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Enhancing geometric representations for
molecules with equivariant vector-scalar
interactive message passing

YusongWang1,2,6, TongWang 1,6 , Shaoning Li1,6, XinhengHe1,3,4, Mingyu Li1,5,
Zun Wang 1, Nanning Zheng2, Bin Shao 1 & Tie-Yan Liu 1

Geometric deep learning has been revolutionizing the molecular modeling
field. Despite the state-of-the-art neural network models are approaching ab
initio accuracy for molecular property prediction, their applications, such as
drug discovery and molecular dynamics (MD) simulation, have been hindered
by insufficient utilization of geometric information and high computational
costs. Here we propose an equivariant geometry-enhanced graph neural net-
work called ViSNet, which elegantly extracts geometric features and efficiently
models molecular structures with low computational costs. Our proposed
ViSNet outperforms state-of-the-art approaches on multiple MD benchmarks,
including MD17, revised MD17 and MD22, and achieves excellent chemical
property prediction on QM9 and Molecule3D datasets. Furthermore, through
a series of simulations and case studies, ViSNet can efficiently explore the
conformational space and provide reasonable interpretability to map geo-
metric representations to molecular structures.

Molecular modeling plays a crucial role in modern scientific and
engineering fields, aiding in the understanding of chemical reactions,
facilitating new drug development, and driving scientific and techno-
logical advancements1–4. One commonly used method in molecular
modeling is density functional theory (DFT). DFT enables accurate
calculations of energy, forces, and other chemical properties of
molecules5,6. However, due to the large computational requirements,
DFT calculations often demand significant computational resources
and time, particularly for large molecular systems or high-precision
calculations. Machine learning (ML) offers an alternative solution by
learning from reference data with ab initio accuracy and high com-
putational efficiency7,8. Gradient-domain machine learning (GDML)9

constructs accurate molecular force fields using conservation of
energy and limited samples from ab initio molecular dynamics tra-
jectories, enabling cost-effective simulations while maintaining

accuracy. Symmetric GDML (sGDML)10 further improves force field
construction by incorporating physical symmetries, achieving
CCSD(T)-level accuracy for flexible molecules. An exact iterative
approach (Global sGDML)11 extends sGDML to global force fields for
molecules with several hundred atoms, maintaining correlations of
atomic degree and accurately describing complex molecules and
materials. In recent years, deep learning (DL) has demonstrated its
powerful ability to learn from raw data without any hand-crafted fea-
tures in many fields and thus attracted more and more attention.
However, the inherent drawbackofdeep learning,which requires large
amounts of data, has become a bottleneck for its application to more
scenarios12. To alleviate the dependency on data for DL potentials,
recent works have incorporated the inductive bias of symmetry into
neural network design, known as geometric deep learning (GDL).
Symmetry describes the conservation of physical laws, i.e., the
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unchanged physical properties with any transformations such as
translations or rotations. It allows GDL to be extended to limited data
scenarios without any data augmentation.

Equivariant graph neural network (EGNN) is one of the repre-
sentative approaches in GDL, which has extensive capability to model
molecular geometry12–21. A popular kind of EGNN conducts equivar-
iance from directional information and involves geometric features to
predict molecular properties. GemNet20 extends the invariant Dime-
Net/DimeNet++16,17 with dihedral information. They explicitly extract
geometric information in the Euclidean space with first-order geo-
metric tensor, i.e., setting lmax = 1. PaiNN18 and equivariant
transformer19 further adopt vector embedding and scalarize the
angular representation implicitly via the inner product of the vector
embedding itself. They reduce the complexity of explicit geometry
extraction by taking the angular information into consideration.
Another mainstream approach to achieving equivariance is through
group representation theory, which can achieve higher accuracy but
comeswith large computational costs.NequIP, Allegro, andMACE12,22,23

achieve state-of-the-art performance on several molecular dynamics
simulation datasets leveraging high-order geometric tensors. On the
one hand, algorithms based on group representation theory have
strong mathematical foundations and are able to fully utilize geo-
metric information using high-order geometric tensors. On the other
hand, these algorithms often require computationally expensive
operations such as the Clebsch–Gordan product (CG-product)24,
making them possibly suitable for periodic systems with elaborate
model design but impractical for large molecular systems such as
chemical and biological molecules without periodic boundary
conditions.

In this study, we propose ViSNet (short for “Vector-Scalar
interactive graph neural Network"), which alleviates the dilemma
between computational costs and sufficient utilization of geometric
information. By incorporating an elaborate runtime geometry cal-
culation (RGC) strategy, ViSNet implicitly extracts various geometric
features, i.e., angles, dihedral torsion angles, and improper angles in
accordance with the force field of classical MD with linear time
complexity, thus significantly accelerating model training and infer-
ence while reducing thememory consumption. To extend the vector
representation, we introduce spherical harmonics and simplify the
computationally expensive Clebsch–Gordan product with the inner
product. Furthermore, we present a well-designed vector–scalar
interactive equivariant message passing (ViS-MP) mechanism, which
fully utilizes the geometric features by interacting vector hidden
representations with scalar ones. When comprehensively evaluated
on some benchmark datasets, ViSNet outperforms all state-of-the-art
algorithms on all molecules in MD17, revised MD17 and MD22 data-
sets and shows superior performance on QM9, Molecule3D dataset
indicating the powerful capability of molecular geometric
representation. ViSNet also has won the PCQM4Mv2 track in the
OGB-LCS@NeurIPS2022 competition (https://ogb.stanford.edu/
neurips2022/results/). We then performed molecular dynamics
simulations for eachmolecule onMD17 driven by ViSNet trained only
with limited data (950 samples). The highly consistent interatomic
distance distributions and the explored potential energy surfaces
between ViSNet and quantum simulation illustrate that ViSNet is
genuinely data-efficient and can perform simulations with high
fidelity. To further explore the usefulness of ViSNet to real-world
applications, we used an in-house dataset that consists of about
10,000 different conformations of the 166-atom mini-protein
Chignolin derived from replica exchange molecular dynamics and
calculated at the DFT level. When evaluated on the dataset,
ViSNet also achieved significantly better performance than empirical
force fields, and the simulations performed by ViSNet exhibited very
close force calculation to DFT. In addition, ViSNet exhibits reason-
able interpretability to map geometric representation to molecular

structures. The contributions of ViSNet can be summarized as
follows:

• Proposing an RGC module that utilizes high-order geometric
tensors to implicitly extract various geometric features, includ-
ing angles, dihedral torsion angles, and improper angles, with
linear time complexity.

• Introducing ViS-MP mechanism to enable efficient interaction
between vector hidden representations and scalar ones and fully
exploit the geometric information.

• Achieving state-of-the-art performance in six benchmarks for
predicting energy, forces, HOMO-LUMO gap, and other quan-
tum properties of molecules.

