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Whole genomes from Angola and
Mozambique inform about the origins and
dispersals of major African migrations

Sam Tallman1,4, Maria das Dores Sungo2, Sílvio Saranga3 & Sandra Beleza 1

As the continent of origin for our species, Africa harbours the highest levels of
diversity anywhere on Earth. However, many regions of Africa remain under-
sampled genetically. Here we present 350 whole genomes from Angola and
Mozambique belonging to ten Bantu ethnolinguistic groups, enabling the
construction of a reference variation catalogue including 2.9 million novel
SNPs. We investigate the emergence of Bantu speaker population structure,
admixture involving migrations across sub-Saharan Africa and model the
demographic histories of Angolan and Mozambican Bantu speakers. Our
results bring together concordant views from genomics, archaeology, and
linguistics to paint an updated view of the complexity of the Bantu Expansion.
Moreover, we generate reference panels that better represents the diversity of
African populations involved in the trans-Atlantic slave trade, improving
imputation accuracy in African Americans and Brazilians. We anticipate that
our collection of genomeswill form the foundation for future African genomic
healthcare initiatives.

With over 300million speakers (5% of the global population) spanning
a region of sub-Saharan Africa of 10 million km2, the Bantu languages
represent one of the world’s largest language groups. This vast dis-
tribution has been largely attributed to the Bantu Expansion, a suc-
cession of dispersals originating in the inland Savannahs of Central-
West Africa some 6000–5000 years before the present-day (BP)1–3,
spanning the African Iron Age, and likely driven by the development of
agriculture4,5 and periods of habitat change6,7. Historical records (www.
slavevoyages.org) show that Bantu speaking communities were also
heavily affected by the forced movement of peoples to the Americas
during the trans-Atlantic slave trade, contributing over half of all slaves
to have disembarked across the New World. Despite this significant
role in the histories of both Africa and the Americas, Bantu speaking
communities remain under-represented in human genomics research.

Today, advances in next-generation sequencing technologies
have begun to facilitate the curation of whole-genome sequencing
(WGS) data representing the full spectrum of variation across diverse
human populations8,9. Such endeavours are critical next steps towards

understanding how genetic diversity is structured globally and pro-
viding reference variation catalogues for a broad range of medical
genetics initiatives10,11. Although Bantu speaking communities have
been involved in several WGS projects to date, such as the 1000
Genomes Project (1000G)12, African Genome Variation Project
(AGVP)13, Ugandan Genome Resource14 and H3Africa-Baylor dataset
(H3AB)15, gaps remain including a scarcity of data from populations on
the edge of the Bantu Expansion such as those from Angola and
Mozambique.

Prior analyses of autosomal SNP array16,17 and linguistic data18 from
regions surrounding Angola and Mozambique have proved crucial in
forming our understanding of major dispersal routes undertaken
during the Bantu Expansion. This includes favouring the so-called late-
split model concerning the diversification of Western and Eastern
Bantu languages19. Furthermore, archaeological data20,21 has hinted at
additional, more complex patterns including multi-step dispersals
involving Bantu speaking communities across sub-Saharan Africa,
suggesting our understanding of migrations into and out of Angola
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and Mozambique remains incomplete. Methods leveraging additional
WGS data have the potential to shed further light on these events.

Moreover, as former Portuguese colonies, Angola and Mozambi-
que are recorded as being the origin of over 5 million and
500,000 slaves to have crossed the Atlantic respectively from
1526–1875 (www.slavevoyages.org). Indeed, 96% of all slaves to arrive
in south-east Brazil left fromports located in Angola andMozambique,
whilst 25% of all slaves to arrive in the USA originated from Angola in
addition to those that disembarked from ports acrossmuch of coastal
west Africa. With limited genomic data available from these important
embarkation regions, current reference variation panels lack the
complete diversity of African populations that have contributed
ancestry to populations throughout the Americas16,22 potentially lead-
ing to asymmetries in our ability to impute variation for analysis using
genome-wide association studies23.

To support the continued discovery and cataloguing of genomic
variation in human populations and to further our understanding of
the Bantu Expansion, we sequenced the genomes of 300 individuals
from Cabinda, a northern exclave of Angola, and 50 individuals from
Maputo, the capital of Mozambique. Utilising the power and flexibility
of these WGS datasets, we discover rare variation, fine-scale popula-
tion structure, and perform analyses using haplotype-based inference
tools and our own model-based simulation framework to reconstruct
complex dispersals of Bantu speaking populations across sub-Saharan
Africa. Here, we show that the Bantu expansion conforms to a series of
founder events starting from western Africa south of the equatorial
rainforest, where Bantu communities differentiated into branches that
either continued further south into Namibia, or east into the regions
surrounding Zambia (likely associatedwith the proliferationof Eastern
Bantu languages) and further into east and south Africa. We infer
distinct periods and intensity of admixture during the Bantu dispersal.
During the initial stages of the Bantu dispersals into Cabinda and
Angola in the west, and into Mozambique in the east, admixture with
local populations was limited; this was followed by more extensive
admixture in later stages of the Bantu dispersals in south-west (in
Namibia and south-western Botswana) and south-east (south-eastern
Botswana and South Africa) Africa. Our results bring together con-
cordant views from genomics, archaeology, and linguistics to paint an
updated view of the complexity of the Bantu Expansion.

Moreover, we generate reference panels that better represents
the diversity of African populations involved in the Atlantic slave trade,
improving imputation accuracy in African Americans and Brazilians
over the 1000 Genomes Project. Overall, this dataset represents a
timely addition to the growing number of whole-genome sequences
from Africa, provides insights into the history of Bantu speaking
migrant communities, and takes another step towards ensuring the
potential benefits of genomics extends to all parts of the globe.

Results
A novel collection of genomes from Cabinda, Angola and
Maputo, Mozambique
Genomic DNA was extracted using saliva samples collected with
informed consent and sequenced using the Illumina HiSeq X™
platform to an average autosomal read depth of ~12X from 300
individuals sampled in Cabinda and 50 individuals sampled in
Maputo (Table 1) labelled according to ethnolinguistic groups24

derived from self-reported parental and grand-parental language
(Supplementary Data 1). Among individuals collected in Cabinda
(CAB), 79% reported as having a single familial language belonging
to one of many closely related Kikongo (Kongo) dialects, the pre-
dominant language spoken in the region. Those collected from
Maputo (MOZ) were more ethnolinguistically heterogeneous, with
62% of individuals reported as speaking Tswa-Ronga (Tsonga) or
Chopi languages commonly found in the south of Mozambique and
28% speakingMakua dialects commonly found in the north. Place-of-

birth largely mirrored expectations corresponding to language dis-
tributions (Supplementary Data 1).

After sample processing, variant calling, and quality-control we
identified 33.1 million total variants among CAB and MOZ, including
29.9 million SNPs and 3.9 million short INDELs, with an average of 4.1
million SNPs per sampled genome (Table 1). Approximately 2.9million
SNPswere novelwhen compared to the dbSNP155 (https://ftp.ncbi.nih.
gov/snp/), 91% of which were singletons.Modest differences in genetic
diversity between CAB and MOZ were apparent, with CAB showing an
increased coverage-adjusted average heterozygosity ratio compared
to MOZ (CAB = 1.99, MOZ= 1.95, bootstrap p <0.0001) (Supplemen-
tary Fig. 1).

Overall, 21% of autosomal SNPs identified in CAB orMOZwere not
observed in the 1000G, AGVP, or H3AB. Of these 6.1 million total
dataset-specific SNPs, ~72% were singletons and 95% were rare (minor
allele frequency (MAF) < 0.05). Upon examining shared f2 alleles25, we
find the largest proportion of rare variants genotyped among CAB and
MOZ are shared with previously sequenced Bantu speaking groups,
with notable yet reduced sharing with African-derived populations
from the Americas (Supplementary Table 1).

