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CurveCurator: a recalibrated F-statistic to
assess, classify, and explore significance of
dose–response curves

Florian P. Bayer1, Manuel Gander1, Bernhard Kuster 1,2 & Matthew The 1

Dose-response curves are key metrics in pharmacology and biology to assess
phenotypic or molecular actions of bioactive compounds in a quantitative
fashion. Yet, it is often unclear whether or not a measured response sig-
nificantly differs from a curve without regulation, particularly in high-
throughput applications or unstable assays. Treating potency and effect size
estimates from random and true curves with the same level of confidence can
lead to incorrect hypotheses and issues in training machine learning models.
Here,wepresentCurveCurator, an open-source software that provides reliable
dose-response characteristics by computing p-values and false discovery rates
based on a recalibrated F-statistic and a target-decoy procedure that considers
dataset-specific effect size distributions. The application of CurveCurator to
three large-scale datasets enables a systematic drug mode of action analysis
and demonstrates its scalable utility across several application areas, facili-
tated by a performant, interactive dashboard for fast data exploration.

Dose–response analyses are broadly applied in research from drug
discovery and pharmacology to toxicology, environmental science,
and epidemiology, to name a few. Prominent recent large-scale
examples include phenotypic cell viability screens1–4, activity-, affi-
nity- or thermal stability-based drug–target binding assays5–7, and
proteome-wide drug–response profiling of post-translational mod-
ifications (PTMs)8. Any dose–response experiment quantifies the
response variable as a function of the applied dose range and yields
two orthogonal parameters: effect potency—the concentration pro-
ducing the half-maximal response—, and effect size—the magnitude
and direction of the response within the observed dose range (Fig. 1a).
Determining these parameters from dose–response curves are of
immense practical relevance as this can e.g. guide drug discovery and
drug repurposing, find the right dose for patients in the clinics, define
safety thresholds, and be used to train machine learning models for,
e.g., drug response prediction9.

Several software tools exist that fit dose–response models and
estimate, among other parameters, the effect potency10–15. Surpris-
ingly, none of them addresses the obvious question of whether the
observed curve constitutes a significant regulation or is simply the

result of experimental error. Assessing the significance of the regula-
tion is especially relevant for applications in which (i) only a small
proportion of cases produces significant regulations, (ii) the effect size
is close to the measurement variance of the assay, or (iii) the assay is
generally not very stable. So far, dose–response curve classification
has required (semi-)manual data evaluation by experts5–8,16, which
suffers from inconsistent assessments among individuals and does not
scale to the thousands to millions of curves generated by the afore-
mentioned projects.

Fitting a dose–response curve is, in essence, a regression pro-
blem. Hence, we propose that the statistical significance of
dose–response curves can be assessed using F-statistics. Unfortu-
nately, the log-logistic function typically used for dose–response
curve fitting is non-linear and, therefore, F-distributions using
the degrees of freedom appropriate for linear models do not
describe the true null distribution exactly17. The typical solution for
complex non-linear models is to use permutation-based statistics,
which has been done for time-series data, where the response is not
expected to follow a sigmoidal shape18 and thermal stability data,
where temperature and dose result in 2-dimensional models19,20.

Received: 25 August 2023

Accepted: 16 November 2023

Check for updates

1Proteomics andBioanalytics, School of Life Sciences, Technical University ofMunich, 85354Freising, Germany. 2GermanCancerConsortium (DKTK), Partner
Site Munich, 80336 Munich, Germany. e-mail: matthew.the@tum.de

Nature Communications |         (2023) 14:7902 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9094-1677
http://orcid.org/0000-0002-9094-1677
http://orcid.org/0000-0002-9094-1677
http://orcid.org/0000-0002-9094-1677
http://orcid.org/0000-0002-9094-1677
http://orcid.org/0000-0002-5401-5553
http://orcid.org/0000-0002-5401-5553
http://orcid.org/0000-0002-5401-5553
http://orcid.org/0000-0002-5401-5553
http://orcid.org/0000-0002-5401-5553
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43696-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43696-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43696-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43696-z&domain=pdf
mailto:matthew.the@tum.de


However, we demonstrate here that the simplicity of the log-logistic
function allows the estimation of “effective” degrees of freedom for
the F-statistic to obtain well-calibrated p-values without the need for
permutation strategies. This reduces the computational burden and
allows accurate p-value estimation even in the very low p-value
region.

Moreover, it is well-established that multiple testing correction is
an essential step in the analysis of high-throughput studies21–23, but
often only few significant hits remain after the application of such
corrections in differential expression analyses of high-throughput
studies24,25. A popular approach to alleviate this issue is to add a fudge
factor (“s0”) to the denominator of the t-test to penalize low effect size
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differences26, a principle adapted from the Significance Analysis of
Microarrays (SAM) test27. It has rightfully been pointed out that this
correction results in incorrect p-values and violates the original pur-
pose of the SAM-test28. Here, we demonstrate for the first time that the
s0 principle is valid when combined with a target-decoy approach for
multiple testing correction22,23. In the context of dose–response
curves, this allows filtering of curves by both curve significance and
curve effect size, leading to a higher sensitivity for biologically relevant
dose responses.

