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Accurate prediction of protein assembly
structure by combining AlphaFold and
symmetrical docking

Mads Jeppesen1 & Ingemar André 1

AlphaFold can predict the structures of monomeric and multimeric proteins
with high accuracy but has a limit on the number of chains and residues it can
fold. Here we show that a combination of AlphaFold and all-atom symmetric
docking simulations enables highly accurate prediction of the structure of
complex symmetrical assemblies. We present a method to predict the struc-
ture of complexes with cubic – tetrahedral, octahedral and icosahedral –
symmetry from sequence. Focusing on proteins where AlphaFold can make
confident predictions on the subunit structure, 27 cubic systems were
assembled with a median TM-score of 0.99 and a DockQ score of 0.72. 21 had
TM-scores of above 0.9 and were categorized as acceptable- to high-quality
according toDockQ. The resultingmodels are energetically optimized and can
be used for detailed studies of intermolecular interactions in higher-order
symmetrical assemblies. The results demonstrate how explicit treatment of
structural symmetry can significantly expand the size and complexity of
AlphaFold predictions.

The functional complexity of cellular processes often requires the
association and cooperation of multiple protein subunits in protein
complexes. Protein assemblies carry out many of the cell’s most fun-
damental and sophisticated functions, fromDNA replication to energy
synthesis and molecular motion. As the molecular structure is key to
understanding the function ofmultimeric complexes there is currently
significant interest in experimental determination, driven by
improvements in cryo-electron microscopy1, but also in the develop-
ment of computational methods to predict structure from sequence2.

Over the last couple of years, we have seen a revolution in our
abilities to predict protein structures from deep learning methods.
AlphaFold (AF)3 and AlphaFold-Multimer (AFM)4 have shown excep-
tional levels of accuracy in predicting structures of monomers and
protein complexes and currently serve as the basis for all of the top-
performing models in the latest round of the structure prediction
contest CASP5. However, AFM is currently limited to smaller com-
plexes as prediction accuracy decreases and memory consumption
increases when more chains are modeled6. Fundamentally, the pre-
diction of large multimeric assemblies presents significant additional
challenges compared to that of monomeric proteins, as it requires the

simultaneous prediction of the organization and interactions of mul-
tiple chains in space. The underlying training data to AF/AFM provide
rich sources of information regarding the internal structure and
interfaces between subunits, but less information regarding the overall
organization of chains.

An attractive strategy for building larger complexes is to assemble
them from predicted AF/AFM subcomponents. Recently, it was shown
that large complexes with 10–30 chains could sometimes be predicted
by sequentially assembling AFM-predicted dimeric and trimeric sub-
components by superposition6. However, this approach has twomajor
challenges. First, small errors in the prediction of individual interfaces
will propagate through the complexes and can result in severe clashes
between subunits in the full assembly model. Second, for complexes
with more than one unique interface a sequential assembly approach
relies on the accurate prediction of multiple interfaces to the same
subunit, which can be challenging to extract from AFM.

Moving forward it would be advantageous to develop a method
that can iteratively refine all interfaces of the assembly to minimize
error propagation and search for interactions not predicted by AFM
using molecular docking. This has been demonstrated for
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heterodimeric complexes using two AF-predicted monomers and
rigid-body docking methods7,8. However, for large assemblies, this
approach has not been explored. This is likely due to the very large
number of degrees of freedom involved in the search for optimal
subunit placements, leading to a computationally intractable optimi-
zation problem. Nonetheless, for multimeric assemblies displaying
structural symmetry the degrees of freedom can be substantially
reduced9,10, making the combined AF/AFM docking approach
tractable.

Many large protein complexes are either fully symmetrical, dis-
play local symmetry, or are quasi/pseudo-symmetrical (Fig. S1). Sym-
metry also becomes more prevalent as the protein complexes grow
larger (Fig. S2). The evolution of symmetry in large protein complexes
has facilitated the emergence ofmany shapes such as rulers, rings, and
containers that are uniquely important for many functions. It is also
critical for allostery, cooperativity, and multivalent binding11–14.

Here we present a strategy to predict the structure of large sym-
metrical complexes from AF or AFM subcomponents with high

accuracy by combining it with an all-atom symmetrical docking
method (Fig. 1a). We recently presented an efficient atomistic docking
algorithm forheterodimeric docking called EvoDOCK15. EvoDOCKuses
a differential evolution algorithm for efficient sampling of rigid-body
space coupled to aMonteCarlo approach for local search optimization
of all-atom interactions. In this study, we extend it to symmetry and
use it to build and refine complex homomeric symmetrical assemblies
built from subcomponents predicted by AFM. We demonstrate our
method on a benchmark containing large protein assemblies from the
most complex symmetrical systems in nature, the cubic symmetry
group. The cubic symmetry group consists of the tetrahedra (T),
octahedra (O), and icosahedra (I) with 12, 24, and 60 chains respec-
tively in the simplest homomeric case (Fig. 1b). These complexes form
spherical structures and are often involved in a variety of biological
functions including the storage of genomes formany viruses.We show
that our method can predict the structure of cubic symmetries from
sequence at an atomic level, providing energetically optimizedmodels
of very large assemblies.

Fig. 1 | Schematic representation of the assembly prediction method and the
cubic symmetry group. aOverview of the assembly predictionmethod. Step 1: AF
(top-left) and/or AFM (bottom-left) are run on sequences of the target protein
complex to produce an ensemble of input subunits. Step 2: A cubic symmetric
model of either a tetrahedral (T), octahedral (O), or icosahedral (I) type is chosen to
model the target protein complex. Step 3: The subunits are placed into the chosen
symmetry and molecular docking is used to search for native rigid-body para-
meters describing the cubicprotein complex ([ψ,ϴ,φ, z, x, λ], see also Fig. 2b). Two
approaches canbeused to aid themodelling of the structure shownbydashed lines
in the figure. With access to some structural knowledge to set the parameters,
which can be derived from a variety of sources such as cryo-EM or X-ray crystal-
lography (XRC), the structure can be reassembled (local assembly) by searching for

local optimal values of the parameters (ψ, ϴ, φ, x, z, λ). In the absence of any
structural information, the structure can be completely assembled (global assem-
bly) from sequence using a combination of local docking on parameters derived
from AFM parameters (ψ,Θ,φ, x) and global docking on the rest (z, λ). b The three
cubic symmetries that are modelled. Tetrahedral (T) structure having 2- and 3-fold
symmetry and containing at least 12 subunits. Octahedral (O) structure having 2-, 3-
and 4-fold symmetry containing at least 24 subunits. Icosahedral (I) structure
having 2-, 3- and 5-fold symmetry containing at least 60 subunits. c Table of the
three assembly approaches, their applications and differences in modelling. Local
recapitulation is a variant of local assembly where the native structure is used
directly instead of AF/AFM predictions.
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Results
The generalmethodology for predicting large protein complexes from
AF/AFM subcomponents is presented schematically in Fig. 1a.
Sequences of the target protein complex are used as inputs to AF/AFM
which in turn are used to generate an ensemble of different candidate
subunits for the target complex (Fig. 1a, step 1). One of three cubic
symmetries is chosen tomodel the target structure (Fig. 1a, step 2) and
a symmetric version of EvoDOCK is then used to dock the assembly to
produce a final energetically optimizedmodel by optimizing the rigid-
body parameters describing a cubic system (Fig. 1a, step 3).