Population structure in a pan African context
To investigate population structure and diversity of CAB andMOZ in a
pan-African context, we merged genotypes called across newly
sequenced individuals with a single familial language group, unrelated
to the 4th degree (as estimated using KING26), and with <5% European
ancestry (as estimated using ADMIXTURE27) (Supplementary Data 1)
with sequenced African groups from the 1000G, AGVP, H3AB, the
Simons Genome Diversity Project (SGDP)28, and three high-coverage
ancient African genomes29–31 (Supplementary Data 2).

PCA32 performed using this merged WGS dataset captures popu-
lation structure among Niger-Congo peoples largely reflecting regio-
nal admixture in addition to isolation by distance (Fig. 1b,
Supplementary Fig. 2). PC2 separates Bantu speakers from other West

Table 1 | Summary of newly sequenced individuals and auto-
somal genomic variation in our CAB and MOZ datasets

Dataset CAB MOZ

Ethnolinguistic Group Kongo (n = 238), Kimbundu
(n = 14), Ovimbundu
(n = 15), Ovambo (n = 2),
Chokwe (n = 2),
Other (n = 26)

Tsonga (n = 18), Chopi
(n = 13), Makua (n = 14),
Sena (n = 3), Shona
(n = 1), Other (n = 1)

Total samples
(post QC)

297 50

Mean coverage (X) 11.56 ± 1.51 12.07 ± 1.40

Mean reads mapped
hg19/GRCh137 (%)

90.19 ± 6.83 93.94 ± 2.86

Total SNPs 27,116,464 17,064,063

Total INDELs <50bp 2,964,806 1,840,852

Nonsynonymous 134,936 67,349

Synonymous 112,122 63,876

Downstream 273,729 163,500

Upstream 257,040 152,531

5’ UTR 80,086 44,898

3’ UTR 327,251 184,218

Intronic 11,548,432 6,774,720

Intergenic 14,662,426 8,828,426

Splicing 2509 1066

ncRNA 3,950,561 2,347,461

Other includes Luba (n = 1), Ngala (n = 1), Lunda (n = 1) and individuals with mixed parental and/or
grand-parental language groups. ± Shows one standard deviation. Further details regarding
sequencing statistics, linguistic affiliations and place-of-birth can be found in Supplemen-
tary Data 1.
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African groups, with CAB and MOZ appearing closest to Bantu
speakers fromCameroon (CAM) and Zambia (BSZ). As supported by f4
statistics33 (Supplementary Fig. 3), such clustering is likely a result of
themodest impact of admixture fromnon-Bantu speaking groups (e.g.
Afro-Asiatic, Khoe/San) relative to Bantu speakers from eastern
(Baganda, Luhya (LWK)) and southern Africa (Botswana (BOT), Zulu).

Within MOZ, population structure is apparent on a PCA largely
separating the northern Makua (MOZ (north)) from the southern
Tsonga and Chopi peoples (MOZ (south)). f4 statistics suggest only
limited difference in east African or Khoe/San related ancestries
between these groups (Z > −2 and Z < 2) (Supplementary Fig. 3). How-
ever, we do observe significant statistics testing clade structure com-
pared to the South African Zulu (f4(MOZ (south), MOZ (north); Zulu,
Chimp), Z = 4.4) (Supplementary Table 2), with positive values of f4
indicating elevated allele sharing with MOZ (south) and suggesting
population structure within MOZ likely also reflects the genetic dif-
ferentiation of north Mozambican from south Mozambican and South
African Bantu speakers over time in addition to any subtle differences
in east African or Khoe/San admixture components.

Examining Identical-By-Descent (IBD) haplotypes34 shared across
sequenced Niger-Congo speaking groups in the dataset, we observe
geographic stratification of recent ancestries. Longer, more recent
haplotypes (>8 cM, approximately <250 years before present (BP)35)
(Supplementary Fig. 4a) are shared almost exclusively within groups,
consistent with more restricted population movements in recent
centuries. For CAB, CAM and non-Bantu speaking west Africans, this is
also true of intermediate haplotypes (4–8 cM, ~750 BP) (Supplemen-
tary Fig. 4b). However, individuals among MOZ still share a number of
ancestors with Bantu speakers among the Zulu, BSZ and BOT in this
period, illustrating their recent common histories. When focusing on
shorter, more ancient haplotypes (2–4 cM, ~1500 BP), shared ancestry
across all Bantu speaking groups is observed (Fig. 1c). However, geo-
graphic structure is still apparent, revealing an increasing gradient of
pairwise IBD from west to east and south. Here, MOZ shares higher
mean pairwise IBD with BSZ than with CAB (BSZ = 11.5 cM>CAB = 3.8
cM, permutation test p <0.0001), supporting inference that Zambia
was an intermediate location for Bantu speaker migrations into the
region surrounding present-day Mozambique15.

Fig. 1 | Populationstructure ofCABandMOZ in the contextof sequencedNiger-
Congo groups. a Map denoting colour and shape corresponding to each Niger-
Congo group and their country-of-origin present in a merged dataset consisting of
CAB andMAP, 1000G, AGVP, and H3AB, andmodern and ancient African genomes
(Supplementary Data 2). Collection sites in Cabinda (1) and Maputo (2) are also
shown. We emphasise that sequenced groups do not reflect the complete genetic
or ethnolinguistic diversity of their country-of-origin.MapmadewithNatural Earth.
Free vector and raster map data @ naturalearthdata.com. b Top two principal
components of PCA calculated on African groups in the merged dataset (Supple-
mentary Data 2). PC1 and PC2 explain 1.2% and 0.5% of observed variation
respectively. PCshere are zoomed to emphasiseNiger-Congopopulation structure.
Arrows denote approximate direction of additional super-groups present in the

unzoomed PCA (see Supplementary Fig. 2b for unzoomed PCA). c Average
cumulative length of IBDhaplotypes between2 and4 cMthat individuals sharewith
another individual fromeachNiger-Congopopulation in themergeddataset. Bantu
speakers from outside of Cameroon are ordered according to geographic distance
fromCabinda (see also Supplementary Table 3). Mandenka fromTheGambia;MSL,
Mende from Sierra Leone; MAL, People from Mali; WGR, Gur from Burkina Faso;
FNB Fon fromBenin; YRI, Yoruba fromNigeria; ESN, Esan fromNigeria; BRN, Berom
from Nigeria; CAM, Bantoid and Bantu speakers from Cameroon; CAB, Bantu
speakers collected in Cabinda, Angola; BSZ, Bantu speakers from Zambia; Baganda
from Uganda; LWK, Luhya from Kenya; MOZ (north), Makua or Lomwe peoples
from Mozambique; MAP (south) Tsonga (Tswa-Ronga) or Chopi peoples from
Mozambique; BOT, Bantu speakers from Botswana; Zulu from South Africa.
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Examining ancient IBD (2–4 cM) sharing within groups (Fig. 1c),
clear differences between regions become apparent. MOZ (south)
share higher mean pairwise IBD than MOZ (north) (MOZ (north) =
16.1 cM<MOZ (south) = 20.8 cM, permutation test p <0.0001), cor-
roborating the recent discovery of north to south serial founder events
in the genetic history of the region17. This pattern is similarly observed
when analysing short runs of homozygosity (ROH)36 (Supplementary
Fig. 5). Extending these findings, among Bantu speakers from outside
of CAM, we observe a strong correlation between within-group IBD
sharing and geographic distance from Cabinda (Pearson’s r = 0.89,
p =0.003) (Supplementary Table 3), evidencing a progressive reduc-
tion in genetic diversity associatedwith the expansionof Eastern Bantu
speakers into and across east and south-east Africa1,15–17. Conversely, no
evidence of founder events reflecting a southward dispersal of Bantu
speakers through the equatorial rainforests6,15,17 are apparent when
examining differences in mean pairwise IBD sharing within CAM or
CAB (CAM=4.6 cM <CAB = 5.4 cM, permutation test p >0.05).

