidal particles. Finally, we identify the conditions required to form
finite clusters with high packing efficiency for a large number of
spheres and study them systematically. In this way, we uncover clus-
ters composed of N = 58 and 64 spheres that exhibit better packing
than the linear conformation. As a result, we provide evidence for the
existence of particle arrangements with higher packing efficiency
compared to those previously examined19,25, thereby lending direct
support to Fejes Tóth original conjecture.

Results and discussion
We begin our study by exploring the conformations of N colloids
confined in a fluid vesicle both in experiments and simulations. In
experiments, we use a modified droplet transfer method34 to encap-
sulate colloidal particles of size 2.12 μm in GUVs, drawing inspiration
from a previous work by Vutukuri, et al.32. Next, the vesicles are
exposed to hypertonic shock, where the solute concentration outside
the vesicle is higher than inside, in order to control their morphology
(see Methods). The vesicle morphologies and particle dynamics are
followed by a fast confocal scanning microscope. We note that, while
ref. 32 dealt with self-propelled particles locally deforming the lipid
membrane, here we entirely focus on passive particles. Furthermore,
the vesicles employed in this study significantly differ from oil emul-
sion droplets10, whose surface tension is several order of magnitude
higher than that of GUVs.

In the molecular dynamics simulations, various vesicle shapes are
investigated using a meshless membrane model42,43. In this model,
lipids are represented in a coarse-grained fashion using spheres of
diameter σ, which is also used as the unit of length in our simulations.
The model incorporates orientation-dependent interactions to
account for the properties and interactions of the constituent lipids in
real GUVs. The membrane is designed to have an approximately null
surface tension, similar to the experiments. We use explicit solvent to
control the shape of the vesicle but, differently from the original
model, we only add it to the outer region thus exerting an external
pressure on the membrane. In each vesicle we insert a number of

colloidsN∈ [3, 9] with a diameter of σc = 12σ. The colloids interact via a
repulsive Weeks-Chandler-Andersen (WCA) potential. The use of a
WCApotential insteadof a hard-sphere potential enables the system to
be treated with molecular dynamics simulations, which can be fully
implemented into efficient simulation packages like LAMMPS44. Addi-
tional details on the simulations and the interaction potentials are
provided in the Methods section.

In both experiments and simulations, the size (and therefore the
surface area) of the vesicle is adjusted depending on N. We observe
that state points obtained from simulations and experiments encom-
pass a wide range of packing fractions η =NV0/Vv ≈0.12 −0.28 for the
colloids in the vesicle (see Fig. S1), withV0 representing the volumeof a
colloid and Vv the volume of the vesicle. The latter is estimated by
generating the surface mesh of the vesicle45,46, which allows us to
directly extract the value of the volume enclosed within the meshless
membrane (see Supplementary Information). The range of investi-
gated packing fractions should be related to η≃0.7 of the tightest
sausage configuration. To compare vesicles with different surface
areas as obtained in simulations and experiments, we introduce the
reduced volume ν, which is the ratio between the volumeof the vesicle
Vv and the volume of a sphere Vs with the same surface area as the
vesicle Av:

ν =
Vv

Vs
=3

ffiffiffiffiffiffi
4π

p Vv

A3=2
v

: ð1Þ

The parameter ν takes values between 0 < ν ≤ 1, with ν = 1 corre-
sponding to a spherical vesicle47. From the definition of the reduced
volume ν, it can be deduced that vesicles with the same number of
colloids N and surface area Av will have a higher colloid packing frac-
tion η when the value ν is lower. To obtain ν in simulations, we
determine the surface area of the vesicle, Av, by constructing a surface
mesh around it, similar to the approach used for Vv

45. On the other
hand, in experiments, these values are extracted from the xyz confocal
data using an ImageJ plugin (see Methods and Supplementary Infor-
mation). Each colloid conformation is characterized by the anisotropic
shape parameter κ2 = 3ða2

x +a
2
y +a

2
z Þ=2ðax +ay +az Þ2 � 1=248, deter-

mined by calculating the eigenvalues ax, ay, az of the diagonalized
gyration tensor, which is constructed from the x, y, and z coordinates
of the colloidal particles. This proves particularly effective in distin-
guishing linear conformations, characterized by κ2 ≳0.5, planar
arrangements, indicated by 0.2≲ κ2≲0.3, and clusters with a more
isotropic shape, represented by κ2 ≈0.