Here, we introduce CurveCurator, a tool that estimates p-values
for each dose–response curve from a recalibrated F-statistic. Curves
are then classified as significantly up-, down-, or not regulatedwith low
error rates using a procedure formultiple testing correction called the
relevance score. An interactive dashboard enables rapid and visual
exploration of high-throughput datasets. Finally, the application of
CurveCurator to viability, drug–target binding assays, and proteome-
wide drug–response profiling demonstrates its scalable utility across
several application areas as well as its power to support drug mode of
action(s) (MoAs) analyses.

Results
The CurveCurator pipeline
CurveCurator is a free, open-source statistics software for high-
throughput dose–response data analysis (Fig. 1b). It is implemented as
an executable Python package that is simple to install and use for
people with little programming experience. Moreover, the package
architecture enables quick integration of CurveCurator into other
pipelines. The code is unit- and integration-tested to ensure stability
and to increase robustness for future updates and community colla-
borations.Multiple steps are parallelized, allowing large-scale datasets
to be processed in a matter of minutes. To execute the pipeline, users
need to provide dose–response data (multiple input formats sup-
ported) and a simple parameter file in TOML format to control and
customize the pipeline. First, CurveCurator fits a log-logistic model
with up to four parameters (pEC50, slope, front, and back plateau) to
the dose–response values, and the best model is evaluated regarding
its statistical significance using a recalibrated F-statistic. Curve sig-
nificance is then combined with the curve effect size into a single
relevance score that classifies responses into different categories (up,
down, not, unclear). An HTML-based dashboard visualizes all curves
and the applied decision boundary in an interactive fashion. Applying
CurveCurator to high-throughput drug–target binding data exem-
plifies the different effect-size-to-variance situations commonly pre-
sent in data sets (Fig. 1c). Only a low-variance high-effect-size curve has
a highly significant p-value, and only significant curves have inter-
pretable pEC50 estimates, e.g. the Dasatinib—CSK interaction. Detailed
instructions and example datasets are available in the GitHub reposi-
tory (https://github.com/kusterlab/curve_curator) and supplementary
information.

CurveCurator yields well-calibrated p-values using a recali-
brated F-statistic
The first step to assess the statistical significance of dose–response
curves is to find the best possible fit given the measured

dose–response values. As the optimization surface for sigmoidal
curves is non-convex (i.e., a surface with many local minima), naïve
curve fitting algorithms often get stuck in local minima, leading to
suboptimal fits and, thereby, overly conservative p-values (Supple-
mentary Fig S1). CurveCurator uses a heuristic that reaches the global
minimum in almost all cases in a short period of time (Supplementary
Fig. S2). To obtain anempirical null distribution, we simulated 5million
dose–response curves under the null hypothesis, i.e., curves where the
response is independent of the dose (i.e., no dose-dependent regula-
tion) for a range ofndata points per curve (Fig. 2a). As expected, direct
application of the classical F-statistic for linear models to these null
dose–response curves yielded poorly calibrated p-values (Supple-
mentary Fig. S3). CurveCurator solved this issue by optimizing both
the F-value formula and the parameters of the F-distribution as a
function of n to approximate these simulated null distributions accu-
rately (Fig. 2b, c). The validity of this approach was confirmed by
noting that p-values in real experiments in which the vast majority of
curves were expected to be unresponsive formed a uniform distribu-
tion of truly non-regulated curves plus a small distribution of truly
regulated curves enriched at low p-values (Fig. 2d).

Hyperbolic decision boundaries reduce the false discovery rate
by eliminating biologically less relevant curves
CurveCurator classifies dose–response curves into four categories:
significantly up-, significantly down-, not-regulated, and unclear. To
simplify subsequent investigations, such as training machine learning
models, and to obtain highly confident positive (significant) and
negative (small effect size and low variance) groups of curves, we
consciously introduce the unclear category for high-variance
dose–response curves. The obvious approach to identify significant
up- or down-regulated dose–response curves would be to use the new
p-value dimension directly, i.e., call a curve significant if the p-value is
below some significance threshold alpha. However, we observed that
highly significant null hypothesis curves tended to have small effect
sizes (Supplementary Fig. S4a). Curves with smaller effect sizes are
typically less biologically relevant, hard to explain, andmay even lead
to confusion in downstream analyses such as gene set enrichments.
To capitalize on this observation, CurveCurator’s classification uses a
hyperbolic decision boundary inspired by the s0 approach of the
SAM-test for differential expression analyses26–28. This decision
boundary separates regulations by statistical significance along the
p-value axis and by presumed biological relevance along the effect
size axis (Supplementary Fig. S4b). Consequently, highly significant
but low-effect-size curves are no longer considered regulated, lead-
ing to a concomitant reduction of the false positive rate (FPR) at a
fixed value of alpha (Supplementary Fig. S4c). For the alpha
asymptote, we suggest a default value of 5%, similar to the commonly
applied alpha threshold in t tests. The fold-change asymptote
depends on the specific assay type and the overall goal of the ana-
lysis. We provide further guidance in the supplementary notes. To
correctly estimate the false discovery rate (FDR) in real data sets,
CurveCurator employs a target-decoy approach that takes the mea-
surement variance of the given dataset into account and computes
the FDR for the user-specified decision boundary22,23.