To further explore the population structure of CAB and MOZ, we
merged our extended WGS dataset with a selection of modern and
ancient individuals genotyped at sites present on the Human Origins
Array (HOA)29,31,37–43 (Supplementary Data 3) or a second dataset
composed of individuals genotyped on various Illumina array panels,
including previously genotyped Angolan and Mozambican Bantu
speakers13,16,17,44–49 (Supplementary Data 4) and performed PCA and
haplotype-based clustering using fineSTRUCTURE50. PCAs align with
those performed on our WGS dataset (Fig. 1b). CAB and MOZ cluster
closely across the top PCs (PC1 to PC4, Supplementary Fig. 6a, b and
Supplementary Fig. 7a, b) that largely separate groups according to
variation in local admixture components. PC5 (Illumina, Supplemen-
tary Fig. 6c) and PC6 (HOA, Supplementary Fig. 7c) instead appear to
reflect Niger-Congo specific population structure resulting from iso-
lation by distance. Here, CAB and MOZ cluster distinctly alongside
neighbouring Western and South-Eastern Bantu-speaking groups
respectively. Further supporting our inference using WGS data
(Fig. 1b), fineSTRUCTURE infers substructure among MOZ separating
Tsonga and Chopi from the Makua peoples, with newly sequenced
individuals clustering alongside members of their respective ethno-
linguistic groups previously collected across Mozambique (Supple-
mentary Fig. 8b). Makua peoples also cluster closely with Malawian
Bantu speakers in the HOA dataset (Supplementary Fig. 6, Supple-
mentary Fig. 8a), aligned with the considerable geographic and cul-
tural overlap between Malawi and northern Mozambique24. Within
CAB, fineSTRUCTURE clusters broadly separate Kongo from Ovim-
bundu and Kimbundu peoples predominantly born in the central-
western regions of Angola (Supplementary Data 1). Notably, however,
whilst 85% of Kongo peoples among CAB clustered largely indepen-
dently from any other ethnolinguistic group, 75% of Kongo peoples
previously collected from the capital of Luanda appeared within eth-
nolinguistically heterogenous fineSTRUCTURE clusters (Supplemen-
tary Fig. 8b), signifying a complex relationship between language and
genetics across the region. Together, these results highlight the recent
appearance of present-day national borders relative to the emergence
of genetic structure across sub-Saharan Africa.

Hunter-gatherer related admixture
The genetic architecture of sub-Saharan Africa has been shaped by
admixture involving Bantu speaking migrants and local populations.
However, consistent with a history involving almost complete repla-
cement of local genetic diversity across large parts of central-west and
south-eastern Africa15,17,42, and supporting inference using PCA (Fig. 1b,
Supplementary Fig. 6, Supplementary Fig. 7), f4 statistics (Supple-
mentary Fig. 3), and Y-chromosome and mitochondrial DNA lineages
(Supplementary Fig. 17, Supplementary Note 3), SOURCEFIND51 ana-
lyses performed using our extended HOA dataset (Supplementary
Fig. 9), suggests that CAB andMOZ are best represented as having 99%

(minimum (min) = 90%, maximum (max) = 100%, sd ± 2%) and 97%
(min = 93%, max = 97%, sd ± 2%) Bantu speaker related ancestry
(represented by the Cameroonian Lemande) respectively. These
results are broadly recaptured using ADMIXTURE27 clustering (Sup-
plementary Fig. 10).

Using fastGLOBETROTTER52,53 (Fig. 2b, c, Supplementary Data 5),
we find the small 3–4% contribution from a Khoe/San-like source
group (best represented by a 2000-year-old individual from Ballito
Bay, South Africa31) in Tsonga and Chopi peoples among MOZ (south)
are derived from single-date admixture events at ~1300 BP (27 years
per generation54, 95% confidence interval (CI) 1050–1550 BP), aligned
withdates and ancestry proportions observed in previously genotyped
south Mozambican groups17 and Tsonga peoples from South Africa55.
We also find evidence of admixture involving a small 1–5% western
rainforest hunter-gatherer component (best represented by the
Cameroonian Bakola) in the Kongo peoples among CAB estimated to
have occurred ~2050 BP (CI 1800–2150 BP), identical to those pre-
viously estimated in this group16. Ovimbundu and Kimbundu peoples
among CAB and Makua peoples among MOZ (north) are modelled by
SOURCEFIND as having as little as <1% rainforest hunter-gatherer or
Khoe/San related ancestry respectively.

Complex dispersals of Bantu speakers into and out of Angola
and Mozambique
Whilst contact with local populations appears to have had a modest
impact on the genetic diversity of Bantu speakers among CAB and
MOZ (Fig. 1b, Supplementary Figs. 9, 10), previous genetic research
involving Bantu speaking groups from Angola and Mozambique have
revealed that migrations out of both regions had a widespread impact
on the genetic diversity of sub-Saharan Africa16,17. Importantly, the
flexibility afforded by our WGS datasets now enables such models of
migration and admixture developed in these earlier studies to be tes-
ted using largely independent datasets (such modern and ancient
individuals genotyped on the HOA). To reconstruct dispersal into and
out of the regions surrounding Angola and Mozambique over recent
millennia, we therefore used SOURCEFIND and fastGLOBETROTTER to
characterise ancestries and date admixture in all present-day African
groups across our extended HOA dataset (Supplementary Data 3).
Here, ancestry proportions were inferred using a stepwise approach,
with a cumulatively increasing number of Bantu speaking groups
(including those among CAB and MOZ) added as possible sources of
ancestry in each step (Supplementary Note 5).

Replicating the findings first described in Patin et al.16 we observe
first that haplotypes among 39 present-day groups across the dataset
spanning much of east and south-east Africa match more closely to
Bantu speakers in CAB relative to those from Cameroon (Fig. 2d, step
1, 2). These results are consistent with a late-split model of the Bantu
Expansion, where migration into eastern Africa occurred only after an
initial southward movement through the equatorial rainforests19.

Following this initial spread, additional patterns of relative hap-
lotype matching suggests subsequent branching dispersals likely
occurred around central-west Africa, becoming apparent when Zam-
bian Bantu speakers are added as an additional source of ancestry
(Fig. 2, step 3). Here, Ovimbundu peoples among CAB remain as the
closest source of Bantu speaker ancestries among groups from
Namibia, consistent with a continued movement of Western Bantu
speakers through southern Angola. This was likely followed by two
distinct periods of admixture involving Bantu speakers and Khoe/San
groups respectively, estimated to have occurred between 1300 BP
(CI 1000–1700) and 550–750 BP (CI 350–800 BP) and aligned with
previous estimates40. However, further supporting recent research
suggesting populations moved into the region surrounding Zambia
before migrating further south or east15, we find that Zambian Bantu
speakers largely replace ancestries previousmatched toCAB in groups
from across east and south-east Africa. Future studies that include
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Fig. 2 | Bantu speaker dispersals into and out of Angola and Mozambique and
admixture. a Map of sub-Saharan Africa with arrows connecting target groups in
the HOA dataset to respective source population(s) (“Regional Bantu speaking
Groups”) as inferred using SOURCEFIND under a stepwise approach. The origin,
colour, and size of each arrow details the proportion of ancestry from the closest
Bantu speaking source inferred to contribute some ancestry proportion to each
target group in the final step, as shown in (d). Coordinates of source and target
groupswere inferred using the approximate region of Africa where that language is
primarily spoken24, collection site, or place-of-birth information (Supplementary
Data 1). BOT was excluded due to within-group heterogeneity (Supplementary
Fig. 11). Three geographic regionsof extensive admixturewith local populations are
labelled as South-West (SW), East (E), and South-East (SE). Shaded yellow area
represents the Kalahari semi-desert. Arrows do not necessarily reflect direct
migration but are instead indicative of relative patterns of shared ancestries. Map
made with Natural Earth. Free vector and rastermap data@ naturalearthdata.com.
b Date(s) of admixture estimated using fastGLOBETROTTER. Generation time = 27

years per generation54. 95% confidence intervals were estimated using bootstrap
resampling over 100 replicates (n’s are in Supplementary Data 1 and 3; date esti-
mates are in Supplementary Data 5). c Best guess of major (M) and minor (m)
admixing source populations for either event 1 (latest) or 2 (earliest) inferred using
fastGLOBETROTTER. d Ancestry proportions in target groups estimated by
SOURCEFIND using a five-step approach. Starting from step 1 where Cameroonians
are the only Bantu speaking group included as potential source population,
ancestry proportions in each target groupwere re-estimated after additional Bantu
speaking groups were cumulatively added as potential source populations in each
step (as shown by dotted arrows), whilst also being excluded as target groups in
that and successive steps (Supplementary Note 5). Colours represent groups
merged into “Super Populations or “Regional Bantu speaking Groups” as shown in
(a). BSZ*, Bantu speakers from Zambia that cluster independently from Malawians
as inferred using fineSTRUCTURE (Supplementary Note 5); other population
acronyms are in Fig. 1.
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WGSdata fromCentral-Africacountries such as theDRCmaybe able to
refine the modelling of eastern Africa ancestry56.

