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A fully integrated, standalone stretchable
device platform with in-sensor adaptive
machine learning for rehabilitation

Hongcheng Xu 1, Weihao Zheng1, Yang Zhang 2, Daqing Zhao3, Lu Wang3,
Yunlong Zhao4, Weidong Wang 1 , Yangbo Yuan1, Ji Zhang 1, Zimin Huo1,
Yuejiao Wang 5, Ningjuan Zhao1, Yuxin Qin1, Ke Liu1, Ruida Xi1, Gang Chen1,
Haiyan Zhang 1, Chu Tang 6, Junyu Yan1, Qi Ge 7, Huanyu Cheng 8 ,
Yang Lu 9 & Libo Gao 4

Post-surgical treatments of the human throat often require continuous mon-
itoring of diverse vital and muscle activities. However, wireless, continuous
monitoring and analysis of these activities directly from the throat skin have
not been developed. Here, we report the design and validation of a fully
integrated standalone stretchable device platform that provides wireless
measurements and machine learning-based analysis of diverse vibrations and
muscle electrical activities from the throat. We demonstrate that the modified
composite hydrogel with low contact impedance and reduced adhesion pro-
vides high-quality long-term monitoring of local muscle electrical signals. We
show that the integrated triaxial broad-band accelerometer also measures
large body movements and subtle physiological activities/vibrations. We find
that the combined data processed by a 2D-like sequential feature extractor
with fully connected neurons facilitates the classification of various motion/
speech features at a high accuracy of over 90%, which adapts to the data with
noise from motion artifacts or the data from new human subjects. The
resulting standalone stretchable device with wireless monitoring andmachine
learning-based processing capabilities paves the way to design and apply
wearable skin-interfaced systems for the remote monitoring and treatment
evaluation of various diseases.

Wearable devices start to gain momentum in disease diagnostic con-
firmation, treatment evaluation, and healthy aging1–4. For those who
suffer from congenital choking5,6 or neck cancer7–9, post-surgical
rehabilitation of the human throat often requires the clinician’s con-
tinuous monitoring and evaluation of swallowing ability10, vocal-fold
motion11, oral intake of liquid12, and others13–15. Monitoring and diag-
nosis of these behaviors can also prevent secondary injuries that often
occur in patients with dysphagia disorders during normal daily activ-
ities. Currently, the commercial devices to track laryngeal signatures
are rigid, bulky, and tethered, including the lip-closing force gauge16,

non-invasive belts17–19, thin-film pressure sensors20, and others21. The
poor device/skin contact also results in attenuated signals that are also
susceptible to motion artifacts. Therefore, soft on-throat devices are
urgently needed to continuously monitor laryngeal activities for
diagnosis and rehabilitation evaluation.

Diverse laryngeal activities with serial muscle movements typi-
cally cause laryngeal muscle motions and local inertial vibrations22.
Therefore, they are often used to evaluate the laryngeal health con-
dition of patients. For instance, swallowing amplitude and rhythm
reflect the intake ability of food and water23. However, features
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obtained by traditional wearable devices such as the single force sen-
sor on the throat20 can only provide limited information about the
patient’s health condition. Monitoring of both vibrations and muscle
activities is mainly achieved by using separate inertial devices and
force sensors on the skin. Efforts to address this challenge lead to the
development of a wearable accelerometer for neck voice disorders24

and flexible surface electromyogram (sEMG) electrodes with a strain
sensor for oropharyngeal swallowing disorders23,25. However, these
flexible sensors suffer from limited stretchability of less than 16%23,25,
poor system integration with only sensors without functional circuit
board21,26, and severe skin inflammation or allergy during use over
several hours owing to its low permeability27–29. It is important to
integrate soft wearable electronics2,30,31 with data processing/trans-
mission units32–34 to realize the full potential of the wide range of
electro-mechanical signatures35,36. A recent development on a skin-
mounted mechano-acoustic sensing system provides a prospective
way to track the activity at the suprasternal notch37,38. However, high-
quality sEMG signals without being affected bymotion artifacts are yet
to be integrated into the device platform and the data analysis based
on the advanced machine learning algorithm on the cloud is still
needed for remote monitoring and evaluation.