Fig. 1 | Overview of the CurveCurator pipeline. a Dose–response curves can be
described by characteristic curve parameters: front plateau, back plateau, slope,
EC50, and fold change. These values are obtained by fitting a log-logistic model to
data from a wide variety of assays. b The CurveCurator pipeline consists of Python
modules that are executed consecutively: The user provides a data and parameter
file. CurveCurator fits the log-logistic model (M1, red line). Next, CurveCurator
estimates a p-value for each curve using a recalibrated F-statistic, which compares
the null curveM0 (no response, gray line) against the optimal curve fit M1 (red line).
Curves are then classified into regulated, not-regulated, or unclear based on the
significance asymptote alpha and the fold change asymptote. Results can be

explored in an interactive dashboard that provides different views of the data.
Optionally, a quality control analysis canbeperformed to identify experimentswith
high error across all curves. cCurves from theKlaeger et al. data set exemplify cases
that need to be differentiated by CurveCurator. Each subplot shows one
drug–protein interaction. The binding of a drug to a target leads to a depletion and,
thus, a reduction in the relative response.Bold lines indicate cleardown (red)ornot
regulated (gray) curves. Dashed lines indicate unclear curves due to high variance
in the data points. Curve p-values (from the recalibrated F-statistic) and curve
classification are added to the bottom right corner of each subplot. Source data for
(c) are provided as a Source Data file.
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To illustrate how CurveCurator’s s0-based hyperbolic decision
boundaries achieve a higher sensitivity to biologically relevant curves
in high-throughput data sets, we reprocessed the CTRP cell viability
data set3 with CurveCurator and simulated the corresponding decoy
distribution (Fig. 3a). Boundaries A and C used an alpha asymptote of
0.01, whereas B and D used 0.1. Boundaries A and B did not employ a
fold change asymptote, whereas boundaries C and D used a fold
change asymptote of 0.3 and 0.21, respectively. The hyperbolic deci-
sion boundaries filtered away both undesired (highly significant and
low-effect-size) curves as well as decoys. To obtain a more intuitive
visualization, we developed the relevance score, which is obtained by
adjusting each curve’s F-value by the user-specified asymptotes and
converting it similarly to a p-value (Fig. 3b; Eq.13). For a fold change
asymptote of 0.0, the relevance score simply corresponds to the p-
value of the curve, and the curve’s “relevance” is purely defined by its
significance. When using a fold change asymptote > 0.0, e.g., bound-
aries C and D, the relevance score reflects a combination of the curve’s
significance and effect size. Due to the statistical component in the
relevance score, the absolute value does not describe any tangible
biological quantity. Instead, the relevance score is a score that has a
stronger discriminative power than the p-value alone. The s0-adjust-
ment manifests in the volcano plot such that: (i) the hyperbolic deci-
sion boundary in panel a becomes a horizontal decision boundary at
the specified alpha asymptote in panel b, (ii) curves with small effect
sizes are penalized stronger than those with big effect sizes, and (iii)
relevant curves cannot have a smaller effect size than the used fold

change asymptote. Albeit obviously related, it is important to stress
that the relevance score is also not a valid p-value28. This is because the
fold change asymptote strongly reduces the number of false positives
at a fixed alpha asymptote. For example, boundaries C (0.005%) and D
(0.1%) obtained much lower FDRs compared to boundaries A (1.4%)
and B (11.8%) (Fig. 3c).

There is often concern about how pre-defined thresholds will
impact the results of an analysis. To examine the influence of different
decision boundaries on the set of significantly down-regulated curves,
we applied various combinations of alpha and fold-change asymptotes
to the same CTRP cell viability data set3 (Supplementary Fig. S5). We
obtained an almost continuous linear trend for both asymptotes over a
wide range of possible values, suggesting that slightly altering the
asymptotes changes the results only to a small degree. For example,
adjusting the fold-change asymptote from 0.3 by ±0.05 expands or
reduces the set of significant curves only by about 1.8%. Similarly
important is that this observation holds for looser as well as more
stringent asymptotes. Overall, this implies that the relevance score
constitutes a robust decision boundary.