Building on this model of Bantu speaker migration into east and
south Africa presented in Choudhury et al.15, we observe that inter-
mediate Zambian ancestries (Supplementary Note 5) are replaced by
Bantu speakers from Malawi (Fig. 2, Supplementary Fig. 11b, step 4, 5)
in groups from Uganda, Kenya, and Tanzania, consistent with a con-
tinued association of eastward moving populations through central
Africa before further dispersals towards the north-eastern Great Lakes
region. Alternatively, we find MOZ (north) (Fig. 2, step 4) and then
MOZ (south) (Fig. 2, Supplementary Fig. 11c, step 5) largely replace
Zambian ancestries among Bantu speakers from South Africa and
southern Botswana, providing additional support for models descri-
bed in Semo et al.17 in which Bantu speaking populations from south-
ernmost parts of the continent first spread through north to south
Mozambique. As widely reported13,15,40,55, we find Bantu speaking
groups from South Africa and southern Botswana show evidence of
Khoe/San admixture dated to ~600–750 BP (CI 500–900 BP), sig-
nificantly later than those estimated in Tsonga and Chopi peoples
among MOZ (south) (Fig. 2c).

Interestingly, the sampling distribution of present-day Bantu
speaking groupswhose admixing sourcemost closelymatches toMOZ
(south-east (SE), Fig. 2a, d) relative to CAB (south-west (SW), Fig. 2a, d)
are perfectly subdivided by the Kalahari semi-desert, revealing this
feature as a potential barrier to the expansion of Bantu speaking
communities in southern Africa. In apparent contrast to these regional
patterns of shared ancestrywithCABandMOZamongmodern groups,
ancestry in a 1100-year-old individual from the south-eastern border of
Botswana (Botswana_Taukome_1100BP, SE)43 was recently modelled
using the Ovambo (who derive 98% of their ancestry from CAB,
Fig. 2d). Performing analogous qpAdm tests57,58, however, we find that
models including MOZ (south), MOZ (north), or BSZ similarly provide
working fits (Supplementary Table 4). Moreover, ADMIXTURE clusters
(Supplementary Fig. 10) and PCA (Supplementary Fig. 6c) suggest
Bantu speaker ancestry in Botswana_Taukome_1100BP appear most
similar to South-Eastern Bantu speaking groups (such as those among
MOZ) whereas Bantu speaker ancestries observed in 1400-year-old
individuals from the northern Okavango Delta (Botswana_Xar-
o_1400BP, SW) appearmore similar toWestern Bantu speaking groups
(such as those among CAB), mirroring patterns observed among
present-day groups from neighbouring regions.

Demographic histories and split time estimates
Observations of recent shared ancestry between Eastern Bantu
speaking populations and Western Bantu speakers from regions
directly south-west of the equatorial rainforest (such as Cabinda)
relative to those from closer to the Bantu heartland in Cameroon 1,3

(Fig. 2) are widely regarded as supporting evidence for a late-split
model of the Bantu Expansion19. However, chronologies underlying
such events, and their demographic consequences, remain topics of
debate18,59,60. Largely free from the confounding effects of substantial
admixture (Fig. 1b, Supplementary Fig. 9,10), CAB and MOZ are well-
placed to interrogate demography specific to their Western and East-
ern Bantu speaking ancestors utilising methods enabled by WGS.

To investigate the population size (Ne) and separation histories of
CAB and MOZ, we used the non-parametric Multiple Sequentially
Markovian Coalescent (MSMC2)61,62 and genome-wide genealogies
estimated using Relate63. We also investigate the demographic and
separation histories under an Approximate Bayesian Computation
(ABC) framework64, simulating 135,000 whole-chromosomes65 (chro-
mosome 1) using realistic recombination rates and error rates typical
of WGS data34 under a clean-splitmodel (Supplementary Fig. 12), often
considered a lower bound for estimating genetic splits. This simulated
data was then compared to CAB and MOZ across a set of summary
statistics (Supplementary Table 5), selected based on their ability to

inform on various demographic parameters (Supplementary Table 6,
Supplementary Fig. 13). This includes IBD and ROH haplotype-based
statistics, known to improve evaluations of recent demography66,67.

Concerning population size histories, concordant patterns from
all three methodologies are observed. Here, MOZ is estimated as
having a lower ancestral Ne than CAB (Fig. 3a, b, c, e), perhaps due to
founder events associated with the dispersal of Bantu speaking com-
munities into and within east and south-east Africa (Fig.1c, Supple-
mentary Table 3). This was followed by rapid growth in both
populations (Fig. 3a, b, d, f), likely driven by a transition to more
sedentary lifestyles68.

Using Relative cross-coalescence rates (RCCR), the split between
CAB and MOZ is estimated to have occurred at ~5900 BP with MSMC2
and 4,800 BP with Relate (generation where RCCR>0.5, 27 years per
generation54; Fig. 3g). These split times are more recent than those
estimated between CAB orMOZ and non-Bantu speakingWest African
groups such as the Yoruba (YRI) (Supplementary Fig. 14). Calculating
posterior parameter estimates using ABC under a clean-split model
(Supplementary Figs. 12, 13) places the CAB and MOZ split somewhat
later, at ~3200 BP (95% CI 2700–3700 BP) (Supplementary Table 7).
Such discrepancies may suggest a gradual separation of lineages
ancestral to CAB andMOZover thousands of years, or could otherwise
reflect difficulties with coalescent-based, non-parametric methods at
estimating recent demography relative to those that leverage IBD or
ROH haplotypes.

Increasing reference panel diversity using newly sequenced
genomes
Previous studies have consistently demonstrated the value of includ-
ing population-specific reference genomes alongside a more cosmo-
politan collection of samples when imputing unobserved genotypes in
target datasets13,14. Indeed, unsurprisingly, we observe a substantial
improvement in imputation accuracy among a subset of individuals
amongCAB andMOZwhenutilising the remaining collection ofwhole-
genome sequences across both datasets in haplotype reference panels
(Supplementary Fig. 15). It is less clear, however, whether increasing
the diversity of parental African populations in reference panelswould
result in improvements in imputation accuracy among admixed
populations from the Americas.

To test this, we used two target datasets: The 23&Me African
American Sequencing Project (AASP)69, including 2,303 individuals
from the USA and the Saúde Bem Estar e Envelhecimento project
(SABE)70, including 1,171 individuals from São Paulo, Brazil. ADMIX-
TURE clustering shows an average of 72%West African-like ancestry in
individuals from the AASP (min = 30%, max= 100%, sd ± 8%) and 11% in
individuals fromSABE (min = 0%,max = 98%, sd ± 21%) (Supplementary
Fig. 16). After masking genotypes in each dataset other than at refer-
ence coordinates present in the Illumina Omni 2.5 Array (which tags
many of the SNPs present in the 1000G), we imputed genotypes using
either the 1000G reference panel or a combined reference panel
including the 1000G alongside CAB and MOZ. Aligned with our
understanding of slave origins22, the addition of CAB and MOZ to the
1000G reference panel resulted in improvement in imputation accu-
racy in both individuals from the USA and Brazil (Fig. 4), especially for
rare (0.01 <MAF ≤0.05: AASP 1000G R2 > 0.77, AASP 1000G+CAB and
MOZ R2 > 0.80; SABE 1000G R2 > 0.72, SABE 1000G+CAB and MOZ
R2 > 0.77) and very rare (MAF ≤0.01: AASP 1000G R2 > 0.22, AASP
1000G+CAB and MOZ R2 0.26; SABE 1000G R2 > 0.23, SABE
1000G+CAB & MOZ R2 > 0.30) variants.

