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PhenoSV: interpretable phenotype-aware
model for the prioritization of genes affected
by structural variants

Zhuoran Xu1,2,3, Quan Li 4, Luigi Marchionni3 & Kai Wang 2,5

Structural variants (SVs) represent a major source of genetic variation asso-
ciated with phenotypic diversity and disease susceptibility. While long-read
sequencing can discover over 20,000 SVs per human genome, interpreting
their functional consequences remains challenging. Existing methods for
identifying disease-related SVs focus on deletion/duplication only and cannot
prioritize individual genes affected by SVs, especially for noncoding SVs. Here,
we introduce PhenoSV, a phenotype-aware machine-learning model that
interprets all major types of SVs and genes affected. PhenoSV segments and
annotates SVswithdiverse genomic features andemploys a transformer-based
architecture to predict their impacts under a multiple-instance learning fra-
mework. With phenotype information, PhenoSV further utilizes gene-
phenotype associations to prioritize phenotype-related SVs. Evaluation on
extensive human SV datasets covering all SV types demonstrates PhenoSV’s
superior performance over competing methods. Applications in diseases
suggest that PhenoSV can determine disease-related genes from SVs. A web
server and a command-line tool for PhenoSV are available at https://phenosv.
wglab.org.

A major source of genomic variation between individuals comes from
structural variants (SVs). SVs are typically defined as genomic rear-
rangements spanning over 50 base pairs (bp), including deletions,
duplications, insertions, inversions, translocations, and complex
rearrangements1–4. Due to their large size, SVs can affect a higher
fraction of the human genome, producing more pronounced mole-
cular and phenotypic consequences than single nucleotide variations
(SNV)5–8. SVs can directly alter gene dosage when they encompass the
entire or partial gene coding regions. SVs can also indirectly influence
gene expressions when coding regions of the gene are outside of the
SV-affected area, by impinging on their transcriptional machinery,
regulatory elements, or genome 3D structures9,10. Although most SVs
are benign, resulting in no or only adaptive phenotypic effects11, many

of them can lead to phenotypic variations including various human
diseases10,12,13, such as Parkinson’s disease14, Crohn’s disease15, AIDS16,
neurodevelopmental disorders17, and cancers18–20. Somatic SVs also
play significant roles in human diseases: according to the ICGC/TCGA
Pan-Cancer Analysis of Whole Genomes (PCAWG) Project, more than
60% of cancer driver mutations are related with SVs21. Earlier genera-
tions of genomic techniques, such as SNP microarrays and short-read
sequencing, can only generate a small number of SVs reliably, typically
deletions andduplications4.With the increasedpopularity of long-read
sequencing (LRS), the 2022 “Methods of the Year” featured by the
journal Nature Methods22, over 20,000 SVs per human genome can be
detected4,23. Thus, identifying and prioritizing pathogenic or func-
tionally important SVs relating to an individual’s phenotypes from tens
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of thousands of candidate SVs, including small noncoding SVs and
translocations/inversions, becomes an essential and challenging
task now.

Many computational tools have been developed in recent years
for SV annotation and interpretation, and they can be broadly classi-
fied as aggregation-based, rule-based, and machine-learning-based
methods. Aggregation-based methods, such as SVScore24, use sum-
mary statistics of a single type of SNV pathogenicity scores for all
positions inside the SV to derive SV pathogenicity scores. However,
using one single site-based feature may not be able to account for
diverse types of functional impacts for SVs that cover a large collection
of sites. Rule-based methods, such as AnnotSV25 and SvAnna26, anno-
tate and score SVs based on a series of criteria, with the ability to relate
functional impacts of SVs to the gene level. Yet, AnnotSV relies heavily
on previously observed SVs, with potential limitations in interpreting
novel SVs. SvAnna similarly depends on existing genome annotations,
but it has simplified rules to recognize SVs with more complex
pathogenic mechanisms, such as the impacts of SVs on distal genes,
and cannot make predictions when patient phenotype information is
not available.Machine-learning-basedmethods, on the other hand, are
powerful in making in silico predictions by considering various types
of genetic features. For instance, Sharo et al. developed a random-
forest-based method StrVCTVRE27 to distinguish pathogenic coding
SVsof deletions andduplications thatoverlapexons frombenignones.
By integrating a diverse set of genomic features, StrVCTVRE exhibited
promising results and outperformed previous aggregation-based and
rule-based methods. Similarly, SVPath28 was proposed to predict the
pathogenicity of human exonic SVs that are deletions, duplications, or
insertions, based on gradient boosting decision tree. Since 98% of
human SVs are noncoding29, CADD-SV30 and X-CNV31 are designed to
make genome-wide predictions of the functional effects of SVs using
similar approaches, but they have decreased performance for non-
coding SVs and cannot make predictions for inversions and translo-
cations. SVFX32 is another standalone framework designed to train
disease-specific models based on random forest using SVs from dis-
ease groups and control groups, thus enabling quantification of SV
pathogenicity. However, it cannot be directly applied to novel variants.
Recently, Althagafi et al. proposed DeepSVP33 to prioritize disease-
related SVs given phenotype information. Their results suggest the
value of utilizing genotype-phenotype relationships in SV interpreta-
tions. However, DeepSVP can only make gene-level predictions based
on genes directly covered/impacted by SVs and has limitations in
inferring the impacts of SVs on distal genes. In summary, while several
approaches are available to predict pathogenic SVs, especially
machine-learning based ones that integrate multiple sources of infor-
mation, there are limitations in the interpretability of the models, the
types of SVs that can be analyzed, and the ability to prioritize
phenotype-relevant genes that explain the functional relevance of
predicted pathogenic SVs.