Machine learning-based diagnosis is of great interest in the
development of smart medicine, especially integrated with soft elec-
tronics (to classify the dysphagia severity)37,39,40. Early efforts include
the use of the one-dimensional (1D) convolution neural network
(CNN)-based deep learning for rehabilitation monitoring after ortho-
pedic surgery41 and predicting knee joint postures42. Despite high
recognition accuracy, these CNN models with individual-1D data
sources only offer limited feature information during the learning
processes for target predictions. These models without memory
function and adaptive capabilities suffer from low prediction accura-
cies for data from new subjects, which is critical in practical
applications.

Herein, this work presents a fully integrated standalone stretch-
able device platform that can wirelessly measure and analyze diverse
vibrations and muscle activities directly from the human skin. The
modified composite hydrogel electrode interface is designed to
maintain robust contact to the throat with low contact impedance for
improved signal quality during motion and low adhesion for easy
removal. Besides sEMG signals, the triaxial broad-bandwidth accel-
erometer integrated into the patch can also monitor large body
movements (e.g., walking and jumping) and subtle physiological
activities (e.g., heartbeats and respiration). With a 2D class sequence
feature extractor based on the CNN algorithm, 13 general features
from fourteen healthy human subjects and two patients (one with
myasthenia gravis and the other with laryngeal cancer) can be classi-
fied with a high accuracy of 98.2%. More importantly, the fully con-
nected neurons of the 2D-like sequential feature-extracting model can
allow the device system to adapt for use with noise from motion arti-
facts and on new subjects with a high prediction accuracy of 92%. A
wireless user interface further enables remote monitoring and real-
time evaluation of laryngeal activities on the cloud server, paving the
way for thenext-generation standalone stretchable deviceplatform for
laryngeal rehabilitation management and diagnosis and treatment
evaluation of various diseases.

Results and discussion
Design of the laryngeal patch
The standalone stretchable device platform consisting of hydrogel
electrodes and functional electronic components with signal-
processing units interconnected by the coplanar serpentine Cu net-
work (Fig. 1a) can directly adhere to the human skin (Fig. 1b). The
processed and wireless transmitted signals from the inertial triaxial
accelerometer and hydrogel electrodes (Fig. 1c and Fig. S1) provide
continuous and non-invasive monitoring of local vibrations and

muscle activities from the larynx and other locations on the human
body. Various activities can also be distinguished with an efficient
convolutional neural network and the data processedon a cloud server
further facilitates remote rehabilitation and disease diagnosis (Fig. 1d).
The standalone stretchable device platform fabricated from low-cost
processes (Figs. S2–5) exhibits robust electromechanical performance
upon various mechanical deformations (e.g., stretching, bending, and
twisting) as verified by both finite element analysis (FEA) and experi-
ments (Figs. 1e, S6, and movies S1–3).

Design and characterization of the composite hydrogel
interface
The composite hydrogel mainly consists of monomer ([2-(Methacry-
loyloxy)ethyl]dimethyl-(3-sulfopropyl) ammoniumhydroxide, DMAPS),
crossed linker, photo-initiator, and ionic salt (see fabrication in
Method). Without a need to strictly balance positive and negative
charges during the copolymerization process, a wide range of mono-
mer ratios, concentrations, and ionic strengths can be used to synthe-
size in this zwitterionic-type hydrogel43. To avoid oxidation of the
copper-based electrode array and improve the contact quality to the
skin for enhanced signal acquisition, a stretchable and highly con-
ductive ionic hydrogel interface is designed by doping Ag nanowires
(AgNWs) in the ionic composite with a polydimethylsiloxane (PDMS)
skeleton (Fig. 2a). Thedesignwith thePDMSskeletonexhibits a reduced
peak strain of 0.86 for a uniaxial stretching of 50%, compared to that of
3.13 in the one without (Fig. 2b). The stretchable PDMS with a higher
modulus (~200 kPa) and optimized number of vertical beams (Fig. S7)
provides the modified hydrogel composite with improved load and
strain bearing capabilities (14 kPa/200% for the tensile stress/strain)
(Figs. 2c and S8). The AgNWs with optimized concentration (0.7wt%,
Figs. S9–10) in the hydrogel not only providehigh conductivity, but also
result in lower contact impedance than that of the commercial gel
electrode (Figs. 2d and S11) for the high-quality acquisition of sEMG
signals (Fig. 2e). The lower contact impedance results from the high
conductivity at the Cu/hydrogel interface (Fig. S12) and the improved
hydrogel/skin contact quality as observed on the skin replica (Fig. 2f).
The increased contact impedance from drying can recover by applying
pure water (Fig. S13). Meanwhile, it is interesting to note that the
composite hydrogel presents a lower tensile strain (Fig. 2g) andca. eight
times smaller peeling force (Fig. 2h) compared with the commercial gel
electrodes, which facilitates easy removal, especially from the skin of
the infants or elderly. The composite hydrogel that can protect the skin
fromUV and IR radiation (Fig. S14) also exhibits high cell viability (>80%
of epithelial cells) and biocompatibility (Fig. 2i) for long-term mon-
itoring. The modified hydrogel with excellent contact impedance and
other properties suitable for integration with flexible circuits in the
standalone device platform for healthmonitoring is superior compared
to the previously reported hydrogels27,44–60 (Table S1).