In Fig. 1(a), we summarize our results both from experiments and
simulations in a state diagram as a function of ν and number of colloids
N∈ [3, 9]. We use different symbols to denote different colloid con-
formations as identified by κ2, encoded in the color coding, and visual
inspection. The orange dashed line represents the reduced volume
corresponding to the optimal linear packing where all spheres are in
contact, i.e. a spherocylinder of length (N − 1)σc and radius σc/2 for
which νlin(N) = (4/3 + 2(N−1))/(4/3N3/2). We note that by employing the
reduced volume ν, the state diagram becomes independent of vesicle
size. For each N, we identify different regions denoted by different
shades of blue where the linear, planar, and cluster configurations are
prevalent. Figure 2 displays these arrangements, featuring composite
bright-field and confocal microscope images, as well as simulation
snapshots. Movie S1 shows the linear arrangement for N = 9 both for
experiments and simulations. Upon increasing the number of colloids
N, wefind that the linear conformation becomes stable in awider range
of ν, whereas for N > 9 elongated vesicles exhibited excessive bending
in both experiments and simulations. In all cases, we find cluster
conformations for ν > 0.9, plate conformations for intermediate ν, and
linear arrangements for the lowest ν. The state diagram shows good
agreement between experimental findings and simulation results.
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Additionally, we find bistable regions due to the combined
membrane, shape, and solvent fluctuations driven by the colloids
inside the vesicle. These regions are identified in simulations by cal-
culating the order parameter κ2 as a function of time. Fig. 1(j,k)
demonstrate bistability between linear-plate and plate-cluster con-
formations, respectively, for N = 4, where we can clearly see that the
order parameter κ2

fluctuates between the values corresponding to the
different conformations. We denote these bistable state points as left
and right green triangles in the state diagram in Fig. 1(a). Fig. 1(b–i)
show time-lapse snapshots of a bistable state point in both experi-
ments and simulations, where we observe that a vesicle in an initial
planar configuration transitions to a linear conformation (Movie S2).
The transition is reversible as the colloids return to a planar con-
formation at longer times. To highlight the robustness of ourmethods,
we convincingly demonstrate the transition of the particles from a
linear arrangement to a clustered state both in simulations and
experiments. This transition is achieved by precisely controlling the
surface area-to-volume ratio of the vesicle through osmotic imbal-
ances across the membrane, as depicted in Fig. S3 and Movie S3.

As mentioned earlier, the reduced volume ν also provides insight
in the packing behavior of the colloids when the surface area of the
vesicles remains constant. Although it is challenging to meet this
requirement in experiments at fixed N, in simulations the surface area
values for the vesicles remain nearly constant for a given N (see
Table S1). As a result, our in silico realization of the finite sphere
packing problem unequivocally confirms that packing efficiency is
maximized in the linear conformation when compared to the plate or
cluster arrangements, as evidenced by the consistently lower values of
ν observed across all values ofN. To emphasize this aspect, we present
a state diagram in Fig. S1 that explicitly reports the packing fraction for
the state points analyzed in the simulations. We also note that the
packing efficiency significantly increases as the number of colloids
enclosed within the flexible container increases.

In this way, we have determined the physical conditions that
allow the observation of linear, planar, and cluster conformations of
N∈ [3, 9] hard-sphere colloids in a flexible vesicle. However, the

number of colloids is rather limited, not only due to the significant
bending of the vesicles but also because of computational con-
straints. This number is notably lower than the number of colloids
predicted to result in the sausage catastrophe, which is anticipated
to occur at N = 56 for d = 3. We, therefore, investigate by means of
simulations the possibility of observing the sausage catastrophe in a
flexible vesicle and identifying cluster conformations of spheres that
pack better than the linear arrangement.