Discussion
Analysing genomic data from under-represented human populations
has the potential to shed light on major events in our species’ history
and to fill important gaps in the current record of global diversity.
Here, we present a collection of whole genomes from Angola and
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Mozambique—CAB and MOZ—expanding the coverage of catalogued
genetic variation from sub-Saharan Africa, enabling insights into
genetic history and potentially improving the imputation of African
and African-derived ancestry in the Americas (Fig. 4).

Leveraging the power ofWGSdata and thewell-placeddiversity of
ethnolinguistic groups among CAB and MOZ, we recover estimates of
a genetic split between Eastern Bantu speakers from Western Bantu

speakers south of the equatorial rainforests occurring around 3200 BP
(CI 2700–3700 BP) (Fig. 3h) using ABC under a clean-split scenario or
as early as 5900 BP using MSMC2 (Fig. 3g). Supporting the later esti-
mate, date ranges inferred using ABC align well with the separation of
Kikongo (79% of languages spoken among CAB) from Eastern Bantu
around 3400 BP estimated using dated language phylogenies18. Intri-
guingly, such estimates overlap with the period spanning the earliest

Fig. 4 | Imputation accuracy among Brazilians and African Americans from the
USA after combining CAB and MOZ with the 1000 Genomes Project (1000G)
reference panel. a Dosage R2 (Pearson’s squared correlation coefficient) of called
genotype vs genotypes imputed into African Americans from the USA (AASP)69

using either the 1000G reference panel only or amerged reference panel including
the 1000G with and 340 newly sequenced individuals in CAB and MOZ (unrelated
to the 4th degree as estimated using KING) as a function of alternate allele

frequency at loci shared across both reference panels. b As in (a) but for Brazilians
(SABE)70. When imputing genotypes using the merged reference panel, we exclu-
ded a random subset of 340 individuals from the 1000G to harmonise reference
panel size with the 1000G. We emphasise that the larger sample size of CAB (291)
relative to MOZ (49) means that CAB is likely to be driving these improvements in
imputation accuracy.

Fig. 3 | Demographic models of population size and separation histories
inferred using whole genome sequencing data from CAB and MOZ. a Effective
population sizehistoryofCABusingwithin-populationcoalescence rates estimated
using Relatewith 40genomes andMSMC2with four high-coverage (37X) genomes.
b ABC posterior distribution for parameter denoting CAB effective population size
at the generation in which CAB and MOZ separated (Generation Split). c ABC
posterior distribution for parameter denoting CAB effective population size in
most recent generation (Generation Present). d, e, f As in (a, b, c) but for MOZ.
Relate was run independently for MOZ (north) and MOZ (south). g Separation
history of CAB andMOZ estimated using Relative Cross-Coalescence Rates (RCCR)

estimated using Relate with 40 genomes sampled from CAB, 27 fromMOZ (south)
or 13 from MOZ (north) or MSMC2 using two high-coverage (37X) genomes from
either CABorMOZ(SupplementaryNote 3). Separation timeswere taken as thefirst
generation going backwards-in-time in which RCCR is greater than or equal to 0.5
(h) ABC posterior distributions for parameters denoting the generation during
whichCABandMOZsplit (GenerationSplit) using40chromosomes (chromosome 1)
randomly sampled from CAB and MOZ. Dashed lines represent the medians of the
posterior distributions. Full ABC posterior estimates can be found in Supplemen-
tary Table 7. Generation time = 27 years per generation54. Population acronyms are
defined in Fig. 1.
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archaeological evidence of the Bantu speaker inhabitation of the
western Congo basin around 2800 BP21,71, whilst notably predate the
earliest evidence of Bantu speaker-associated artefacts east of Lake
Tanganyika ~2600 BP72. However, split times inferred using genomic
data should be treated with caution as they can be influenced by
sequencing and phasing errors or unmodelled admixture61,62. More-
over, we emphasize these estimates largely predict the genetic split
between Kongo peoples and Bantu speakers from north and south
Mozambique. Further analyses using a greater diversity of sequenced
groups under more complex demographic scenarios are therefore
necessary to comprehensively assess the separation of Western and
Eastern Bantu speaking populations.

After this proposed split, our results suggest heterogeneity in the
demographic histories of newly sequenced Bantu speakers from
Angola andMozambique prior to recent explosions in population size,
with CAB shown to have maintained a larger ancestral Ne relative to
MOZ (Fig. 3a, b, c, d, e, f). RecentNe growth amongWestern and South-
Eastern Bantu speaking groups was similarly reported by Seiden-
stricker et al.21 and Sengupta et al.55 respectively, with their results
indicating explosions in population size largely occurred after 1000
BP. Further patterns revealed by IBD haplotype sharing (Fig. 1c) sug-
gest these observations of reduced ancestralNe amongMOZ are likely
a result of serial founder events that exclusively accompanied the
expansion of Eastern Bantu speakers into and across eastern and
southern Africa, an observation previously unseen when analysing
Y-chromosomal markers73 but recently reported specifically among
array-genotyped Mozambicans17. Serial founder events are widely
associated with rapid range expansions74. As such, these findings
appear to provide a genetic parallel with the archaeological record,
with a larger maintained Ne in Bantu speakers from Cabinda aligned
with predictions of a slower, more complex settlement of the equa-
torial rainforests3,21 and a progressive reduction in Ne among Eastern
Bantu speakers aligned with the subsequent emergence of Bantu-
associated Iron Age assemblages throughout much of eastern and
southern Africa in little over a millennium4,75,76.

Furthermore, the predicted sequence of these serial founder
events (Fig. 1c), alongside additional stepwise haplotype-based ana-
lyses (Fig. 2), provide a synthesis of genetically-inferred models of the
Bantu Expansion16,17,77, using a largely independent dataset. Under this
proposedmodel, Bantu speaking communities south of the equatorial
rainforest differentiated into branches that either continued further
south intoNamibia, or east into the regions surrounding Zambia (likely
associated with the proliferation of Eastern Bantu languages3,18,19).
These eastern branching dispersals through central Africa then likely
further differentiated before reaching the Indian Ocean coast either
moving further east towards the Great Lakes region or likely continu-
ing east of Malawi before southward dispersals through Mozambique
and subsequently into South Africa and southern Botswana (Fig. 2a).
We note that any such events likely occurred well after our estimated
split between CAB and MOZ, with the earliest evidence of admixture
associatedwith thesedispersals appearingwell after 2000BP (Fig. 2b).

However, whether such dispersal patterns model the initial set-
tlement of each region is difficult to ascertain unless the distribution of
present-day communities reflects the original spread of Bantu speak-
ers across the continent. Indeed, analysis of archaeological and genetic
data21 have revealed that spread-over-spread events were a feature of
the Bantu Expansion. Notably, extending the findings presented in
Wang et al.43 our results suggest ancient peoples inhabiting the north-
western and south-eastern regions of Botswana show evidence of
ancestries similar to neighbouring present-day Western and Eastern
Bantu speaking groups respectively. Such observations show direct
evidence that population structure reflecting the independent dis-
persals of Western and South-Eastern Bantu speaking groups either
side of the Kalahari (Fig. 2) was apparent by at least 1100 BP. Under-
scoring the potential complexity of such migrations, however, whilst

our proposed dates of admixturewith Khoe/San groups in Tsonga and
Chopi peoples among MOZ (1300 BP, Fig. 2b) overlap well with the
earliest evidence complete Iron Age package in Mozambique around
1200–1600 BP75, these estimates predate more extensive Khoe/San
admixture among present-day Bantu speakers from South Africa and
southern Botswana by 550–700 years (Fig. 2). As noted in Sengupta
et al.55 such dates are well correlated with multiple waves of Bantu
speaking migration into south-east Africa evidenced by the archae-
ological record20. In light of these findings, we anticipate continued
sequencing and further collective analysis of modern and ancient
population samples from across sub-Saharan Africa will be essential to
paint a more complete picture of the Bantu Expansion.