Electrical and mechanical performance of the fully
integrated patch
The fully integrated device is designed to provide high-quality wireless
transmission. As shown in electromagnetic (EM) simulations, a minia-
turized low-temperature co-fired ceramic (LTCC) antenna (Fig. S15) is
integrated with the low-power Bluetooth module to investigate and
demonstrate the transmission properties of the device. The LTCC
antenna on the Cu serpentine network further encapsulated by a
500μm-thick Ecoflex layer only shows a small frequency shift
(<19MHz) andmaintains excellent impedancematching (with a return
loss <10 dB) (Fig. 3a), leading to negligible impact on the near and far
radiation fields (Fig. 3b–d). The biocompatible Ecoflex encapsulation
also isolates the thermal radiation (Fig. 3e) even when the patch is
powered by a lithium-ion battery (Fig. S16) due to low power con-
sumption, which is suitable for long-term use on the skin. The tight
coupling of the device to the skin provides high-quality sEMG signal
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Fig. 1 | Overview and design of the standalone stretchable laryngeal patch.
a Exploded diagram of the integrated device system. b Optical images of the
standalone stretchable device patch attached to the laryngeal skin (top) and fore-
arm (bottom). c Block functional diagram showing the processing steps of the
acceleration and surface electromyography (sEMG) signals, including signal pro-
cessing, controlling, communication, anddisplay.d Schematic showing the use of a

machine learning network and the standalone stretchable patch in laryngeal post-
surgical rehabilitation. e Finite element analysis (FEA) and corresponding experi-
mental results of the patch under mechanical deformations: uniaxial stretching of
30%, bending to the cylinder with a radius of 1 cm, conforming to a sphere with a
radius of 4 cm, and twisting with a torsional angle of 90°.
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even with motion artifacts such as from “talking”, as evidenced by the
highest power spectral density and the lowest signal-to-noise ratio
compared to commercial devices (Figs. 3f, g and S17).

The device also exhibits high mechanical compliance and
robustness, including a skin-likeYoung’smodulus of 89.5 kPa (Fig. S18)
and a small forcehysteresis of <6.4% for a tensile strain of 30% (Fig. 3h),
leading to comfort integration on the skin upon various deformations

(Fig. 3i). Evenwhen the device is stretched to 30% that is themaximum
strain on the skin61, the maximum principal strain (3%) in the Cu ser-
pentine network (Fig. 3j) is still below the fracture strain of Cu (5%)62.
The serpentine design of the Cu network also helps the devicepatch to
maintain the mechanical properties such as the stress-strain curve
(Figs. S19–20) for high-quality monitoring during skin/body move-
ments. The fully integrated device with superior mechanical and
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f Scanning electron microscope (SEM) images of the skin replica (top), the
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g Simulated strain distributions (left) and optical images (right) of the composite
hydrogel and commercial gel electrodes on the skin during vertical peeling.
hMeasured peeling forces of the hydrogel and commercial gel electrodes from the
forearm. iBiocompatibility tests of epithelial cells cultured in the uncured hydrogel
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electrical properties for conformable monitoring (e.g., swallowing
activities) during movements outperforms previous reports of lar-
yngeal sensors16,23,24,38,63–76 (Table S2).