Predicting the functional consequences of SVs, especially non-
coding SVs and some less-studied SV types (translocations, inversions
and complex rearrangements), remains challenging for several rea-
sons. First, it can be difficult to determine the disease-related genes
from a set of genes that are all affected by SVs directly or indirectly.
Second, although several large-scale experimental mapping studies
have been conducted to determine genomic functional elements34–36,
annotations in noncoding portions of the human genome still lagged
behind those in coding regions, due to the many different ways in
which how noncoding regions influence genome function. Third, the
regulatory circuits in the human genome are complex, with multiple
regulatory modules working together to fine-tune gene expression
levels. Diverse forms of genome rearrangements can disrupt 3D
chromatin organizations and even impact genes at considerable dis-
tances, further complicating SV interpretations9,13. Lastly, interpreting
inversions, insertions, and translocations is particularly challenging

due to limitations in existing labeled datasets that are built primarily
based on short-read sequencing and chromosomal microarrays. Cur-
rently, no machine-learning-based methods can assess the functional
impacts of all major types of SVs on individual genes, both within and
outside of genomic regions covered by SVs.

To overcome these challenges, we developed PhenoSV, a
machine-learning-based method to predict the functional con-
sequences of coding and noncoding SVs on clinical or cellular phe-
notypes. To address the first challenge, we dissect the impacts of SVs
on individual genes by employing a multiple-instance learning (MIL)
framework, which enables us to make inferences on both the SV level
and the gene level. For the second challenge, SVs are annotated using a
diverse set of genetic features in a per-segment fashion to address
distinct mechanisms of how specific coding and noncoding genome
regions impact genome function. For the third challenge, PhenoSV
adopts a transformer-based architecture with masked multi-head
attention to model indirect and long-range regulatory effects of non-
coding SVs on genes. For the last challenge, we use different forms of
deletions and duplications that PhenoSV was trained with to approx-
imate the impacts of inversions, insertions, and translocations. Phe-
noSVwas extensively tested in a large collection of humanSV datasets.
Our results demonstrate that PhenoSV can accurately predict the
pathogenicity of both coding and noncoding SVs of all SV types, with
the ability to capture distinct predictive features within the same
model. When phenotype information is available (such as in the form
of Human Phenotype Ontology), PhenoSV can further utilize gene-
phenotype associations (such as those documented in databases or
predicted by other algorithms) to improve SV prioritizations. Appli-
cations of PhenoSV in adiverse rangeof SVdatasets onhumandiseases
and phenotypes suggest that PhenoSV can identify pathogenic SVs
responsible for different phenotypes, as well as critically important
genes directly or indirectly affected by SVs, to enable the prioritization
of candidate SVs from a large candidate list and to facilitate the
interpretation of disease association studies.