To this end, we place N∈ [10, 150] colloids in a spherical vesicle
that surrounds the colloids as tight as possible without breaking the
layer of beads composing the vesicle, and resulting in a packing frac-
tion η ≈0.4. We perform simulations of the colloids in the vesicle, and
collect the different cluster conformations. For these simulations we
use the same parameters as those employed in the first part of this
study, which are further described in theMethods section. The sizes of
the vesicles used in the simulations are provided in Table S2. In addi-
tion, we also consider dense clusters taken from a database49. These
clusterswereobtainedbyminimizing the energy of systems composed
of Lennard-Jones (LJ) particles. In this way, we have at our disposal a
large variety of clusters ofwhichwe canassess their characteristics and
investigate their packing. After implementing an optimization proto-
col to approach the hard-sphere limit, we determine the colloid
packing fraction for both data sets as ηch =NV0/Vch, where Vch is the
volume of the convex hull that encloses the colloids. This numerical
protocol complements the analysis just presented on the flexible
vesicle. In fact, besides being able to explore states with a larger
number of colloids, by using ηch we effectively study the packing
fraction of the tightest possible container, and thus compare it to the
ideal linear packing fraction ηlin obtained from the volume of a
spherocylinder with N particles (see Supplementary Information). In
contrast, achieving states with a very high packing fraction experi-
mentally would be significantly more challenging. This is because it is
not feasible to directly manipulate the volume-to-surface area ratio to
tightly enclose the colloidal particles within the vesicles. Additional
information regarding the optimization protocol and the construction
of the convex hull can be found in the Supplementary Information.

Fig. 1 | Colloidal realization of the finite sphere packing problem. a State dia-
gram of colloidal hard spheres enclosed in GUVs as a function of the number of
colloids N and the reduced volume ν. Different symbols denote different colloid
arrangements, according to the legend. Blue-shaded symbols are numerical state
points colored according to the anisotropy shape parameter κ2, green symbols
indicate numerical bistable state points, andorange symbols areexperimental data.
The error bars represent the standard deviation of the experimental data points
combined with an image analysis error (see Supplementary Information). The

orange line corresponds to νlin(N), while the blue lines are guides-to-the-eye for
identifying the regions where linear, planar, and cluster configurations are pre-
dominant. b–i Sequence of time-lapse images obtained from 2D composite con-
focal and bright-field microscopy, and representative simulation snapshots
revealing abistable line-plate state point. The scale bar is 5μm. j,k κ2 as a functionof
simulation time t/τ for bistable plate-linear and plate-cluster states, respectively,
where τ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p
represents the unit of time in simulations (see Methods).
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We report the packing fraction ηch of the simulated clusters and
those from the database in Fig. 3(a) as a function ofN. We indicate with
a vertical dashed line the number of particles N at which a cluster,
according to literature19,20,25, is expected to exhibit a higher colloid
packing fraction ηch than the linear conformation, which is referred to
as the sausage catastrophe. For comparison, we also plot ηch of ico-
sahedral clusters for varying N, as these structures are expected to
pack locally very efficiently12,50. Surprisingly, we observe that all the
clusters studied have a lower ηch than the linear conformation,with the
exception of two icosahedra with N > 100, which have slightly higher
packing fractions than the linear conformation. We thus find that only
icosahedral clusters with particle numbers N much larger than where
we expect the sausage catastrophe to occur pack better than the linear
conformation.

Additionally, we observe that the clusters obtained from simula-
tions generally exhibit a similar colloid packing fraction ηch compared
to the clusters from the database. However, it is worth noting that only
a few clusters exhibit significantly higher packing fractions than the
others, thus approaching the linear packing. As shown in Fig. 3(b),
many of these clusters exhibit a high bond-orientational order para-
meter q651 compared to the others. This indicates the presence of an
underlying FCC crystalline order in their arrangement as q6 serves as a
measure of the six-fold symmetry within the cluster. As an example, let
us consider the cluster withN = 38 taken from the database (see Figs. 3

and S8). This cluster has been previously identified as a minimum-
energy configuration of the LJ potential and has been found to be
stable for a wide range of LJ parameters49,52. This specific cluster has a
truncated octahedral shape based on an FCC arrangement, which
allows for the presence of regular two-dimensional patterns on its
surfaces.

Based on these findings, we anticipate that clusters surpassing the
linear packing will exhibit similar characteristics to the previously
analyzed cluster. Specifically, we expect them to maintain an FCC
structure and display regular patterns on their surfaces. Therefore, in
the subsequent part of our study, we examine a number of ordered
arrangements in which the spheres are in contact. Furthermore, we
also present a similar analysis for other representative Barlow stacking
arrangements of spheres53–55, such as hexagonal close packing (HCP)
(see the Supplementary Information). Our findings demonstrate that
these arrangements generally provide less efficient packings com-
pared to the FCC.