To exemplify the increased power of CurveCurator’s relevance
score procedure to identify putatively biologically relevant findings,
we compared it to the (effect-size agnostic) Benjamini–Hochberg
multiple testing procedure21. We reprocessed the drug–PTM
dose–response data of the ABL-kinase inhibitor Dasatinib in the BCR-
ABL-positive cell line K5628. Here, only a few hundred phosphoryla-
tion sites (p-sites) were expected to respond to the dose–response
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treatment, whereas the vast majority of p-sites (>10,000) were
expected to be unresponsive (Fig. 4a, b; S6a, b). This scenario
requires high statistical sensitivity and is a common case where
biologically relevant findings could be obscured in the bulk of data
after multiple testing corrections. Two phosphorylation sites are
highlighted to illustrate the difference between both approaches.

According to PhosphoSitePlus29, CRKL pY207 is a known substrate of
the tumor-driving fusion kinase BCR-ABL and can be regarded as a
true responsive site of Dasatinib treatment. CIC pS496 neither has a
functional annotation nor an established kinase-substrate relation-
ship in PhosphoSitePlus29. CurveCurator’s relevance score approach
retained more regulated curves at low FDRs, including the
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biologically important site CRKL pY207. At higher FDRs,
Benjamini–Hochberg starts calling more dose–response curves
regulated compared to the relevance score, such as CIC pS496
(Fig. 4c, d), but these are increasing of questionable biological rele-
vance for understanding themodeof action(s) (MoAs) of Dasatinib in
K562. A global comparison of the two procedures further supports
this notion (Supplementary Fig. S6). Many of the biologically
expected sites were identified by both procedures based on prior
knowledge from PhosphositePlus29 and the KinaseLibrary30, and 56%
of the intersecting subset of curves can be rationalized by prior
knowledge. When focusing on the procedure-specific subsets, only
the relevance-score-specific subset possessed a knowledge distribu-
tion similar to the intersecting subset, with a high explained ratio of
44%. The explained ratio of the Benjamini–Hochberg-specific subset
was only 15%. Furthermore, the relevance-score-specific subset con-
tained ~10x more direct substrates and ~3x more downstream sites
relative to the Benjamini–Hochberg-specific subset. This exemplifies
the strength of the relevance score in retaining biologically relevant
curves while maintaining a low FDR by adjusting curve significance
with the curve effect size.

CurveCurator supports mechanism of action analysis of the
kinase inhibitor Afatinib
To demonstrate its broad utility, CurveCurator was applied to three
dose–response data sets of different kinds, sizes, and proportions of
regulated curves. They illustrate how drug–phenotype, drug–target
binding, and drug–PTM response data can be linked by taking
advantage of multiple aspects of CurveCurator, such as, regulation
classification, robust potency estimation, and interactive dashboards.
This, in turn, assists in elucidating theMoAs of drugs, exemplified here
for the EGFR inhibitor Afatinib. First, the “target landscape of clinical
kinase inhibitors”5 was reprocessed (54,223 dose–response curves; 9%
down-regulated), and drug–target classifications obtained by Curve-
Curator showed 97% consistency with the original manual analysis
(SupplementaryData 1). Out of 247 assayedkinases,Afatinibwas found
to have nine significant interactions (Fig. 5a). As expected, the desig-
nated target, EGFR, was the most potent, followed by MAPK14, with a
~100x lower potency. Second, the previously introduced phenotypic
CTRP cell viability screen3 (379,324 dose–response curves: 63% down-
regulated, 25% not regulated) indicated that 755 out of 760 cell lines
exhibited a significant down-regulation by Afatinib, though the
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Fig. 4 | CurveCurator is more sensitive to biologically relevant curves than
classical multiple-testing correction. a DecryptM data (dose–response phos-
phorylation data) of replicates of Dasatinib-treated K562 cells was processed by
CurveCurator, and significant phosphorylation sites were identified by different
strategies. p-values from the recalibrated F-statisticweremultiple testing corrected
using the (effect size agnostic) Benjamini–Hochberg procedure. Here, the low
effect size CIC pS496-site would be called significantly regulated but not the known
BCR-ABL substrate CRKL pY207-site. b p-values were transformed into the rele-
vance scores using an alpha asymptote of 5% and a log2 fold change asymptote of
0.45, resulting in an s0 factor of 0.214. Now, the CRKL pY207-site is called

significant, but not the CIC pS496-site. c Benjamini–Hochberg q-values and rele-
vance score q-values plotted against the number of significant curves. The rele-
vance score identified more significant dose–response curves in the lower FDR
range. At high FDRs, Benjamini–Hochberg called more regulated curves compared
to the relevance score, but the gain includes many low-effect size curves with
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the selected examples CRKL pY207 (red) and CIC pS496 (blue). The log2 fold
change asymptote of 0.45 is indicated by the yellow line. It is evident that CRKL
pY207 is drug-regulatedandCICpS496 is not. Sourcedata for (a–d) areprovidedas
a Source Data file.
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majority of cells showed very weak potency (Fig. 5b). A common
misinterpretation of these viability results is to conclude that all cell
lines are sensitive to HER inhibition. Instead, due to the consistent
potency dimension provided by CurveCurator, we placed the above
drug–target binding data and the viability data into a direct context.
This allowed a rough classification of cell lines into drug sensitivity
groups driven by different targets of Afatinib (e.g.,HER, p38MAPK, and
others). Of note, the plasma concentration of Afatinib in approved
cancer therapies31 preciselymatches the border betweenHER-sensitive
cells andp38MAPK-induced cell toxicity32, highlighting the importance
of understanding the molecular MoAs behind dose–response rela-
tionships. Third, to understand the impact of Afatinib-target engage-
ment on PTM-mediated signaling pathways, the decryptM profiles8 of

