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TransformEHR: transformer-based encoder-
decoder generative model to enhance
prediction of disease outcomes using
electronic health records

Zhichao Yang 1, Avijit Mitra1, Weisong Liu2,3, Dan Berlowitz3,4 &
Hong Yu 1,2,3,5

Deep learning transformer-based models using longitudinal electronic health
records (EHRs) have shown a great success in prediction of clinical diseases or
outcomes. Pretraining on a large dataset can help such models map the input
space better and boost their performance on relevant tasks throughfinetuning
with limited data. In this study, we present TransformEHR, a generative
encoder-decoder model with transformer that is pretrained using a new pre-
training objective—predicting all diseases andoutcomes of a patient at a future
visit from previous visits. TransformEHR’s encoder-decoder framework,
paired with the novel pretraining objective, helps it achieve the new state-of-
the-art performance on multiple clinical prediction tasks. Comparing with the
previous model, TransformEHR improves area under the precision–recall
curve by 2% (p <0.001) for pancreatic cancer onset and by 24% (p = 0.007) for
intentional self-harm in patients with post-traumatic stress disorder. The high
performance in predicting intentional self-harm shows the potential of
TransformEHR in building effective clinical intervention systems. Transfor-
mEHR is also generalizable and can be easily finetuned for clinical prediction
tasks with limited data.

The widespread adoption of electronic health records (EHRs) among
the US hospitals has led to the development and adoption of numer-
ous datamining and statistical techniques for EHRs. Longitudinal EHRs
have been successfully used to predict clinical diseases or outcomes1–4.
Early work applied regression and traditional machine learning (ML)
based models (e.g., support vectors machines, random forest, and
gradient boosting) to predict single disease or outcome. Examples
include congestive heart failure5, sepsis mortality6, mechanical
ventilation6, septic shock7, type 2 diabetes8, and development of post-
traumatic stress disorder (PTSD)9, among others.

With the availability of large cohorts and computational resour-
ces, deep learning based models can outperform traditional ML
models10–16. State-of-the-art (SOTA) models in EHR-based predictive
modeling achieved this through the pretrain-finetune paradigm - a
two-step process where the model is first trained on large-scale long-
itudinal EHRs to learn the representations of clinical features such as,
International Classification of Diseases (ICD) codes (pretrain) and then
further trained to adapt to specific tasks e.g., outcome prediction
(finetune). Models such as Med-BERT13, BEHRT14, and BRLTM15 fall in
this category. However, their pretraining objectives were limited in
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predicting a fraction of ICD codes within each visit. In reality, most
patients have multiple diseases or outcomes at once17, many of which
are highly correlated (such as obesity, diabetes, and hypertension18–20)
and thus collectively contribute to the disease or outcome trajectories.
Therefore, a novel pretraining strategy, which predicts the complete
set of diseases and outcomes within a visit, might improve clinical
predictive modeling.

In this study, we propose TransformEHR, an innovative denoising
sequence to sequence transformer21 model that was pretrained on 6.5
million patients’ EHRs to predict complete ICD codes of a visit.
TransformEHR can be further finetuned for single disease or outcome
predictions. Unlike previous EHR-based models13–16 which rely on the
bidirectional (left-to-right and right-to-left) encoder representation
from transformers (BERT) framework22, TransformEHR used a
transformer-based encoder-decoder generative framework to predict
future ICD codes during pretraining. The unidirectional (left-to-right)
decoder in such an encoder-decoder framework is more similar to the
use case of future disease or outcome predictions based on history of
past diseases or outcomes (past-to-future) compared to the bidirec-
tional encoder-only framework.

Although the encoder-decoder framework was originally
designed to generate next sentence given previous sentences as
context23,24, we repurposed the framework for TransformEHR to gen-
erate the ICD codes of the next visit given previous EHRs (context).
TransformEHR can utilize cross-attention21 by identifying relevant ICD
codes from previous visits to predict future ICD codes. The decoder
then predicts ICD codes one after another by using already predicted
diagnostic ICD codes to predict next ICD codes. Furthermore, Trans-
formEHR includes date of each visit to integrate temporal information,
whereas previous transformer-based predictive models only included
their sequential order13–16. Specific date of each visit is an important
feature in predictivemodeling as importance of predictor in a visit can
vary over time1,25–27.

We evaluated TransformEHR for a broad range of disease and
outcome predictions. In addition to predictions of ICD codes, we
evaluated TransformEHR on two challenging and clinically important
disease and outcome prediction tasks: pancreatic cancer prediction
and intentional self-harm prediction among PTSD patients. In sum-
mary, our key contributions are as follows:

First, we propose a new pretraining objective that predicts all
diseases or outcomes of a future visit using longitudinal information
from the previous visits. Such a pretraining objective helps Transfor-
mEHR uncover the complex interrelations among different diseases
and outcomes.