Here we distinguish between three approaches to model the tar-
get structure which we call local recapitulation, local assembly and
global assembly and their applications and differences are highlighted
in Fig. 1c. In the local recapitulation approach, the degrees of freedom
associated with rigid body and sidechains are optimized starting from
a native assembly model and bound capsid subunit. This type of
simulation can be used to characterize the energy landscape of
assembly and improve energetics of a structural model. In the local
assembly simulation, the initial rigid body orientation is also taken
from a starting model, but the subunit structure is predicted with an
ensemble from AF and AFM. This type of simulation can be used to
build a model based on a template from Cryo-EM, X-ray crystal-
lography or other computationalmethods. In the absence of structural
information, a larger parametric space must be sampled as no tem-
plates are available. In the global assembly approach, the full complex
is predicted ab initio, that is, directly from sequence using only single
type (dimeric, trimeric etc.) AFM oligomer predictions as a basis.
Through AFM, some of the rigid body parameters can be estimated
and locally optimized (Fig. 1a, blue dashed box) while others must be
globally optimized.

A benchmark of protein structures with cubic symmetry was
constructed to evaluate the method, consisting of assemblies with
tetrahedral, octahedral, and icosahedral symmetries. Requirements on
experimental resolution, structural diversity, and monomer size were
used to select the final set. In addition, we limit ourselves to systems
where AF/AFM can accurately predict monomer and subcomponent
structures (see “Methods” for the full selection procedure).

The final benchmark contains 27 cubic systems (Table S1), 9 from
each of the three symmetry groups. AFM has not been trained on mul-
timers of cubic symmetry, which all have more than 9 chains. However,
subunits may be homologous to smaller oligomers. The sequence
identity to smaller oligomers thatmay have been used to train AFM (the
training set data has not been released) is presented in Table S1. 12 of the
systems have low homology (30% sequence identity) to any smaller
oligomer found in PDB released before the cutoff for the training of
AFM. This categorization allows us to study the influence of homology
on the accuracy of AFM predictions.

Accurate predictionof assembly structure required an extensionof
the EvoDOCK approach to cubic symmetry and optimization of con-
formational sampling for complex and large symmetrical systems,
described in the next section. This is followed by a section on how to
utilize AF and AFM to generate structural ensembles required for the
assembly simulation. We test our methodology on increasingly more
difficult scenarios. In the first scenario, we show that the native
assembly structure can be recovered in local recapitulation experi-
ments using the backbone of the native monomer. In the second sce-
nario, we show that the assembly structure can be recovered in local
assembly experiments using subcomponent structures predicted by
AF/AFM. In the third scenario, we demonstrate that the structure of
cubic symmetrical systems can be predicted directly from sequence
without prior information on the rigid body orientation in global
assembly experiments. Finally, as the benchmark is limited to systems
that produce accurate and symmetrical AF/AFM predictions, a broader
spectrum of cubic subcomponents with AF/AFM is predicted and we

analyze what fraction we can expect to be successfully predicted by the
method.

Assembly of proteins with cubic symmetry using symmetrical
docking
The symmetric docking step in this study is built on anextension of the
EvoDOCK method15 to symmetry. EvoDOCK is based on a memetic
algorithm that combines a differential evolution method coupled to a
Monte Carlo local docking search and is presented schematically
in Fig. 2a.

A population of individuals, each containing a randomly chosen
backbone from an ensemble and six randomly chosen rigid body
parameters, are initialized. The backbones and rigid body parameters
of the individuals are optimized through a series of generations con-
taining four steps: Evolution, Sliding, Local search, and Selection. Dur-
ing Evolution, the individuals share optimal parameters through
mutation and recombination events. This drives the individuals
towards more optimal solutions in the population but can introduce
suboptimal energies. In the Sliding and Local search step, energies are
refined by first sliding the subunits towards each other followed by an
optimization of the rigid body parameters using a Monte Carlo and
minimization search strategy. In the Selection stage, each optimized
individual is compared to its predecessor and is either continued or
reverted by selecting the one with the best energy. Occasionally a new
backbone is inserted into the individual from the ensemble (BB trial)
and the Sliding, Local search, and Selection stage is repeated. After
several generations, the whole structure is energy refined where the
backbone and sidechains are simultaneously optimized and a final
model is output. The optimization is guided by the all-atom energy
function of Rosetta16,17 and uses the symmetrymachinery of Rosetta to
model the structure10.

To adapt EvoDOCK for cubic symmetry we changed the six rigid
body parameters based on a heterodimeric docking system to six
based on cubic systems (Fig. 2b). Conformational sampling in cubic
symmetry is complex due to the high packing density of subunits, the
high degree of shape complementarity between chains, the presence
ofmultiple protein–protein interfaces in the assembly and the fact that
small changes in parameters can lead to drastic changes in overall
assembly structure. To address these issues several improvements to
the EvoDOCK methodology were made. For computational efficiency,
the complete assembly structure is not modeled but rather a sub-
systemof chains that contains all the interactions required to calculate
the energetics of the complete system (Fig. 2c). To maintain the
integrity of this subsystem and enable the calculation of the whole
structure energy, rigid body parameters are not sampled freely but
constrained within an interval (Fig. 2d, “Methods”). This also has the
benefit of making conformational sampling more efficient. During the
simulation, one of the types of interfaces (2, 3, 4- or 5-fold) present in
the cubic assembly may be correctly identified, while others are sub-
optimal. We implemented a sampling approach where the optimal
interfaces can be kept, while primarily improving contacts to the other
interfaces using optimized sliding moves (Fig. 2e, “Methods”).

A fundamental challenge with sampling in cubic symmetry is to
identify clash-free and energetically realistic subunit packings. This is
particularly difficult using an all-atom energy representation, which
produces very complex energy landscapes where tiny changes in
orientation can lead to large atomic clashes. To address this problem,
we designed a subroutine during the Local search to identify clash-free
packing orientations that can be further improved in the all-atom
optimization step. The subroutine does multiple rigid body pertur-
bations guided by a score function which we call CloudContactScore
(CCS) (Fig. 2f, “Methods”). Internally in CCS, the assembly is repre-
sented as a cloud of points consisting only of the surface atoms of the
backbone of the subunits. This fast-to-calculate representation is used
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to quickly guide structures towards fewer clashes, more interface
hydrogen bonds, and better backbone contacts.

