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Augmenting interpretable models with large
language models during training

Chandan Singh 1 , Armin Askari2, Rich Caruana1 & Jianfeng Gao1

Recent large language models (LLMs), such as ChatGPT, have demonstrated
remarkable prediction performance for a growing array of tasks. However,
their proliferation into high-stakes domains and compute-limited settings has
created a burgeoning need for interpretability and efficiency. We address this
need by proposing Aug-imodels, a framework for leveraging the knowledge
learned by LLMs to build extremely efficient and interpretable prediction
models. Aug-imodels use LLMs during fitting but not during inference,
allowing complete transparency and often a speed/memory improvement of
greater than 1000x for inference compared to LLMs. We explore two instan-
tiations of Aug-imodels in natural-language processing: Aug-Linear, which
augments a linear model with decoupled embeddings from an LLM and Aug-
Tree, which augments a decision tree with LLM feature expansions. Across a
variety of text-classification datasets, both outperform their non-augmented,
interpretable counterparts. Aug-Linear can even outperform much larger
models, e.g. a 6-billion parameter GPT-J model, despite having 10,000x fewer
parameters and being fully transparent. We further explore Aug-imodels in a
natural-language fMRI study, where they generate interesting interpretations
from scientific data.

Large language models (LLMs) have demonstrated remarkable pre-
dictive performance across a growing range of diverse tasks1–3. How-
ever, their proliferation has led to two burgeoning problems. First, like
most deep neural nets, LLMs have become increasingly difficult to
interpret, often leading to them being characterized as black boxes
and debilitating their use in high-stakes applications such as science4,
medicine5, and policy-making6. Moreover, the use of black-boxmodels
such as LLMs has come under increasing scrutiny in settings where
users require explanations or where models struggle with issues such
as fairness7 and regulatory pressure8. Second, black-box LLMs have
grown tomassive sizes, incurring enormous energy costs9 andmaking
them costly and difficult to deploy, particularly in low-compute set-
tings (e.g., edge devices).

As an alternative to large black-box models, transparent models,
such as linear models and decision trees10 can maintain complete
interpretability. Additionally, transparent models tend to be dramati-
cally more computationally efficient than LLMs. While transparent
models can sometimes perform as well as black-box LLMs11–14, in many

settings (such as natural language processing (NLP)), there is often a
considerable gap between the performanceof transparentmodels and
black-box LLMs.

We address this gap by proposing augmented-interpretable
models (Aug-imodels), a framework to leverage the knowledge
learned by LLMs to build extremely interpretable and efficientmodels.
Specifically, we define an Aug-imodel as a method that leverages an
LLM to fit an interpretable model but does not use the LLM during
inference. This allows complete transparency and often a substantial
efficiency improvement (both in terms of speed and memory). Aug-
imodels can address shortcomings in existing transparent models by
using the world knowledge present in modern LLMs, such as infor-
mation about feature correlations.

We explore two instantiations of Aug-imodels: (i) Aug-Linear,
which augments a linear model with decoupled embeddings from an
LLM and (ii) Aug-Tree, which augments a decision treewith improved
features generated by calling an LLM (see Fig. 1). At inference time,
both are completely transparent and efficient: Aug-Linear requires
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only summing coefficients from a fixed dictionary while Aug-Tree
requires checking for the presence of keyphrases in an input.
This allows for complete inspection of a model’s decision-
making process, unlike post hoc explanations, which are often
unfaithful11,15,16.

Across a variety of natural-language-processing datasets, both
proposed Aug-imodels outperform their non-augmented counter-
parts. Aug-Linear can even outperform much larger models, (e.g., a
6-billionparameter Generative pretrained transformermodel, GPT-J17),
despite having 10,000x fewer parameters and no nonlinearities. We
further explore Aug-imodels in a natural-language fMRI context, where
we find that they can predict well and generate interesting inter-
pretations. In what follows, the section “Results” shows results for
predictive performance and interpretation, the section “Discussion”

includes a discussion, and the section “Methods” formally introduces
Aug-imodels.

Results
Experimental setup for evaluating text-classification
performance
Table 1 shows the datasets we study: four widely used text-
classification datasets spanning different domains (e.g., classifying
the emotion of tweets18, the sentiment of financial news sentences19, or
the sentiment of movie reviews20, 21), and one scientific text regression
dataset (described in section “fMRI results: analyzing fMRI data with
Aug-imodels”)22. Across datasets, the number of unique ngrams grows
quickly from unigrams to bigrams to trigrams. Moreover, many
ngrams appear very rarely, e.g., in the Financial Phrasebank (FPB)
dataset, 91% of trigrams appear only once in the training dataset.