Second, this is the first study that explored a generative encoder-
decoder framework to predict patients’ ICD codes using their long-
itudinal EHRs. Our encoder-decoder framework outperformed the
encoder-based models in part due to the decoder self-attention and
cross-attention mechanisms. TransformEHR outperformed SOTA
BERTmodels on both common and uncommon ICD code predictions.
In particular, the improvements for uncommon ICD code predictions
were substantial.

Third, TransformEHR achieved a positive predictive value (PPV) of
8.8% for prediction of intentional self-harm among the top 10% PTSD
patients at high predicted risk. A recent study has shown that a prac-
tical suicide prevention tool must achieve above 1.7% PPV to be con-
sidered as cost-effective: balance the costs of providing the
intervention against the potential health care related costs if self-harm
occurs28. A PPV of 8.8% is substantially above the threshold of 1.7%
needed to balance the cost in clinical practice. This shows the potential
of deploying TransformEHR for clinical screening and interventions.

Finally, we validated the generalizability of TransformEHR using
both internal and external datasets. Internally, we evaluated Trans-
formEHR on never-seen in-domain EHR data from Veterans Health
Administrations (VHA) facilities. Externally, we evaluated

TransformEHR on out-of-domain data from a non-VHA hospital. Our
results demonstrated a strong transfer learning29 capability of Trans-
formEHR, which can greatly benefit hospitals with limited data and
computing resources.

Results
Data
Our pretraining cohort comprises 6,475,218 patients who received
care frommore than 1200 health care facilities of the US VHA from 1/1/
2016 to 12/31/2019. To evaluate pretrained models, we created two
disease/outcome agnostic prediction (DOAP) datasets—one for com-
mon and one for uncommon diseases/outcomes. We selected 10 ICD-
10CM codes with the highest prevalence (prevalence ratio >2%) in our
pretraining cohort for our common disease/outcome DOAP dataset.
As for the set of uncommon diseases/outcomes, we followed the FDA
guidelines30 to randomly select 10 ICD-10CM codes with a prevalence
ratio ranging from 0.04% to 0.05% in our pretraining cohort. The lists
of common and uncommon diseases/outcomes are shown in Table 1.
These codes were assigned by VHA medical record technician and
served several important purposes including clinical studies, perfor-
mance measurement, workload capture and operation, cost determi-
nation, and billing. To assess the generalizability, we evaluated
TransformEHR on out-of-domain non-VHA EHR data. We used the
MIMIC-IV dataset31 to build a non-VHA DOAP dataset. The MIMIC-IV
dataset includes intensive careunit patients admitted to theBeth Israel
DeaconessMedical Center in Boston, Massachusetts. Since the dataset
contains information from 2008 to 2019 but the implementation of
ICD-10CM started from October 2015, we only selected patients with
the ICD-10CM records to match our implementation for the cohorts
from VHA, resulting in a dataset of 29,482 patients.

To evaluate finetuned models for single disease and outcome
predictions with low prevalence ratio, we created two EHRdatasets for
two important prediction tasks: pancreatic cancer (single disease) and
intentional self-harm among patients with PTSD (single outcome).
Early screening, early diagnosis and early treatment of pancreatic

Table 1 | Disease or outcome definitions in this study

Task Disease or Outcome (ICD-10CM code)

Prediction of single disease or
outcome

New onset pancreatic cancer (C25)
Intentional self-harm among patients
with PTSD

Disease/outcome agnostic
prediction - common

Chronic post-traumatic stress disorder
(F43.12)
Type 2 diabetes (E11.9)
Hyperlipidemia (E78.5)
Loin pain (R10.3)
Low back pain (M54.50)
Obstructive sleep apnea (G47.33)
Depression (F33.9)
Obstructive airway disease (J44.9)
Gastroesophageal reflux disease (K21.9)
Arteriosclerosis (I25.10)

Disease/outcome agnostic
prediction - uncommon

Benign neoplasm of connective tissue of
eyelid (D21.0)
Refractory anemia (D46.4)
Melanocytic nevi of upper limb (D22.6)
Benign neoplasm of skin of upper eyelid
(D23.10)
Cutaneous abscess of axilla (L02.41)
Ankle and foot subacute osteomyelitis
(M86.27)
Cortical hemisphere nontraumatic hemor-
rhage intracerebral (I61.1)
Malignant neoplasm of head of pancreas
(C25.0)
Other complication of kidney transplant
(T86.19)
Nonexudative age-related macular degen-
eration (H35.31)
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cancer are critical for this deadly disease32, 33. Med-BERT13 has been
used to predict pancreatic cancer. Intentional self-harm is common
among the US military Veterans with PTSD34. The detailed pretraining
and finetuning cohort definitions are presented in Methods section.
We compare these cohorts in Supplementary Table 1. To assess the
generalizability, we also evaluated TransformEHR on Veterans with
PTSD from VHA facilities not included in the pretraining cohort.