To test the proficiency of the methodology a local recapitulation
experiment was carried out for all the systems in the benchmark using
theboundexperimental structure as a startingpoint. The6parameters
describing the rigid body orientations of the subunits in the assembly
were randomly sampled uniformly in a broad range centered around
the values found in the native system with an average RMSD of 11 Å.
100 independent EvoDOCK simulations with a population size of 100
each were started from these configurations and run for 50 iterations.
In 22 out of 27 systems the lowest energy model after recapitulation
had an RMSDover the subsystembelow2.0 Å, while the remaining had
3.6 Å to 9.4 Å (Fig. S4). Note that theRMSDvalues cannot be0.0 Å in all
cases, because some of the experimental structures are not fully
symmetrical. These results demonstrate that most cubic symmetrical
systems can successfully be recapitulated if the native subunit struc-
ture is known. Differences compared to the native structure were
primarily due to the identification of structures with alternative
minima in the energy landscape, rather than inefficient rigid body
sampling. Fig. S3 collects some examples from the different sampling
scenarios (Fig. 1c) where issues with the energy function, conforma-
tional sampling, and energy refinement causes predictions to fail.

Prediction of subcomponent structures from sequence
using AF/AFM
Prediction of the structure of cubic systems from sequence requires
prediction of subcomponent structures with AF and AFM. Predicted
subcomponents are then used as inputs for the symmetric docking
simulations. Using predicted subcomponents is significantly more
challenging for two reasons: First, the predicted backbones will not be

perfect, requiring different candidate backbones to be sampled and
optimized. Second, there are parts of the structure that can only be
predicted correctly in the presence of the full assembly. The N- and
C-termini are often involved in the interfaces of cubic assemblies.
However, AF/AFM generally cannot predict termini well and the pre-
sence of misfolded segments can prevent the formation of the correct
assembly in the docking simulation. Nonetheless, a balance between
removing residues with a high degree of prediction uncertainty and
keeping residues that are important for interface formation must be
struck. The same strategy can be employed to remove internal loops
with uncertain conformations that can hamper assembly, but this was
not necessary for the current benchmark.

The strategy used to produce alternative subcomponent back-
bones as inputs to EvoDOCK is shown schematically in Fig. 3a–c. The
goal was to produce backbone ensembles with some diversity while
keeping them close to the predictions by AF/AFM. We initially
experimented using Rosetta18 to resample backbones from AF/AFM
predictions as previously done in EvoDOCK15 and elsewhere19,20 but
found that backbones sampled in thismanner have significantly higher
RMSD to the native backbones compared to the raw output from AF/
AFM. TheAF/AFMpredictionswere therefore used directly, employing
random seeds to produce different conformations. One of the
strengths of AF/AFM is the ability to evaluate its prediction confidence
through predicted values of the local structure quality metric LDDT21

(pLDDT) and the whole structure quality metric TM-score22 (pTM and
ipTM for interfaces). These metrics were used to identify a diverse set
of near-native initial backbone ensembles (Fig. 3a, “Methods”).

We utilize this initial backbone ensemble set to decide what
terminal residues to remove for the docking simulations. Three
metrics were used (Fig. 3b, “Methods”): The average residue pLDDT,

Fig. 2 | Symmetric EvoDOCK. a The EvoDOCK algorithm as described in the main
text. b The cubic rigid body representation is composed of three parameters that
control the rotation around each subunits center of mass (ψ, Θ, φ), and three that
control the orientation of the entire assembly (z, x, λ). c The subsystem (bright
surfaces) is used internally to represent the entire assembly. The subunit in green is
the main subunit from which all energetic interactions are calculated. d The
integrity of the subsystem can be lost due to large perturbations of z, x, and λ. Here
λ is perturbed beyond its bounds so that the whole structure energy will be wrong

as the 3-fold interaction is not seen by the main subunit. e Sliding axis of the 2-, 3-
and 4-fold axis during sliding in an octahedral case. When sliding along the 2-fold
for instance, the 2-fold interface is kept fixed while the 3- and 4-fold interface
contacts are improved. f Left: Atoms on the surface (shown in dark blue) of each
subunit’s backbone and first atom (CB) of the sidechain (shown in light blue) as
represented internally in CloudContactScore (CCS). Middle/Right: Terms for the
score function used in CCS to evaluate interchain interactions.
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the secondary structure propensity, and the residue connectivity to
the rest of the structure. The pLDDT score evaluates the AF/AFM’s
confidence on a per-residue basis, while the secondary structure pro-
pensity and connectivity provide measures of the expected degree of
flexibility and residue-residue interaction density. Terminal residues
are removed from the ends until all of the metrics goes beyond their
respective threshold values (dashed lines in Fig. 3b, “Methods”). The
final ensemble, which is used as inputs to the symmetric docking
simulations contains subunits for the target structure of equal
sequence length (Fig. 3c). The resulting RMSD distribution compared
to the native subunit are shown in Fig. 3d for all benchmark cases.

Local assembly of proteins with cubic symmetry from predicted
subunit structures
To test howwell themethodologyworks on subcomponent structures
predicted by AF/AFM we carried out the types of rigid body pertur-
bation local assembly described previously, in which the rigid body

parameters are uniformly sampled around values from a template
symmetry. In our case, the parameters were calculated with the native
structure as a template. However, initial rigid bodyparameters canalso
be taken from the structures of a homologous protein or estimated
from a lower resolution Cryo-electron microscopy/X-ray crystal-
lography structure in the context of model refinement.

Ensembles for subunit structures were generated as previously
described using a combination of monomeric AF and AFM predictions
with different oligomeric states (see “Methods”). The ensembles were
used as inputs to 100 independent EvoDOCK simulations with a
population size of 100. 100 of the best models according to the
interface score (Iscore) from the EvoDOCK simulations were selected
and refined using a symmetric energy refinement method in Rosetta23

(See “Methods”). 5 final predictedmodels are output by themethod by
clustering all 100 refined models based on the predicted rigid body
parameters into 5 sets and then selecting the best model in each set
according to the Iscore. The 5 models are ranked according to the

Fig. 3 | Ensemble generation strategy. a AF predictions are filtered based on their
pLDDT scores and AFM predictions are filtered based both on their pLDDT and
ipTM+pTM scores (AFMs model confidence score: 0.8 · ipTM + 0.2 · pTM) to
generate an initial ensemble (red box). b To determine how many residues to trim
at the N- and C-termini, the initial ensemble is collectively used to produce average
values of three metrics per residue: connectivity (connectivity %), secondary
structure propensity (SS %) and average residue pLDDT (Avg. pLDDT). Threshold
values (dotted horizontal lines: 90 for Avg. pLDDT, 70% for connectivity %, and 70%
for SS %) for themetrics are set and terminal residues were removed from the ends
until all of the metrics goes beyond their respective threshold values (indicated by
the red lines). c The final ensemble, which is created by removing residues as