We compare Aug-Linear to four interpretable baseline models:
Bag of ngrams, TF-IDF (Term frequency-inverse document
frequency)23, GloVE24 (we use the pre-trained Glove embeddings
trained on Common Crawl containing 840 billion tokens, 2.2 million
vocab-size, cased, 300-dimensional vectors), and a model trained on
BERT embeddings for each unigram in the input (which can be viewed
as runningAug-Linearwith onlyunigrams).WeuseBERT (bert-base-
uncased)3 as the LLM for extracting embeddings, after finetuning on
each dataset; see Supplementary Table 1 for details on all models and
downloadable checkpoints. In each case, a model is fit via cross-
validation on the training set (to tune the amount of ℓ2 regularization
added) and its accuracy is evaluated on the test set.

We compare Aug-Tree to two decision-tree baselines: CART10 and
ID325, and we use bigram features. In addition to individual trees, we fit
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Fig. 1 | Aug-imodels use an LLM to augment an interpretable model during
fitting but not inference (toy example for movie-review classification). a Aug-
Linear fits an augmented linear model by extracting fixed-size embeddings for
decoupled ngrams in a given sequence, summing them, and using them to train a
supervised linear model. b At test-time, Aug-Linear can be interpreted exactly as a

linear model. A linear coefficient for each ngram in the input is obtained by taking
the dot product between the ngram’s embedding and the shared vector w. c Aug-
Tree improves each split of a decision tree during fitting by d augmenting each
keyphrase found by CART with similar keyphrases generated by an LLM.

Table 1 | Overview of datasets studied here

FPB Rotten
tomatoes

SST2 Emotion fMRI

Samples (train) 2313 8530 67,349 16,000 9461

Samples (val) 1140 1066 872 2000 291

Classes 3 2 2 6 Regression

Unigrams 7169 16,631 13,887 15,165 4980

Bigrams 28,481 93,921 72,501 106,201 27,247

Trigrams 39,597 147,426 108,800 201,404 46,834

Trigrams that
appear only once

91% 93% 13% 89% 71%

The number of ngrams grows quickly with the size of the ngram.
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bagging ensembles, where each tree is created using a bootstrap
sample the same size as the original dataset (as done in Random
Forest26) and has depth 8. This hurts interpretability but can improve
predictive performance and calibration. For simplicity, we run Aug-
Linear only in a binary classification setting; to do so, we take two
opposite classes from each multi-class dataset (Negative/Positive for
FPB and Sadness/Joy for Emotion).

Aug-Linear text-classification performance
Figure 2a shows the test accuracy of Aug-Linear as a function of the
ngram size used for computing features. Aug-Linear outperforms the
interpretable baselines, achieving a considerable increase in accuracy
across three of the four datasets. Notably, Aug-Linear accuracy
increases with ngram size, whereas the accuracy of baseline methods
decreases or plateaus. This is likely due to Aug-Linear fitting only a
fixed-size parameter vector, helping to prevent overfitting.

Table 2 shows the test accuracy results for various models when
choosing the size of ngrams via cross-validation. Compared with
interpretable baselines, Aug-Linear shows considerable gains on three
of the datasets and only a minor gain on the tweet dataset (Emotion),
likely because this dataset requires fitting less high-order interactions.

Compared with the zero-shot performance of the much larger
GPT models (6-billion parameter GPT-J17 and 175-billion parameter
GPT-3, text-davinci-0021). Accuracy for GPT models is computed
by averaging over human-written prompts taken from
PromptSource27; see details in Supplementary section 1). Aug-Linear

outperforms GPT-J. Aug-Linear lags slightly behind GPT-3 for binary
classification problems (Rotten Tomatoes and SST2) but outperforms
GPT-3 for multi-class classification problems (FPB and Emotion). The
best black-box baseline (a BERT finetuned model) outperforms Aug-
Linear by 4%–6% accuracy. This is potentially a reasonable tradeoff in
settings where interpretability, speed, or memory bottlenecks are
critical.

At inference time, it may be useful to use Aug-Linear on relatively
easy samples (for interpretability/memory/speed/cost-saving) but
relegate difficult samples to a black-box model. To study this setting,
we predict each sample with a 2-step procedure. First, we predict the
sample with Aug-Linear. If its prediction confidence is high (the pre-
dicted probability for the top class is above some threshold), we return
the Aug-Linear prediction. Otherwise, we predict the sample using the
black-box model. If Aug-Linear is well-calibrated, it should perform
well in this setting, since it can relegate the samples where it performs
poorly to the black-box model (here, we use Finetuned BERT as the
black-box model).

Figure 2b shows the accuracy of the entire test set in this setting.
We vary the confidence threshold that decides whether to predict
using Aug-Linear or Finetuned BERT; this results in a curve showing
accuracy as a function of the percentage of samples predicted with
Aug-Linear. Since Aug-Linear predictions are well-calibrated (see Sup-
plementary Fig. 1), rather than the accuracy linearly interpolating
between Aug-Linear and BERT, a large percentage of samples can be
predicted with Aug-Linear while incurring little to no drop in accuracy.