Results
PhenoSV overview
The overall workflow of PhenoSV for deletions and duplications is
illustrated in Fig. 1.We first segment the genome regionof interest that
is potentially affected by a given SV into a sequence of genome seg-
ments and annotate the SV in a per-segment fashion (Fig. 1a). For a
coding SV, we mainly consider its direct effects on genes that are fully
or partially encompassed by the SV. Hence, the genome segment
sequence comprises the covered protein-coding genes and intergenic
noncoding regions. For a noncoding SV,weconsider its indirect effects
on geneswithin a givendistance (e.g., 1Mbp) or topological associating
domain (TAD)37–39. The segment sequence for this SV then includes
candidate protein-coding genes affected, intergenic noncoding
regions, and the noncoding SV itself. We add zero-padding segments
at the front and end of every genome segment sequence. All genome
segments are then annotated by 238 features derived from 64 anno-
tation types of 6 functional categories, including deleteriousness
scores, epigenetic activities, disease constraints, genome annotations,
evolutionary constraints, and SV types (Supplementary Data 1). The
annotated SV is fed into a transformer-based architecture40 with
masked multi-head attention (MHA) mechanisms, enforcing separate
heads to model the direct and indirect effects on genes (Fig. 1b). All
gene-level embeddings are then aggregated into the SV-level embed-
ding through a max-pooling layer, followed by a classifier and a cali-
brator to predict general pathogenicity of overall SV (PhenoSV scores,
psv) and individual genes (PhenoSV gene scores, psv�gene) from SV- and
gene-level embeddings, respectively. The impacts of insertions,
inversions, and translocations can be correspondingly approximated
using basic forms of deletions and duplications (see “Methods” and
Fig. 2). When prior knowledge of the patient’s phenotypes is available,
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we employ existing gene-phenotype scoring methods, such as
Phen2Gene41, to derive gene-phenotype or SV-phenotype association
scores. These scores are then used to refine the general pathogenicity
scores into phenotype-specific pathogenicity scores on the SV level
(phenotype-aware PhenoSV scores, pphen

sv ) and the gene level (pheno-
type-aware PhenoSV gene scores, pphen

sv�gene).

PhenoSV training and testing
PhenoSV was trained and extensively tested on a large collection of
curated human SV datasets (see “Methods” and Supplementary
Data 2). Coding SVs of deletions and duplications from ClinVar42 and a
matched noncoding SV dataset of deletions and duplications were
combined and split into training, validation, and hold-out test sets by
chromosomes (Table S6). SVs of chromosomes 11, 12, and 13were used
for the validation set, and those of chromosomes 14, 15, and 16 were

used for the hold-out test set. The rest of the SVs were used for
training. The training dataset contains 14,622 SVs, with 14,292 being
coding SVs (6609 pathogenic and 7683 benign) and 330 being non-
coding SVs (165 pathogenic and 165 benign). The validation dataset
contains 2182 SVs (2136 coding SVs: 990 pathogenic and 1146 benign;
46 noncoding SVs: 23 pathogenic and 23 benign), and the hold-out test
dataset contains 2673 SVs (2559 coding SVs: 1385 pathogenic and 1174
benign; 114 noncoding SVs: 57 pathogenic and 57 benign). Coding SVs
of deletions and duplications from DECIPHER43 and SvAnna26 that do
not have extensive overlaps with SVs from ClinVar were used as
independent test sets, further splitting into a small SV dataset
(50bp–100 kbp, 383 pathogenic and 366 benign SVs) and a large SV
dataset (100 kbp–1Mbp, 1208 pathogenic and 801 benign SVs). SVs of
insertions (175 pathogenic, 175 benign), inversion (20 pathogenic, 20
benign), and translocations (68 pathogenic, 38 benign) were also

Fig. 1 | PhenoSV workflow. a SV annotation. A coding SV that is a deletion or a
duplication, fully containing gene B and partially encompassing gene C, is seg-
mented into a sequenceof six genome segments, including two affected genes, two
intergenic noncoding regions, and two zero-padding segments. A noncoding SV
that is a deletion or a duplication can potentially affect gene A, B, and C based on
distance or TAD annotations (triangle shaded area). The genomic segment
sequence has three candidate target genes, five intergenic noncoding regions, a
noncoding SV region, and two zero-padding segments. b SV interpretation.