described in b, contains subunits for the target structure of equal sequence length
(green box). d Ensemble RMSD distribution to the monomeric native structure for
all benchmark structures for both local assembly (lighter color) and global
assembly (darker color) (n for global/local assembly: 2ZY2: 53/61. 2QQY: 71/79.
3LEO: 121/62. 7Q03: 38/55. 6M8V: 54/57. 6HSB: 42/58. 4DCL: 29/75. 2CC9: 45/57.
4CY9: 54/57. 3WIS: 52/50. 5EKW: 120/60. 5H46: 105/53. 3N1I: 50/56. 6H05: 80/62.
7O63: 88/56. 7OHF: 46/73. 3BXV: 33/50. 7PF9: 37/52. 1HQK: 30/57. 1T0T: 44/54.
4RFT: 1/5. 4V4M: 18/54. 1JH5: 48/59. 6ZLO: 51/50. 1X36: 22/56. 2WQT: 30/58. 7B3Y:
53/61). The “x” symbol shows the mean. Below each subfigure, two examples
(underlined) of the structural ensembles superimposed for the local (left) and
global (right) assembly are shown. Source data are provided in the Source Data file.
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Iscore, and here we analyze them with respect to the best-ranked
model (Best Ranked) and best model among all the clusters (Best
Cluster) according to three metrics: TM-score22, DockQ24, and RMSD.

For all 5 models, we calculated the TM-score, average pairwise
DockQ score across the symmetrical interfaces (PairwiseDockQ score)
and the RMSD (Fig. 4a and “Methods”). We find median values for the
Best Ranked/Cluster model as TM-score: 0.99/0.99, Pairwise DockQ
score: 0.76/0.82, and RMSD: 1.5/1.2 Å. We here define successful pre-
dictions as predictions having at least acceptable quality in their
Pairwise DockQ score and a TM-score of at least 0.9 and highly accu-
rate predictions as having high quality in their Pairwise DockQ score
and aTM-scoreof at least 0.9 (Fig. 4b).Under thatdefinition, 100/100%
of models are successfully predicted and 44/59% have highly accurate

predictions. An example of an energy landscape for 2QQY is shown
Fig. 4c and all energy landscapes andmetric values are shown in Fig. S5
and Table S3.

Global assembly prediction of the structure of cubic systems
from sequence
The previous results demonstrate that with reasonable values for the
rigid body parameters describing the symmetry of the cubic system,
themethod can successfully predict the structure of cubic complexes.
In this section, we will attempt to predict the structure without any
prior information or assumptions about the rigid body orientations in
global assembly experiments. The basis of the prediction is thatwe can
predict a single oligomeric subcomponent from AFM (dimer, trimer,

Fig. 4 | Results of the local and global assembly experiments. a–c Results of the
local assembly experiments. a TM-score (n = 27), PairwiseDockQ score (n = 27), and
RMSD (n = 27) for all benchmark structures (T = red, O = blue, I = green). Data are
represented as boxplots (grey) with themedian at the center, 25th percentile at the
lower bound, 75th percentile at the upper bound, and whiskers indicating the
minimum and maximum values. b Classification of the results using TM-score and
Pairwise DockQ score. The outer dashed line delineates successfully predicted
structures and the inner black box the highly accurate structures. c Example of an
energy landscape (RMSDvs Iscore).d–i results of the global assembly experiments.
d TM-score (n = 27), Pairwise DockQ score (n = 27), and RMSD (n = 27) for all
benchmark structures (T = red, O = blue, I = green). Data are represented as box-
plots (grey) with themedian at the center, 25th percentile at the lower bound, 75th
percentile at the upper bound, and whiskers indicating the minimum and

maximum values. e Classification of the results using TM-score and Pairwise
DockQ score. The outer dashed line delineates successfully predicted structures
and the inner black box the highly accurate structures. f Example of an energy
landscape (RMSD vs Iscore). g Two possible orientations of the oligomer structure
in cubic symmetry related by a 180° turn through the ψ parameter. h Orientation
optimization (ψ) of the subunits within the assembly of the model 5EKW. Models
that are started in the wrong orientation are shown at the beginning (generation 0)
and at the end (generation 50). Most of the models started in the wrong have
learned the correct orientation at the end of the simulation. i: Same simulation as in
H but showing snapshots of the distribution of orientation angles (ψ) as function of
the generations. Sourcedata forc, f,h, i are provided in the SourceDatafile, and the
rest in Supplementary Tables 3 and 4.
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tetramer, or pentamer) and use it as the starting point for the cubic
assembly prediction. Ensembles of subunit structures were generated
as previously described with AFM. But in addition, symmetry infor-
mation was extracted from the predicted oligomer, enabling some of
the rigid body parameters in the docking simulation to be estimated
(Fig. 2b; ψ,Θ,φ, x, see “Methods”). Without these initial estimates the
correct assembly aredifficult to predict. In Fig. S10weshow results of 3
simulations where the subunits structure is correctly predicted but the
oligomers are not, resulting in inaccurate assemblies. In the EvoDOCK
simulation, we sample around the individual values found in the AFM
oligomer predictions. The remaining rigid body parameters (Fig. 2b; z,
λ, see “Methods”) fully unknown, parameters were sampled uniformly.
To get a good startingmodel to initiate EvoDOCK, theAFMpredictions
are docked along their respective symmetrical fold (Fig. 1b, see
“Methods”). But given that certain parameters are constrained, there
are two ways to place the oligomer, related by a 180-degree flip per-
pendicular to the symmetry axis (Fig. 4g). It is possible to run two
independent simulations starting from each orientation, but we can
also let EvoDOCK learn the right orientation during the simulation.
Figure 4h, i shows an example where the global assembly simulation is
initializedwith equal number of correct andwrong orientations. At the
end of the simulation the correct orientation has taken over (Fig. 4h, i)
on the basis on its superior energy. The result of the global assembly
benchmark was generated with this approach.

We clustered the results into 5 final models as described pre-
viously and calculated the TM-score, Pairwise DockQ score, and the
RMSD (Fig. 4d).Wefind amedian value for Best Ranked/BestCluster as
TM-Score: 0.99/0.99, DockQ score: 0.72/0.80, and RMSD: 1.6/1.5 Å.
Using the same definition for successful and highly accurate predic-
tions as previously, it is found that 78/89% of models are successfully
predicted and 33/48% have highly accurate predictions (Fig. 4e). An
example of the resulting energy landscape of 1X36 is shown in Fig. 4f,
and all energy landscapes and metric values are shown in Fig. S6 and
Table S4). In Fig. 5a, the predicted structures of the same examples are
shown overlayed on their native structures. Taken together, the result
demonstrates that accurate prediction of the structure of assemblies
with cubic symmetry can be predicted with high accuracy.

Knowledge of the right orientation improves the results slightly.
When the simulations are started with the correct orientation it is
found that 85/89% of models are successfully predicted (Figs. S7, S8
and Table S5), compared to 78/89% when the orientation is predicted.
Figure S9 shows examples ofwhere thewrongorientation takes over in
the simulation for two icosahedral virus capsid predictions. In both
cases, however, the correct orientation can be established based on
the expected electrostatic charge distribution in virus capsids and
modelling them exclusively in this orientation significantly improves
the results (Fig. S9).