Monitoring of various biophysical activities at the throat
As the throat provides rich information on vibrations and muscle
activities for clinical diagnosis of various diseases and corresponding
post-surgical training/evaluation15, the device is applied to this critical

location for a proof-of-conception demonstration. The high-sensitivity
accelerometer ADXL-345 with a sampling frequency of up to 800Hz in
the patch allows successful continuous monitoring of various activ-
ities, such as sitting, talking, swallowing, walking, and jumping (Fig. 4a
and movies S4–6), with a wide frequency spectrum from 0 to 400Hz
(Fig. 4b). The simultaneously measured acceleration data along three
different directions allow the integrated system to distinguishmultiple
motions separately (e.g., talking while walking, drinking water while
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coughing, drinking water while swallowing) (Figs. S21 and S22), as well
as capture the swallowing process from a patient with myasthenia
gravis (Fig. S23). In the laryngeal events, the talking and swallowing
signals follow the vibrationalmovements along the normaldirectionof
the skin (z-axis), whereas walking and jumping signals stem from body
motions along the throat skin from the neck to the head direction (y-
axis). The time-frequency contour of the signals from the short-time
Fourier transform confirms the high-frequency (up to 200Hz)

responses with a lower amplitude (less than 0.4 g) of swallowing and
talking (Fig. 4c, d). In contrast, walking and jumping are opposite with
the slow-moving frequency and a large acceleration magnitude (Fig.
S24). These features are highly consistentwith the behavior of adults38.
In addition, periodically weak vibrations of laryngeal bones from car-
diac and lung dilatation processes provide routes to measure heart
rate (HR) and respiration rate (RR) from recorded acceleration along
the Z and Y axes, respectively. With digital filtering and peak-detection
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(Fig. 4e), the HR and RR of 19.2 and 50.4 times per minute can be
decoupled from the original data (Fig. 4f). As themounting position of
the patchmoves up the laryngeal skin, the measured cardiac behavior
remains unchanged, but the respiration amplitude decreases (Fig. S25)
due to significantly reduced movements (along the neck direction)
farther away from the chest cavity.Moreover, the swallowing signature
can be clearly observed by placing the integrated device at the throat
area with comparable performance to the suprahyoid area, whereas
the signal at the suprasternal notch area is almost inconspicuous (Fig.
S26), leading to the choice of middle throat area for laryngeal detec-
tion. More importantly, the combination of the acceleration data with
sEMG for muscular activities during talking (Fig. S27) can further
decouple speaking for speech recognition andmore precise diagnosis
and evaluation of various diseases in the clinical practice.

The machine learning model for rehabilitative evaluation
The clinical evaluation for laryngeal rehabilitation usually focuses on
typical events (i.e., talking, swallowing, volume, and viscosity swallow-
ing with modified safety and effectiveness indicators) with long-term
and extensive efforts77. To help automatically evaluate the laryngeal
condition of the new patients and healthy individuals, a CNN-based 2D-
like sequential feature extractor (2D-SFE) is explored to classify and
infer pathological status based on the classification of physiological
events (Fig. 5a). Comparison in the overall accuracy between this work
andprevious reports indicates the advantage of integrating twodistinct
signal inputs in adaptive machine learning34,71,73,76,78–82 (Table S3). The
collected 1D data (acceleration and sEMG) are first transferred to a 2D
vector similar to an image matrix for processing by the CNN-based 2D-
SFE that contains 62 filtering layers (Fig. S28) and 2 classifying layers
(Fig. S29). In the training model with the above-related activities, the
processing vectors are iterated from the convolutional layer to the
pooling layer and then to the activation layer to achieve dimensionality
reduction of the feature vectors (FVs). The extracted feature is further
classified into special targets by evaluating the consistency of the
softmax function in the full connection layer. In the proof-of-the-
concept demonstration, five Chinese pinyin and five vowels are chosen
as the acoustic states, together with swallowing, drinking water, and
coughing behaviors as feature states from fourteen healthy human
subjects and two patients (one with myasthenia gravis and the other
with laryngeal cancer, sampling rate of 333Hz). The acceleration and
sEMG data in 2D-like vector contours (Fig. 5b and SI Note1) also include
noise fromothermotion actions (e.g., drinkingwaterwhile coughing) to
mimic real-world situations. Randomly dividing each 2D data of the
laryngeal feature into 100 sequences with a fixed length of 1000 data
points ensures data reliability (covering the entire test data of each
feature). The triplet and cross-entropy are used as the objective func-
tions for feature extraction and classification, respectively (Fig. 5c).
Finally, the classified featureultimately corresponds to the tested states,
forming the confusion matrix83.