We start by analyzing the packing fraction ηch of two-dimensional
planar structures, as reported in Fig. 4(a) together with the packing
fraction of the linear arrangement, the sausage, for clusters with
varying number of particles N. The triangular and hexagonal con-
formations exhibit packing fractions that approach that of the linear
arrangement for small N. However, as N increases, ηch decreases
rapidly until it reaches a plateau at around ηch ≈0.60, which is lower

Fig. 2 | Linear, planar and cluster conformations for colloids in a vesicle.
Experimental images obtained through a combination of bright-field and confocal
microscopy, along with simulation snapshots, representing cluster, plate, and

linear configurations. The insets provide schematic representations of the cluster
arrangement observed in experiments. The scale bars in all experimental images
are 5 μm.
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than the packing fraction of the sausage conformation. As expected, a
square arrangement of spheres display a significantly lower packing
fraction than that of the triangular and hexagonal conformations, and
thus also of the linear conformation. The fact that two-dimensional
structures exhibit an ηch well below that of the linear arrangement is
consistent with previous work which demonstrated that the optimal
packing can only be achieved with either one- or three-dimensional
conformations, i.e. in linear or cluster arrangements,
respectively15. Nonetheless, based on the state diagram presented in
Fig. 1(a), we expect that planar conformations would remain stable
even for a large N.

Subsequently, we turn our attention to three-dimensional
clusters. We start with some of the simplest polyhedra such as
tetrahedra, octahedra and bipyramids. To explore a large variety
of clusters, we consider polyhedra of different sizes constructed
by slicing a close-packed FCC crystal, and perform subsequent
cuts to the vertices of all shapes. We use the notation Xk

n, where
X = T, O, B for tetrahedra, octahedra or bipyramids, respectively, n
represents the number of particles removed from each vertex, and
k denotes the number of vertices fromwhich particles are removed
(see also Supplementary Information). We simply use Xn for iso-
tropic cuts.

In Fig. 4(b), we show the convex-hull packing fraction ηch and
typical configurations for regular and for some sliced tetrahedra T1, T4,
and T10. For N = 4, ηch of the regular tetrahedron is very close, but
slightly lower, to that of four spheres on a line. As the number of
particlesN increases, the colloid packing fraction ηch initially decreases
until it reaches a minimum value. Subsequently, it crosses the packing
fraction of the line at N = 84, which is much higher than where we
expect to find the sausage catastrophe. We observe that by removing
particles from the vertices ηch increases, but the cluster with the lowest

number of particles that packs better than the sausage is the T4 con-
sisting of N = 68 colloids.

Similarly, Fig. 4(c) reports ηch for regular and regularly truncated
octahedra O1, O5, and O10 with corresponding configurations. In con-
trast to tetrahedra, octahedral clusters show a decrease in ηch as more
particles are removed from the vertices, and the crossover to the
packing fraction of a sausage occurs at larger N. In general, ηch for
octahedra is lower than that of tetrahedra, particularly for N < 50. The
truncated octahedra with the lowest number of particles that packs
more efficient than the linear conformation is the O1 with
N = 79 spheres.

Subsequently, we analyze how the packing is affected by an
asymmetric removal of spheres from regular tetrahedraT, octahedraO
and bipyramids B, i.e. by removing a different number of spheres from
each vertex or layer of the polyhedra. Specifically, we focus on the
region close to the value of N where the sausage catastrophe was
predicted to occur. We present the results in Fig. 4(d) as a function of
N, with filled symbols denoting tetrahedra, octahedra and bypiramids
whose packing fraction exceeds that of the linear arrangement (see
also Figs. S9–S11 and interactive HTML files provided as Supplemen-
tary Data 1). While the mathematical requirements for tetrahedra and
bipyramids to form clusters denser than the sausage have been
established25, such a prediction has not been made for octahedra.
Remarkably, we observe that in this range ofN only polyhedral clusters
that are sliced asymmetrically pack denser than the sausage. In parti-
cular, we note that two clusters, one with N = 58 and the other with
N = 64, which were previously believed to have optimal packing in the
linear conformation25, actually exhibit better packing efficiency than
the sausage conformation. Our results further indicate that regular or
regularly cut polyhedra are generally not the arrangements that max-
imize the packing efficiency. Furthermore, we observe no specific
correlations between different structural elements of the clusters that
can directly influence packing, such as the number of faces, edges, or
vertices (see Table S3). It appears that better packing results from
nontrivial combinations of all these elements, with each contributing
marginally to minimize the available volume.