the EGFR-driven carcinoma cell line A431 were reprocessed by Curve-
Curator (19,596 dose–response curves: 5% down-regulated, 1% up-
regulated, 46% not regulated; Fig. 5c). It is apparent that EGFR inhibi-
tion downregulates the direct EGFR substrate GAB1 pY627 at the
expected potency. Downstream of GAB1, theMAPK- and AKT signaling
axis were also inhibited with similar potencies (indicated by MAPK
pT185/pY187 and AKT1S1 pT246) asweremultiple transcription factors
influencing cell growth such as ETV3, ELK1, and FOS (curves not
shown). In contrast, inhibition of MAPK14 activity (monitored by
MAPK14 pT180/pY182) only occurred at much higher drug doses, as
expected from drug–target binding data.

Particularly, when combining the three orthogonal sources of
information, the full cellular MoAs of Afatinib in the cell line A431 is
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Fig. 5 | Application of CurveCurator to three drug characterization assays
reveals complete molecular MoA of Afatinib. Kinobead drug–target
binding data. a Significant drug–target interactions of the entire data set were
identified by CurveCurator and visualized in a volcano plot (left panel; significance
(−log10 p-value from recalibrated F-statistic) vs. effect size; gray dots). The chosen
decision boundary (red dashed line) resulted in an FDR of 3.0%. Afatinib-target
interactions are highlighted in blue, and significant Afatinib targets are labeledwith
their gene names. The pEC50 distribution in the right panel indicates the potency of
Afatinib-target binding, highlighting EGFR as the most potent target. b CTRP
drug–cell viability data. Significant phenotypic responses of cell lines in the entire
data set are gray, and Afatinib-responsive cell lines are blue (left panel). Cell lines
can be grouped into HER-, p38MAPK-, or other target-sensitive (right panel) based
on the potency dimension. The purple band indicates the plasma concentrations

achievable in Afatinib-based cancer therapies at the maximum tolerated dose.
c Cellular decryptM data of Afatinib-treated and EGFR-driven A431 cells. Volcano
plot (left panel; significance (−log10 p-value from recalibrated F-statistic) vs. effect
size) of phosphorylation responses in the entire data set are marked in gray, and
four example phosphorylation sites are shown in color. Potency plot (second panel
from the left; pEC50 vs. effect size) of significant phosphorylation responses (0.4%
FDR; relevance score procedure) in the entire data set are marked in gray, and the
same four example phosphorylation sites as in the left panel are highlighted in
color. The dose–response curves for the same four examples (second panel from
the right). ThepEC50distributionof all significantly regulatedphosphorylation sites
(right panel) can be grouped into EGFR- and p38-MAPK-dependent signaling. The
purple line indicates the potency ofAfatinib in the phenotypicdrug response assay.
Source data for (a–c) are provided as a Source Data file.
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revealed: Afatinibbinds to EGFRwith a KD of ~10 nM in cells (50% target
engagement), inhibiting the main driver of this carcinoma and leading
to the shut-down of key downstream survival signals. Substantial
reduction in cell growth requires the inhibition of the bulk of signaling,
which only occurs at ~100 nM (90% target engagement). The observed
inhibition ofMAPK14 signaling at high drug doses is not relevant to the
observed phenotypic response on cell viability.

Discussion
CurveCurator is the first tool that provides reliable p-values for
assessing the statistical likelihood of regulation in dose–response
experiments. It does so by fitting the best possible log-logistic model
and using a recalibrated F-statistic with optimized effective degrees of
freedom. Combining statistical significance with biological effect size
results in the relevance score, which provides a simple means to
classify curves in large-scale datasets. CurveCurator can assess the FDR
of the user-specified decision boundary based on the variance levels of
each individual dataset. The easy use and strong visualizations enable
researchers to understand dose–response relationships in high-
throughput data sets faster and more objectively.

CurveCurator is looking specifically for dose–response shapes
that can be described by the 4-parameter log-logistic model reflecting
a single drug–target binding event. While this assumption is valid for
most experimental settings and curves, there are cases where the
dose–response curve is shaped by multiple independent events,
resulting in a non-sigmoidal curve shape12. The consequence is that
CurveCurator cannot properlymodel the true underlying and complex
dose–response relationship, typically resulting in big effect sizes but
poor p-values. In the future, we envision that CurveCurator can sup-
port a wider variety of models, given that the p-values can also be
calibrated for thosemore complexmodels. Another current constraint
is that the fold change calculation requires the lowest dose to be close
to the front plateau to obtain a good estimate. However, if a drug is
more potent than the applied experimental dose range, the fold
change estimate is compressed, leading to an increased rate of false
negatives among the most potent curves. To overcome this, we
recommend either choosing the experimental drug range more care-
fully based on pilot studies or using amodified fold change calculation
relative to the control at the cost of increased false positives for
unstable assays.