• Performingmolecular dynamics simulations driven byViSNet on
both small molecules and 166-atom Chignolin with high fidelity.

• Demonstrating reasonable model interpretability between geo-
metric features and molecular structures.

Results
Overview of ViSNet
ViSNet is a versatile EGNN that predicts potential energy, atomic forces
as well as various quantum chemical properties by taking atomic
coordinates and numbers as inputs. As shown in Fig. 1a, the model is
composed of an embedding block andmultiple stacked ViSNet blocks,
followed by an output block. The atomic number and coordinates are
fed into the embedding block followedbyViSNet blocks to extract and
encode geometric representations. The geometric representations are
then used to predict molecular properties through the output block. It
is worth noting that ViSNet is an energy-conserving potential, i.e., the
predicted atomic forces are derived from the negative gradients of the
potential energy with respect to the coordinates9,10.

The success of classical force fields shows that geometric features
such as interatomic distances, angles, dihedral torsion angles, and
improper angles in Fig. 2 are essential to determine the total potential
energy of molecules. The explicit extraction of invariant geometric
representations in previous studies often suffers from a large amount
of time or memory consumption during model training and inference.
Given an atom, the calculation of angular information scales OðN 2Þ
with the number of neighboring atoms, while the computational
complexity is even OðN 3Þ for dihedrals20. To alleviate this problem,
inspired by Sch¨utt et al.18, we propose runtime geometry calculation
(RGC), which uses an equivariant vector representation (termed as
direction unit) for each node to preserve its geometric information.
RGC directly calculates the geometric information from the direction
unit which only sums the vectors from the target node to its neighbors
once. Therefore, the computational complexity can be reduced to
OðN Þ. Notably, beyond employing angular information that has been
used in PaiNN18 and ET19, ViSNet further considers the dihedral torsion
and improper angle calculation with higher geometric tensors.

Considering the sub-structure of a toy molecule with four atoms
shown in Fig. 2, the angular information of the target node i could be
conducted from the vector r!ij as follows:

u!ij =
r!ij

r!ij

��� ��� , v!i =
XNi

j = 1

u!ij ð1Þ

v!i

��� ���2 = XNi

j = 1

XNi

k = 1

u!ij , u
!

ik

D E
=
XNi

j = 1

XNi

k = 1

cosθjik ð2Þ

where r!ij is the vector fromnode i to its neighboring node j, u!ij is the
unit vector of r!ij . Here, we define the direction unit v!i as the sum of
all unit vectors from node i to its all neighboring nodes j, where node i
is the intersection of all unit vectors. As shown in Eq. (2), we calculate
the inner product of the direction unit v!i which represents the sumof
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Fig. 2 | Illustration of runtime geometry calculation (RGC) module and its
relevance to the potential of bonded terms in classical molecular dynamics.
The bonded terms consist of bond length, bond angle, dihedral torsion, and

improper angle. The RGC module depicts all bonded terms of classical MD as
model operations in linear time complexity. Yellow arrow v!i denotes the direction
unit in Eq. (1).

Fig. 1 | The overall architecture of ViSNet. a Model sketch of ViSNet. ViSNet
embeds the 3D structures of molecules and extracts the geometric information
through a series of ViSNet blocks and outputs the molecule properties such as
energy, forces, andHOMO–LUMOgap through anoutput block.b Flowchart of one
ViSNet Block. One ViSNet block consists of twomodules: (i) Scalar2Vec, responsible
for attaching scalar embeddings to vectors.; (ii) Vec2Scalar, renovates scalar
embeddings built on RGC strategy. The inputs of Scalar2Vec are the node
embedding hi, edge embedding fij, direction unit v!i and the relative positions
between two atoms. The edge-fusion graph attention module (serves as ϕs

m) takes

as input hi and the output of the dense layer following fij, and outputs scalar
messages. Before aggregation, each scalarmessage is transformed through a dense
layer, and then fusedwith the unit of the relative position u!ij and its own direction
unit v!j . We further compute the vector messages and aggregate them all among
the neighborhood. Through a gated residual connection, the final residual Δ v!i is
produced. In Vec2Scalar module, by Hadamard production of aggregated scalar
messages and the output of RGC-Angle calculation and adding a gated residual
connection, thefinalΔhi isfiguredout. Likewise, combining theprojected fijand the
output of RGC-Dihedral calculation, the final Δfij is determined.
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the inner products of unit vectors from node i to all its neighboring
nodes. Combiningwith Eq. (1), the inner product of direction v!i finally
stands for the sum of cosine values of all angles formed by node i and
any two of its neighboring nodes.

Similar to runtime angle calculation, we also calculate the vector
rejection25 of the direction unit v!i of node i and v!j of node j on the
vector u!ij and u!ji, respectively.

w!ij =Rej u!ij

v!i

� �
= v!i � v!i, u

!
ij

D E
u!ij

=
XNi

m= 1

Rej
u!ij

u!im

� �

w!ji =Rej u!ji

v!j

� �
= v!j � v!j, u

!
ji

D E
u!ji

=
XNj

n= 1

Rej
u!ji

u!jn

� �

ð3Þ

whereRej
b
!ð a!Þ represents the vector component of a!perpendicular

to b
!

, termed as the vector rejection. u!ij and v!i are defined in Eq. (1).

w!ij represents the sum of the vector rejection Rej
u!ij

ð u!imÞ and w!ji

represents the sum of the vector rejection Rej
u!ji

ð u!jnÞ. The inner

product between w!ij and w!ji is then calculated to conduct dihedral
torsion angle information of the intersecting edge eij as follows:

w!ij ,w
!
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D E
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The improper angle is derived from a pyramid structure forming
by 4 nodes. As the last toymolecule shown in Fig. 2, node i is the vertex
of the pyramid, and the improper torsion angle is formed by two
adjacent planes with an intersecting edge eij. We can also calculate the
improper angle by vector rejection:

t
!
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In the same way, the inner product between t
!

ij and t
!

ji indicates the
summation of improper angle information formed by eij:
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Multiple works have shown the effectiveness of high-order geo-
metric tensors for molecular modeling12,22,26,27. However, the compu-
tational overheads of these approaches are generally expansive due to
the CG-product, impeding their further application for large systems.
In this work, we convert the vectors to high-order representation with
spherical harmonics but discard CG-product with the inner product
following the idea of RGC. We find that the extended high-order geo-
metric tensors can still represent the above angular information in the

form of Legendre polynomials according to the addition theorem:

Plðcosθjik Þ=Pl u!ij � u!ik

� �

/
Xl

m=�l

Y l,m u!ij

� �
Y *
l,m u!ik

� � ð7Þ

where the Pl is the Legendre polynomial of degree l, Yl,m denotes the
spherical harmonics function and Y *

l,m denotes its complex conjuga-
tion. We sum the product of different order l to obtain the scalar
angular representation, which is the same operation as the inner pro-
duct. It is worth noting that such an extension does not increase the
model size and keeps the model architecture unchanged. We also
provide proof about the rotational invariance of the RGC strategy in
the section “Proofs of the rotational invariance of RGC ”.