After training these features through 62 extracting layers and 2
classification layers, the accuracy of all states from training and testing
data tends to peak at 60 epochs (Fig. 5d), which can also be verified by
the normalized loss for the two objective functions during 100 itera-
tions (Fig. 5e). FVs clustered by the t-distributed stochastic neighbor-
hood embedding algorithm during the training process help visualize
the evolution of the principle component in the machine learning
space (Fig. 5f). The machine learning model achieves an overall pre-
diction accuracyof 98.2% for the 13 states/features studied in thiswork
(Figs. 5g and S30), demonstrating the excellent performance of the
CNN-based 2D-SFE for multidimensional vector prediction (e.g., mul-
tiple sequential targets over time)78.

Applications for remote diagnosis and monitoring
The measured data wirelessly transmitted to the cloud server in real-
time via the local cellular network also creates opportunities for

remote diagnosis and treatment evaluation over time (Fig. 6a and S31).
In the proof-of-the-concept demonstration, the free Ali-cloud is cho-
sen as the cloud hub and the user interface is custom-built according
to the application development protocols. Validation of the CNN-
based 2D-SFE with the laryngeal activities from another two subjects
(SI Note1) shows a high accuracy of over 95% for the 13 features along
with three performing states to simulate movement artifacts from
choking, chewing, and nodding (Fig. 6b). To help evaluate the post-
surgical state, a pathological rehabilitative degree is sorted into eight
levels in the cloud-served interface based on three typical activities:
swallowing, talking, and drinking water (Methods). The machine
learningmodel with fully connected neurons can adapt to events from
new human subjects, resulting in an overall classification accuracy of
up to 92% (Fig. 6c). The challenge to separate the principal compo-
nents of the three typical activities from talking (Fig. 6d) accounts for
the relatively low prediction accuracy (Fig. S32), but the overall pre-
diction accuracy still reaches 92%. Reducing the feature category from
13 to 4 (still from 13 different behaviors) leads to quick convergence of
the adaptive system (Figs. 6e, f and S33) with a high accuracy of 89.7%
(seeMethods), demonstrating its power for use in newhuman subjects.

The decoupled measurements of HR, RR, and various behaviors
over a long term are critical for precise diagnosis and treatment eva-
luation. Besides the good agreement in the HR between our patch and
a commercial platform (BL-420) during sitting and breath-holding
(Fig. 6g), the characteristic R, S, and T waveforms can also be clearly
observed during long-term monitoring (Fig. 6h). Similarly, the RR
tracking from our patch also highly correlates with that from the
commercial device, an average RR of ca. 20.35 calculated from the
peak-seeking algorithm (Fig. 6i). The relatively long-term monitoring
required for perioperative or rehabilitation is further demonstrated by
tracking various physiological events for 2.65 h (Fig. 6j, top). Com-
pared with the commercial counterpart, our device exhibits a larger
amplitude in the timedomain due to the highmechano-acoustic signal
quality. The distinguished frequency spectrum width and power
intensity can also help decouple these signals (Fig. 6j, bottom). The
difference in the fundamental frequency (e.g., a higher value of over
100Hz from talking and coughing comparedwith that of other events)
allows the evaluation of various laryngeal conditions.

The swallowing process with the pear-shaped postcricoid area
transitioned from opening to closing can be accurately monitored by
our integrated wireless platform, which is also validated against the
gold standard based on the fiberoptic endoscopic examination of
swallowing (FEES, Figs. S34–34 and Movie S7). Compared with the
healthy control (Fig. S34a), the patient with myasthenia gravis shows
higher muscle force to complete swallowing, where this difference is
not captured by the FEES (Fig. S34b).