In conclusion, our study sheds new light on the finite sphere
packing problem and provides valuable insights on the most efficient
methods for packing a finite number of spheres in a closed, flexible
container. We demonstrate that a low-tension vesicle can serve as a
model system for studying linear, planar, and cluster configurations
formed by a small number of colloidal hard spheres. By constructing a
general state diagram based on a single-order parameter describing
the reduced volume of the vesicle, we can differentiate between stable
and bistable states, and demonstrate how for such systems a linear
arrangement of colloids always presents a better packing than other
configurations. Our simulation predictions are consistent with the
experimental observations. Beyond addressing the finite sphere
packing problem, ourfindings have broader applications. For instance,
the encapsulation of a limited number of spheres within a vesicle
provides a strategy for pre-assembling building blocks that could be
used to construct larger, more intricate structures56,57, with potential
applications such as the enhancement of plasmonic properties in
metamaterials58. Moreover, our methodology can be adapted to other
building blocks like dimers, trimers, or tetramers, drawing inspiration
from existing techniques that use patchy interactions or emulsion
methods to realize these clusters10,59–61.

Subsequently, our simulations predict that simply packing
spheres within a vesicle does not result in configurations with higher
packing fractions than the linear arrangement, even when using a lar-
ger number of particles. However, upon closer examination of the
structure and arrangement of the particles,wefind that higher packing
fractions can only be achieved with faceted, ordered clusters, such as
with truncated tetrahedra, octahedra, or bipyramids in the region
where the sausage catastrophe occurs. Our systematic investigation of

Fig. 3 | Colloidal clusters enclosed in a vesicle. a Packing fraction ηch of clusters
composed of particles in the hard-sphere limit whose initial configurations were
taken from simulations (sim, triangles) and from a database (db, circles), plotted as
a function of the number of particles N. The packing fraction of the ideal linear
conformation ηlin(N) is depicted as an orange line (lin), along with the packing
fraction of icosahedra (ico, stars). The inset snapshot displays the N = 38 cluster
obtained from the database. b Bond-order parameter q6 as a function of N for the
clusters as obtained from simulations and the database, as shown in (a).
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these clusters with various shapes has allowed us to directly prove,
with a practical approach inspired by the physics of colloids, the
existence of previously unidentified clusters that exhibit a packing
efficiency that is superior to the sausage configuration, highlighting
how finite sphere packing is still an open and intriguing problem.
Nevertheless, it remains to be determined whether mathematical
proofs can be developed for the packing of these clusters and for the
entire Fejes Tóth conjecture. We believe that our work can serve as a
catalyst for further research in this direction. From a computational
perspective, we envision the development of cluster generation tech-
niques, either through conventional or machine-learning methods62.
Such approaches could expand the exploration of even more config-
urations and different Barlow stacking arrangements of spheres.
Finally, while creating these clusters by enclosing spheres within a
flexible vesiclemay not be feasible, they could potentially be observed
in systems characterized by strong attractive interactions, such as in
gold nanoparticles and platinum clusters 63–66. Experimental investi-
gations into these complexes, as described in this work, have the
potential to provide a definitive realization and demonstration per-
taining to the fascinating problem of finite sphere packing.