In order to make full use of geometric information and enhance
the interaction between scalars and vectors, we designed an effective
vector–scalar interactive message-passing mechanism with respect to
the intersecting nodes and edges for angles and dihedrals, respec-
tively. It is important tonote thatprevious studies18,19 primarily focused
on updating node features, whereas our approach updates both node
and edge features during message passing, leading to a more com-
prehensive geometric representation. The key operations in ViS-MP
are given as follows:

ml
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wherehidenotes the scalar embedding of node i, fij stands for the edge
feature between node i and node j. v!i represents the embedding of
the direction unit mentioned in RGC. The superscript of variables
indicates the index of the block that the variables belong to. We omit
the improper angle here for brevity. A comprehensive version is
depicted in Supplementary. ViS-MP extends the conventionalmessage
passing, aggregation, and update processes with vector–scalar
interactions. Eqs. (8) and (9) depict our message-passing and
aggregation processes. To be concrete, scalar messages mij incorpor-
ating scalar embedding hj, hi, and fij are passed and then aggregated to
node i through a message function ϕs

m (Eq. (8)). Similar operations are
applied for vector messages m!l

i of node i that incorporates scalar
messagemij, vector r!ij and vector embedding v!j (Eq. (9)). Equations
(10) and (11) demonstrate the update processes. hi is updated by the
aggregated scalar message outputmi while the inner product of v!i is
updated through an update function ϕs

un. Then f
!

ij is updated by the
inner product of the rejection of the vector embedding v!i and v!j

through an update function ϕs
ue. Finally, the vector embedding v!i is

updated by both scalar and vector messages through an update
function ϕv

un. Notably, the vectors update function, i.e., ϕv require to
be equivariant. The detailed message and update functions can be
found in the Methods section. A proof about the equivariance of ViS-
MP can be found in Supplementary Methods.
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In summary, the geometric features are extracted by inner pro-
ducts in the RGC strategy and the scalar and vector embeddings are
cyclicallyupdating eachother inViS-MPsoas to learna comprehensive
geometric representation from molecular structures.

Accurate quantum chemical property predictions
We evaluated ViSNet on several prevailing benchmark datasets
including MD179,10,28, revised MD1729, MD2230, QM931, Molecule3D32,
and OGB-LSC PCQM4Mv233 for energy, force, and other molecular
property prediction. MD17 consists of the MD trajectories of seven
small organic molecules; the number of conformations in each mole-
cule dataset ranges from 133,700 to 993,237. The dataset rMD17 is a
reproduced version of MD17 with higher accuracy. MD22 is a recently
proposed MD trajectories dataset that presents challenges with
respect to larger system sizes (42–370 atoms). Largemolecules such as
proteins, lipids, carbohydrates, nucleic acids, and supramolecules are
included in MD22. QM9 consists of 12 kinds of quantum chemical
properties of 133,385 small organic molecules with up to 9 heavy
atoms.Molecule3D is a recently proposed dataset including 3,899,647
molecules collected from PubChemQC with their ground-state struc-
tures and corresponding properties calculated by DFT. We focus on
the prediction of the HOMO–LUMO gap following ComENet34. OGB-
LSC PCQM4Mv2 is a quantum chemistry dataset originally curated
under the PubChemQC including a DFT-calculated HOMO–LUMO gap
of 3,746,619 molecules. The 3D conformations are provided for
3,378,606 training molecules but not for the validation and test sets.
The training details of ViSNet on each benchmark are described in the
“Methods” section.

We compared ViSNet with the state-of-the-art algorithms,
including DimeNet16, PaiNN18, SpookyNet21, ET19, GemNet20, UNiTE35,
NequIP12, SO3KRATES36, Allegro22, MACE23 and so on. As shown in
Table 1 (MD17), Table 2 (rMD17), and Table 3 (MD22), it is remarkable
that ViSNet outperformed the compared algorithms for both small
(MD17 and rMD17) and large molecules (MD22) with the lowest mean
absolute errors (MAE) of predicted energy and forces. On the one
hand, compared with PaiNN, ET, and GemNet, ViSNet incorporated
more geometric information and made full use of geometric infor-
mation in ViS-MP, which contributes to the performance gains. On the
other hand, compared with NequIP, Allegro, SO3KRATES, MACE, etc.,
ViSNet testified the effect of introducing spherical harmonics in the
RGC module.

As shown in Table 4, ViSNet also achieved superior performance
for chemical property predictions on QM9. It outperformed the
compared algorithms for 9 of 12 chemical properties and achieved
comparable results on the remaining properties. Elaborated evalua-
tions onMolecule3D confirmed the high prediction accuracy of ViSNet
as shown in Table 5. ViSNet achieved 33.6% and 6.51% improvements
than the second-best for random split and scaffold split, respectively.
Furthermore, ViSNet exhibited good portability to other multi-
modality methods, e.g., Transformer-M37 and outperformed other
approaches on OGB-LSC PCQM4Mv2 (see Supplementary Fig. S1).
ViSNet also achieved the winners of PCQM4Mv2 track in the OGB-
LCS@NeurIPS2022 competition when testing on unseen molecules38

(https://ogb.stanford.edu/neurips2022/results/).
To evaluate the computational efficiency of our ViSNet,

following23, we compare the time latency of ViSNet with prevailing
models in Supplementary Fig. S2. The latency is defined as the time it
takes to compute forces on a structure (i.e., the gradient calculation for
a set of input coordinates through the whole deep neural network). As
shown in Supplementary Fig. S2, ViSNet (L = 2) saved 42.8% time
latency compared with MACE (L = 2). Notably, despite the use of CG-
product, Allegro had a significant speed improvement compared to
NequIP and BOTNet. However, ViSNet still saved 6.1%, 4.1%, and 61%
time latency compared to Allegro with L = 1, 2, and 3, respectively.