The volume and viscosity swallowing test-chinses version with
modified safety and effectiveness indicators is used to quantify the
analysis as the subject ingests a blue edible indicator with a body
weight percentage of 2% (stage #1) and 1% (stage #2) (Fig. S35a). The
clinical standard for swallowing rhythm requires swallowing to be less
than 3 s from the indicator in mouth to the circumpharyngeal muscle
opening and a total time of less than 15 s for the complete ingestion
process. The swallowing in both stages for the patient withmyasthenia
gravis exceeds 15 s (Fig. S35b). Liquid residual still exists after 25 s in
the oropharyngeal junction area in stage #1 (Fig. S35c). The duration of
the process of about 10 s captured by our device is consistent with the
clinical standard (Fig. S35d), demonstrating the feasibility and relia-
bility of the integrated system. It is important to note that one portion
of the ingesting process (7–12 s) in the stage #2 is not captured by the
FEES due to the closed oropharyngeal junction area blocking the
endoscopic view (Fig. S35e). In contrast, this missing swallowing pro-
cess is still clearly recorded by our device (Fig. S35f, green dashed
ellipse), providing enhanced diagnostic accuracy for laryngeal post-
operative patients. Above all, the standalone stretchable device
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platform with wirelessly long-term monitored data processed by
machine learningon the cloudprovides a unique tool for diagnosis and
rehabilitative evaluation.

In summary, we report a fully integrated standalone stretchable
device platform for wireless monitoring and machine learning-based
processing of diverse vibrations andmuscle activities directly from the
skin. The design of the modified composite hydrogel interface pro-
vides a conform contact with the human skin, which achieves lower
contact impedance for high signal quality duringmotions and reduced
adhesion for easy removal. The integrated triaxial accelerometerwith a
broad bandwidth can also accuratelymonitor both largemotions (e.g.,
walking and jumping) and subtle vibrations (e.g., heartbeats and
respiration). The measured data from 13 general signatures/states
during laryngeal activities processed by a 2D-like sequential feature
extractor based on the CNN can be classified with a high accuracy of
98.2%. The fully connected neuron in the machine learning model
further allows it to accurately classify the data from new human sub-
jects with a 92% accuracy. In addition, the custom-built interface to
process the data on the cloud opens up new opportunities for remote
diagnosis and treatment evaluation for rehabilitation management
and various disease applications. Above all, the developed standalone
stretchable platform integrates the skin-interfaced soft electrodes and
sensors for biophysicalmonitoringwith a stretchable hybrid circuit for
wireless transmission. Furthermore, the sEMG combined with 3D
acceleration signals captured by our integrated device platform can
provide rich information for the feature extractor to adapt to new
human subjects, allowing evaluation and rehabilitation of swallowing
disorders.

Methods
Ethics declaration
All human subject studies were approved by the Institutional Review
Boardof the FirstAffiliatedHospital of theAir ForceMedical University
(protocol: KY20222259-C-1), and the volunteers gave informed con-
sent. The authors affirm that human research participants provided
informed consent for publication of the images in Figs. 1b, 5b, and 6b.

Fabrication of the stretchable patch, hydrogel interface, and
LTCC antenna
The fabrication of the stretchable patch primarily comprises (i) the
engraving and transfer of the conductive serpentine traces, (ii) the
low-temperature reflow soldering of components, and (iii) the
encapsulation with Ecoflex (Fig. S2). Firstly, the mixed PDMS pre-
cursor with a weight ratio of 10:1 for the base to curing agent (Dow
Corning, Sylgard 184A to B) was spin-coated on a clear glass plate at
600 rpm for 10 s, followed by curing at 70 °C for 1.5 h to form the
adhesive substrate. Next, a copper (Cu) foil with a thickness of 8 μm
(Red copper, T1100), coated on polyimide (PI, 3 μm, HanKe New
materials Co., LTD.), was laminated on the PDMS film at a pressure
of 100 kPa for 1 h. With the designed CAD file, a 355 nm UV laser
(Yuanlu corporation,Wuhan) was used to engrave the serpentine Cu
structure with 100 kHz pulse frequency at a speed of 300mm s−1 for
4 times repeated cutting. Peeling off the residual left the conductive
Cu network on the PDMS. The serpentine trace was then transferred
to the uncured Ecoflex elastomer (Smooth-on, USA) mixed at a
weight ratio of 1:1 (A: B) by a water-soluble tape (AQUASOL).
Applying deionized water for 3 h dissolved the water-soluble tape.
After placing laser-engraved rectangle PDMS isolators at the
designed chip location, a thin layer of solder (AL656, Abond) was
printed on the connecting pads through a laser-engraved PETmask.
After placing all chips and components (smaller than 0.5 cm2, Fig.
S36), the entire patch was heated in a solder pot (ZB2520HL, HuaQi
zhengbang) at 138 °C for 30min. Next, the water-soluble tape was
applied to the copper mesh electrode, and an insulting oil (PVB,
Langyi Chemical, Zhongshan) was sprayed on the circuits (except