The general applicability of the method
The methodology presented so far relies on the ability of AF/AFM to
produce accurate starting models for symmetric docking simulations.
To get insight into the general applicability of the method, we esti-
mated the fraction of cubic systems that can be predicted with suffi-
cient accuracy by running AF and AFM on 111 sequences from cubic
systems (see “Methods”). For each sequence, we attempted to predict
the structure of the monomer as well as the 2-3 types of unique sym-
metric oligomers present in each cubic symmetry type (T = 2/3, O = 2/
3/4, I = 2/3/5). We define an acceptable solution as a prediction within
2 Å RMSD to the native structure. Figure 5b shows how many struc-
tures can be predicted within this threshold for AFM while Fig. 5c
shows how many interfaces can be predicted for each cubic
assembly by AF.

In 78% of the cases, at least one AF structure can be predicted and
in 72% of the cases, at least one AFM interface can be predicted. These
results demonstrate that in most cases we can expect AF and/or AFM

toproduce acceptable inputs for EvoDOCK. Interestingly, in 50%of the
cases where at least one interface can be found, AFM cannot accep-
tably predict all three unique interfaces of a cubic assembly correctly.
This highlights the need to use a search algorithm that can find addi-
tional interfaces outside of AFM to predict the structure of complex
symmetric assemblies as we present here.

In this study, we have benchmarked only highly accurate AF/AFM
predictions (≥90 pLDDT for AF and pLDDT ≥ 90 and ipTM+pTM ≥0.9
for AFM. ipTM+pTM isAFMsmodel confidence score: 0.8 · ipTM+0.2
· pTM). Figure 5d shows the distribution of pLDDT and ipTM+pTM
from the AFMpredictions. We find that 58% of the structures have this
required accuracy. Figure 5e shows the distribution of pLDDT from the
AF predictions. We find that 82% have this accuracy. For the bench-
mark set, we required at least one AF and one AFM prediction to be
above this threshold. The percentage of structures passing thesefilters
is 57%. It suggests that a large fraction of proteins with cubic symmetry
can be predicted, even with this stringent threshold. As structure
predictions evolve, this number is expected to increase. Furthermore,
not limiting the AF/AFM to templates deposited before the release
date of the benchmark structures as done here also suggests this
number can be higher in practical cases. By combining the fraction of
cubic systems that pass the required threshold (57%), with the fraction
of predictions that pass the structure quality threshold after EvoDOCK
we estimate that the current approach can successfully predict around
57%, considering both the best-ranked or best cluster model of all
homomeric cubic systems in a local assembly experiment. In a global
assembly experiment, we estimate that around 44% and 50%, con-
sidering either the best-ranked or best cluster model, respectively, of
all homomeric cubic systems to be successfully predicted by our
method.

A caveat with the analysis presented here is that sequences of
experimentally solved cubic proteins may be biased towards having
more homology to other proteins in the PDB than average. The frac-
tion of correctly predicted cases with <30% sequence identity to any
oligomer in PDB before the cutoff date used for AFM training, is 67%
for the best-ranked model, while 78% for the complete benchmark.
Also, the fraction of cubic systems that can be predicted above the
quality threshold for AFM with our method is lower if the homology is
low (<30%), 33% compared to 85% for sequences above 30% identity
(Fig. 5f). Within this low homology regime, the expected success rate
drops to 22% for the predictions in this category, largely due to the
reduced quality of AFM predictions. However, in many real-case sce-
narios, predictions will be carried out for systems with significant
homology to other known structures. In addition, in real-case scenar-
ios, there are no limitations on which structural templates can be used
in AF/AFM predictions, as opposed to the limitations in the AF/AFM
predictions run in this study (see “Methods”).

Discussion
Complex protein assemblies with higher-order symmetry are currently
difficult to predict with deep learning methods. Symmetry puts
important constraints on the structureof homomeric assemblies but is
currently not directly modeled with an approach like AFM. None-
theless, symmetry often emerges from multimer predictions of
homomers so that smaller complexes can be accurately predicted.
Protein complexes with cubic symmetry are far beyond what can be
currently predicted with AFM due to the limit on the number of resi-
dues and chains in the current implementation4. The method pre-
sented here enables atomic-resolution prediction of highly complex
protein assembly structures with tetrahedral, octahedral, and icosa-
hedral symmetry by combining the capabilities of AF and AFM to
model subunits and small oligomers from sequence and the cap-
abilities of a symmetric docking protocol tomodel complex structural
symmetry. A fundamental benefit of this approach is that it produces
models that are optimized in terms of intermolecular interactions,
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which makes them a suitable basis for detailed analysis at the atomic
level. In addition, energies provide an orthogonal quality metric that
canbe used to distinguishbetween alternativemodels and canbe used
to resolve unphysical arrangements of chains that can result from
assembly approaches based on superimposition of oligomeric
subsystems.

In this study, we have limited ourselves to the most complex
symmetrical protein structures in nature, the cubic symmetry group.
Nonetheless, the method can readily be extended for other types of
symmetrical systems including those with cyclic, dihedral, and helical
symmetry by optimizing against a different set of rigid body para-
meters, using the Rosetta symmetry machinery9. The approach could
handle heteromeric cases as well, such as icosahedral protein capsids,
by predicting heteromeric asymmetric units using AFM and using it as

input for symmetric docking, although this must be tested in further
benchmarking studies.We also anticipate that the same concept could
be utilized to handle quasi-symmetric11 capsid systems with triangu-
lation numbers higher than 1.

The method described here is limited by the accuracy of AF and
AFM. We demonstrate that AF/AFM can accurately model the mono-
meric and oligomeric subsystems for a high fraction of cubic systems.
As AFM is continuously improved25 and additional variations of AFM
are introduced5, we expect a larger fraction of models to pass the
quality threshold for accurate assembly by EvoDOCK. For example,
results in CASP155 suggest that improvements inmultimer predictions
can be made by introducing more variation in inference by using
dropouts in AFM followed by ranking by the ensembles with predicted
quality metrics26. Such ensembles can readily be used with EvoDOCK.

Fig. 5 | Ability of AF/AFM to predict predictions of sufficient accuracy for
EvoDOCK. a Predicted structures shown in colors (T, red; O, blue; I, green) over-
layed on the native structure in grey. b The number of unique interfaces AFM can
predict per assembly in the set of 111 cubic sequences. c The number ofmonomers
AF can predict in the set of 111 cubic sequences. d Scatterplot of AFM pLDDT vs
ipTM+pTM for the 111 sequences, with kernel-density estimates shown above and

to the side of the figure. Dashed lines are drawn at pLDDT = 90 and ipTM+pTM =
0.9. e Scatterplot of AF pLDDT values in the set of 111 cubic sequences. fHistogram
over the count of sequences above and below the quality threshold for AF/AFM as
function of sequence identity to oligomers in the PDB before cutoff for training of
AFM. Source data for b–f are provided in the Source Data file.
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Our approach only requires that one of the three main interfaces in a
cubic system can be predicted by AFM, and this is typically the case.
This is a benefit compared to a sequential assembly approach that
necessitates accurate prediction of multiple types of inter-
faces by AFM.