Longitudinal EHRs
As shown in Fig. 1, TransformEHR takes longitudinal EHRs as input. To
compare TransformEHR with the previous SOTA EHR-based models
using BERT13,15, we included demographic information and ICD-10CM
codes as predictors. Demographic information includes gender, age,
race, and marital status. The attributes (e.g., male) of each category
(e.g., gender) were appended as individual predictors. Following pre-
vious work13, we grouped ICD codes at visit level. Within a visit, we
ordered ICD codes fromhigh to lowpriority, as assignedby health care
providers, where the primary diagnosis is typically given the highest
priority, followed by the secondary diagnosis and so on.

Multiple visits of each patient formed a time-stamped (by date of
visit) input of a sequence of ICD-10CM code groups (Fig. 2a). We used
multi-level embeddings13. Embeddings are trainable fixed-dimensional
vectors that were used to represent predictors in a continuous vector

space and were learned during the pretraining process (details in the
next section). We represented each visit in an input sequence using a
visit embedding and each ICD code using a code embedding. To
embed the time, we applied sinusoidal position embedding21 to the
numerical format of visit date (date-specific). However, the use of
actual visit dates, which is protected health information sensitive, may
impact the deployability of the model. Thus, we also explored using
the relative time information —days difference to embed time (day-
sdiff). Specifically, we calculate the days difference between a certain
visit and the last visit in the EHR. Finally, each input embedding was
constructed by summing up the corresponding code embedding, visit
embedding, and time embedding (Fig. 2a).

Pretrain-Finetune paradigm
With longitudinal EHRs as input, we first pretrained models on the
pretraining cohort of 6,475,218 patients and then finetuned themodel
for single disease or outcomeprediction, as shown in Fig. 3. During the
pretraining, the model was trained to recover the original longitudinal
EHRs from corrupted (masked) longitudinal EHRs.

Previous EHR-based BERTmodels corrupted longitudinal EHRsby
randomly sampling 25% ICD codes and replacing them with mask
(code masking)13–15. TransformEHR, on the other hand, masked all ICD
codes in a single visit (visit masking). A comparative example is illu-
strated in Fig. 2b. In other words, TransformEHR was pretrained to
predict the complete set of ICD codes of a patient’s future visit, given
demographic information and longitudinal ICD codes up to the cur-
rent visit.

TransformEHR architecture
TransformEHR uses an encoder–decoder transformer architecture23,24.
The encoder processes the input embeddings and generates a set of
hidden representations for each predictor. Unlike the encoder-only
transformer architecture used by existing EHR-based BERTmodels13–15,
TransformEHR performs cross-attention over the hidden representa-
tions from the encoder and assigns an attention weight for each
representation. These weighted representations are then fed to the
decoder, which generates ICD codes of the future visit as illustrated in
Fig. 3. The decoder generates ICD codes following the sequential order
of code priority within a visit. In other words, it first generates primary
diagnosis, and then generates secondary diagnosis based on primary
diagnosis. This step is repeated until all diagnoses of a future visit are
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completed. Our results showed that the TransformEHR architecture
outperformed the encoder-only architecture.

Evaluation metrics
We reported PPV (precision), area under the receiver operating char-
acteristic curve (AUROC), and area under the precision recall curve
(AUPRC) to measure models’ performance on single disease or out-
come predictions. PPV is the fraction of true positives from all pre-
dicted positives. AUROC is the area under sensitivity and false positive
rate curve. Sensitivity (or recall) is the number of true positives divided
by the number of ground truth positives. False positive rate is the
number of false positives divided by total number of negatives. AUPRC
is the area under PPV and sensitivity curve, and it has shown to be an
effective measure for highly imbalanced binary classification pro-
blems, which include self-harm prediction35,36. We compared Trans-
formEHR with four strong baseline models: logistic regression, long
short-term memory (LSTM)37, BERT22 without pretraining, and BERT22

pretrained on VHA cohort.

Pretraining evaluation: disease or outcome agnostic prediction
DOAP is the task of predicting the ICD codes of a patient’s future visit
based on patient’s demographic information and longitudinal ICD
codes up to the current visit. Compared to BERT, TransformEHR
improved the AUROC in all prediction subtasks, regardless of disease/
outcomecategory (commonor uncommon) andoccurrence type (new
or recurrent), as shown in Table 2. We found a 3.96% relative increase
in common diseases/outcomes and 5.92% in uncommon diseases/
outcomes.