We further point out thatone could technically adjust the FDR to a
pre-defined threshold by moving the relevance score decision
boundary up or down. However, as the relevance score remains
unchanged at a fixed value of s0, this will, in turn, adjust both the alpha
and fold change asymptotes simultaneously. This can be seen in Fig. 3,
where decision boundaries C and D have the same s0 but different
significance and fold change asymptotes. Therefore, we explicitly
recommend against finding a threshold based on a pre-defined FDR
value but instead encourage users to define the significance (statistical
relevance) and fold change asymptotes (biological relevance) first and
accept the resulting low FDR. Otherwise, in datasets with a high pro-
portion of regulated curves, e.g. the CTRP viability data, increasing the
FDR from 0.1% to 10% will inevitably lead to the inclusion of many
irrelevant curves with undesirably small effect sizes.

Finally, we stress that only relevant curves have interpretable
curve parameters, and this consistent information can only be
obtained by a versatile statistical tool such as CurveCurator.
The identification of relevant dose–response curves combined with
the use of each curve’s pEC50-value enables the direct integration of
multiple complementary datasets by harnessing the perhaps most
important characteristic of a compound - its potency. Beyond the
potency estimates, CurveCurator yields many more parameters and
derived values that can describe different aspects of biological
systems33. All possible downstream analyses should, in principle,
benefit from focusing on relevant curves with high sensitivity. An

even more fine-grained picture may be obtained by further sub-
grouping relevant dose–response curves by potency, effect size, or
both and comparing, e.g., the gene expression profiles of these
subgroups to elucidate more details of the MoAs. Contrasting these
subgroups against clearly unresponsive groups can perhaps identify
sensitivity or resistance markers34,35. In all scenarios, CurveCurator
builds the foundation for these analyses.

In conclusion, we have introduced CurveCurator and its under-
lying relevance score. The relevance score is robust and highly sensi-
tive at similar or often lower FDRs than conventional multiple-testing
corrections. The objective categorization of dose–response curves
combined with an interactive dashboard accelerates data analysis and
fills the need for a helpful tool in times of ever-increasing experimental
throughput.

Methods
Experimental datasets
Kinobeads5 search results and LFQ intensities were downloaded from
PRIDE (PXD005336) and filtered for direct binders (255 proteins that
can bind to the Kinobeads via an ATP pocket, including 216 kinases).
The direct binder list, experimental design table, and manual target
annotations were obtained from the original publication. Binders with
less than two data points per curve or missing in the control experi-
ment were excluded. The remaining missing values were imputed per
experiment using the 0.5% intensity quantile. The resulting Kinobeads
matrix consisted of 278 unique drugs with 9 data points each and was
subjected to CurveCurator. The alpha asymptote was set to 10%, and
the fold change asymptote was set to 0.5.

CTRP Viability data3 was downloaded using the downloadPSet
function of the R package PharmacoGx11 (R v3.6.3, PharmacoGx
v1.17.1). This consisted of 373,324 drug–cell line combinations from
545 drugs and 887 cell lines, each with n = 17 data points (doses and
one control). Because the CTRP screen featured many different dose
ranges, the data was split into separate CurveCurator input files for
each dose range. Note that most drugs were profiled at the same dose
range. Missing values were very sparse and missing at random, and
therefore, no imputation was performed. For the decision boundaries
analysis, four exemplary boundaries were used: A (1%, 0.0), B (10%,
0.0), C (1%, 0.3), D (10%,0.21) - (alpha, fold change asymptotes). For the
robustness analysis of the relevance score, a multitude of different
asymptote combinations were applied, and the proportion of down-
regulate curves was calculated for each decision boundary. For the
MoA analysis of Afatinib, the alpha asymptote was set to 5%, and the
fold change asymptote was set to 0.3. Fold change was computed
relative to the control instead of the lowest dose, as several drugs
showed significant regulation at the lowest dose already. The different
dose-range output files were re-combined, and the FDR was estimated
once for all curves.

decryptM8 search results and TMT intensities were downloaded
from PRIDE (PXD037285), and the datasets” Dasatinib Triplicates
Phosphoproteome MS3” and “3 EGFR Inhibitors Phosphoproteome”
were re-analyzed in this paper. Experiments that were searched toge-
ther were separated and subjected to CurveCurator individually. The
experimental design table was obtained from the original publication.
For TMT peptide data, the TMT channels were median-centered, and
missing values were imputed. Peptides with more than 4 missing
values were excluded. The alpha asymptote was set to 5%, and the fold
change asymptote was set to 0.45. This fold change asymptote is 46%
less stringent than in the original publication, which was solely possi-
ble due to the gained specificity of the hyperbolic decision boundary.
Cell viability data for A431 was used from the original publication.
Kinase-substrate relationships were obtained from PhosphositePlus
(release 08/2023) and the KinaseLibrary. For KinaseLibrary predic-
tions, the top 5 kinases with a combined motif-enrichment score > 3
were considered as potential kinases. To account for ambiguity in the
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site localization in mass spectrometry data sets, we allowed a site
position tolerance of ±1 for STY.