In virus capsid structures, N- and C-terminal segments are often
involved in interchain interactions and may form important parts of
protein-protein interfaces within the capsid. Our method does not
currently model these segments. Traditional loop-modeling methods
constrained by cubic symmetry could be used to complete the
assembly structure. If the terminal segments reach over between dif-
ferent oligomeric subcomponents (domain swapping for example27),
the current approachwill fail. In that scenario, the two subcomponents
would have tobemodeled together inAFM.Using thesemore complex
subsystems would require further method development.

We anticipate that themethodologypresentedherecouldbeused
to study cubic assemblies in several differentmodeling scenarios.With
the local experiments, the energy landscapes of native assemblies
couldbe investigated to understand the relative importance of subunit
interfaces to the overall stability of the protein. Such experiments can
also be used to model the effect of mutations and to investigate
assembly mechanisms of cubic assemblies. Local assembly experi-
ments can also be used to build models of evolutionary-related
assemblies, by modeling the subunit structures with AF and docking
them with EvoDOCK. Another application of symmetric EvoDOCK is
the refinement of structures against experimental data. EvoDOCK is
implemented based on pyrosetta28, which can readily utilize a wide
range of experimental constraints18, including cryo-electron
densities29. Finally, the methodology can be used to predict struc-
tures of cubic assemblies with unknown structures. This will be parti-
cularly useful for icosahedral virus capsids. Estimates suggest that
there are around 1031 viruses on the planet30, and we can hope to
experimentally characterize only a fraction of these systems. None-
theless, many protein capsid proteins are substantially more complex
than the homomeric systems studied here, consisting of many differ-
ent types of subunits27,31, having quasi/pseudo-symmetry32 and con-
sisting of symmetry breaking elements33 and membrane anchoring.
Predicting the structures of more complex biological assemblies will
require more sophisticated tools than presented here but will likely
require explicit treatment of symmetry and simulations of subunit
assembly as we describe in this study.

Methods
Prediction with AlphaFold2 and AlphaFold-Multimer
For each PDB the release date in the Protein Data Bank34 was recorded.
AlphaFold 2 (2.2.2) was run setting the --max_template_date flag to be
the daybefore the release date of the PDB and the --model_preset to be
either monomer for AF or multimer for AFM. AF and AFM was run as
follows:

alphafold --fasta paths=<fasta filepath> --model preset=<monomer=multimer> --output dir

<output directory> ---db preset = full dbs --use gpu relax --max template date=<max

templatedate>

Selection of benchmark structures
The overall selection process for the cubic structure benchmark is
described in Fig. 6. First a list of homomeric tetrahedral, octahedral,
and icosahedral assemblies with 12, 24, and 60 chains, respectively,
and with a resolution better than 4Å was compiled from the Protein
Data Bank34. This list was filtered based on three criteria. First, the
subunit in the asymmetric unit was required to have at least one chain
without chain breaks. Second, the subunit in the asymmetric unit
should not include any non-canonical amino acids (except for sele-
nomethionine, which was treated as a regular methionine). Third, the
PDB file should pass through the automatic symmetry detec-
tion method (see “Symmetry analysis” section) to create a symmetry
definition file used as a template for local assembly experiments. The
remaining structures were then clustered at 90% sequence identity
with CD-HIT35 as:

cd-hit -i <Input file> -o <output path> -d0 -c0:9 -n 5 -G 1 -g 1 -b 20

-l 10 -s :0 -aL :0 -aS :0 -T4 -M32000

One structure from each cluster with the highest resolution was
selected. The remaining structures after this filtering were then sorted
based on their sequence length. To save computational time some
icosahedral and tetrahedral structures were omitted if they had more
than 522 or 544 residues in a single subunit respectively. This resulted
in 111 proteins (I:50, O:31, T:30, Fig. 6), whose sequences were pre-
dicted with AF and AFM. For AFM, multiple AFM runs were launched
corresponding to their symmetric fold interfaces (2-, 3- and 5-fold for I,
for example). The total number of AF/AFM predictions was 414, con-

Fig. 6 | Selection of benchmark and structures for AF/AFM statistics. Informa-
tion on each step is elaborated upon in the main text. After each filtering step the
remaining PDBs for each cubic symmetry type (green: icosahedral (I), blue:

octahedral (O), red: tetrahedral (T)) are shown. The arrows leading away from the
Run AF/AFM box indicate which monomeric/oligomeric types were run for the
given symmetry type.
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tributing 5 models each for a total of 2070 predicted models. AF/AFM
was run as described in the previous section. The generated AF/AFM
predictions were used in the analysis of the fraction that pass the
quality threshold for EvoDOCK assembly as described in the section:
The general applicability of the method.

To arrive at the benchmark set, the protein systemswere required
to contain at least one AF prediction with an average pLDDT ≥ 90 and
an AFM prediction (of any oligomer type) with an average pLDDT ≥ 90
and ipTM + pTM ≥ 0.9. Finally, manual inspection of the remaining
structures was used to achieve as structurally diverse a set as possible,
considering fold, shape, and loop conformations balances within each
symmetry type. The final set contained 9 structures from each sym-
metry adding up to a total of 27 cubic structures.

Symmetry analysis
A script was developed to automatically analyze the symmetry of
native structures with cubic symmetry. The script takes the structure
of the complete assembly together with the symmetry type and cal-
culates the6parameters describing thedegreesof freedomused in the
EvoDOCK simulation. The output is a symmetry definition file used to
model symmetry in the Rosetta symmetry machinery10. To analyze the
degree of symmetry of a subcomponent within a natural cubic
assembly, weuse themake_symmdef_file.pl, script providedbyRosetta
and described in Dimaio et al.10

A symmetric version of EvoDOCK
EvoDOCK for heterodimeric docking has been described previously15.
The program was extensively modified to accommodate symmetry.
This included developing (1) an additional set of degrees of freedom,
as presented in Fig. 2b. (2) An additional contact-based representation
and energy function (CloudContactScore) for identifying clash-free
and well-packed subunit orientations. (3) Parameter constraints to
enable the use of subsystems during rigid body sampling. (4) A set of
rigid body slidingmoves to establish contact between subunits during
the assembly process. (5) A local search strategy adapted to cubic
symmetry to optimize all-atom energy in the system. These develop-
ments are described below.