Methods
Experimental section
Materials. All chemicals, unless otherwise specified, were used as
received. 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and

fluorescent 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lis-
samine rhodamine B sulfonyl) (ammonium salt) (Liss Rhod PE) in
chloroform were obtained from Avanti Polar Lipids (Alabaster, AL).
Chloroform (≥99.5%), paraffin oil, (heavy) mineral oil, glucose, and
sucrose were obtained from Sigma Aldrich. Silica microparticles
with a diameter of 2.12 μm were procured from Microparticles
GmbH. We synthesized polystyrene particles that were sterically
stabilized with poly-vinylpyrrolidone (molecular weight Mwt =
40,000 kg/mol) and fluorescently labeled with rhodamine iso-
thiocyanate, using the method of Song et al.67. After the synthesis,
the particles were washed several times and re-dispersed into Milli-
Q water. The particle size was 2.0 μm with a size polydispersity of
3%, as determined using static light scattering and scanning elec-
tron microscopy. A solution containing 10 wt.-% polyacrylamide
(PAM) (MW 700,000 - 1,000,000) in water was obtained from
Polysciences Inc.

Vesicle preparation protocol. Lipid oil solution (LOS) was prepared
using either paraffin oil or mineral oil, following the adapted protocol
by Vutukuri et al.32. In both cases, 1,2-dioleoyl-sn-glycero-3-phos-
phocholine (DOPC) and fluorescent 1,2-dioleoyl-sn-glycero-3-phos-
phoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium
salt) (Liss Rhod PE) were diluted in chloroform to final concentrations
of 12 mg/mL (15 mM) and 0.2 mg/mL (0.15 mM), respectively, and
stored at − 20 °C until use.

Fig. 4 | Packing of ordered arrangements of colloids. Packing fraction ηch of
clusters consisting of spheres enclosedwithin their convex hull as a function of the
number of particles N for a planar arrangements, b regular and regularly truncated
tetrahedra Tn, with n the number of particles removed from each vertex, c regular
and regularly truncated octahedra On, and d for a range of irregularly truncated
tetrahedra T, octahedra O and bipyramids B, as indicated in the legends in each
panel. The orange line represents the packing fraction of the linear arrangement of

spheres ηlin(N). In d, open symbols represent irregularly truncated tetrahedra
and octahedra with ηch < ηlin (↓), while closed symbols indicate cases where
ηch > ηlin (↑), including bipyramids. Each panel is accompanied by example clusters,
where the original non-truncated configuration is shown with transparent spheres.
Dotted arrow lines are used to facilitate the identificationof certain clusters that are
mentioned in the text.
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Toprepare the LOS inparaffinoil, 0.31 gofDOPCand0.12 gof Liss
RhodPE stock solutionswere added to a clean 20mLglass vial (Sample
StorageAssembled ScrewVial Kits, ThermoScientific). The chloroform
was then evaporated under gentle N2 airflow while rotating the vial to
create an even layer of dried lipids on the bottom. The vial was placed
in a desiccator for 2 hours to remove any remaining traces of chloro-
form. Subsequently, 2.2 g of paraffin oil was added to the vial, followed
by sonication for 1 hour while heating the bath to 60 °C to enhance
lipid solubilization. The LOSwas then kept in a 60 °Coven overnight to
ensure complete dissolution of the lipids and later stored at the same
temperature.

The same steps were followedwith a fewmodifications to prepare
the LOS inmineral oil. In a clean glass vial, 0.2 g of DOPC and 0.08 g of
Liss Rhod PE stock solutions were added. After drying and desiccation,
4 g of mineral oil was added to the vial. This was followed by 1 hour of
sonication while heating the bath to 40 °C. Finally, the LOS in mineral
oil waskept overnight at room temperature in thedark and later stored
at 4 °C68.Wenote that the vesicles producedusingparaffin andmineral
oil did not show any difference. To prepare vesicles with silica particles
inside, the droplet transfer protocol adapted from Vutukuri et al. was
used32. The inner solution was composed of 2.12 μm silica particles
(~0.125-0.25 wt.-%) in 100 mM sucrose solution, while the outer solu-
tion consisted of 110 mM glucose.

In a 2 mL Eppendorf tube, 200 μL of LOS was layered on top of
500 μL of the outer solution. In a separate 2 mL Eppendorf tube,
600 μL of LOS was mixed with 100 μL of the inner solution for 2-3
minutes using a 1 mL pipette to create an emulsion. Next, 120 μL of the
emulsion, taken from the top of the second tube, was added to the
water-oil interface in the first tube. The mixture was then immediately
centrifuged (Centrifuge 5425, Eppendorf) at 200 g for 2 minutes, thus
forming vesicles. Using a pipette, the top oil layer was carefully
removed, leaving the vesicle solution at the bottom of the tube. The
tube was left undisturbed for 30-60 minutes to allow the vesicles to
accumulate before transferring them to the imaging chamber.