More information regarding specific parameters of the analysis
pipeline and the rationale behind certain values can be found in the
supplementary notes.

Random simulations under the null hypothesis
Based on empirical decryptM variance distributions, true negative
(H0=True) random curves were simulated. First, a variance value (σ2

i )
was drawn from the empirical variance distribution, defining the
spreadof a normally distributedNð0,σ2

i Þ randomerror eiwith variance
σ2
i for one curve. For eachdata point nof one curve, a randomerror ei,n

was drawn and added to the null model, which describes the case that
the response variable Y is independent of the dose X.

0Y i,n =0X + 1 + ei,n ð1Þ

The empirical distribution is stored in CurveCurator, and any H0-
simulation can be performed using the --random command line
option. Note that F-values and p-values of curves generated under the
null hypothesis are independent of the variance value because
rescaling the response values affects the numerator and denominator
of the F-value equally. However, their estimated fold change does
depend on the variance value, which is why such a variance was
included in the simulations.

Finding the best fit
CurveCurator uses two competing models, which are evaluated based
on the observed responses (normalized to the control sample; see
above). To obtainmodel parameters, CurveCurator currently supports
ordinary least squares (OLS) regression as well asmaximum likelihood
estimation (MLE). While the mean model (Eq. 2) has an analytical
solution, the log-logistic model (Eq. 3, Fig. 1a) does not, and thus
requires iterative minimization procedures of the OLS cost (Eq. 4) or
MLE negative log-likelihood (Eq. 5) objective functions, respectively.

ŷMeanðxjΘÞ= intercept ð2Þ

ŷlog�logisticðxjΘÞ=
f ront � back

1 + 10slopeðx +pEC50Þ ð3Þ

costOLS =
X

w � ðy� ŷðΘÞÞ2 ð4Þ

negLLMLE = �
X

lnðLðΘjy,σ2ÞÞ ð5Þ

If multiple optimizations are performed per curve, the best solu-
tion is taken and presumed to be the global minimum for statistical
analysis. All minimizations were subject to bounds for each of the
curve parameters (pEC50: experimental drug range +− 4 orders of
magnitude; slope: 0.01–20, front & back: 1e−3–1e6). MLE uses the
Nelder-Mead minimization algorithm, and OLS uses the L-BFGS-B
algorithm supplemented with the Jacobian matrix to speed up the
minimization. For both algorithms, their respective scipy36 imple-
mentations were used.

F-statistics and p-values
The basic idea behind the F-value in classical linear regression pro-
blems is to quantify howmuch better a more complex model (M1 with
k linear parameters) fits the data compared to a simpler model (M0

with j linear parameters and j < k) given the n observed data points and

the corresponding sum-squared errors (SSE) (Eq. 6).

FLinear =
SSEM0 � SSEM1

SSEM1
� n� k
k � j

∼ Fðk � j,n� kÞ ð6Þ

Although not a linear model by nature, the log-logistic function
still meets the required assumptions of random sampling, indepen-
dence of observations, residual normality, and equal variance of the
errors. The basic rationality behind CurveCurator’s recalibrated
F-statistic is similar to the linear F-statistic above. It also quantifies how
muchbetter the fitted log-logisticmodel (M1) is compared to themean
model (M0), which describes that there is no relationship between the
applied dose and the observed response. We found, however, that n/k
was a more appropriate scaling factor for the 4-parameter log-logistic
function.

FCurveCurator =
SSEM0 � SSEM1

SSEM1
� n
k

ð7Þ

The obtained recalibrated F-value (Eq. 7) can then be used to
calculate a p-value that quantifies how often a curve with a similar or
bigger F-value can be found by random chance. We observed that
these F-values follow a parameterized F-distribution with degrees of
freedom that diverged from the case of linear models. Using extensive
simulations under the null hypothesis (5 million curves for n = 5…50),
we obtained a simple quasi-linear function to calculate the “effective
“degrees of freedom as a function of n (Eqs. 8–10).