Efficient molecular dynamics simulations
To evaluate ViSNet as the potential for MD simulations, we incorpo-
rated ViSNet that trained only with 950 samples on MD17 into the ASE
simulation framework39 to performMD simulations for all seven kinds
of organic molecules. All simulations are run with a time step τ = 0.5 fs
under the Berendsen thermostat with the other settings the same as
those of the MD17 dataset. As shown in Fig. 3, we analyzed the
interatomic distance distributions derived from both AIMD simula-
tions with ViSNet as the potential and ab initio molecular dynamics
simulations at the DFT level for all seven molecules, respectively. As
shown in Fig. 3a, the interatomic distancedistribution h(r) is defined as
the ensemble average of atomic density at a radius r9. Figure 3b–h
illustrates the distributions derived fromViSNet are very close to those
generated by DFT. We also compared the potential energy surfaces
sampled by ViSNet and DFT for these molecules, respectively (Sup-
plementary Fig. S3). The consistent potential energy surfaces suggest
that ViSNet can recover the conformational space from the simulation

Table 1 | Mean absolute errors (MAE) of energy (kcal/mol) and force (kcal/mol/Å) for 7 small organic molecules on MD17
compared with state-of-the-art algorithms

Molecule SchNet DimeNet PaiNN SpookyNet ET GemNeta NequIPb SO3KRATES ViSNet

Aspirin Energy 0.37 0.204 0.167 0.151 0.123 – 0.131 0.139 0.116

Forces 1.35 0.499 0.338 0.258 0.253 0.217 0.184 0.236 0.155

Ethanol Energy 0.08 0.064 0.064 0.052 0.052 – 0.051 0.061 0.051

Forces 0.39 0.230 0.224 0.094 0.109 0.085 0.071 0.096 0.060

Malondialdehyde Energy 0.13 0.104 0.091 0.079 0.077 – 0.076 0.077 0.075

Forces 0.66 0.383 0.319 0.167 0.169 0.155 0.129 0.147 0.100

Naphthalene Energy 0.16 0.122 0.116 0.116 0.085 – 0.113 0.115 0.085

Forces 0.58 0.215 0.077 0.089 0.061 0.051 0.039 0.074 0.039

Salicylic acid Energy 0.20 0.134 0.116 0.114 0.093 – 0.106 0.106 0.092

Forces 0.85 0.374 0.195 0.180 0.129 0.125 0.090 0.145 0.084

Toluene Energy 0.12 0.102 0.095 0.094 0.074 – 0.092 0.095 0.074

Forces 0.57 0.216 0.094 0.087 0.067 0.060 0.046 0.073 0.039

Uracil Energy 0.14 0.115 0.106 0.105 0.095 – 0.104 0.103 0.095

Forces 0.56 0.301 0.139 0.119 0.095 0.097 0.076 0.111 0.062

The best one in each category is highlighted in bold.
aThe best results are reported among four variants of GemNet.
bNequIP only shows the results with l = 3.
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Table 2 | Mean absolute errors (MAE) of energy (kcal/mol) and force (kcal/mol/Å) for 10 small organic molecules on rMD17
compared with state-of-the-art algorithms

Molecule UNiTEa ACE GemNetb NequlPb BOTNet Allegro MACE ViSNet

Aspirin Energy 0.055 0.141 – 0.0530 0.0530 0.0530 0.0507 0.0445

Forces 0.175 0.413 0.2191 0.1891 0.1960 0.1683 0.1522 0.1520

Azobenzene Energy 0.025 0.083 – 0.0161 0.0161 0.0277 0.0277 0.0156

Forces 0.097 0.251 – 0.0669 0.0761 0.0600 0.0692 0.0585

Benzene Energy 0.002 0.0009 – 0.0009 0.0007 0.0069 0.0092 0.0007

Forces 0.017 0.012 0.0115 0.0069 0.0069 0.0046 0.0069 0.0056

Ethanol Energy 0.014 0.028 – 0.0092 0.0092 0.0092 0.0092 0.0078

Forces 0.085 0.168 0.083 0.0646 0.0738 0.0484 0.0484 0.0522

Malonaldehyde Energy 0.025 0.039 – 0.0184 0.0184 0.0138 0.0184 0.0132

Forces 0.152 0.256 0.1522 0.1176 0.1338 0.0830 0.0945 0.0893

Naphthalene Energy 0.011 0.021 – 0.0046 0.0046 0.0046 0.0115 0.0057

Forces 0.060 0.118 0.0438 0.0300 0.0415 0.0208 0.0369 0.0291

Paracetamol Energy 0.044 0.092 – 0.0323 0.0300 0.0346 0.0300 0.0258

Forces 0.164 0.293 – 0.1361 0.1338 0.1130 0.1107 0.1029

Salicylic acid Energy 0.017 0.042 – 0.0161 0.0184 0.0208 0.0208 0.0161

Forces 0.088 0.214 0.1222 0.0922 0.0992 0.0669 0.0715 0.0795

Toluene Energy 0.010 0.025 – 0.0069 0.0069 0.0092 0.0115 0.0059

Forces 0.058 0.150 0.0507 0.0369 0.0438 0.0415 0.0346 0.0264

Uracil Energy 0.013 0.025 – 0.0092 0.0092 0.0138 0.0115 0.0069

Forces 0.088 0.152 0.0876 0.0715 0.0738 0.0415 0.0484 0.0495

The best one in each category is highlighted in bold.
aFor a fair comparison, the “direct learning" results without any extra input are compared.
bThe best results are reported among four variants of GemNet and four orders l∈ {0, 1, 2, 3} of NequIP.

Table 3 | Mean absolute errors (MAE) of energy (kcal/mol) and force (kcal/mol/Å) for 7 large-scale molecules on MD22

Molecules Ac-Ala3-NHMe AT-AT AT-AT-CG-CG DHA Buckyball catcher Stachyose Double-walled nanotube

sGDML Energy 0.391 0.720 1.42 1.29 1.17 4.00 4.00

Forces 0.790 0.690 0.700 0.750 0.680 0.680 0.520

ViSNet Energy 0.0636 0.0708 0.196 0.0741 0.508 0.0915 0.800

Forces 0.0830 0.0812 0.148 0.0598 0.184 0.0879 0.362

ViSNet-improper Energy 0.0546 0.0668 0.197 0.0700 0.537 0.0882 0.601

Forces 0.0709 0.0776 0.139 0.0554 0.201 0.0802 0.292

The number of training splits is the same as sGDML. ViSNet-improper contains the runtime improper calculation in the ViS-MP. The best one in each category is highlighted in bold.