Fig. 2 | Text-classification accuracy for Aug-Linear. a Test accuracy as a function
of ngram size. As the ngram size (i.e., the number of tokens in the ngram) increases,
the gap between Aug-Linear and the baselines grows. Averaged over three random
cross-validation splits; error bars are standard errors of themean (many are within

the points). b Accuracy when predicting using a 2-step procedure: uses Aug-Linear
predictions on samples for which Aug-Linear is confident and Finetuned BERT
predictions on the remaining samples. A large percentage of samples can be
accurately predicted with Aug-Linear without a significant drop in performance.

Table 2 | Test accuracy for different models

FPB Rotten tomatoes SST2 Emotion AVG

Ours Aug-Linear 92.8 ± 0.37 81.6 ± 0.05 86.9 ± 0.10 89.5 ± 0.03 87.7

Interpretable baselines Bag of ngrams 85.0 ±0.11 75.0 ± 0.09 82.8 ± 0.00 89.0 ±0.09 83.0

TF-IDF 84.9 ± 0.16 75.9 ± 0.06 83.4 ± 0.11 89.2 ± 0.04 83.4

GloVe 80.5 ± 0.06 78.7 ± 0.03 80.1 ± 0.10 73.1 ± 0.09 78.1

BERT unigram embeddings 86.4 ± 0.13 76.8 ± 0.19 81.7 ± 0.07 87.2 ± 0.06 83.0

Black-box baselines BERT finetuned 98.0 87.5 92.4 93.6 92.9

GPT-3 39.6 ± 1.6 82.7 ± 3.3 90.5 ± 3.9 45.1 ± 4.1 64.5

GPT-J 27.0 ± 1.9 58.9 ± 3.1 58.4 ± 2.8 19.3 ± 1.9 40.9

Aug-Linear yields improvements over interpretable baselines and is competitivewith someblack-boxbaselines. See results formoredatasets in SupplementaryTable 3. Errors showstandarderror of
the mean over 3 random data splits (or 3 different prompts for GPT models).
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For example, when using Aug-Linear on 50% of samples, the average
drop in test accuracy is only 0.0053.

In cases involving inference memory/speed, Aug-Linear can be
converted to a dictionary of coefficients, whose size is the number of
ngrams that appeared in training (see Table 1). For a trigram model,
this yields roughly a 1000x reduction in model size compared to
the ~110 million trainable parameters in BERT, with much room for
further size reduction (e.g., simply removing coefficients for trigrams
that appear only once yields another 10-fold size reduction). Inference
is nearly instantaneous, as it requires looking up coefficients in a dic-
tionary and then a single sum (and does not require a GPU).

Supplementary section 1.1 explores accuracy/efficiency tradeoffs.
For example, Aug-Linear performance degrades gracefully when the
model is compressed by removing its smallest coefficients. In fact, the
test accuracy of Aug-Linear models trained with 4-grams on the Emo-
tion and Financial phrasebank datasets actually improves after
removing 50% of the original coefficients (Supplementary Fig. 2A).
Additionally, one can vary the size of ngrams used at test-timewithout
severe performancedrop, potentially enabling compressing themodel
by orders of magnitude (see Supplementary Figs. 2B and 3). For
example, when fitting a model with 4-grams and testing with 3-grams,
the average performance drop is ~2%.

Supplementary Table 2 shows how generalization accuracy
changes when the LLM used to extract embeddings for Aug-Linear is
varied (e.g., using GPT-2, RoBERTA, or LlaMa), or different layers/
ngram selection techniques are used. Supplementary Table 3 shows
results for more multi-class datasets and when varying tokenization
schemes. Across the variations, embeddings from finetuned models
and larger models tend to yield better results.

Aug-Tree text-classification performance
Wenow investigate thepredictive performanceof Aug-Tree,measured
by the test ROC AUC on the previous text-classification datasets
altered for binary classification. Note that the performance of all tree-
based methods on the studied datasets is below the performance of
the GLM methods in the section “Aug-Linear text-classification per-
formance” (see Supplementary Table 7 for a direct comparison).
Nevertheless, Aug-Treemodelsmaintain potential advantages, such as
storing far fewer parameters, clustering important features together,
and better modeling long-range interactions.