Annotated SV with the shape of 6 ×238 or 11 ×238 from (a) is fed into PhenoSV
architecture. Each MHA (multi-head attention) block has two types of attention
heads to model indirect and direct effects on genes. The pathogenicity for overall
SV (PhenoSV scores, psv) and individual genes (PhenoSV gene scores, psv�gene) can
be inferred from SV-level and gene-level embeddings, respectively. Prior pheno-
type information (HPO terms) can be further used to infer phenotype-related
pathogenicity for overall SV (phenotype-aware PhenoSV scores, pphen

sv ) and indivi-
dual genes (phenotype-aware PhenoSV gene scores, pphen

sv�gene).
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Fig. 2 | PhenoSV workflow to assess the impacts of all major types of SVs.
a PhenoSV dissects a given SV that is deletion or duplications into a sequence of
genomic segments. The last feature dimensions of genomic segmentswithin the SV
region are encoded as 0 for deletions, 1 for duplications, and 0.5 for those outside
the SV region. b An insertion is treated as a 100bp deletion. Displayed are a coding
insertion directly disrupting gene C, and a noncoding insertion disrupting a reg-
ulatory element that indirectly affects gene A, B, and C. c Inversion type 1 (one
breakpoint within genes): we only consider the impacts of its 5’ breakpoint as a
deletion truncating the gene C. Inversion type 2 (two breakpoints within genes): we
consider impacts of both 5’ breakpoint and 3’ breakpoint as two deletions trun-
cating the gene C and the gene F. Inversion type 3 (no breakpoint within genes): we
consider the impacts of both 5’ breakpoint and 3’ breakpoint as a 100bp deletion
centered at the 5’ breakpoint indirectly affecting genes A, B, and C, and a 100bp

deletion centered at the 3’ breakpoint indirectly affecting genes D, E, and F.
dDisplayed are translocations swapping two genome segments. Impacts of both 5’
and 3’ breakpoints of translocations are considered. Translocation type 1 (gene
truncation): the 5’ breakpoint is treated as a deletion truncating the 3’ side of gene
C. The 3’ breakpoint is treated as a deletion losing a segment of intergenic region
that can indirectly affect the gene F. Translocation type 2 (gene fusion): this
resulted fusion gene C–F is treated as a deletion truncating the 3’ side gene C
(decreased copy number of the segment) and a duplication of the 5’ side of gene F
(increased copy number of the segment). Translocation type 3 (gene truncation):
the 5’breakpoint is treated as a deletion truncating the 3’ side genome region of the
breakpoint and indirectly affect genes A, B, and C. The 3’ breakpoint is treated as a
deletion truncating the 5’ of the gene F.
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compiled frommultiple resources as test datasets. Pathogenic SVs that
have phenotype information were collected to evaluate PhenoSV’s
performance in prioritizing disease-related SVs, including 1007 coding
SVs from the hold-out test dataset, 494 coding SVs from the inde-
pendent test dataset, all 193 noncoding SVs compiled, and 149 SVs of
insertions and inversions. We used three human disease datasets of
congenital abnormalities44, autism45, and epilepsy46 to evaluate Phe-
noSV performance on the gene level. We further curated a dataset
containing SVs affecting similar genome regions but linking to either
inherited diseases47 or cancers48 to illustrate how PhenoSV helps
identify critical genes associated with distinct phenotypes.

PhenoSV accurately predicts pathogenicity of both coding SVs
and noncoding SVs
To evaluate the performance of PhenoSV in predicting overall SV
pathogenicity without phenotype information, we compared PhenoSV
(using psv) to several representative methods belonging to three
categories mentioned earlier. These include: (1) PhenoSV-XGBoost,
which is trained with a traditional machine learning method of
XGBoost49 using the same set of features as PhenoSV; (2) SVScore, an

aggregation-based method that uses summary statistics of a single
type of SNV pathogenicity scores; (3) AnnotSV, a rule-based method
that relies heavily on previously observed SVs; (4) StrVCTVRE, a tra-
ditional machine learning-based method for only coding SVs of dele-
tions and duplications; and (5) CADD-SV, a traditional machine
learning-based method for both coding and noncoding-SVs applic-
able for deletions, duplications, and insertions. As not all methods can
produce scores with natural choices of thresholds that distinguish
between pathogenic and benign SVs, we used the area under the
receiver-operating characteristic curve (AUC) as a performancemetric
to compare different methods. We also reported accuracy, sensitivity,
and specificity of PhenoSV in Table S1, and area under the precision-
recall curves (auPRC) in Fig. S4.