Our TransformEHR contains three unique components compared
to previousmedical BERT-basedmodels: (1) visit masking, (2) encoder-
decoder architecture, and (3) time embedding.Weperformed ablation
analysis to evaluate the effectiveness of each component. First, we
compared an encoder-decoder model that uses visit masking, i.e.,
masking all ICD codes of a visit, to another encoder-decoder model
that uses code masking, i.e., masking a randomly selected fragment of
ICD codes of a visit. Our findings revealed that the visit masking per-
formed better (showing an improvement of 95%CI: 2.52%–2.96%,
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p <0.001 in AUROC) compared to code masking for all diseases/out-
comes tested as shown in Supplementary Table 2. These results
demonstrated that pretraining for prediction of all diseases and out-
comes outperform traditional pretraining objectives.

Next, we compared encoder-decoder model with encoder-only
model (BERT) on DOAP. Our findings showed that the encoder-
decoder model outperformed the encoder-only model (with an
improvement of 95%CI: 0.74%–1.16%, p <0.001 in AUROC) across all
diseases/outcomes tested (Supplementary Table 2).

Finally, we conducted an experiment by excluding time embed-
ding from the implementation of TransformEHR. Time embedding
allows TransformEHR to capture the temporal information of prior
visits. Our results indicated that TransformEHRwith date-specific time
embedding exhibits a moderate improvement (with an increase of
95%CI: 0.01%, 0.43%, p =0.021 in AUROC) thanTransformEHRwithout
time embedding across most diseases/outcomes (Supplementary
Table 2). Insteadof specific date as time embedding, we also tried days
difference between visits as time embedding, TransformEHR with
date-specific embedding showed no significant improvement than
TransformEHR with days difference embedding. Thus, we chose days
difference embedding for later experiments as it provides better
protection to patient health information compared to the spe-
cific date.

Finetuning evaluation: single disease or outcome prediction
Results of pancreatic cancer onset prediction are shown in Table 3. On
the metric of AUROC, TransformEHR achieved 81.95 (95% CI: 81.06,
82.85) outperforming both the logistic regression model (73.64; 95%
CI: 71.39, 75.90, p <0.001), LSTM (76.98; 95% CI: 76.44, 77.52,
p <0.001) and BERT (79.22; 95% CI: 78.75, 79.69, p < 0.001). A similar
trend is observed on AUPRC. TransformEHR achieved AUPRC of 78.64

(95% CI: 77.80, 79.49) outperforming both the logistic regression
model (68.95; 95% CI: 66.81, 71.08, p <0.001), LSTM (73.48; 95% CI:
72.93, 74.03, p <0.001) and BERT (76.89; 95% CI: 76.41,
77.37, p < 0.001).

Predicting intentional self-harm in patients with PTSD is challen-
ging because of its low prevalence (1.9%). As shown in Table 4, AUPRC
of TransformEHR was 16.67 (95% CI, 15.11, 18.23, p =0.007), out-
performing BERT (13.34; 95% CI: 12.00, 15.11, p <0.001), LSTM (8.36;
95% CI: 7.56, 9.16, p <0.001), and logistic regression (3.15; 95%CI: 2.39,
3.92, p <0.001) by 24%, 97%, and 422% respectively. A similar trend is
observed for AUROC. We also calculated sensitivity and PPV for a
variety of thresholds. As shown in Supplementary Table 3, The PPV of
TransformEHR ranges from 3.14 to 8.80 for 10% to 60% threshold.

Subgroup analyses among different demographics. The results of
the subgroup analyses are shown in Supplementary Table 4. AUPRC
was consistent among different genders, ages, races, and marital sta-
tus. For example, the AUPRC of patients who were more than 80-year-
old (4.86% of the cohort) was 18.08 (95% CI, 16.05, 19.66), which was
not statistically different from theAUPRCof patients whose ages range
from 30 to 39 (19.58% of the cohort): 16.29 (95% CI, 14.31, 18.27).

Effect of historical EHR length on performance. To examine the
impact of how patients’ prior history impacts model predictions, we
conducted two experiments - “self-harm with short history” (included
only the five most recent visits prior to self-harm) and “self-harm”

included all visits prior to self-harm.As shown inTable 4, TheAUPRCof
TransformEHR using only the five prior visits was 13.77. Using all visits,
the AUPRC improved by 19% to 16.67.

Table 3 | Performance of models for pancreatic cancer
prediction

Models AUROC AUPRC

Without Pretraining Logistic regression 73.64 ±2.26 68.95 ±2.14

LSTM 76.98 ±0.54 73.48 ±0.55

BERT without pretraining 77.27 ±0.45 74.00 ±0.31

With Pretraining BERT 79.22 ±0.47 76.89 ±0.48

TransformEHR (ours) 81.95 ±0.90 78.64 ±0.85

Result is calculated from best hyperparameters with 5 randomized seeds each. ± represents
standard deviation.