Table 4 | Mean absolute errors (MAE) of 12 kinds of molecular properties on QM9 compared with state-of-the-art algorithms

Target Unit SchNet EGNN DimeNet++ PaiNN SphereNet PaxNet ET ComENet ViSNet

μ mD 33 29 29.7 12 24.5 10.8 11 24.5 9.5

α ma30 235 71 43.5 45 44.9 44.7 59 45.2 41.1

ϵHOMO meV 41 29 24.6 27.6 22.8 22.8 20.3 23.1 17.3

ϵLUMO meV 34 25 19.5 20.4 18.9 19.2 17.5 19.8 14.8

Δϵ meV 63 48 32.6 45.7 31.1 31 36.1 32.4 31.7

〈R2〉 ma20 73 106 331 66 268 93 33 259 29.8

ZPVE meV 1.7 1.55 1.21 1.28 1.12 1.17 1.84 1.2 1.56

U0 meV 14 11 6.32 5.85 6.26 5.9 6.15 6.59 4.23

U meV 19 12 6.28 5.83 6.36 5.92 6.38 6.82 4.25

H meV 14 12 6.53 5.98 6.33 6.04 6.16 6.86 4.52

G meV 14 12 7.56 7.35 7.78 7.14 7.62 7.98 5.86

Cv mcal=molK 33 31 23 24 22 23.1 26 24 23

The best one in each category is highlighted in bold.
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trajectories. Moreover, compared to DFT, numerous groundbreaking
machine learning force fields (MLFFs), including sGDML10, ANI40,
DPMD41, and PhysNet42 have proven their exceptional speeds in MD
simulations. Similar to such algorithms, ViSNet also exhibited sig-
nificant computational cost reduction compared to DFT as shown in
Supplementary Fig. S4 and Table S2.

To further examine the molecular properties derived from simu-
lations driven by ViSNet, we performed 500ps MD simulations at a
constant energy ensemble (NVE) for ethanol in theMD17 datasetwith a
time step of τ =0.5 fs and 200ps Ac-Ala3-NHMe in the MD22 dataset
with a time step of τ = 1 fs. The simulations were driven by ViSNet,
sGDML, and DFT, respectively. For ethanol, we analyzed its vibrational
spectra and theprobability distribution of dihedral angles. ForAc-Ala3-
NHMe, we investigated its vibrational spectra and potential energy
surface (PES) via the Ramachandran plot. To analyze the Ramachan-
dran plot of different simulations, the free energy value was estimated
using the potential of mean force (PMF). ϕ and ψ were set as two
reaction coordinates (x, y). All three ϕ and ψ dihedrals in Ac-Ala3-
NHMe were calculated and plotted. The relative free energy value was
calculated and referred to with the minimum value. To generate the
landscape, 40 bins were used in both the x and y directions. Supple-
mentary Fig. S5a and b demonstrate that both ViSNet and sGDML
generate similar vibrational spectra, with slight differences in peak

intensities compared to DFT. The probability distribution of hydroxyl
angles in ethanol (Supplementary Fig. S5c) reveals three minima:
gauche ± (Mg±) and trans (Mt). Furthermore, even though ViSNet
showed better performance than sGDML for various conformations in
the MD22 dataset, starting from the same structure of the alanine
tetrapeptide, the performance difference may not have a notable
impact on the sampling efficiency for such small molecules, and thus
may also lead to similar dynamics on the Ramachandran plots as
shown in the Supplementary Fig. S5d–f. These results demonstrate
that with only a few training samples, ViSNet can act with the potential
to perform high-fidelity molecular dynamics simulations with much
less computational cost and higher accuracy.

Applications for real-world full-atom proteins
To examine the usefulness of ViSNet in real-world applications, we
made evaluations on the 166-atom mini-protein Chignolin (Fig. 4a).
Basedon aChignolin dataset consisting of about 10,000 conformations
that sampled by replica exchange MD43 and calculated at DFT level by
Gaussian 1644 in our another study45,46, we split it as training, validation,
and test sets by the ratio of 8:1:1. We trained ViSNet as well as other
prevailing MLFFs including ET19, PaiNN18, GemNet-OC47, MACE23,
NequIP12 and Allegro22 and compared them with molecular mechanics
(MM)48. TheDFT results were used as the ground truth. Figure 4b shows
the free energy landscape of Chignolin and is depicted by dD3−G7 (the
distancebetween carbonyl oxygenon theD3backbone andnitrogenon
the G7 backbone) and dE5−T8 (the distance between carbonyl oxygen on
the E5 backbone and nitrogen on T8 backbone). The concentrated
energy basin on the left shows the folded state and the scattered energy
basin on the right shows the unfolded state. We randomly selected six
structures from different regions of the potential energy surface for
visualization. Among them, four structures were predicted by the
model with smaller errors than the MAE while the other two with larger
errors. Interestingly, all models consistently performed poorly on the
structures with high potential energies (low probability of sampling)
and performed well on the other structures. This implies that the
sampling of conformations with high potential energies could be
enhanced to ensure the generalization ability of the models.

Table 5 | Mean absolute errors (MAE) of HOMO–LUMO gap
(eV) on Molecule3D test set for both random and scaffold
splits compared with state-of-the-art algorithms

Model Random Scaffold

GIN-Virtual 0.1036 0.2371

SchNet 0.0428 0.1511

DimeNet++ 0.0306 0.1214

SphereNet 0.0301 0.1182

ComENet 0.0326 0.1273

ViSNet 0.0200 0.1105

The best one in each category is highlighted in bold.

Fig. 3 | The interatomic distance distributions of MD simulations driven by
ViSNet and DFT. a An illustration about the atomic density at a radius r with the
arbitrary atom as the center. The interatomic distance distribution is defined as the
ensemble average of atomic density. b–h The interatomic distance distributions
comparison between simulations by ViSNet and DFT for all seven organic

molecules in MD17. The curve of ViSNet is shown using a solid blue line, while the
dashed orange line is used for the DFT curve. The structures of the corresponding
molecules are shown in the upper right corner. Source data are provided as a
Source Data file.
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Supplementary Fig. S6 shows the correlations between the ener-
gies predicted by MLFFs or MM and the ground truth values calculated
by DFT for all conformations in the test set. ViSNet achieved a lower
MAE and a higher R2 score. From the violin plot of the absolute errors
shown in Supplementary Fig. S7, ViSNet, PaiNNandETexhibited smaller
errors thanotherMLFFswhileMMgot amuchwider rangeof prediction
errors. Similar results can be seen in the force correlations in each
component shown in Supplementary Fig. S8. Detailed settings about
DFT and MM calculations are shown in Supplementary Materials. Fur-
thermore, we also made a comprehensive comparison by taking
model performance, training time consumption, and model size into

consideration. ViSNet and other state-of-the-art algorithms such as
PaiNN, ET, GemNet-OC, MACE, NequIP, and Allegro were analyzed on
theChignolin dataset and shown in Fig. 5. AlthoughViSNet ismarginally
slower than ET and PaiNN, it introduces more geometric information,
significantly enhancing its performance. When compared to GemNet,
which also incorporates dihedral angles, ViSNet’s computational cost is
significantly more affordable. Similarly, ViSNet proves to be computa-
tionally efficient when compared to models employing the CG-product
method, such as MACE, Allegro, and NequIP.