Imaging. The measurements were conducted using a confocal laser
scanning microscope (Nikon eclipse Ti-U inverted microscope with a
VTinfinity3 CLSM module, Visitech) equipped with a Hamamatsu
ORCA-Flash4.0 CMOS camera and anoil objective lens (100x, 1.49NA),
and an inverted fluorescence microscope (Nikon eclipse TE2000-U)
equipped with a Basler acA4112-30um CMOS camera and an oil
objective lens (60x, 1.4 NA). To prepare for imaging, 20 μL of the
vesicle solution was transferred to an 8-well chamber slide (μ-Slide 8
Well Glass Bottom, Ibidi) and allowed to settle for several minutes.
Occasionally, we observed that the vesicles were insufficiently
deformed; in such cases, the well was left open for approximately
30 minutes, allowing the solvent to partially evaporate to further
deflate the vesicles69.

In some cases, to minimize the vesicle drift during scanning, a
small amount of non-adsorbing polymer was added to the solution in
the well, thus inducing depletion attractions between the vesicles and
the bottom chamber wall. Typically, 12 μL of 0.2 wt.-% PAM in 110 mM
glucosewas gently added to the vesicle solution in thewell, resulting in
a final concentration of 0.075 wt.-% PAM. Note that we did not see any
effect of the immobilization of vesicles on particle packing.

XY-Z scans were conducted in both composite (bright-field +
fluorescence) and fluorescence mode to capture the vesicles’ shape.
The composite mode was used to visualize the location and arrange-
ment of the particles and was generally conducted at a step size of
0.5 μm. The fluorescence mode was used to accurately determine the
vesicle shape and was typically performed at a step size of 0.1 μm.
Temporal recordings were taken in composite mode at 2–5 frames
per second.

The osmotic imbalance between the inner and outer solutions
resulted in the formation of flaccid vesicles34,70. We often observed

flaccid vesicles with different shapes, such as ellipsoids and tubes
containing a different number of particles. Fig. 2 depicts microscope
images demonstrating the experimental state diagram of vesicles
containing 3 to 9 particles exhibiting sausage, plate, and cluster-like
configurations. Note that we also used sterically stabilized polystyrene
particles to explore whether the experimental results were specific to
the particle type or whether gravity had any impact. Our findings
revealed that the observed trends were comparable to those obtained
with the other particles used in the experiments. The observed particle
arrangements were stable throughout the measurement time scale
(≥20 minutes), and we did not observe any vesicle shape changes
during the measurement. However, we note that to prevent shape
changes of vesicles during imaging caused by laser heating71, the laser
intensity was minimized while searching for suitable vesicles. XY-Z
scans were conducted first to ensure an accurate and undisturbed
vesicle shape before temporal recordings. Lower laser intensity was
used during temporal recordings to minimize potential heating
effects.

Analysis. We extracted the bending rigidity and the tension of
the vesicles using flickering spectroscopy32,35. The bending rigidity
of our vesicles was κc = 18 ± 6 kBT and the membrane tension was
λp = 13 ± 7 nN m−1.

The following steps were implemented to determine the volume
and surface area of the vesicle using Fiji (ImageJ)72:

• The XY-Z-stack was imported into Fiji, followed by smoothing
with a Gaussian filter and then binarizing using a threshold.

• Various functions (i.e., fill holes and despeckle) were applied to
obtain a binary imagewhere the vesicle and its interior arewhite,
and the exterior of the vesicle is black.

• The Shape Smoothing plugin (v1.2) was applied to smooth the
contour of the vesicle, followed by 3D Gaussian smoothing. The
image was subsequently binarized again using a threshold.

• Finally, the binary stack was analyzed using the Particle Analyser
function in the BoneJ plugin (v7.0.14,73,74) to obtain the vesicle
volume (pixel count multiplied by voxel volume) and the vesicle
surface area (surface mesh).