Table 4 | Performance (and standard deviation) of predictive
models for intentional self-harm

Models Self-Harm w/
Short History

Self-Harm w/ Full
History

AUPRC AUROC AUPRC AUROC

Without
Pretraining

Logistic
regression

6.89 66.87 3.15 64.60

±1.55 ±0.60 ±0.77 ±3.73

LSTM 9.13 71.46 8.36 69.36

±0.74 ±0.13 ±0.80 ±0.83

BERT without
pretraining

9.39 71.78 10.98 72.53

±0.30 ±0.18 ±0.66 ±0.69

With
Pretraining

BERT 10.30 71.87 13.34 78.02

±0.83 ±0.79 ±1.34 ±1.84

TransformerEHR 13.77 74.89 16.67 79.90

±0.69 ±0.77 ±1.56 ±1.73

“Self-Harm w/ Full History” refers to cases where the prediction is based on the original EHR
(mean: 10.1 visits, st.dev.: 3.3 visits) prior to predicting intentional self-harm. “Self-Harmw/ Short
History” includes only the 5 most recent visits. ± represents standard deviation.
Result is calculated from best hyperparameters with 5 randomized seeds each.

Table 2 | Disease/outcome agnostic prediction: AUROC
scores on different pretraining objectives for the 10 common
and 10 uncommon diseases in Table 1

Models BERT TransformEHR

Chronic PTSD R 81.04 ±0.11 83.73 ±0.07

0 76.74 ±0.17 77.95 ±0.12

Type 2 diabetes R 85.00 ±0.10 85.72 ±0.07

0 79.97 ±0.04 81.84 ±0.05

Hyperlipidemia R 86.78 ±0.03 88.04 ±0.05

0 81.28 ±0.08 83.42 ±0.08

Loin pain R 81.47 ±0.04 88.24 ±0.05

0 76.88 ±0.12 85.37 ±0.08

Low back pain R 85.43 ±0.07 86.94 ±0.03

0 80.16 ±0.07 82.30 ±0.10

Obstructive sleep apnea R 80.74 ±0.17 82.25 ±0.16

0 73.06 ±0.08 74.69 ±0.19

Depression R 86.73 ±0.05 87.66 ±0.12

0 82.60 ±0.12 83.85 ±0.11

Obstructive airway
disease

R 83.57 ±0.14 86.19 ±0.07

0 76.99 ±0.08 80.27 ±0.07

Gastroesophageal reflux R 84.98 ±0.28 91.07 ±0.11

0 76.29 ±0.36 83.41 ±0.33

Arteriosclerosis R 82.21 ±0.06 88.79 ±0.10

0 75.78 ±0.08 80.03 ±0.20

Uncommon disease/
outcome

0 75.63 ±0.12 80.11 ±0.12

Many common diseases are chronic in nature. We therefore study whether prior history of the
same disease has an impact on prediction performance, where R is recurrent and 0 is new
disease onset. ± represents standard deviation.
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Generalizability evaluation
We validated the generalizability of TransformEHR both internally and
externally. Out of 1239 VHA health care facilities, we found that EHR
data from 121 facilities were not included in the pretraining cohort. We
created an internal generalizability evaluationdataset using this subset
of EHR data for the intentional self-harm prediction task among PTSD
patients. Upon evaluating TransformEHR on this dataset, our results
showed no statistical difference in AUPRC between data from unseen
facilities (1st bar on the left of Supplementary Fig. 1) and data from
facilities where at least some of the data were included in the pre-
training cohort (other bars of Supplementary Fig. 1).

To evaluate TransformEHR’s generalizability on the external
dataset, we further finetuned the pretrained TransformEHR and BERT
on the training set of a non-VHA DOAP dataset and evaluated them on
the testing set. The distribution of the ICD codes assigned to an ICU
population would be different from the ICD distribution in the VA, as
shown in Supplementary Fig. 2. The evaluation result is shown in
Supplementary Table 5. Compared to TransformEHR without pre-
training, TransformEHR with pretraining improved AUROC by 2.3%
(95% CI, 0.8%, 3.6%, p =0.005). In comparison, BERT with pretraining
outperformed BERT without pretraining in AUROC by 1.2% (95% CI,
−0.3%, 2.7%, p =0.103). The comparison of performance gain shows
that TransformEHR offers better generalizability on the external
dataset compared to BERT.