In addition, weperformedMD simulations for Chignolin driven by
ViSNet. 10 conformations were randomly selected as initial structures,

Fig. 4 | Applications of ViSNet for Chignolin conformational space evaluation
and MD simulations. a The visualization of Chignolin structure. The backbone is
colored grey while the side chains of each residue in Chignolin are highlighted with
a ball and stick. b The energy landscape of Chignolin sampled by REMD. The x-axis
of the landscape is the distance between carbonyl oxygen on the D3 backbone and
nitrogen on the G7 backbone, while the y-axis is the distance between carbonyl
oxygen on the E5 backbone and nitrogen on the T8 backbone. Six structures were
then selected for visualization. Each structure is shown as a cartoon and residues
are depicted in sticks. The histograms show the absolute error between the energy

difference predicted by MLFFs including ViSNet, ET, PaiNN, GemNet-OC, NequIP,
Allegro, andMACEor calculated byMM, and the ground truth calculated byDFTon
the corresponding structure. c The average root mean square deviation (RMSD) of
the Chignolin trajectories simulated by ViSNet was calculated from 10 different
trajectories. The shaded areas indicate the standard deviation range. d TheMAE of
each component of atomic forces during the simulations driven by ViSNet. The
ground truth energies and forces were calculated using Gaussian 16. The shaded
areas indicate the standard deviation range. Source data are provided as a Source
Data file.
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and 100ps simulations were run for each. As shown in Fig. 4c, the
RMSD for 10 simulation trajectories is shown against the simulation
time. In Fig. 4d, wedisplayed theMAE values of each component of the
atomic forces between ViSNet and those calculated by Gaussian 1644 at
the DFT level. The simulation trajectory driven by ViSNet exhibited a
small force difference for each component to quantum mechanics,
which implies that ViSNet has no bias towards any force component,
and thus consolidates the accuracy and potential usefulness for real-
world applications.

Interpretability of ViSNet on molecular structures
Prior works have shown the effectiveness of incorporating geometric
features, such as angles16,20. The primary method of geometry extrac-
tion utilized by ViSNet is the distinct inner product in its runtime
geometry calculation. To this end, we illustrate a reasonable model
interpretability of ViSNet by mapping the angle representations
derived from the inner product of direction units in the model to the
atoms in the molecular structure. We aim to bridge the gap between
geometric representation in ViSNet and molecular structures. We
visualized the embeddings after the inner product of direction units
h v!i, v

!
ii extracted from 50 aspirin samples on the validation set. The

high-dimensional embeddings were reduced to 2-dimensional space
using T-SNE49 and then clustered using DBSCAN50 without the prior of
number of clusters.

Supplementary Fig. S9 exhibits the clustering results of nodes’
embeddings after the inner product of their corresponding direction
units. We further map the clustered nodes to the atoms of aspirin
chemical structure. Interestingly, the embeddings for these nodes
could be distinctly gathered into several clusters shown in different
colors. For example, although carbon atom C11 and carbon atom C12

possess different positions and connect with different atoms, their
inner product h v!i, v

!
ii are clustered into the same class for holding

similar substructures ({C11−O2O3C6} and {C12−O1O4C13}). To summarize,
ViSNet can discriminate different molecular substructures in the
embedding space.

Ablation study
To further explore where the performance gains of ViSNet come from,
we conducted a comprehensive ablation study. Specifically, we
excluded the runtime angle calculation (w/o A), runtime dihedral cal-
culation (w/o D), and both of them (w/o A&D) in ViSNet, in order to
evaluate the usefulness of each part. ViSNet-improper denotes the
additional improper angles and ViSNetl=1 uses the first-order spherical
harmonics.

We designed somemodel variants with differentmessage-passing
mechanismsbased on ViS-MP for scalar and vector interaction. ViSNet-
N directly aggregates the dihedral information to intersecting nodes,
and ViSNet-T leverages another form of dihedral calculation. The
details of these model variants are elaborated in Supplementary. The
results of the ablation study are shown in Supplementary Table S3 and
Supplementary Fig. S10. Based on the results, we can see that both
kinds of directional geometric information are useful and the dihedral
information contributes a little bit more to the final performance. The
significant performance drop from ViSNet-N and ViSNet-T further
validates the effectiveness of the ViS-MPmechanism. ViSNet-improper
achieves similar performance to ViSNet for small molecules, but the
contribution of improper angles is more obvious for large molecules
(see Table 3). Furthermore, ViSNet using higher-order spherical har-
monics achieves better performance.

Discussion
Wepropose ViSNet, a geometric deep learning potential formolecular
dynamics simulation. Thegroup representation theory-basedmethods
and the directional information-based methods are two mainstream
classes of geometric deep learning potentials to enforce SE(3)
equivariance20. ViSNet takes advantage of both sides in designing the
RGC strategy and ViS-MP mechanism. On the one hand, the RGC
strategy explicitly extracts and exploits the directional geometric
information with computationally lightweight operations, making the
model training and inference fast. On the other hand, ViS-MP employs
a series of effective and efficient vector-scalar interactive operations,
leading to the full use of geometric information. Furthermore,
according to the many-body expansion theory51–53, the potential
energy of the whole system equals the potential of each single atom
plus the energy corrections from two-bodies to many-bodies. Most of
the previous studies model the truncated energy correction terms
hierarchically with k-hop information via stacking k message passing
blocks. Different from these approaches, ViSNet encodes the angle,
dihedral torsion, and improper information in a single block, which
empowers the model to have a much more powerful representation
ability. In addition, ViSNet’s universality or completeness is not vali-
datedby the geometricWeisfeiler–Leman (GWL) test54 due to the inner
product operation, which is computationally efficient but fails to dis-
tinguish certain atom reflection structures with the same angular
information. To pass counterexamples or the GWL test, incorporating
the CG-product with higher-order spherical harmonics is necessary in
future studies.

Besides predicting energy, force, and chemical properties with
high accuracy, performing molecular dynamics simulations with ab
initio accuracy at the cost of the empirical force field is a grand chal-
lenge. ViSNet proves its usefulness in real-world ab initio molecular
dynamics simulations with less computational costs and the ability of
scaling to large molecules such as proteins. Extending ViSNet to sup-
port larger and more complex molecular systems will be our future
research direction.