CloudContactScore (CCS) point cloud representation
To utilize the CloudContactScore score function an atomistic protein
structure is turned into a cloud of points. Due to the symmetry
machinery, only one subunit must be converted into this representa-
tion as symmetry expansion automatically creates all other copies in
the assembly. The first step of the point cloud generation is to remove
surface residue information on the surfaces beyond β-Carbon atoms,
which is done in two steps. The Solvent Accessible SurfaceArea (SASA)
is calculated across all residues and all residues with more than 20Å
SASA-value are labeled as surface residues. Then the Selec-
tResiduesByLayer class in Rosetta, which identifies residue burial
based on the number of sidechain neighbors within a cone along a
vector from the α-Carbon (CA) and β-Carbon (CB), is used to deter-
mine surface residues. All identified surface residues are then changed
to alanine residues except for glycines. A final SASA calculation is
carried out on this structural representation and all atoms with 0Å
SASA are removed. Only backbone surface atoms of N, C, O, CA, and
CB remains at this stage, whose coordinates are used as points in the
point cloud representation.

CloudContactScore (CCS) energy evaluation
There are four main terms in the CCS score function. First, a n_clashes
term that penalizes according to the number of clashes (“Clashes” in
Fig. 2f). Two atoms are recorded as clashing if the Lennard Jones
sphere, as defined per atom in Rosetta, overlaps by more than 20%.
Nitrogen–Oxygen interactions can interact through a hydrogen bond
and the clash distance is therefore reduced to 1.2 Å. β-Carbon (CB)

Lennard Jones sphere-values are reduced to 1.5 Å to allow for closer
interactions on the surface of the structure. To severely penalize cla-
shes, each clash adds a large penalty to the score. Second, a backbone-
backbone hydrogen bonding score that uses the hbond_sr_bb and
hbond_lr_bb score terms in REF201517 is used to model hydrogen
bonding (“H-bonds” in Fig. 2f). They model short and large-range
hydrogen bond terms, respectively. Lastly, a n_cb_cb_interactions term
is used to score the packing-interactions between different chains by
counting CB-CB contacts (“CB-CB contacts” in Fig. 2f). The threshold
distance for considering CB-CB interactions in the energy calculations
is set to 12 Å. Each CB interaction bonus is weighted by the relative
connectiondensity of each CB to its subunit. The connectiondensity is
defined as:

Connectiondensity = min
Numberof internal CB atomswithin 12Å

20

1:0

(
ð1Þ

Where min means pick the minimum value of the two. The final CCS
score is given as a linear combination of the four scoring terms:

CCSscore =n clashes+hbond sr bb+hbond lr bb+n cb cb interactions

ð2Þ

Parametric constraints
The evasion of sampling of nonsensical rigid body orientations is
achieved by bounding the rigid body parameters to ranges that
maintain the integrity of the subsystem used to model the complete
symmetry. For the parameters controlling the radius of the container
(z) and radius of the largest n-fold-symmetric system (x), they must
have values above 0. A large penalty is added to the score if its para-
meters are sampled outside this bound using the SQUARE_WELL
penalty class in Rosetta with a depth of 109. High values of the λ
rotation parameter can also produce nonsensical models. 4 types of
symmetry input files are based on the symmetric folds of the cubic
structures: 2-, 3-, 4-and 5-fold. The maximum bounds of the λ para-
meter are set to:

λ maximum bounds :
360
n

ð3Þ

Where n is the n-fold symmetry file used (see Table S1 for which fold
symmetry was used for each structure in the benchmark). The bounds
are centered around 0 and modeling icosahedral symmetry with a
2-fold symmetry input file, for instance, would yield bounds of [−90,
90] degrees. For the local assembly experiments, half the values of the
maximum bounds are used and for global assembly docking the full
bounds are used. The other parameters have bounds of ψ: [−40, 40]
degrees, ϴ: [−40, 40] degrees, φ: [−40, 40] degrees, and x: [−5, 5] Å.
These parameters are centered around the template symmetry in the
local assembly docking or the values found in the AFM predictions for
global assemblydocking. For local assembly docking z has the bounds:
[−5, 5] Å and for global assembly docking: [0, 1000] Å.

Sliding moves
All subunits of the cubic system are sequentially slid along the sym-
metric folds from the highest to the lowest. Tetrahedral structures are
slid along their 2- and 3-fold symmetry axis. Octahedral structures are
slid along their 2-, 3- and 4-fold symmetry axis. Icosahedral structures
are slid along their 2-, 3- and 5-fold symmetry axis. Each fold-symmetric
partner is kept fixed relative to each other at each step. The sliding
happens in steps of 0.3 Å and ends when clashes are detected
according to the CCS n_clashes term or 100 sliding moves have been
triedwithout any clashes emerging. If the structure goes out of bounds
it is reverted to the starting configuration.
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Local assembly
The local assembly consists of twomain components. The first part is a
packing-minimization step that consists of a Rosetta-based sidechain
optimization (packing) step followed by a Rosetta-based gradient
minimization step that occurs if the energy was decreased by 15 REU
(Rosetta Energy Units) during the packing step. Both methods use the
Rosetta REF201517 score and a Metropolis Criterion to accept the final
structure. The second part is a quick rigid body search subroutine
consisting of 10 rigid body moves that use the CCS score and Metro-
polis Criterion to accept. Overall, the packing-minimization step
occurs first, followedby the rigid body search, followed again by a final
packing-minimization step.

Ensemble generation
For the local assembly experiments, AFMwas run to produce a total of
100 single chain subunits stemming from each cubic symmetry type’s
respective symmetric folds. AF was run to produce 100 chains. Thus,
AFM and AF generated a total of 200 totaling subunits for each system
(Fig. S11a). For the global assembly experiments, AFM was run to
produce a total of 200 chains stemming only from a single oligomeric
subcomponent (Fig. S11b).

AF was run with the flags as described previously, multiple
times in succession, to achieve the number of target predictions.
AFM was run with the flags as described previously but including:
--num_multimer_predictions_per_model to achieve the requested
number of target predictions.

The methods internal script used to generate the final ensemble
from AF/AFM-predicted subunits (encoded in the script af_to_evo-
dock.py) is shown in Fig. S11c. All AF monomer predictions were first
filtered based on their pLDDT (≥90 for the benchmark structures) and
all AFM multimer predictions by their pLDDT and ipTM+pTM scores
(≥90 and ≥0.9, respectively, for the benchmark structures) to produce
an initial ensemble (as in Fig. 3a). The termini were then removed as
described in Fig. 3b from the structures in the initial ensemble in a
process described here in further detail, using the average values cal-
culated from the structures in the initial ensemble of pLDDT (Avg.
pLDDT), secondary structure propensity (SS %) and residue con-
nectivity (connectivity %). The average residue pLDDT is calculated
from the AF/AFM output. The secondary structure propensity is cal-
culated with DSSP36 while the residue connectivity was calculated with
a custom function in the af_to_evodock.py script. For this, a contact
map is created, and a residue is designated ‘disconnected’ if it is not in
contact (>8 Å) with another residue 10 residue neighbors down-
stream or upstream to the rest of the structure. Thresholds are set for
the three metrics, and the first residue instance that goes above any of
the thresholds is recorded. All residues preceding the first instance of
the last threshold to be crossed are removed. This process is done
going from the N- to C-termini and from the C- to N-termini. The
thresholds are set to 90 for the Avg. pLDDT, 70% for connectivity %,
and 70% for SS %.