Discussion
In this study we introduced TransformEHR, a generative deep neural
network model for the prediction of diseases and outcomes using
patients’ longitudinal EHRs. By first pretraining TransformEHR on a
large collection of EHRs (255 million visits from 6.5 million patients
between 2016 and 2019) and then finetuning for specific clinical
applications, we found that TransformEHR outperformed existing
SOTAmodels on a wide range of disease or outcome predictions. The
performance gain was substantial on intentional self-harm prediction
among PTSD patients. As shown in Table 4, TransformEHR was the
best-performing model and outperformed BERT, LSTM, and logistic
regression models by 24%, 97%, and 422% respectively. The afore-
mentioned results were not surprising, as deep-learning-basedmodels
are known to capture the salient information of EHR data to create
powerful feature representations38. In addition, pretraining on large
data and using the encoder-decoder framework have both been shown
to be SOTA strategies for sequence-to-sequence applications23.

TransformEHR outperformed BERT for prediction of both single
and multiple diseases/outcomes, as shown in Tables 2, 3, and 4. In
contrast to BERT, TransformEHR learned the representation of each
clinical variable by predicting the complete diseases and outcomes
with the help of cross-attention and decoder self-attention. Cross-
attention allowed TransformEHR to selectively focus on sections of
past visit ICD codes that were most relevant to predicting each ICD
code in the future visit, and the decoder self-attention helped Trans-
formEHR in predicting complete diseases and outcomes by leveraging
already predicted primary diagnostic ICD codes to predict secondary
codes that are less common. Thus, the performance gains were the
highest among uncommon disease predictions. As shown in Table 2,
compared with the BERTmodel, TransformEHR improved the AUROC
by an average of 3.96% in predicting 10 common diseases, and by an
average of 5.92% in predicting 10 uncommon diseases. TransformEHR
also substantially improved prediction for intentional self-harm pre-
diction (AUPRC from 13.34 to 16.67, p = 0.007) and pancreatic cancer
prediction (AUPRC from 76.89 to 78.64, p < 0.001).

Pretraining played a key role in improving the performance of our
deep-learning-based models. To demonstrate, we chose intentional
self-harm prediction and compared the performance between a BERT
model pretrained on our pretraining cohort (as described in the Data
section) and a BERT model with no pretraining (parameters were

randomly initialized before fine-tuning). Pretrained BERT substantially
outperformed the non-pretrained BERT (23% higher AUPRC and 7%
higher AUROC), as shown in Table 4. In particular, pretraining helps
improve the latent representations of EHR data compared to non-
pretrainedmodels. This helped improve the probability distribution of
candidate diseases or outcomes. As shown in Fig. 3, after pretraining
on a large EHRcohort, theprobability distribution for thenext visit ICD
code changed from a random distribution to a learned representation
of clinically relevant diseases or outcomes. While a pretrained model
can capture the probability distribution at a large cohort level, fine-
tuning it further can improve the performance for a specific
application.

Attention-basedmodels benefit from longitudinal EHRs with long
histories (approximately 10 prior visits). As shown in Table 4, of the
attention-basedmodels (TransformEHR and BERT) finetuned onmore
than 5 visits, the AUPRC scores improved by 19% and 31%, respectively,
in comparison with models finetuned on only five most recent visits.
However, with the same experimental setup, the AUPRC scores of non-
attention-based models such as LSTM and logistic regression
decreased by 8% and 54%, respectively, when finetuned on more than
five prior visits (on average 10) compared with the models finetuned
on only the fivemost recent visits. These findings were consistent with
previous research39, which showed that LSTM, although good at miti-
gating the vanishing gradient challenge of RNN, remains suboptimal
with long-time dependencies.

Our work is also related to predictive model studies focused on
intentional self-harm40–44. Typically, these approaches sample thou-
sands ofpatients anduse probability tables, decision trees, and logistic
regression to predict intentional self-harm. PPV plays a crucial role
here in estimating the potential benefit of any intensive case man-
agement intervention, if one were to be implemented based on any
such approach. PPV indicates the percentage of patients receiving an
intervention who would otherwise attempt self-harm. Hartl et al. 42.
predicted intentional self-harmamongPTSDpatients (prevalence ratio
5%, PPV0%). Simon et al. 44. integrated EHRdata and questionnaires for
2,960,929 patients to predict suicide attempts (prevalence ratio 1%)
within 90 days of a mental health visit. The most successful model
demonstrated a PPVof 5%.TransformEHR, on the other hand, achieved
a PPV of 8.80% at 10% threshold for prediction of intentional self-harm
among PTSD patients, which substantially outperformed the baseline
(Supplementary Table 3). In other words, out of the 100 highest-
predicted-risk patients from 1000 previously diagnosed PTSD
patients, 9 patients would attempt intentional self-harm for the first
time before the next visit. In comparison, for logistic regression the
PPV at the 10% thresholdwas 3.31%. A practical suicide prevention tool
must have a relatively high PPV to minimize the resource cost and
intrusion directed at patients who will never attempt self-harm45. Fol-
lowing the previous work28, we calculated the incremental cost-
effectiveness ratio (ICER) of self-harm risk prediction and intervention:
the ratio of its incremental cost to its incremental quality-adjusted life-
years (QALYs) compared with usual care. Previous studies in the US
have suggested that ICER thresholds under $150 k per QALY can be
used to determine the cost-effectiveness of healthcare interventions in
201446. When using cognitive behavioral therapy as intervention, BERT
achieves ICER of $123 k per QALY, and TransformEHR could reduce
ICER to $109 k per QALY. Therefore, TransformEHR may be a reliable
and feasible option for designing an effective suicide prevention
system.