Figure 3a shows the performance of Aug-Tree as a function of tree
depth compared to decision-tree baselines. Aug-Tree shows
improvements that are sometimes small (e.g., for Financial phrase-
bank) and sometimes relatively large (e.g., for Emotion). Figure 3b
shows the performance of a bagging ensemble of trees with different
treemethods used as the base estimator.Here, using Aug-Tree shows a

reliable and significant gain across all datasets compared to ensembles
of baseline decision-tree methods. This suggests that LLM augmenta-
tion may help to diversify or decorrelate individual trees in the
ensemble. Supplementary Table 6 shows variations of different
hyperparameters for Aug-Tree, such as using embeddings or dataset-
specific prompts to expand keyphrases.

Interpretation results: interpreting fitted models
In this section,we interpret fittedAug-imodels.We first inspect anAug-
Linear model fitted using unigram and bigram features on the SST2
dataset which achieves 84% test accuracy. Next, we analyze the key-
phrase expansions made in fitted Aug-Tree bagging ensembles.

A fitted Aug-Linear model can be interpreted for a single predic-
tion (i.e., getting a score for each ngram in a single input, as in Fig. 1) or
for anentire dataset (i.e., by inspecting its fitted coefficients). Figure 4a
visualizes thefittedAug-Linear coefficients (i.e., the contribution to the
prediction wTϕ(xi)) with the largest absolute values across the SST2
dataset. To show a diversity of ngrams, we show every fifth ngram. The
fitted coefficients are semantically reasonable and many contain
strong interactions (e.g., not very is assigned to be negative whereas
without resorting is assigned to be positive). This form of model
visualization allows a user to audit the model with prior knowledge.
Note that the coefficient for an ngram, e.g., not bad (positive) is not
simply the sum of its constituent ngrams: not (negative) and bad
(negative), see Supplementary Fig 5. Moreover, these coefficients are
exact and therefore avoid summarizing interactions, making them
considerably more faithful than post hocmethods, such as LIME28 and
SHAP29 (see Supplementary section 1.2 for a comparison).

Figure 4b compares the fitted Aug-Linear coefficients to human-
labeled sentiment phrase scores for unigrams/bigrams in SST (note:
these continuous scores are separate from the binary sentence labels
used for training in the SST2 dataset). Both are centered, so that 0 is
neutral sentiment andpositive/negative values correspond topositive/
negative sentiment, respectively. There is a strong positive correlation
between the coefficients and the human-labeled scores (Spearman
rank correlation ρ =0.63), which considerably improves over coeffi-
cients from a bag-of-bigrams model trained on SST2 (ρ = 0.39).

One strength of Aug-Linear is its ability to infer linear coefficients
for ngrams that were not seen during training. Whereas baseline
models generally assign each unknown ngram the same coefficient
(e.g., 0), Aug-Linear can effectively assign these new ngrams accurate
coefficients. As one example, Fig. 4c shows that the Aug-Linear model
trainedonly onbigrams in Fig. 4a, b can automatically infer coefficients
for trigrams (which were not fit during training). The inferred coeffi-
cients are semantically meaningful, even capturing three-way interac-
tions, such asnot very amusing. To showadiversity of ngrams,we show

Fig. 3 | Aug-Tree text-classification performance.Test performance as a function of a tree depth for individual trees and b number of estimators in a bagging ensemble.
Values are averaged over 3 random dataset splits; error bars show the standard error of the mean (many are within the points).
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every 20th ngram. Figure 4d shows the coefficients compared to the
human-labeled SST phrase sentiment for all trigrams in SST. Again,
there is a strong correlation, where the Aug-Linear coefficients achieve
a rank correlation ρ =0.71, which even outperforms the bag-of-words
model directly trained on trigrams (ρ =0.49).

A fitted Aug-Tree model can be easily interpreted for a single
prediction (i.e., by inspecting the ngrams that triggered relevant splits)
or by visualizing the entire tree (e.g., Fig. 1c). Here, we additionally
analyze how well each ngram found by CARTmatches the augmented
ngrams found by the LLM; the better this match is, the easier it is to
interpret a split.

Table 3 shows examples of the ngrams that were most frequently
augmented when fitting a bagging ensemble of 40 Aug-Tree s to the
four text-classification datasets in Table 1. Added ngrams seem quali-
tatively reasonable, e.g., the keyphrase good expands to fine, highly,
solid,..., valuable. We evaluate how well the expansions match the
original CART ngram via human evaluation scores. Human evaluators
are given the original ngram and the added ngrams, then instructed
“You aregiven a keyphrase alongwith related keyphrases.On a scale of

1 (worst) to 5 (best), how well do the related keyphrases match the
example keyphrase?” Human evaluation scores are averaged over 3
Ph.D. students in machine learning not affiliated with the study and 15
random ngrams from each dataset. Table 3 shows that the average
human score for splits in each dataset is consistently greater than 4.
This is substantially higher than the baseline score of 1.3 assigned by
human evaluators when 15 ngrams and expansions are randomly
paired and evaluated. Supplementary Table 5 gives more details on
ngram expansions.