To correct for spherical aberration resulting from imaging vesi-
cles in an aqueous medium with an oil objective lens, a correction
factor was applied to the z-spacing. The correction factor was calcu-
lated using the ImageJ plugin described in ref. 75, with a numerical
aperture of NA = 1.49, a refractive index of 1.52 for the immersion oil,
and a refractive index of 1.33 for the imaging medium. The calculated
correction factor was 0.83, which was validated using spherical fluor-
escent particles.

We noticed an artifact in the detection of the membrane contour,
which was caused by slow Z-scanning (~3 fps) and the presence of
membrane undulations. We corrected this artifact by selecting an
appropriate 3D smoothing factor and estimated the associated error.
The estimated error in the reduced volume for the cluster, plate, and
linear configurations are 3%, 5%, and 8%, respectively.

Numerical section
Interactionpotentials for the vesicle.We employ themeshlessmodel
for vesicles presented in ref. 43. The particles that constitute the
vesicle interact through an orientation-dependent potential, they have
a unitarymassm, and diameter σ, whichwe take as the unit of length in
our simulations. The interaction potential reads43

Uðrij ,ni,njÞ=
URðrÞ+ ½1� ϕðrij ,ni,njÞ� r < rmin

UAðrÞϕðrij ,ni,njÞ rmin < r < rc,

(
ð2Þ
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where rij is the distance vector between particle i and j, ni(j) is the unit
vector that denotes the orientation of particle i(j), rmin is the distance
that minimizes the attractive potential UA, UR is a repulsive potential,
and ϕ(rij, ni, nj) an orientation function. We take

URðrÞ= ϵ
rmin

r

� �4
� 2

rmin

r

� �2
� �

; ð3Þ

UAðrÞ= � ϵcos2ξ
π
2
r � rmin

rc � rmin

� �
, ð4Þ

as the repulsive and attractive potential, respectively, where ϵ sets the
energy scale, ξ acts on the slope of the attractive potential and rc is
the cutoff radius. The corresponding orientation dependent function
ϕ(rij, ni, nj) reads

ϕ= 1 +μðaðrij ,ni,njÞ � 1Þ, ð5Þ

where μ is a parameter related to the bending rigidity κc, and a reads

a= ðni × rijÞ � ðnj × rijÞ+ sinθ0ðni � njÞ � rij � sin2θ0, ð6Þ

with θ0 a parameter related to the spontaneous curvature of the
membrane. The aforementioned potential is already implemented in
the LAMMPS simulation package44. Following ref. 43 we use the para-
meters shown in Table 1, which roughly correspond to a fluid vesicle
with a bending rigidity κc ≈ 20kBT and an area compression modulus
KA ≈ 18kBT/σ242. Sincewe aremainly interested in the volume-to-surface
area ratio of the vesicles, the use of other bending parameters would
yield the same phase diagram as shown in Fig. 1.

Interaction potential for the colloids
In all simulations, the colloidal spheres in the vesiclehave a diameter of
σc = 12σ and interact via a soft repulsive Weeks-Chandler-Andersen
(WCA) potential:

UWCAðrÞ=
4ϵ σc

r

	 
12 � σc
r

	 
6h i
+ ϵ if r ≤ 2

1
6σc

0 otherwise,

(
ð7Þ

where ϵ sets the energy scale and r is the distance between two col-
loids. We also use a WCA potential for the interaction between the
colloids and the vesicle.

Simulation protocol
To obtain the state points shown in Fig. 1a, wemodify the shape of the
vesicle using solvent particles. The solvent is introduced outside the
vesicle and exerts a pressure on the membrane. The interactions
between solvent particles and solvent-vesicle are described in detail in
ref. 43. In order to generate vesicles with a low reduced volume ν, we
introduce solvent particles to the outer region of a pre-equilibrated
membrane, to which N colloidal particles are added. In this way, linear
conformations can be observed. Subsequently, the solvent is gradually
removed to achieve vesicles with higher ν. By controlling the amount
of solvent removal, we thus observe different configurations such as

planar, and cluster arrangements (see Fig. S2). Table S1 provides an
overview of the key parameters, including the size of themembrane in
its initial spherical state and the range of solvent particledensities used
to explore various conformations.

Data availability
Source data files are availablewith the paper. Source data are provided
with this paper.

Code availability
Simulations were performed with an open-source package as refer-
enced in the manuscript. Analysis codes can be made available from
the authors upon request.
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