Since PhenoSV was trained on deletions and duplications, we first
evaluate the model performance in the test datasets containing only
deletions and duplications. For small coding SVs in the independent
test dataset (383 pathogenic and 366 benign SVs, 50bp–100 kbp,
Fig. 3b), PhenoSV and PhenoSV-XGBoost that use the same 238genetic
features achieved AUC of 0.87 (95% CI: 0.85–0.90) and 0.91 (95% CI:
0.89–0.93), respectively, much improved than SVScore (AUC: 0.72,
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Fig. 3 | Evaluation of the performance of PhenoSV and feature importance for
coding and noncoding SVs. aModel AUCs in the hold-out test dataset for coding
SVs (n = 1385 pathogenic and n = 1174 benign SVs, solid lines) and noncoding SVs
(n = 57 pathogenic and n = 57 benign SVs, dashed lines). b, c Model AUCs in the
independent test datasets of small coding SVs (n = 383 pathogenic and n = 366
benign SVs) with sizes ranging from 50bp to 100kbp and large coding SVs
(n = 1208 pathogenic and 801 benign SVs) with sizes ranging from 100kbp to
1Mbp. dModel AUCs in the test datasets of insertions (n = 175 pathogenic SVs and
n = 175 benign SVs), inversions (n = 20 pathogenic SVs and n = 20 benign SVs), and
translocations (n = 68 pathogenic fusion transcripts and n = 38 benign fusion
transcripts).e, fPhenoSV feature importancemeasuredbypercent AUCdecrease in

the hold-out test dataset for coding and noncoding SVs. g PhenoSV AUCs in the
hold-out test dataset for coding and noncoding SVs trained with all 238 features or
only a subset of features belonging to the same category (x axis). Error bars
represent 95% CI. h PhenoSV performance in prioritizing phenotype-related SVs.
Displayed are percentage of samples that the true disease-related SV is prioritized
(y-axis) within top k (x-axis) out of about 19,000 SVs. α controls for the contribu-
tions of phenotype information in prioritization. True disease-related SVs are from
coding SVs in hold-out test set (top left panel), coding SVs in independent test set
(top right panel), all noncoding SVs (bottom left panel), and SVs of insertion and
inversion (bottom right panel). All SVs in (a–c) and (e–g) are deletions or dupli-
cations. Source data are provided as a Source Data file.
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95% CI: 0.68–0.76), AnnotSV (AUC: 0.67, 95% CI: 0.64–0.71), CADD-SV
(AUC: 0.69, 95% CI: 0.65–0.73), and StrVCTVRE (AUC: 0.78, 95% CI:
0.75–0.81). For large coding SVs in the independent test dataset (1208
pathogenic and 801 benign SVs, 100 kbp–1Mbp, Fig. 3c), the AUC is
0.77 (95% CI: 0.75–0.79) for PhenoSV and 0.80 (95% CI: 0.77–0.82) for
PhenoSV-XGBoost, still outperforming SVScore (AUC: 0.65, 95% CI:
0.63–0.68), AnnotSV (AUC: 0.63, 95% CI: 0.61–0.76), CADD-SV (AUC:
0.71, 95% CI: 0.69–0.74), and StrVCTVRE (AUC: 0.73, 95% CI:
0.71–0.85). These results indicate that machine learning-based meth-
ods can generatemore precise predictions by efficiently incorporating
various genomic features and our integrated feature set is more
informative to aid in SV pathogenicity predictions (Fig. 3b, c). Because
StrVCTVRE cannotmake genome-wide predictions and AnnotSV treats
ClinVar SVs as known, we can only compare PhenoSV with PhenoSV-
XGBoost, SVScore, and CADD-SV for noncoding SVs in the hold-out
test dataset (Coding SVs: 1385 pathogenic and 1174 benign SVs; Non-
coding SVs: 57 pathogenic and 57 benign SVs). As shown in Fig. 3a,
PhenoSV (AUC: 0.86, 95% CI: 0.79–0.93) significantly outperformed
PhenoSV-XGBoost (AUC: 0.71, 95%CI: 0.61–0.80), SVScore (AUC: 0.47,
95% CI: 0.35–0.60) and CADD-SV (AUC: 0.67, 95% CI: 0.56–0.77) in
predicting the pathogenicity of noncoding SVs, suggesting the
importance of incorporating contextual information of candidate
target genes for noncoding SVs. Using the same set of features,
PhenoSV-XGBoost consistently outperformed PhenoSV for coding SVs
(deletions and duplications, Fig. 3a–c), suggesting the advantages of
traditional machine learning methods for tabular data due to lower
model complexities compared with deep learning methods50. How-
ever, the extra complexities brought by SV segmentation and the
transformer-based architecture dramatically helped PhenoSV achieve
a higher AUC for noncoding SVs than PhenoSV-XGBoost (Fig. 3a),
indicating a more critical role of the regulatory information between
noncoding segments and genes in noncoding SVs than coding SVs.
More importantly, PhenoSV can generate interpretable results by
makingpredictions on the gene level, which is a common limitation for
traditional machine-learning methods. Notably, we observed lower
AUCs of large SVs than small SVs in the independent test sets for all
models except CADD-SV (Fig. 3b, c). This performance decrease for
larger SVs could be attributed to potential ascertainment biases arising
from disparities in the techniques used for SV detection (see Supple-
mentary Materials). Additionally, we evaluated PhenoSV’s perfor-
mance in interpreting SVs (2034 pathogenic and 1934 benign SVs)
located on sex chromosomes. As shown in Fig. S6, PhenoSV gen-
eralizes well for SVs on sex chromosomes, achieving an AUC of 0.94
(95% CI: 0.93–0.95).