Methods
Equivariance
In the context of machine learning for atomic systems, equivariance is
a pervasive concept. Specifically, the atomic vectors such as dipoles or
forces must rotate in a manner consistent with the conformation

Fig. 5 | The comparison of model performance (y-axis), training time con-
sumption (x-axis), and trainingmemory consumption (volume) among ViSNet
(red) and other algorithms (grey) including PaiNN, ET, MACE, GemNet-OC,
Allegro, and NequIP on Chignolin. PaiNN and ET are faster and smaller as ViSNet
further incorporates dihedral calculation. ViSNet outperforms GemNet-OC due to
its Runtime Geometry Calculation, reducing the explicit extraction of dihedral
complexity fromOðN 3Þ toOðN Þ. Additionally, ViSNet is also faster and smaller than
MACE, Allegro, and NequIP for streamlining the CG-product. ViSNet achieves the
best performance for its elaborate design, i.e., runtime geometric calculation and
vector–scalar interactive message passing. Source data are provided as a Source
Data file.
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coordinates. Inmolecular dynamics, such equivariance can be ensured
by computing gradients based on a predicted conservative scalar
energy. Formally, a function F : X ! Y is equivariant should guaran-
tee:

F ðρX ðgÞ � xÞ=ρYðgÞ � F ðxÞ, ð13Þ

where ρX ðgÞ and ρX ðgÞ are group representations in input and output
spaces. The integration of equivariance into model parameterization
has been shown to be effective, as seen in the implementation of shift-
equivariance inCNNs,which is critical for enhancing the generalization
capacity.

Proofs of the rotational invariance of RGC
Assume that the molecule rotates in 3D space, i.e.,

r0
!

ij =R r!ij
ð14Þ

where, R∈ SO(3) is an arbitrary rotation matrix that satisfies:

det jRj= 1,RTR = I ð15Þ

The angular information after rotation is calculated as follows:

u0!
ij =

r0
!

ij

r0
!

ij

��� ��� =
R r!ij

det jRj � r!ij

��� ��� =R u!ij ð16Þ

v0
!

i =
XNi

j = 1

u0!
ij =R

XNi

j = 1

u!ij =R v!i ð17Þ

v0
!

i

��� ���2 = v0
!

i,v
0!
i

D E
= v0

!
i

� �T
v0
!

i

= v!i
T
RTR v!i = v!i, v

!
i

D E
= v!i

��� ���2
ð18Þ

As shown in Eq. (18), the angle information does not change after
rotation. The dihedral angular and improper information is also rota-
tionally invariant since:

w0!
ij = v0

!
i � v0

!
i,u

0!
ij

D E
u0!

ij =R v!i � R v!i ,R u!ij

D E
R u!ij ð19Þ

As Eq. (18) proved, the inner product has rotational invariance. Then,
Eq. (19) can be further simplified as

w0!
ij =R v!i � v!i, u

!
ij

D E
u!ij

� �
=Rw!ij ð20Þ

The dihedral or improper angular information after rotation is calcu-
lated as:

w0!
ij ,w

0!
ji

D E
= Rw!ij ,Rw!ji

D E
= w!ij , w

!
ji

D E
ð21Þ

As a result, Eqs. (18) and (21) have proved the rotational invariance of
our proposed runtime geometry calculation (RGC).

We also provide proof of the equivariance of our ViS-MP in Sup-
plementary Methods.

Detailed operations and modules in ViSNet
ViSNet predicts the molecular properties (e.g., energy Ê, forces
F
!2 RN × 3, dipole moment μ) from the current states of atoms,
including the atomic positionsX 2 RN × 3 and atomic numbers Z 2 NN .

The architecture of the proposed ViSNet is shown in Fig. 1. The overall
design of ViSNet follows the vector–scalar interactivemessage passing
as illustrated from Eqs. (8)–(11). First, an embedding block encodes the
atom numbers and edge distances into the embedding space. Then, a
series of ViSNet blocks update the node-wise scalar and vector repre-
sentations based on their interactions. A residual connection is placed
between two ViSNet blocks. Finally, stacked corresponding gated
equivariant blocks proposed by18 are attached to the output block for
specific molecular property prediction.

The embedding block. ViSNet expands the direct node and edge
embedding with their neighbors. It first embeds atomic chemical
symbol zi, and calculates the edge representation whose distances
within the cutoff through radial basis functions (RBF). Then the initial
embedding of the atom i, its 1-hop neighbors j and the directly con-
nected edge eij within cutoff are fused together as the initial node
embedding h0

i and edge embedding f 0ij . In summary, the embedding
block is given by:

h0
i ,f

0
ij =EmbeddingBlock zi, zj, eij

� �
, j 2 N ðiÞ ð22Þ

N ðiÞdenotes the setof 1-hopneighboringnodesofnode i, and j is oneof
its neighbors. The embedding process is elaborated in Supplementary.
The initial vector embedding v!i is set to 0

!
. The vector embeddings v!

are projected into the embedding space by following18; v!2 RN × 3× F

and F is the size of hidden dimension. The advantage of such projection
is to assign a unique high-dimensional representation for each
embedding to discriminate from each other. Further discussions on
its effectiveness and interpretability are given in the Results section.

The Scalar2Vec module. In the Scalar2Vec module, the vector
embedding v! is updated by both the scalar messages derived from
nodeandedge scalar embeddings (Eq. (8)) and the vectormessageswith
inherent geometric information (Eq. (9)). The message of each atom is
calculated throughanEdge-FusionGraphAttentionmodule,which fuses
the node and edge embeddings and computes the attention scores. The
fusion of the node and edge embeddings could be the concatenation
operation, Hadamard product, or adding a learnable bias55. We leverage
the Hadamard product and the vanilla multi-head attention mechanism
borrowed from Transformer56 for edge-node fusion.

Following19, we pass the fused representations through a non-
linear activation function as shown in Eq. (23). The value (V) in the
attention mechanism is also fused by edge features before being
multiplied by attention scores weighted by a cosine cutoff as shown in
Eq. (24),

αl
ij = σ Wl

Qh
l
i

� �
Wl

Kh
l
j � Dense l

K f lij
� �� �T

� �
ð23Þ

ml
ij =αl

ij � ϕ r!ij

��� ���� �
� Wl

Vh
l
j � Dense l

V f lij
� �� �

ð24Þ

where l∈ {0, 1, 2,⋯ , L} is the index of the block, σ denotes the acti-
vation function (SiLU in this paper), W is the learnable weight
matrix,⊙ represents the Hadamard product, ϕ( ⋅ ) denotes the cosine
cutoff and Dense( ⋅ ) refers to one learnable weight matrix with an
activation function. For brevity, we omit the learnable bias for linear
transformation on scalar embedding in equations, and there is no bias
for vector embedding to ensure the equivariance.