fMRI Results: analyzing fMRI data with Aug-imodels
We now explore Aug-imodels in a real-world neuroscience context. A
central challenge in neuroscience is understanding how and where
semantic concepts are represented in the brain. To meet this chal-
lenge, one line of study predicts the response of different brain voxels
(i.e., small regions in space) to natural-language stimuli. We analyze
data from a recent study in which the authors collect functional MRI
(fMRI) responses as human subjects listen to hours of narrative
stories22. The fMRI responses studied here contain 95,556 voxels from

Table 3 | Examples of most frequently augmented ngrams for each dataset when fitting an ensemble of 40 Aug-Tree

Dataset Human score Example CART ngram Added ngrams

SST2 4.6 ± 0.1 good fine, highly, solid,worthy, pleasing, satisfactory, outstanding, honorable, unwavering, valuable,...

best most remarkable, outstanding, superb, flawless, splendid, superlative, exceptional,
impeccable,...

RT 4.4 ± 0.1 dull dreary, uninteresting, lackluster, listless, lifeless, uninspired, wearisome, drab, joylessly,...

bad unpleasant, dire, despicable, terrible, heinous, disgusting, vile, putrid, atrocious, nasty, poor,...

Emotion 4.4 ± 0.2 miserable gloomy, disillusioned, pathetic, doomed, agonized, despairing, pointless, despondent,...

sorry embarrassed, sorrowful, remorseful, excuse, unsatisfied, guilt, regretful, forgive, apologies,...

FPB 4.2 ± 0.2 increased widened, consolidated

fell slipped, slumped, diminished, plunged, dropped, weakened, lost ground

Human scores measure the similarity between an ngram and its expansion. They range from 1 (worst match) to 5 (best match), and the baseline score when ngrams and expansions are randomly
paired and evaluated is 1.3 ± 0.1. Error bars show the standard error of the mean.
FPB Financial Phrasebank, RT rotten tomatoes.

Fig. 4 | Interpreting Aug-Linear. Top and bottom contributing ngrams to an Aug-
Linear model trained on SST2 bigrams are a qualitatively semantically accurate and
b match human-labeled phrase sentiment scores. For the same Aug-Linear model,

which is trained only on bigrams, inferred trigrams coefficients are c qualitatively
semantically accurate and d match human-labeled phrase sentiment scores.
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a single subject, with 9461 time points used for training/cross-valida-
tion and 291 time points used for testing. We predict the continuous
response for each voxel at each time point using the 20 words that
precede the time point. We skip the most recent 4 words due to
account for a time delay in the fMRI BOLD response. Seminal work on
this task found that linear models of word vectors could effectively
predict voxel responses30, and more recent work shows that LLMs can
further improve predictive performance31, 32. Aug-Linear is well-suited
to this task, as it combines low-level word information with the con-
textualized information present in higher-order ngrams, both ofwhich
have been found to contribute to fMRI representations of text33.

Figure 5a visualizes the voxels in the cortex which are better
predicted by Aug-Linear than BERT. The improvements are often
spatially localized within well-studied brain regions such as the audi-
tory cortex (AC). Figure 5b shows that the test performance for Aug-
Linear (measured by the Pearson correlation coefficient ρ) outper-
forms the black-box BERT baseline. Supplementary section 3 gives
further data details and comparisons, e.g., Aug-Linear also outper-
forms other linear baselines.

Going beyond prediction performance, Fig. 5c investigates a
simple example of how Aug-Linear could help interpret an underlying
brain region. We first select the voxel which is best predicted by Aug-
Linear (achieving a test correlation of 0.76) and then visualize the
largest fitted Aug-Linear coefficients for that voxel. These correspond
to which ngrams increase the activity of the fMRI voxel the most.
Interestingly, these ngrams qualitatively correspond to under-
standable concepts: questioning, e.g., “are you sure”, often combined
with disbelief/incredulity, e.g. “wow I never”. Figure 5d shows two
examples of voxels that are better predicted by Aug-Tree than Aug-
Linear (Aug-Tree yields test correlations of 0.35 and 0.36). These two
voxels are both related to someone speaking, but they seem to depend
on interactions between the noun (me or you) and the verb (says). To
elicit a large response both must be present, something which is dif-
ficult to capture in additive models, even with ngrams, since these
words may not be close together in a sentence.

This interpretation approach could be appliedmore rigorously to
generate hypotheses for text inputs that activate brain regions, and
then test them with follow-up fMRI experiments.