Due to the presence of purifying selection pressure, allele fre-
quency is expected to inversely correlate with the functional sig-
nificance of mutations51. To avoid potential ascertainment biases
during the selection of training dataset, we deliberately excluded
allele frequency from the input feature set during the training of
PhenoSV. However, we can now employ allele frequency as a per-
formance metric to evaluate whether predicted PhenoSV scores
exhibited the anticipated negative correlation with allele frequency
in the hold-out test set. The estimation of allele frequencies was
carried out based on gnomAD-SV database52. As expected, PhenoSV
scores are negatively correlated with SV allele frequency, where
rarer SVs are more likely to be pathogenic (Spearman’s rho = −0.19,
p value < 0.0001).

PhenoSV accurately predicts pathogenicity of insertion, inver-
sions, and translocations
We then tested whether PhenoSV could be used for insertions, inver-
sions, and translocations, whose functional impacts are approximated
by different forms of deletions and duplications (see “Methods” and
Fig. 2). Here, only SVScore and CADD-SV can be used as the competing
methods for insertions because other methods are either not

applicable for these SV types or treat labeled SVs from ClinVar as
known. Figure 3d shows that PhenoSV achieved almost perfect per-
formance for insertions (175 pathogenic and 175 benign SVs, AUC:
0.99, 95% CI: 0.98–1.00), outperforming SVScore (AUC: 0.90, 95% CI:
0.87–0.94) and CADD-SV (AUC: 0.95, 95% CI: 0.93–0.97). The AUC of
PhenoSV for inversions is 0.95 (20 pathogenic and 20 benign SVs, 95%
CI: 0.88–1.00), where SVScore achieved AUC of 0.99 (95% CI:
0.96–1.00). Althoughmost translocations, especially those resulting in
fusion genes, are pathogenic and have been viewed as one of the
hallmarks of cancer, recent studies have demonstrated the existence
of benign chimeric RNAs in non-disease tissues53. We thus used a test
dataset composed of common chimeric RNAs in non-disease tissues
and cancers to evaluate the performance of PhenoSV in predicting the
pathogenicity of translocations. Figure 3d shows PhenoSV can accu-
rately distinguish benign chimeric RNAs from pathogenic ones (68
pathogenic and 38 benign SVs), achieving an AUC of 0.84 (95% CI:
0.74–0.93).