In conclusion, this study contributes to the ongoing effort to
describe global genetic diversity and to expand our knowledge of
major events in our species history. The results presented here
represent another step towards understanding the genetic legacy of
the Bantu Expansion, with research now beginning to paint a more
complete picture of human dispersals and interactions throughout
sub-Saharan Africa. We note that this study remains limited by inter-
mediate sequencing depth and imbalanced sampling of a small num-
ber of ethnolinguistic groups and that wider sampling and higher
coverage sequencing of communities across Angola andMozambique
should be prioritisedmoving forward. However,wehope that this data
will provide a reference for future research in these regions, including
medical genetic studies into phenotypic variation and disease sus-
ceptibility to aid in the continued emergence of new discoveries from
Africa in the genomics era.

Methods
Sample collection and sequencing
This project was approved by the ethics committees of the University
11th of November (“Universidade 11 de Novembro”), Cabinda, Angola
(REf: UoN/2016), Pedagogic University (“Universidade Pedagógica”),
Maputo, Mozambique (REf: UP/2017), and the University of Leicester
ethics committee (REf: 11334-sdsb1-genetics). After obtaining full par-
ticipant consent, saliva samples of individuals of both sexes and >18
years were collected from Cabinda, Angola (CAB) and Maputo,
Mozambique (MOZ) and isolated at the University of Leicester. The
participants provided their, their parents’, and their grandparents’
ethnolinguistic affiliation. Individuals who reported speaking the same
language as their parents and grandparents were classified into major
linguistic groups using the Ethnologue database (www.ethnologue.
com)24. Isolated DNA from 300 Angolan participants and 50 Mozam-
bicanswere shipped for 15X targetWGS. Reads of length 150 basepairs
(bp) were generated by Illumina HiSeq X™. Four individuals from
Cabinda and four individuals from Mozambique were additionally
selected for high-coverage PCR-free 40X sequencing (used in MSMC2
analyses: Methods 14, see Supplementary Note 3).

Processing sequencing data and variant calling
minimap2 v2.11-r79778 (mode: sx) was used to map FASTQ formatted
paired-end reads generated from each newly sequenced sample
against the GRCh37 reference genome (https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.13/) to align with the coordinate system
used by the majority of comparative datasets used in this study
(Supplementary Data 2, 3, 4). Resultant CRAM files were sorted
according to linear reference coordinates, and duplicate reads were
marked with samtools v1.9 markdup79. Base quality-scores were re-
calibrated with GATK v4.0.2.180 BaseRecalibrator and ApplyBQSR.
Read depth statistics were generated fromCRAM files usingmosdepth
v0.2.381 with contaminated or low-quality samples removed. CRAM
files were used as input for GATK v4.0.2.1 to jointly call variants across
all remaining samples using the HaplotypeCaller command. This set of
samples and variants were filtered and refined as described in Sup-
plementary Note 3. Gene-based annotation of SNPs was performed
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using ANNOVAR82 utilising the GENCODE release 31 (http://ftp.ebi.ac.
uk/pub/databases/gencode/Gencode_human/release_31/) and the
dbSNP155 (https://ftp.ncbi.nih.gov/snp/) aligned to hg19/GRCh37.

f2 alleles
Shared f2 alleles25 were identified using a custom R script (https://
github.com/spTallman/f2) for 40 randomly selected samples from
either CAB, MOZ, and all other sequenced groups within the 1000
Genomes Project Phase 3 (1000G)12 and the AGVP13. Variants within
low-complexity regions (https://github.com/lh3/varcmp/raw/master/
scripts/LCR-hs37d5.bed.gz) and regions of known segmental duplica-
tions (https://humanparalogy.gs.washington.edu/build37/build37.
htm) were ignored.

Dataset merging and curation
SNP genotypes generated from a filtered subset of individuals from
our CAB and MOZ datasets (as described in Supplementary Data 1)
were combined with either (a) genotype data from a selection of
African populations sequenced and genotyped as part of the 1000G,
AGVP, H3Africa-Baylor (H3AB)15, Simons Genome Diversity Project
(SGDP)28 and three high-coverage ancient African whole genomes29–31

(Supplementary Data 2) (WGS) (b) an additional 2394 modern and
ancient individuals from 261 populations across 506,721 filtered SNPs
present in the Human Origins Array panel (HOA)29,31,37–43 (Supplemen-
tary Data 3) and (c) 3207 modern individuals from 118 populations
across 276,024 filtered SNPs present across various Illumina SNP array
panels13,16,17,44–49 (Supplementary Data 4) (ILLUMINA). Extended details
of eachdataset, andourmerging, andquality controlprocedurecanbe
found in Supplementary Note 4.

ADMIXTURE
ADMIXTUREv1.2227 was applied to amatrix of genotypes froma subset
of individuals from the HOA dataset (Supplementary Fig. 9). We first
pruned the data to keep common sites in approximate linkage-
equilibrium using PLINK v2.00a83 with parameters –indep-pairwise 50
5 0.5 whilst also excluding sites in regions of long-range linkage dis-
equilibrium (LD)84. Ten independent, unsupervised replicates of the
software were run for values K = 2,..,12. For each value K, we retain the
run with the highest log-likelihood after convergence. Ancient gen-
omes (Supplementary Data 3) were projected (-P) onto learned allele
frequencies generated by modern individuals to mitigate to mitigate
errors associated with aDNA degradation patterns and missingness.

Principal Components Analysis (PCA)
We performed PCA on genotype matrices generated from our WGS,
HOA, and ILLUMINA datasets using the smartpca programme (out-
lierremoval: NO) from the EIGENSOFT v7.2.1 tool-suite32. The HOA
dataset was subsampled to enrich for African groups (Supplemen-
tary Fig. 6). Rare and LD correlated SNPs were removed a priori using
PLINK v2.00a83 with parameters –indep-pairwise 50 5 0.5 –maf 0.05.
SNPs is regions of known long-range LD84 were also removed.
Modern individuals were used to construct eigenvectors and least-
squares projection (lqproject: YES) was performed to overlay data
from ancient genomes present in the WGS and HOA datasets, with
shrinkmode: YES used to mitigate errors associated with aDNA
degradation patterns. We additionally performed PCA on the WGS
dataset after down sampling each group to a maximum of ten ran-
domly selected individuals.

f4 statistics
We calculate f4 using the R package admixr85 across all possible (non-
redundant) three-population arrangements of groups in our WGS
dataset with panTro5 (https://www.ncbi.nlm.nih.gov/assembly/GCF_
000001515.7/) set as the outgroup. Groups were sub-sampled to a
maximumof ten randomly selected individuals. Significance (Z-scores)

and standard errors areestimatedusing aweightedblock-jacknife over
segments of 5-centimorgans (cM).

Identity by Descent (IBD)
IBD haplotypes were estimated across all Niger-Congo speakers in
our WGS dataset using IBDSeq34 with default parameters, after fil-
tering for SNPs segregating with a MAF > 0.01 in each group. We
removed gaps between IBD segments that have at most one dis-
cordant homozygote and are <0.6 cM in length as well as IBD seg-
ments in regions of low SNP-density. Significant (directional)
differences in the mean pairwise IBD sharing between groups were
inferred using a one-tailed permutation test. Correlations between
geographic distance and within-population IBD sharing among
Bantu speakers outside of CAM were performed with CAB selected
as the reference point owing to its proximity to original staging
location for the dispersal of Eastern Bantu speakers proposed under
a late-split model19. Distances (km) from Cabinda were calculated
with approximate latitude and longitude coordinates for each group
(Supplementary Table 3) using the geosphere R package (https://
github.com/rspatial/geosphere).