Discussion
Aug-imodels provide a promising direction towards future methods
that reap the benefits of both LLMs and transparent models in NLP:
high accuracy along with interpretability/efficiency. This potentially
opens the door for introducing LLM-augmentedmodels in high-stakes
domains, such as medical decision-making and in new applications on
compute-limited hardware. Aug-imodels are currently limited to
applications for which an effective LLM is available, and thus may not
work well for very esoteric NLP tasks. However, as LLMs improve, the
predictive performance of Aug-imodels should continue to improve
and expand to more diverse NLP tasks. More generally, Aug-imodels
can be applied to domains outside of NLP where effective foundation
models are available (e.g., computer vision or protein engineering).

Though helpful, Aug-imodels are limited by their transparent
model form and cannot capture some complex interactions that LLMs
can model. To remedy this, Aug-imodels could be readily extended
beyond linearmodels and trees to improve transparentmodels suchas
rule lists, prototype-basedmodels, symbolicmodels, and rule setswith
LLM augmentation during training time. In all these cases, LLM aug-
mentation could use LLM embeddings (as is done in Aug-Linear), use
LLM generations (as is done in Aug-Tree), or use LLMs in new ways.
Aug-Linear could be extended to nonlinearly transform the embed-
ding for each ngram with a model before summing to obtain the final
prediction, similar to the nonlinearity present in generalized additive
models (GAMs) such as the explainable boosting machine34,. Addi-
tionally, Aug-Linear could fit long-range interaction terms as opposed
to only ngrams. Aug-Tree could leverage domain knowledge to engi-
neer more meaningful prompts for expanding ngrams or for extract-
ing relevant ngrams. Both models can be further studied to improve
their compression (potentially with LLM-guided compression techni-
ques) or to extend their capabilities to tasks beyond classification/

Fig. 5 | Aug-imodels prediction performance and interpretation for fMRI vox-
els. a Map of the difference between the performance of Aug-Linear and BERT for
fMRI voxel prediction across the cortex. Positive values (red) show where Aug-
Linear outperforms BERT, measured by correlation on the test set. b Aug-Linear

outperforms BERTwhen averaging across all voxels, or just over the 1%/5%with the
highest test correlations. Standard errors of the mean are all less than 0.0015.
c Example Aug-Linear model for a single voxel, visualized with the top Aug-Linear
coefficients. d Example Aug-Tree model for two voxels.

Article https://doi.org/10.1038/s41467-023-43713-1

Nature Communications |         (2023) 14:7913 6



regression, such as sequence prediction or outlier detection. We hope
that the introduction of Aug-imodels can help push improved per-
formance prediction into high-stakes applications, improve inter-
pretability for scientific data, and reduce unnecessary energy/
compute usage.

Methods
In this section, the section “Limitations of existing transparent meth-
ods” overviews the limitations of existing transparent methods, sec-
tion “Aug-Linear method description” introduces Aug-Linear, and the
section “Aug-Tree method description” introduces Aug-Tree.

Limitations of existing transparent methods
We are given a dataset of n natural-language strings Xtext and corre-
sponding labels y 2 Rn. In transparentmodeling, often each string x is
represented by a bag-of-words, in which each feature xi is a binary
indicator (or count) of the presence of a single token (e.g., the word
good). To model interactions between tokens, one can instead use a
bag-of-ngrams representation, whereby each feature is formed by
concatenatingmultiple tokens (e.g., the phrase not good). Using a bag-
of-ngrams representation maps Xtext to a feature matrix X 2 Rn ×p,
where p is the number of unique ngrams in Xtext. While this repre-
sentation enables interpretability, the number of ngrams in a dataset
grows exponentially with the size of the ngram (how many tokens it
contains) and the vocab-size; even for a modest vocab-size of 10,000
tokens, the number of possible trigrams is already 1012. This makes it
difficult for existing transparent methods to model all trigrams with-
out overfitting. Moreover, existing transparent methods completely
fail to learn about ngrams not seen in the training set.

Preliminaries: linear models. We build on generalized linear models,
or GLMs35, which take the form:

gðE½y�Þ= β0 +
Xp

i= 1

βi � xi ð1Þ

where ðx1,x2, . . . ,xpÞ are the input features (i.e., ngrams), y is the target
variable, g(⋅) is the link function (e.g., logistic function) and each βi is a
scalar coefficient. Due to the function’s additivity, the contribution of
each feature can be interpreted independently.

Preliminaries: decision trees. CART10
fits a binary decision tree via

recursive partitioning. When growing a tree, CART chooses for each
node t the split s that maximizes the impurity decrease in the
responses y. For a given node t, the impurity decrease has the
expression

Δ̂ðs, t, yÞ :=
X

xi2t
h yi, �yt
� ��

X

xi2tL
h
�
yi, �ytL

��
X

xi2tR
h
�
yi, �ytR

�
, ð2Þ

where tL and tR denote the left and right child nodes of t respectively,
and �yt ,�ytL ,�ytR denote the mean responses in each of the nodes. For
classification, h( ⋅ , ⋅ ) corresponds to the Gini impurity, and for
regression, h( ⋅ , ⋅ ) is the mean-squared error. Each split s is a partition
of the data based on a feature in X. To grow the tree, the splitting
process is repeated recursively for each child node until a stopping
criteria (e.g., amaxdepth) is satisfied. At inference time, wepredict the
response of anexampleby following its path fromthe root to a leaf and
then predicting with the mean value found in that leaf.