the water-soluble tape), followed by curing at 50 °C for 3 h. Finally,
spin-coating silicone elastomer on the bare circuit at 500 rpm for
10 s and curing at 40 °C for 1.5 h completed the fabrication. The high
reproducibility of the fabrication method is highlighted by the
batch production of the integrated device platform (Fig. S37).

The fabrication of the hydrogel electrode started with sequen-
tially mixing the monomer (DMAPS, Macklin), crossed linker (Methy-
lene-Bis-Acrylamide, MBA, Macklin), photo-initiator (α-Ketoglutaric
acid, KGA, Macklin), ionic salt (LiCl, Macklin), and deionized water at a
weight of 1833:2:1:400:3333. All materials were purchased from Alad-
din. Next, the 2.83mL AgNW solution (5mgmL−1 in isopropyl alcohol,
Hengqiu Tech.) was added to the obtained hydrogel precursor, fol-
lowed by a continuous string for 2 h. The PDMSmesh was prepared by
engraving a 100μm-thick PDMS film with the UV laser at a pulse fre-
quency of 50 kHz and speed of 300mm/s for 20 times repeated cut-
ting. After dissolving the water-soluble tape to expose the copper
electrode, the PDMS mesh was placed and the hydrogel precursor
solution was poured, followed by curing in the UV pot at 30W for
120min, to form hydrogel-interfaced electrodes.

The fabrication of the LTCC antenna first used a punching
machine (XT0800X) to punch holes (radius = 0.07mm) in the ceramic
germinal substrate at a speed of 1000 holesmin−1 (Fig. S15). Next, the
conductive copper slurry (General Research Institute for Non-ferrous
Metals) dispersed in these holes was sintered on the heater at 150 °C
for 3 h. The top and bottom antennas were then printed on the
germinal substrate through a laser-engraved mask. After peeling off
the mask, sintering of the antenna at 150 °C for 1 h was followed by
blading the top/bottom packaged ceramic and sintering at 870 °C
for 1.5 h.

Design of signal processing and transmission circuits
As illustrated in the detailed circuit schematic (Fig. S38), the signal
processing unit included the low-power processor with 8-bit com-
puting ability (Atmel, atmega328p), the inertial accelerometer (ANA-
LOG, ADXL345), and the biological signal detection chip (NeuroSky,
BMD101). The power management chip HT7133 (HOLTEK) was chosen
due to its ability to convert the voltage from 3.7 to 3.3 V. The Bluetooth
module PW02 (Phangwei Link) had serial port transmission ability. The
integrated device can maintain continuous operation for approxi-
mately 5 to 6 h on a 35mAh Li battery.

FEA of mechanics and electromagnetics
The FEA was carried out to study the mechanical behaviors of the
hydrogel/patch under diverse deformations and the EM properties of
the LTCC antenna. All material properties were assigned according to
thematerial source in the FEA software. The Young’s modulus of these
materials, themodified hydrogel, copper, eco-flex, polyimide, and skin
replica, were set as 50 kPa, 80GPa, 60 kPa, 800MPa, 200 kPa,
respectively.