In conclusion, our results havemultiple clinical implications. First,
existing predictive models tend to focus on single diseases. Yet the
focus in clinical care, particularly in older people, is often onmanaging
comorbidities17. A predictive model that can predict multiple diseases
or outcomes may be useful in designing complex treatment plans.
Second, a disease-specific approach could require building hundreds
of different predictive models, an inefficient and costly use of

Article https://doi.org/10.1038/s41467-023-43715-z

Nature Communications |         (2023) 14:7857 6



resources whereas TransformEHR’s unique pretraining objective
enables it to predict all diseases and outcomes of a visit, immediately
after the pretraining. Third, TransformEHR outperformed existing
SOTA predictive models with a substantial performance gain, espe-
cially for uncommon disease/outcome predictions. Thus, our
approach could assist in the development of screening algorithms to
detect uncommon conditions. Fourth, TransformEHR can be easily
generalized on an out-of-domain dataset with a significantly smaller
training data. TransformEHR’s strong transfer learning capability
makes it a good fit for hospital settings with limited data and com-
puting resources.

Despite the merits of this study, there are several limitations that
provide opportunities for future improvements. First, we followed
previous work onmodel pretraining and included only diagnostic ICD
codes and demographic information13. Other information such as
procedure codes, medications, lab results, and phenotypical infor-
mation extracted from notes can be added to further improve the
performance47. Combining all these codes together would result in a
large vocabulary, forcing the model to have a huge embedding matrix
as the input and output layer. The computation on this matrix would
cause both a significant increase of memory and time complexity. In
future work, we will increase the GPUs resource to mitigate this com-
putational challenge. Second, our prediction of single disease was
limited to pancreatic cancer and single outcome was limited to
intentional self-harmwith PTSD. Future works would expand the set of
diseases and outcomes. Third, while we followed the previous studies
to use ICD-10-CM codes to identify intentional self-harm44,48,49, we
acknowledge that the ICD-10-CM representation of self-harm would
miss some, although a small percentage of patients who conducted
self-harm50. In addition, the date of the encounter may not be the
actual date of the self-harm. To determine the viability of using
TransformEHR in a pragmatic trial, a tailored cost-effectiveness ana-
lysis that addresses these issues would be necessary for future work.

Methods
VHA cohort
Using the VHA Corporate Data Warehouse (CDW), we first identified a
total of 8,308,742 patients who received care from more than 1200
health care facilities of the US VHA from 1/1/2016 to 12/31/2019. For
inclusion, we required each patient to have at least two visits: one
outcome visit and at least one prior visit to be used for prediction of
the outcome. This resulted in a total of 6,829,064 patients.

Pretraining and finetuning cohorts
Following the standard 95–5 split13,22, we randomly took 95% of the
patients (6,475,218) to create our pretraining cohort and used the
remaining 5% (353,846) to create other datasets to finetune for DOAP
and single disease or outcomepredictions. The detailed patient cohort
selections and diseases or outcomes for this study are shown in Sup-
plementary Fig. 3. The study protocol was approved by the Institu-
tional Review Board at the VA Bedford Healthcare System.

We identified two use cases to evaluate TransformEHR.

Pancreatic cancer
Although pancreatic cancer is relatively uncommon, it is deadly, pro-
jecting tobecome the second leading causeof cancer-relatedmortality
by 203032. Since effective screening is not available for pancreatic
cancer, most patients can seek medical attention only after being
diagnosed with locally advanced or metastatic cancer. Therefore,
accurate prediction of pancreatic cancer can help early detection of
pancreatic cancer. Previous research13 has evaluated BERT for pan-
creatic cancer prediction. Following the same criteria in previous
studies13,51, we definedpancreatic cancerwith thefirst 3 digit ICD-10CM
codes as C25. The case included 4639 patients of 45 years or olderwith
no report of any other cancer disease before their first pancreatic

cancer diagnosis and diagnosis made between 12 and 36 months after
their last visit, and control patients comprised 5089 patients of 45
years or older without any cancer diagnosis.