FCurveCurator ∼ Fð5, dfd, loc = 0:12, scale= 1:0Þ ð8Þ

df d = ð0:8� correctionðnÞÞ � ðn� 2:5Þ ð9Þ

correction n, k =4ð Þ= 1
ðn�kÞk

n + k
ð10Þ

Thresholding
The curve fold change for the ith curve (cfci) is defined as the log2-ratio
between the lowest and highest concentration using the regressed
model and it quantifies the drug’s effect size or efficacy (Eq.11).

cf ci = log2ðŷðmaxðxÞÞÞ � log2ðŷðminðxÞÞÞ ð11Þ

We transferred the SAM principle of differential T-statistics to the
recalibrated F-statistic to obtain equivalent decision boundaries for
the dose–response curve analyses. This is possible by recognizing that
a dose–response curve converges in the limit to two groups (front
plateau group = not affected data points, and back plateau group =
affected data points), where the curve fold change is equivalent to a
conventional SAM fold change between the two plateau groups. In this
case, F =T2 allowing for the conversion and application of the s0 SAM
principle. CurveCurator simplified this process by calculating the
tuning parameter s0 directly from the user-specified significance and
fold change asymptotes (Eq. 12).

s0 = f casymptote=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�1
X ð1� alphaasymptotejdfn, dfdÞ

q
ð12Þ

Where F�1
X xjdfn, dfdð Þ is the inverse cumulative density function of an

F-distribution with degrees of freedom dfn and dfd as determined in
the section above. This makes s0 also a function of the number of data
points, which is relevant when a curve has missing values.

The tuning parameter s0, which defines the hyperbolic decision
boundaries, can also be used to transform the curve’s recalibrated
F-value into the s0-adjusted F-value (Fadj,i) based on the global s0 value
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and the curve’s measured fold change (cfci) (Eq. 13).

Fadj, i =
1

1ffiffiffiffi
Fi

p + s0, i
f ci

� �2 ð13Þ

We then transform this s0-adjusted F-value into a “relevance score”
using the cumulative density function FX (x | dfn, dfd). For s0 = 0.0, this
simply corresponds to the p-value of the curve. For s0 > 0.0, this can no
longer be interpreted as a p-value28, but it still provides an appropriate
ordering of curves by both statistical and biological relevance. Addi-
tionally, a −log10 transformation is applied for visualization purposes
and to obtain an interpretable score that ranges from 0 to infinity,
where 0 has no relevance (Eq. 13).

RelevanceScorei = � log10ðFX ðFadj, ijdfn, dfdÞÞ ð14Þ

Curves were classified as significantly up or down-regulated if a
curve’s relevance score is above the decision boundary.

For many applications, it is also useful to know which
dose–response curves show clear independenceof the doses to obtain
a high-quality negative data set. It is fundamentally impossible toprove
the absence of an effect statistically. Thus, we developed a heuristic
approach using the null model to classify only a clear non-responsive
line to be not regulated. A clear non-responder has a mean-model
intercept close to 1.0 and is allowed to maximally diverge +- fclim/2.
Additionally, the variance around the null model should be low and is
quantified by the root-mean-squared error (RMSE). By default, the
maximally tolerated variance is an RMSE of 0.1 but can be adjusted by
the user. Optionally, the user can add additional criteria, such as a p-
value threshold, to be even more restrictive to the non-classification.

False discovery rate estimation
The false discovery rate (FDR) was estimated using a target-decoy
approach. Decoy curves were generated based on the sample variance
distribution (s2i ) estimated from the input data directly (Eq. 15). From
this variance distribution, decoyswereconstructed similarly to the null
curves (Eq. 1).

s2i =
1

dfd
�
X

ðyi � ŷiÞ2 ð15Þ

The decoy curves are then subject to the identical analysis pipe-
line. Finally, the target-decoy relevance score allows the calculation of
a q-value for each curve using the target-decoy approach22, as well as
the overall FDR corresponding to the user’s pre-defined thresholds
(Eq.15). FDR estimation is enabled using the --fdr command line option.

qi =
#fdecoys with Score> Scoreig
#ftargets with Score> Scoreig

ð16Þ

Statistics and reproducibility
No new experimental data were generated for this study. Study
designs, including sample sizes, were taken directly from the respec-
tive original studies. For the simulated curve data, no statistical
method was used to determine sample size. The 5 million curves for
each number of curve data points n was chosen as the number of
curves that produced sufficient smooth characterization of p-value
estimation behavior up to 10−5. No data were excluded from the ana-
lyses. Unless otherwise stated, p-values in this study were generated
using the recalibrated F-statistic and multiple testing correction was
performed by applying a target-decoy strategy on the relevance score.
The CurveCurator version used throughout this manuscript is v0.2.137.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The original
Kinobeads and decryptM data are available on PRIDE (PXD005336 and
PXD037285 respectively). The original CTRP data is available from the
R package PharmacoGx (R v3.6.3, PharmacoGx v1.17.1). All Curve-
Curator input and output files for each datasets and interactive dash-
boards generated in this study are available in Zenodo under the
https://doi.org/10.5281/zenodo.8399823. Source data are provided
with this paper.

Code availability
The CurveCurator version used throughout this manuscript is v0.2.137

(https://doi.org/10.5281/zenodo.10033765). Software and doc-
umentation are freely available on GitHub under the open-source
license Apache 2.0.: https://github.com/kusterlab/curve_curator and is
available as a Python package from PyPI https://pypi.org/project/
curve-curator.
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