Characterizations of mechanical/electrical and structural
properties
All tensile tests were conducted by a mechanical testing machine (ZQ-
990B, Zhi Qu).Material conductivity wasmeasured with an LCR digital
bridge meter (IM2536, HIOKI). A pair of electrodes with a size of
5.5mm×32mm (or diameter of 18.36mm for the commercial gel
electrodes) separated by a distance of 40mm on the forearm were
used for the contact impedance test. The return loss of the LTCC
antenna was measured by a vector network analyzer (SVA 1032X,
SIGLENT). The electrophysiological signals were acquired by a multi-
channel tester (BL-420, TECHMAN, Chengdu). The morphologies of
the materials were observed by the scanning electron microscope
(HiVac, Apreo). The cell viability was tested by the MTT Assay micro-
plate reader. The light transmittance was obtained by the solar film
transmissionmeter (LS101, LinShang). HR and RRwere obtained as the
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subjectperformed the instructed behaviors (e.g., holding the breath or
sitting still).

Machine learning algorithms for classification and prediction
Continuousmeasurements from fourteen healthy human subjects and
two patients (one with myasthenia gravis and the other with laryngeal
cancer) were used as the training data and the measurements from
another twovolunteers (amale and a female)wereused as testingdata.
First, all measured data were marked at different feature types and
normalized to unify data dimensions. Randomly dividing each 2D data
of the laryngeal feature into 100 sequences with a fixed length of 1000
data points (covering the entire test data of each feature such as
swallowing, drinking, speaking, and coughing) ensured data reliability.
Meanwhile, every label was coded via the one hot coding83. Next, the
pretreated data were extracted through 8-weight blocks with 62 pro-
cessing layers and fed into the classifier. The batch size in the learning
model was set to 64 for extracting the feature. The iterative learning
rate (LR) was calculated as

LR= 1 +0:5 cos x +π=epochs
� �� �

*ð1� iLRÞ, ð1Þ

where x is the times at the corresponding training process, the epochs
are iterative times during the training, and iLR is the initial LR (1e−4).
The iterative attenuation rate (AR) was calculated from (with the initial
value set as 0.9)

ARt =ARt�1 � LR*
mt

1� βt
1

 !
�

ε+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vt=ð1� βt

2Þ
q� �

, ð2Þ

where β1 and β2 are the first and second-order attenuation coefficients,
respectively, mt is the biased first-moment estimate, vt is the biased
second raw moment estimate, and ε is the relative weight constant.
Equation (2) was based on the optimized machine learning algorithm
(i.e., Adaptive moment estimation, Adam). The motion/movement
artifacts (e.g., from drinking while coughing) were also accounted for
in the testing data from the two new human subjects (see details in
SI Note1).

Development of the APP and cloud-served interface
The app was programmed using java on the Android Studio platform.
The cloud-served interfacewas designed by the software development
of the Internet of Things section in Alibaba Cloud. The pathological
degree at the cloud server interface was sorted into eight levels (from
the best state I to the worst state VIII) according to the rehabilitative
conditions of three processes: swallowing (S), drinking water (D), and
talking (T). During laryngeal rehabilitation, various behaviors such as
swallowing, talking, and drinking water are assessed to be either nor-
mal or abnormal for eachbehavior, so the combined evaluation results
of the three representative behaviors form eight evaluation states
(Table S4). Although this 8-degree rating is not currently used in
clinical evaluation, it couldprovide insights intopatient’s conditions to
help guide individualized rehabilitation in the future.

Statistics and reproducibility
No data were excluded from the analyses. No statistical method was
used to predetermine the sample size. The results presented in
Figs. 2b–e, h, i, 3a, b, f–h 4a–d, f, 6g–j, and Supporting Figs. 9, 11–13, 21,
22, 25–27 were obtained after three independent experiments with
similar results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the results in this study are
present in the paper and the data sources are available at https://doi.
org/10.6084/m9.figshare.24311605. All other data supporting the
findings of this study are available within the article and its supple-
mentary files. Any additional requests for information can be directed
to, and will be fulfilled by, the corresponding authors. Source data are
provided with this paper.

Code availability
The analysis codes used in this study are available from the corre-
sponding authors upon request. The codes used for training laryngeal
behaviors and circuits are openly available onGitHub at https://github.
com/Hongcxu/Actions-training, ref. 84.
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