Runs of Homozygosity (ROH)
ROH were estimated across all Niger-Congo speakers in our WGS
dataset after filtering for SNPs segregating with a MAF >0.01 in each
groupusing PLINK 1.983 with parameters --homozyg-snp 50 --homozyg-
kb 300 --homozyg-density 50 --homozyg-gap 1000 --homozyg-win-
dow-snp 50 --homozyg-window-threshold 0.05.

CHROMOPAINTER
After phasing genotypes using SHAPEITv286 alongside the 1000G
reference panel (https://mathgen.stats.ox.ac.uk/impute/1000GP_
Phase3/), and following the stepwise procedure to estimate global
mutation/emission (-M) and switch rate (-n) parameters as outlined in
previous studies37,87 CHROMOPAINTERv250 was run on all diploid
individuals within either our HOA or ILLUMINA datasets using two
distinct donor-recipient population configurations: (i) all individuals
and/or groups in the dataset are included as both recipients and
donors of shared haplotypes (using the -a flag, HOA all-copyingmodel
and ILLUMINA all-coping model) and (ii) (specifically for the HOA
dataset), as in (i), but with all Bantu speaking groups other than the
Cameroonian Lemande (used to describe Bantu speaker related
ancestry in previous studies29,41) excluded as donors (HOA no-Bantu-
copying model).

fineSTRUCTURE
fineSTRUCTURE v2.1.350 was run independently on both (a) Niger-
Congo speakers within our HOA dataset (Supplementary Fig. 8a) using
the chunk counts sharing matrix output from the HOA all-copying
model, and (b) Niger-Congo speakers within out ILLUMINA dataset
(Supplementary Fig. 8b) using the analogous chunk counts matrix
output from the ILLUMINA all-copying model. For each analysis, we
sampled cluster assignments every 105 iterations across 106 total
MCMC iterations after 106 burn-in steps. All other individuals were
fixed int super-populations (Supplementary Data 3, 4). We next per-
formed an additional 105 hill-climbing iterations, starting from the
MCMC sample with highest posterior probability. This resulted in a
classification of 61 clusters in the HOA dataset and 126 clusters in the
ILLUMINA dataset that were each subsequently merged into trees
using fineSTRUCTURE’s greedy algorithm.

SOURCEFIND
For individuals in all African groups in our HOA dataset (Supplemen-
tary Data 5), we first used the Bayesian mixture modelling approach
employed by SOURCEFINDv251 to identify the relative proportions of
ancestry that each individual shareswith each givendonor groupusing
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the chunk lengths sharing matrix output from the HOA no-Bantu-
copying model with all donor populations provided as possible sur-
rogates. We then performed a second, stepwise analysis using the
chunk lengths matrix from the HOA all-copying model whereby indi-
vidual ancestry proportions were estimated by SOURECEFINDv2 mul-
tiple times across all African groups in the dataset and specifying a
cumulatively growing number of additional Bantu speaking donor
groups aspossible surrogates in each step (see SupplementaryNote 5),
we report results from those with evidence of Bantu-related ancestry
more closely related to CAB than Cameroonian Bantu speakers in
Fig. 2. For all runs of SOURCEFINDv2 the truncated Poisson prior on
the number of surrogate groups that contribute ancestry to each tar-
get individual to was fixed to four, allowing eight total groups to
contribute some proportion of ancestry at each MCMC iteration. We
ran 200,000 total MCMC iterations and 50,000 burn-in steps, sam-
pling mixture coefficients every 5000 iterations. Final ancestry pro-
portions are reported as the average of these mixture coefficients
across all posterior samples.

fastGLOBETROTTER
For all 39 African populations in our HOA dataset with evidence of
ancestry closer to CAB than Cameroonian Bantu speakers (Supple-
mentary Data 5), we also used fastGLOBETROTTER52,53 to estimate
admixture. Specifically, fastGLOBETROTTER requires both chunk
lengths sharing matrices and individual painting sample files as
inputs. Thus, to avoid self-copying between individuals within their
own population, which may mask signatures of recent admixture87,
we use painting sample files generated for each target population
generated by re-running CHROMOPAINTERv2 for each target
population whilst providing all other populations as donors –

excluding very closely related individuals from different ethno-
linguistic group labels that cluster together using fineSTRUCTURE
(Supplementary Fig. 8a)—and using the same global mutation/
emission and switch rate parameters as estimated with CHROMO-
PAINTER (Methods 10). Chunk length sharing matrices were gener-
ated using the original CHROMOPAINTERv2 run under the HOA all-
Bantu-copying model. For each target population, fastGLOBE-
TROTTER was then run after specifying as surrogates those donor
groups modelled by SOURECEFINDv2 to contribute >1% ancestry to
the target population. For each fastGLOBETROTTER run, we per-
formed five iterations of the algorithm, generating p-values and 95%
confidence intervals using bootstrap re-sampling of groups over 100
replicates. As recommended, we report results with the null.ind
parameter set to 1 to avoid inference based on spurious decay sig-
nals not attributable to genuine admixture. To gain further insights
into the specific donor populations being used as distinct admixing
sources, we performed a visual inspection of the coancestry curves
generated for each population with strong evidence of admixture
and report those with an R2 > 0.5.

qpAdm
We used the R package admixr85 to model admixture among Botswa-
na_Taukome_1100BP. Botswana_Xaro_1400BP43, and South_Africa_
400BP31 using the qpAdm command to perform two-way admixture
tests. Specifically, we test combinations of the reference populations:
SA_Ovambo, Tswana, Kgalagadi, BSZ, MOZ (north), MOZ (south), with
South_Africa_12000BP38 and Ballito Bay A31 as source groups, with
Mende (MSL),Mbuti, Khomani, Dinka, Iran_Neolithic, Levant_Neolithic,
Ami, Karitiana, Punjabi, Onge, French, Sardinian groups present in our
extended HOA dataset (Supplementary Data 3) as reference groups.
Statistically significant model fits were taken as those with a p
value > 0.05, with implausible models involving negative ancestry
proportions discarded. All calculations were performed using trans-
version sites only tomitigate errors associatedwith aDNA degradation
patterns.

MSMC2
MSMC261,62 was used estimate within-population (four individuals per
population) and cross-population (two individuals per population)
coalescence rates using high-coverage (mean autosomal read depth of
~37X) genomes representing individuals from both the CAB and MOZ
(Supplementary Note 3) as well as Niger-Congo groups (Yoruba,
Mende, Mandenka, BantuKenya, BantuTswana) sequenced as part of
the SGDP28. SNP calls and coverage masks for each genome were
generated directly from sample-specific BAM files using the bamCal-
ler.py script from the MSMC GitHub repository (https://github.com/
stschiff/msmc-tools) and subsequently phased using SHAPEITv286

alongside 1000G reference panel (https://mathgen.stats.ox.ac.uk/
impute/1000GP_Phase3/). Following recommendations, we use
sample-specific masks to exclude genotypes present in regions of low
coverage relative to the genome-wide average with coverage statistics
generated using mosdepth81. We also exclude genotypes across all
samples using Heng Li’s universal mask28. The mutation rate used to
scale time was 1.25 ×10−8 per base-pair per generation88.

Relate
Relate v1.163, was used estimate genome-wide genealogies using
40 subsampled genomes fromCAB, 13 fromMOZ (north), and 27 from
MOZ (south). Genotypes were phased using SHAPEITv286 and filtered
at sites marked as “not passing” in the 1000G accessible genome pilot
mask (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
supporting/accessible_genome_masks/StrictMask/). The 6-EPO multi-
ple alignment estimation of the human ancestral genome (http://ftp.
1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/
ancestral_alignments/) was used to identify the most likely ancestral
allele for each locus. Within-population and cross-population coales-
cence rateswere calculated using the EstimatePopulationSize.sh script
from the Relate GitHub repository (https://myersgroup.github.io/
relate/).