Then, the computed ml
ij is used to produce the geometric mes-

sages m!l

ij for vectors:

m!l

ij = Dense l
u ml

ij

� �
� u!ij

� �
+ Dense l

v ml
ij

� �
� v!l

j

� �
ð25Þ
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And the vector embedding v!l
is updated by:

ml
i =

X
j2N ðiÞ

ml
ij , m!l

i =
X
j2N ðiÞ

m!l

ij ð26Þ

Δ v!l + 1

i = m!l

i +W
l
vmml

i �Wl
v v
!l

i
ð27Þ

The Vec2Scalar module. In the Vec2Scalar module, the node
embedding hl

i and edge embedding f lij are updated by the geometric
information extracted by the RGC strategy, i.e., angles (Eq. (10)) and
dihedrals (Eq. (11)), respectively. The residual node embedding Δhl + 1

i ,
is calculated by a Hadamard product between the runtime angle
information and the aggregated scalar messages with a gated residual
connection:

Δhl + 1
i = Wl

t v
!l

i ,W
l
s v
!l

i

� �
�Wl

Anglem
l
i +W

l
resm

l
i ð28Þ

To compute the residual edge embedding Δf l + 1ij , we perform the
Hadamard product of the runtime dihedral information with the
transformed edge embedding:

Δf l + 1ij = Rej
r!ij

W l
Rt v
!l

i

� �
,Rej

r!ji

W l
Rs v
!l

j

� �� �
� Dense l

Dihedral f lij
� �

ð29Þ

After the residual hidden representations are calculated, we add them
to the original input of block l and feed them to the next block.

A comprehensive version that includes improper angles is
depicted in Supplementary Methods.

The output block. Following PaiNN18, we update the scalar embedding
and vector embedding of nodes with multiple gated equivariant
blocks:

tli =Dense
l
o2

Wl
o1
v!l

i

����
����

����
���� ,hl

i

	 
� �
ð30Þ

hl + 1
i =Wl

o3
tli ð31Þ

v!l + 1

i =Wl
o4

v!l

i �Wl
o5
tli ð32Þ

where [ ⋅ , ⋅ ] is the tensor concatenation operation. The final scalar
embedding hL

i 2 RN × 1 and vector embedding v!L

i 2 RN × 3× 1 are used
to predict various molecular properties.

On QM9, the molecular dipole is calculated as follows:

μ=
XN
i = 1

v!L

i +h
L
i r!i � r!c

� ������
����� ð33Þ

where r!c denotes the center of mass. Similarly, for the prediction of
electronic spatial extent 〈R2〉, we use the following equation:

R2
D E

=
XN
i= 1

hL
i r!i � r!c

��� ���2 ð34Þ

For the remaining 10 properties y, we simply aggregate the final scalar
embedding of nodes as follows:

y =
XN
i = 1

hL
i ð35Þ

For models trained on themolecular dynamics datasets including
MD17, revised MD17, and Chignolin, the total potential energy is
obtained as the sum of the final scalar embedding of the nodes. As an
energy-conserving potential, the forces are then calculated using the
negative gradients of the predicted total potential energy with respect
to the atomic coordinates:

E =
XN
i= 1

hL
i ð36Þ

F
!

i = � ∇iE ð37Þ

Statistics and reproducibility
For the QM9 dataset, we randomly split it into 110,000 samples as the
train set, 10,000samples as the validation set, and the rest as the test set
by following the previous studies18,19. For the Molecule3D and OGB-LSC
PCQM4Mv2 datasets, the splitting has been provided in their paper32,33.

To evaluate the effectiveness of ViSNet in simulation data, ViSNet
was trained on MD17 and rMD17 with a limited data setting, which
consists of only 950 uniformly sampled conformations for model
training and 50 conformations for validation for each molecule. For
the MD22 dataset, we use the same number of molecules as in ref. 30
for training and validation, and the rest as the test set.

Furthermore, thewhole Chignolin dataset was randomly split into
80%, 10%, and 10% as the training, validation, and test datasets. Six
representative conformations were picked from the test set for
illustration.

Experimental settings
For theQM9dataset, we adopted a batch size of 32 and a learning rate of
1e−4 for all the properties. For the Molecule3D dataset, we adopted a
larger batch size of 512 and a learning rate of 2e−4. For the OGB-LSC
PCQM4Mv2dataset,we trainedourmodel in amixed2D/3Dmodewith a
batch size of 256 and a learning rate of 2e−4. The mean squared error
(MSE) loss was used for model training. For the molecular dynamic
dataset including MD17, rMD17, MD22, and Chignolin, we leveraged a
combined MSE loss for energy and force prediction. The weight of
energy loss was set to 0.05. The weight of force loss was set to 0.95. The
batch size was chosen from 2, 4, 8 due to the GPU memory and the
learning rate was chosen from 1e−4 to 4e−4 for different molecules. The
cutoff was set to 5 for small molecules in QM9, MD17, rMD17, and
Molecule3D, and changed to 4 for Chignolin in order to reduce the
number of edges in the molecular graphs. For the MD22 dataset, the
cutoff of relatively smallmolecules was set to 5, that of biggermolecules
was set to4.Cutoffwasnotused in theOGB-LSCPCQM4Mv2dataset.We
used the learning rate decay if the validation loss stopped decreasing.
Thepatiencewas set to5epochs forMolecule3D, 15epochs forQM9, and
30 epochs for MD17, rMD17, MD22, and Chignolin. The learning rate
decay factor was set to 0.8 for these models. Training is stopped if a
maximum number of epochs is reached, or the validation loss does not
improve for a maximum number of early stopping patience. The ViSNet
model trainedon themolecular dynamic datasets andMolecule3Dhad9
hidden layers and the embedding dimension was set to 256. We used a
larger model for the QM9 dataset, i.e., the embedding dimension chan-
ged to 512. For theOGB-LSC PCQM4Mv2dataset, we use the 12-layer and
768-dimensionTransformer-M37 as thebackbone.Moredetails about the
hyperparameters of ViSNet can be found in Supplementary Table S4.
Experiments were conducted on NVIDIA 32G-V100 GPUs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All relevant data supporting the key findings of this study are avail-
able within the article and its Supplementary Information files.
MD17 dataset [http://www.quantum-machine.org/gdml/data/npz],
MD22 dataset [http://www.quantum-machine.org/gdml/data/npz],
rMD17 dataset [https://archive.materialscloud.org/record/file?
filename=rmd17.tar.bz2&record_id=466], QM9 dataset [https://
deepchemdata.s3-us-west-1.amazonaws.com/datasets/molnet_
publish/qm9.zip], Molecule3D dataset [https://github.com/divelab/
MoleculeX/tree/molx/Molecule3D], OGB-LSC PCQM4Mv2 dataset
[https://ogb.stanford.edu/docs/lsc/pcqm4mv2] and Chignolin data-
set [https://github.com/microsoft/AI2BMD/tree/ViSNet/chignolin_
data]. Source data are provided with this paper.

Code availability
Most experiments were run with Python with version 3.9.15, Pytorch
with version 1.11.0, Pytorch Geometric with version 2.1.0, and Pytorch
Lightning with version 1.8.0. The code used to reproduce our results is
available at https://github.com/microsoft/AI2BMD/tree/ViSNet57. Mat-
plotlib and Seaborn were used for plotting figures.
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