Prediction of intentional self-harm
PTSD is considered as a hallmark injury of US Post-9/11 Veterans,
with a prevalence estimated to be up to 23%52. Individuals with PTSD
also have co-occurring physical health (e.g., chronic pain53), mental
health (e.g., depression and anxiety54,55), and behavioral conditions
(e.g., substance use disorder56,57). People with PTSD have 5.3–13
times the rate of suicide than people without PTSD58. Hence, we also
evaluated TransformEHR for prediction of intentional self-harm for
patients with PTSD. Out of 70,967 the patients who had been
diagnosed with PTSD from 353,846 patients not in the pretraining
cohort, 1342 patients who would attempt self-harm for the first-time
(from VHA CDW and Suicide Prevention Applications Network)
were collected as cases. Following previous research that used the
ICD-9 codes for intentional self-harm44,48,49, we converted those ICD-
9 into ICD-10CM and defined intentional self-harm using ICD-10CM
codes as in Supplementary Data 1. A recent study found that self-
harm related ICD-10-CM codes only miss a small proportion of
actual self-harm incidents50. Another 14 patients were considered as
controls who were diagnosed with PTSD but would not attempt self-
harm in six months after their last visit. The observed self-harm rate
was 1.9% among PTSD patients. Further details of the cohort defi-
nition are available in Supplementary Fig. 4. All inpatient and out-
patient ICD codes were included in our data.

Implementation details
For pretraining, we tasked TransformEHR to predict the next visit
ICD codes recursively. Specifically, for each patient’s input
sequence, we used the first visit to predict the second visit, and then
used the first two visits to predict the third visit, and so on. This
process was repeated until the last visit as recorded in the input
sequence was predicted. ICD codes were ordered by their priorities
within a visit. We set the maximum sequence length (number of ICD
codes) to be 512. To prevent the model from simply memorizing the
pretraining data, we randomly drop 15% of visits from each input
during pretraining. Other hyperparameters include a warmup ratio
of 0.1, a learning rate of 1e − 3, a dropout rate of 0.1, and an L2
weight decay of 1e − 3 with fp16. To make a fair comparison, we
pretrained the baseline BERTmodel on the same pretraining cohort,
instead of using existing models pretrained on other cohorts. We
used 4 Nvidia Tesla P40 GPU of 22 GB graphics memory capacity
and trained each model for 6 days with more than 280 k steps and
batch size of 48.

Duringfinetuning, we added a task-specific classifier layer (a linear
layer) on top of TransformEHR and BERT to predict disease or out-
come as a binary classification task. For a fair comparison with other
medical BERT models13–15, TransformEHR used six layers in both
encoder and decoder modules to best match the amount of para-
meters. All models were finetuned with five random seeds and statis-
tical tests were carried out among these models. To ensure a fair
comparison, the same feature transformation, L2 regularization, and
hyperparameter tuning strategies, were used to finetune Transfor-
mEHR and all baseline models. For each outcome prediction, we built
training, validation, and test datasets by the ratio of 7:1:2. One sided
student’s t test was used to determine if TransformEHR outperforms
baseline models. All finetuning experiments were conducted with
Nvidia Tesla P40 GPU, and each single disease or outcome prediction
was finetuned within 12 h.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The study protocol was approved by the Institutional Review Board at
the VA Bedford Healthcare System under the waiver of informed
consent. The study was exempted because the research involves only
information collection and analysis involving the investigator’s use of
identifiable information when that use is regulated under 45 Code of
Federal Regulations (CFR) parts 160 and 164, subparts A and E, for the
purposes of health care operations or research as those terms are
defined at 45 CFR 164.512(b). The VHA EHR data are available under
restricted access for Veterans’ privacy and data security laws, access
can be obtained by relevant approvals through VA Informatics and
Computing Infrastructure (VINCI) (contact: VINCI@va.gov). Indivi-
duals who wish to use this data for research purposes must fulfill the
research credentialing requirements as outlined by the VA Office of
Research and Development, with the approval process expected to
take from1month to 1 year. TheMIMIC-IV rawdata is publicly available
through Physionet. aiming to utilize this data for research will be
required to meet research credentialing requirements as outlined at
the Physionet’s web site: https://physionet.org/content/mimiciv/2.2/.
Requests arenormally processedwithin aweek.We release aminimum
dataset to illustrate the training process on https://github.com/
whaleloops/TransformEHR.

Code availability
Our finetuning code is publicly available on https://github.com/
whaleloops/TransformEHR/. Experiments were conducted using
Python version 3.8, torch version 1.9.0, transformer library version
4.16.2. Visualization was obtained using Python packages matplotlib
version 3.3.2.
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