Approximate Bayesian Computation (ABC)
We first define a simple, two-population split model (Supplementary
Fig. 12) describing a clean-split between two populations. Here popu-
lations PCAB and PMOZ represent populations of Bantu speakers from
the CAB and MOZ datasets respectively. Moving backwards-in-time,
for each population PCAB and PMOZ, population Pn is initialised with a
diploid effective population size of Nn at Generation Present and an
exponential growth/decay rate of αn=log(Nn/Nn

’)/Generation Split,
where Generation Split is defined as the generation at which popula-
tions PCAB and PMOZ merge (i.e., lineages can coalesce freely) to form
PAncestral and N’n is the diploid effective population size of Pn at Gen-
eration Split.

To reduce computation time, we additionally include two fixed
parameters wherein the merged population PAncestral instanta-
neously changes to a diploid population size of 12,000 (NFixed) at
generation 7586. Values were based on the model of human popu-
lation history presented in Tennessen et al.89. Using the coalescent
simulator msprime65, we generated 135,000 simulations of chro-
mosome with values for each parameter randomly drawn from their
corresponding prior distributions (Supplementary Table 5). A
mutation rate of 1.25 × 10−8 per base-pair per generationwas selected
and variable recombination rates across the ~249Mb sequence of
chromosome 1 were input using inferred genetic distances between
sites. Simulated tree sequences were subsequently converted into
phased VCF files. To additionally simulate genotyping error rates
associated with low or intermediate coverage sequencing data, we
also applied a genotype error rate of 0.00134 independently for each
simulated VCF. Specifically, error was introduced by converting
homozygote genotypes to heterozygote and by converting hetero-
zygote genotypes to a randomly chosen homozygote using a custom
R script (https://github.com/spTallman/vcfErr). As our observed
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data, we used 40 randomly sub-sampled genomes from CAB and 40
randomly sub-sampled genomes from MOZ. This data was subse-
quently restricted to ~1.5 million biallelic SNPs present on chromo-
some 1, segregating in these 80 individuals and phased using
SHAPEITv286. For every simulated and observed VCF, we calculate a
set of 46 summary statistics as described in Supplementary Table 5
(adapted from Gladstein et al.67).

To estimate posterior distributions and median point estimates
of each demographic parameter value, we use the ‘neuralnet’
method implemented as part of the R-package abc64 with a logit
transformation applied to each parameter. We assess the accuracy
of themedian points of the posterior distributions by calculating the
Mean Absolute Error, Mean Squared Error and Root Mean Squared
Error using the Metrics R-package (https://github.com/mfrasco/
Metrics) by comparing with pseudo-observed parameter values
from 1000 randomly selected simulations (Supplementary Table 7).
We further ensured posterior distributions captured true uncer-
tainty in parameter estimates by calculating the frequency with
which pseudo-observed parameter values associated with 1000
randomly selected simulations appear within the 2.5 and 97.5 per-
centile bounds of their corresponding posterior distributions. We
found that 4 neurons in the hidden layer and a 10% tolerance level
minimised the average prediction error. Finally, we use our observed
summary statistics computed using SNP data from the subsampled
CAB and MOZ genomes alongside the complete set of
135,000 simulations from the clean-split model to calculate pos-
terior distributions and median point estimates independently for
each parameter (Supplementary Table 7).

Imputation
Asour target datasets for imputing genotypes, we usephased, biallelic,
autosomal SNPs from 2301 self-reported African Americans from the
USA sequenced as part of the AASP69 and 1171 Brazilians sequenced as
part of SABE70. To ensure compatibility with reference panels, we use
UCSC LiftOver alongside the hg38toHg19 chain file (https://
hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/hg38ToHg19.
over.chain.gz) to convert AASP and SABE SNP coordinates from hg38
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.26/) to
hg19/GRCh37. For a third analysis, we also used 50 randomly sub-
sampled individuals from CAB and 10 randomly subsampled indivi-
duals from MOZ as additional target dataset to test improvements in
imputation accuracy afforded by the addition of CAB and MOZ to
reference panels. Prior to imputation, SNPs across all three target
datasets were phased using SHAPEITv286 and masked at all-but ~2.5
million autosomal loci present in the Illumina Omni 2.5 array panel
(selected as this panel is optimised to tag SNPs uncovered as part of
the 1000G, https://emea.illumina.com/products/by-type/microarray-
kits/infinium-omni25-8.html). African ancestry proportions in SABE
and the AASP were estimated using ADMIXTURE after merging data
from either cohort with genotype data from the 1000G individuals
from our newly sequenced CAB and MOZ datasets and applying the
same procedure as outlined in Methods section “ADMIXTURE”. Hap-
lotypes were split into 5Mb chunks and provided in parallel to the
IMPUTE290 software to impute reference panel genotypes using either
(a) the 1000G Panel (b) the 1000G reference panel merged with 340
CAB andMOZgenomes (all biologically unrelated individuals shown in
Supplementary Data 1) using the –merge_reference_panels command.
To ensure any difference in imputation accuracy was not simply the
result of increased reference panel size, we randomly excluded 340
individuals from the 1000G reference panel when performing impu-
tation using the merged panel. When imputing genotypes into the 60
randomly sampled target individuals from the CAB and MOZ datasets
specifically, these individuals were removed from the reference panels
that included CAB and MOZ. Imputed genotypes with an INFO score
(r2 < 0.3) were filtered out. As ametric of imputation accuracy, for each

reference panel across the set of loci present across both panels, we
calculate Pearson’s Correlation Coefficient (Dosage R2) using imputed
genotypedosages across the target dataset and the original, unmasked
genotypes as a function of non-reference allele frequency.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level sequence datasets (compressed BAM files or CRAM
files) and variant calling datasets (VCF files) generated in this study
have beendeposited at the EuropeanGenome-phenomeArchive (EGA)
under EGA data accession number EGAD00001011992. This data is
allowed for general research use, including health/medical/biomedical
purposes andother biological research suchas the studyof population
origins or ancestry. Access to this dataset is contingent to signing a
Data Access Agreement (DAA) with the University of Leicester. Con-
ditions of access, including timeframe to response to requests and
details of any restrictions imposed on data can be obtained from
EGAC00001003360. Corresponding data on ethnolinguistic group is
reported on Supplementary Data 1.

AGVP genomic data is available in EGA under accession
code EGAD00001001663. H3A data was obtained is available in EGA
under accession codes: EGAD00001004220; EGAD00001004316;
EGAD00001004393; EGAD00001004533; EGAD00001004505;
EGAD00001004334; EGAD00001004557; and EGAD00001004448.
Three high-coverage African Ancient Genomes were obtained from
https://www.ebi.ac.uk/ena/browser/view/PRJNA295861; https://www.
ebi.ac.uk/ena/browser/view/PRJEB22660; https://reich.hms.harvard.
edu/datasets. The SGDP was obtained from https://reichdata.hms.
harvard.edu/pub/datasets/sgdp/. The HOA was obtained from https://
reich.hms.harvard.edu/datasets; https://ega-archive.org/datasets/
EGAD00010002100; https://www.ebi.ac.uk/ena/browser/view/
PRJEB36063. The ILLUMINA dataset was obtained from https://ega-
archive.org/datasets/EGAD00010000965; https://ega-archive.org/
datasets/EGAD00010000496; https://www.ebi.ac.uk/biostudies/
arrayexpress/studies/E-MTAB-8450; https://datadryad.org/stash/
dataset/doi:10.5061/dryad.bs06h; http://sbimb.core.wits.ac.za/data/
SNPgenotyping_01.html; http://mega.bioanth.cam.ac.uk/data/
Ethiopia; https://ega-archive.org/datasets/EGAD00010000616;
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-1259;
https://github.com/bmhenn/khoesan_arraydata. AASP genomic data-
set was obtained from dbGAP: dataset no. phs001798.v2.p2, and SABE
genomic dataset was kindly provided by the authors but can now be
found at from EGA under accession number EGAD00001008640.

Code availability
Custom R scrips used to identify f2 alleles and to additionally simulate
genotyping error rates canbe found inhttps://github.com/spTallman/.
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