Aug-Linear method description
To remedy the issues with the GLM model in Eq. (1), we propose Aug-
Linear, an intuitivemodel which leverages a pre-trained LLM to extract
a feature representation ϕ(xi) for each input ngram xi. This allows
learning only a single linear weight vector w with a fixed dimension

(which depends on the embedding dimension produced by the LLM),
regardless of the number of ngrams. As a result, Aug-Linear can learn
efficiently as the number of input features grows, and can also infer
coefficients for unseen features. The fitted model is still a GLM,
ensuring that the model can be precisely interpreted as a linear func-
tion of its inputs:

gðE½y�Þ=β+wT
X

i

ϕðxiÞ ð3Þ

Fitting Aug-Linear resembles learning a linear layer on top of word
embeddings24,36,37, but instead uses LLM ngram embeddings to better
compare the semantics/interactions present within an ngram. Aug-
Linear is also similar to the approach of finetuning a single linear layer
on top of LLM embeddings38, but instead separately extracts/embeds
each ngram to keep the contributions to the prediction strictly
additive across ngrams (see Fig. 1a):
(i) Extracting ngrams: To ensure input ngrams are interpretable,

ngrams are constructed using a word-level tokenizer (here,
spaCy39). We select the size of ngrams to be used via cross-
validation.

(ii) Extracting embeddings: Each ngram is separately fed through the
LLM to retrieve afixed-size embedding.When feeding eachngram
through, we apply the standard preprocessing and tokenizer used
by the LLM. For example, when the LLM is BERT3, we prepend
[CLS] to the ngram, append [SEP] to it, and use BERT’s word-
piece tokenizer to process the resulting string into tokens (note
that this splits an ngram intomany tokens). We then average over
the dimension corresponding to the number of tokens to yield a
fixed-size embedding (a common alternative for bi-directional
(masked) language models is to use the embedding for a special
token, i.e., [CLS], but we aim to keep the approach here more
general).

(iii) Summing embeddings: The embeddings of each ngram in the
input are summed to yield a single fixed-size vector, ensuring
additivity of the final model.

(iv) Fitting the final linear model to make predictions: A linearmodel is
fit on the summedembedding vector.We choose the link function
g to be the logit function (or the softmax for multi-class) for
classification and the identity function for regression. In both
cases, we add ℓ2 regularization over the parameters w in Eq. (3)
and minimize the loss (cross-entropy for classification, mean-
squared error for regression) using Limited memory BFGS
(optimization is performed using scikit-learn40).

Computational considerations. During fitting, Aug-Linear is inex-
pensive to fit as (1) the pre-trained LLM is notmodified in any way, and
can be any existing off-the-shelf model and (2) Aug-Linear only
requires fitting a fixed-size linear model. After training, the model can
be converted to a dictionary of scalar coefficients for each ngram,
where the coefficient is the dot product between the ngram’s
embedding and the fitted weight vector w (Fig. 1b). This makes infer-
ence extremely fast and converts the model to have size equal to the
number of fitted ngrams. When new ngrams are encountered at test-
time, the coefficients for these ngrams can optionally be inferred by
again taking the dot product between the ngram’s embedding and the
fitted weight vector w.

Aug-Tree method description
Aug-Tree improves upon a CART decision tree by augmenting features
with generations from an LLM. This helps capture correlations
between ngrams, including correlations with ngrams that are not
present in the training data. Aug-Tree does notmodify the objective in
Eq. (2) but rather modifies the procedure for fitting each individual
split s (Fig. 1d). While CART restricts each split to a single ngram, Aug-
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Tree lets each split fit a disjunction of ngrams (e.g., ngram1∨
ngram2∨ ngram3). The disjunction allows a split to capture sparse
interactions, such as synonyms in natural language. This can help
mitigate overfitting by allowing individual splits to capture concrete
concepts, rather than requiring many interacting splits.

When fitting each split, Aug-Tree starts with the ngram which
maximizes the objective in Eq. (2), just as CART would do, e.g., not
good. Then, we query an LLM to generate similar ngrams to include in
the split, e.g., bad, poor, awful,..., horrendous. Specifically, we query
GPT-3 (text-davinci-003)1 with the prompt Generate 100 concise
phrases that are very similar to the keyphrase:\nKeyphrase: “{key-
phrase}”\n1. and parse the outputs into a list of ngrams. We greedily
screen each ngram by evaluating the impurity of the split when
including the ngram in the disjunction; we then exclude any ngram
that increases the split’s impurity, resulting in a shortened list of
ngrams, e.g., bad, poor, dull.