The final ensemble is further reduced to remove structural
redundancy by iteratively removing very similar structures. All pair-
wise RMSD values are calculated and structures with values below
0.1 Å are removed keeping only the model with the best AF/AFM pre-
diction scores. However, if the total size of the final ensemble is less
than 50predictions, the threshold for similarity is reduced by lowering
it 0.005 Å for up to 18 steps.

In the global assembly experiments, we extract starting values for
some rigid body parameters (ψ, ϴ, φ, and x) from the AFM oligomer
predictions, and sample around those.

EvoDOCK simulations
EvoDOCK was run 50 independent times for local recapitulation
experiments and 100 independent times for local/global assembly. All
runs had a population size of 100 individuals and were run for 50

generations. As we wanted to explore the energy landscape further for
somemodels, the local recapitulation runs of 7Q03were run 100 times
with 100 generations and 6H05 50 times with 100 generations. All
simulations ran to completion except for one run for the global
assembly docking of 1JH5 and 5A8D. The mutation rate was set to
0.1 and recombination rate to 0.7. For the local and global assembly
experiments the rigid body parameters were initially uniformly sam-
pled within their bounds as described in the parametric constraints
section. For the global assembly experiments the initial z parameter
was however determined by sliding the subunits away and then onto
each other again using the CCS score function to stop the sliding when
clashes were detected. The template symmetry for the local assembly
experiment is derived from the target native structure, while for the
global assembly experiments an ideal symmetry is used. Differently
from the previous scoring implementation of heterodimeric EvoDOCK
is the use of the interface energy (Iscore). We noticed that interactions
within a subunit could bias the selection process without improving
the overall assembly energy and therefore the Iscore is used as the
selection criteria.

Symmetric energy refinement
One thousand of the best structures based on the interface score
(Iscore) were selected from the EvoDOCK runs and k-means clustering
from the scikit-learn pythonpackage37was used toputmodels into 100
clusters based on their final 6 rigid body parameters. The best models
according to the Iscore values within each cluster were selected, to
produce a final set of 100 models as inputs to the Rosetta FastRelax
method23.

Clustering of models
The 100 energy-refined structures were put into 5 clusters based on
their 6 rigid body parameters using k-means clustering from the scikit-
learn python package37. One model from each cluster was selected
based on their Iscore resulting in 5 total models. The 5 models are the
ones used to evaluate the TM-score22, Pairwise DockQ score24,
and RMSD.

TM-score
The TM-score22,38 was calculated as follows:

MMalign <input file> <native file> � ter 0

With both the input_file and native_file being the full biological
assembly.

Pairwise DockQ score
The Pairwise DockQ score24 was calculated by summing up the DockQ
score for each unique interface respective of each cubic symmetry
type: 2-, 3-fold for T; 2-, 3-, 4-fold for O; 2-, 3-, 5-fold for I. For each fold,
two chains that form part of the unique interface that matches best
according to the RMSD to the two chains of the experimental structure
were used in the DockQ score calculation. The two chains were first
aligned by their residue numbers as follows:

:=DockQ=scripts=fix numbering:pl <predicteddimeric interface>

<native dimeric interface>

The output of fix_numbering.pl was then used to calculate the
DockQ score as:

pythonDockQ:py<alignedpredicteddimeric interface>

<nativedimeric interface>

The pairwise DockQ scorewas then calculated by summing up the
individual dimeric DockQ scores and normalizing themby theirΔSASA
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(Change in SASA when moving the chains away and back into their
original position) as follows:

X
i

DockQscoreð Þi ×
ΔSASAi

Total ΔSASA ð4Þ

RMSD
RMSD was calculated using the Rosetta software18,28. The RMSD was
calculated on the subsystemasdescribed in themain text compared to
the experimental structure. The number of different chain combina-
tions to compare on each evaluation of the full structure is computa-
tionally intractable and the subsystem is therefore used. Tomake sure
the full symmetrical system is captured in the RMSD calculation, each
symmetrically equivalent configuration of the subsystem is used to
calculate the RMSD. This is achieved by rotating around one of the
symmetric n-folds n times. For instance, for an icosahedral structure, 5
configurations are tried by rotating the structure around the 5-fold
separated by 72 degrees. So RMSD is calculated at 0, 72, 144, 216, and
288 degrees. The lowest value of the RMSD is selected as the
report RMSD.

AFM training set homology calculation
The PDB was culled for sequences with structures with a release date
before 2018-04-30, containing between 2–9 chains with no more than
1536 residues. The EMBOSS pairwise sequence alignment software
needle39 was used to calculate all pairwise sequence identities between
the culled set and the 111 cubic sequences (including the benchmark
set) with the following options:

needle � asequence<seqA> � bsequence <seqB> � sprotein1

� sprotein2 � gapopen 10:0 � gapextend0:5

where seq A is a sequence of the 111 cubic set and seq B a sequence of
the culled PDB set.

Time complexity
The expected time it takes to reach a given probability of success in the
stochastic sampling with EvoDOCK was estimated and the results are
presented in Table S2. The strategy is based on the procedure presented
inVarela et al.15 ThecompletedatawithRMSDandenergyvalues for each
run were resampled. A loop over the number of runs (num_runs: 1–100)
was constructed. For each num_runs a random selection of num_runs
runswas sampled from the set of 100 runs. This procedurewas repeated
100 times for each num_runs. A sample was considered successful if the
lowest energymodel has a RMSD of less than 4Å to the native structure
at the last generation. Toestimate theprobability of success, the fraction
of sampled data sets among the 100 resampled sets for each combina-
tion of num_runs that result in a successful runwere calculated. Table S2
shows thenumbersof runs and times it takes to reach80%, 90%and99%
percent success rate. The local assembly benchmark was run on a
combination of Intel Xeon E5-2650 v.3 (21 PDBs) and AMD 7413 pro-
cessors (6 PDBs). Theglobal assembly benchmarkwas exclusively runon
AMD 7413 processors. The Intel CPUs have an approximately 2 times
slowdown compared to the AMD CPUs on our benchmark set. Each run
of relax takes 10min in thebest-case scenario andup to4–5 h in themost
extreme case on AMD 7413 processors. We estimate that running 25
relax runs should be sufficient in most cases (5 runs per cluster) adding
approximately 50h to the total computational time.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. All predicted structures are
deposited in Zenodo. The accession codes for all benchmark PDBs are given
here:2ZY2,2QQY,3LEO,7Q03,6M8V,6HSB,4DCL,2CC9,4CY9,3WIS, 5EKW,
5H46, 3N1I, 6H05, 7O63, 7OHF, 3BXV, 7PF9, 1HQK, 1T0T, 4RFT, 4V4M, 1JH5,
6ZLO, 1X36, 2WQT, 7B3Y. Source data are provided with this paper.

Code availability
The code for running all the simulations in this study is available for
download at https://github.com/Andre-lab/evodock40.
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