Computational considerations. As opposed to Aug-Linear, Aug-Tree
uses an LLM API rather than LLM embeddings, which may be more
desirable depending on access to compute. The number of LLM calls
required is proportional to the number of nodes in the tree. During
inference, the LLM is no longer needed, and making a prediction
simply requires checking an input for the presence of specific ngrams
along one path in the tree. Storing an Aug-Linear model requires
memory proportional to the number of raw strings associated with
tree splits, usually substantially reducing memory over the already
small Aug-Linear model. We explore variations of Aug-Tree (such as
using LLMembeddings rather than anAPI) in Supplementary section 2.

Background and related work
Improving linear models with neural networks. There is a large lit-
eratureonadditivemodels beingused for interpretablemodeling. This
includes GAMs41, which have achieved strong performance in various
domains by modeling individual component functions/interactions
using regularized boosted decision trees34 and more recently using
neural networks42. However, existing GAMmethods are limited in their
ability to model the high-order feature interactions that arise in NLP.
Meanwhile, NLP has seen great success in models which build strong
word-level representations, e.g., word2vec36,37, GloVe24, FastText43, and
ELMo44. By replacing such models with LLM embeddings, Aug-Linear
enables easily modeling ngrams of different lengths without training a
new model. Moreover, unlike earlier methods, LLMs can incorporate
information about labels into the embeddings (e.g., by first finetuning
an LLM on a downstream prediction task).

Decision trees. There is a long history of greedy methods for fitting
decision trees, e.g., CART10 or ID325. More recent work has explored
fitting trees via global optimization rather than greedy algorithms45–47;
this can improve performance given a fixed tree size but incurs a high
computational cost. Other recent studies have improved trees after
fitting through regularization48 or iterative updates49. Some recent
works have studied using trees as a way to guide large language
models50,51. Beyond trees, there aremany popular classes of rule-based
models, such as rule sets52, rule lists53,54, and tree sums14. Aug-Tree
addresses a common problem shared by rule-based approaches:
modeling the sparse, correlated features that are common in tasks
such as text classification.

Beyond fitting a single tree, tree ensembles such as Random
Forest26, gradient-boosted trees55, XGBoost56, and BART57, have all
shown strong predictive performance in diverse settings. These
ensembling approaches are compatible with Aug-Tree, as they can be
used as the base estimator in any of these approaches.

Interpreting features and feature interactions. Related to thiswork is
post hocmethods that aim to help understand a black-box model, i.e.,

by providing feature importances using methods such as LIME28,
SHAP58, and others59,60. Slightly more related are works that aim to
explain feature interactions or transformations in neural networks61–63

However, all these methods lose some information by summarizing
the model and suffer from issues with summarizing interactions64,65.
Alternative forms of explanation exist specifically for NLP, such as
extractive rationales66,67, natural-language explanations for individual
predictions68,69, andmore recently LLM-generated explanations (e.g., a
chain of thought70). All these methods fail to explain the model as a
whole and are again less reliable than having a fully transparent model
(e.g., explanations are often unfaithful15,16).

Interpreting/distilling neural networks. Alternatively, one can
investigate whether an LLM’s learned representations via probing71,72

or by directly analyzing a model’s internal weights and activations73–75.
The work here is related to studies that aim to make neural networks
more interpretable. For example, models can make predictions by
comparing inputs to prototypes76,77, by predicting intermediate inter-
pretable concepts78–80, using LLMs to extract prompt-based
features81,82, distilling a neural network into a mostly transparent
model83,84 or distilling into a fully transparent model (e.g., adaptive
wavelets12 or an additive model85). Separately, many works use neural
network distillation to build more efficient (but still black-box) neural
network models, e.g., refs. 86,87.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data is available open-source and instructions for downloading the
data are available at github.com/microsoft/augmented-interpretable-
models. Text-classification datasets can be downloaded from hug-
gingface using the huggingface ids dair-ai/emotion, rotten_tomatoes,
sst2, and financial_phrasebank. fMRI data are accessible from https://
github.com/HuthLab/deep-fMRI-dataset. PromptSource prompts
used as a baseline can be found at https://github.com/bigscience-
workshop/promptsource.

Code availability
Code for running all experiments (as well as applying Aug-imodels in
new settings) is available at github.com/microsoft/augmented-inter-
pretable-models and on Zenodo at https://zenodo.org/records/
10118975. Code uses python 3.8 and huggingface datasets 2.12.0,
huggingface transformers 4.29.088–100, sklearn 1.2.040, and OpenAI API
text-davinci-003.
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