Distinct feature sets contribute to pathogenicity predictions of
coding SVs and noncoding SVs
The rationale for integrating various feature categories is to compre-
hensively capture genetic variations and jointly make robust predic-
tions. To increase the interpretability of the machine learning models,
we investigated the contributions of each feature category in pre-
dicting the pathogenicity of coding and noncoding SVs. Besides the
PhenoSV model trained with all 238 features, we additionally trained
five models using different subsets of features, in which only features
of the same category and SV type feature were used. For both coding
and noncoding SVs, PhenoSV performs the best when using all feature
categories jointly, where deleteriousness scores contribute the most
for coding SV predictions, and genome annotations play an essential
role in noncoding SV predictions (Fig. 3e). We then examined indivi-
dual feature importance by permutating the input matrix on each
feature dimension and measuring the percent AUC decrease in the
hold-out test dataset. As shown in Fig. 3f, g, coding and noncoding SV
predictions are driven by distinct feature sets. Specifically, SV type is
the most important feature, followed by super-enhancer annotations
for coding SV predictions. In contrast, the top two for noncoding SV
predictions are lncRNA and genome conservation state annotation. To
investigate how PhenoSV identifies predictive features driving patho-
genicity calls of distinct SVs, we applied it to two novel SVs discovered
recently and are not in its training dataset or existing databases. We
first examined a novel 10,678 bp in-frame deletion (chr15:48452562-
48463240, GRCh38) identified by Elgaz et al.54. This deletion affects
exons 42–45 of the FBN1 gene and results in neonatal Marfan syn-
drome (nMFS), a severe form of Marfan syndrome (MFS, OMIM:
154700). Notably, the deletion is distinct from the FBN1 region (exons
24–32) linked to themajority of nMFS cases. PhenoSVpredicted this SV
as pathogenic with a high confidence score (psv =0.961). We then
analyzed the key features driving this pathogenicity call based on
values of input x gradient and found REVEL score, haploinsufficiency
score, 20-wayphyloP Score,MVP score, andMetaLR score are the top 5
most important features (Fig. S1a). We also examined a novel SVA
insertion55 in SRCAP exon 13 (chr16:30712369-30712370, GRCh38)
causing Floating-Harbor syndrome (FLHS, OMIM: 136140), which are
typically caused by truncating variants in SRCAP exons 33-34. PhenoSV
similarly predicted this SV as pathogenic (psv =0.99), where REVEL
score, 20-way phyloP Score, MVP score, CCRS score, and replication
timing are the top 5 most important features driving the prediction to
pathogenic (Fig. S1b). Collectively, these results demonstrate the
ability of PhenoSV to capture distinct predictive features from diverse
genome annotations to make accurate pathogenicity predictions for
both coding and noncoding SVs and highlight the potential of Phe-
noSV as a tool for interpreting the impacts of newly discovered SVs
where existing knowledge is limited.
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PhenoSV can utilize prior phenotype information for improved
SV prioritization
We then examined whether clinical phenotype information can help
better prioritize disease-related SVs for a specific patient. To do so, we
simulated patients’ SV profiles and compared the percentage of
patients whose true disease-related SVs were prioritizedwithin the top
20 SVs (top ~0.1% of the simulated SV profile including ~19,000 SVs)
using pphen

sv with different settings of α =0, 0.2, 0.4, 0.6, 0.8, and 1.
Here, α controls for different degrees of phenotype dependency, from
α = 0 with no phenotype information involved to higher values of α
with more dependence on phenotype information. Each simulated
patient’s SV profile contains one true disease-related pathogenic SV
and ~19,000 non-overlapping control SVs as noises, of which ~8000
are rare novel SVs, including deletions, duplications, insertions, and
inversions (see “Method” for details). SvAnna was applied in the same
simulated SV profiles as the benchmark method (Table S4). As shown
in Fig. 3h, PhenoSV generally prioritizedmore true disease-related SVs
within top 20 when α is larger and when more detailed phenotype
information is utilized, such as SVs in the hold-out test set fromClinVar
than those in the independent test set from DECIPHER and SvAnna.
Specifically, PhenoSV prioritized true disease-related coding SVs for
61.5% and 41.3% of the patients in the hold-out and independent test
set, respectively, when not using any phenotype information (α =0).
By utilizing more phenotype information and setting α = 1, these
numbers were increased to 83.8% and 50%, respectively. In compar-
ison, SvAnna identified more true disease-related coding SVs (97.12%)
in the hold-out test set, but fewer (20.64%) in the independent test set
than PhenoSV (α = 1), indicating that SvAnna places more emphasis on
gene-phenotype associations to prioritize SVs while PhenoSV con-
siders both SV features and gene-phenotype associations. Identifying
noncoding pathogenic SVs can be challenging, but PhenoSV was still
able to recognize true disease-related SVs for 1.55% of patients (α =0).
By incorporating phenotype information, the precision significantly
increased to 22.3%, whereas SvAnna only achieved 8.29%. In addition,
PhenoSV exhibited ability to prioritize insertions and inversions with
precisions being 94.0% and 96.8% for α =0 and α = 1, respectively, yet
the precision is 87% for SvAnna.

PhenoSV identifies disease-related genes directly affected by
coding SVs
We have demonstrated how PhenoSV can accurately predict the
pathogenicity of SVs using psv or pphen

sv . However, since each SV can
impact multiple genes, it is also essential to dissect the impacts of SVs
on the gene level and determine disease-related genes in genetic stu-
dies on human diseases. To examine this, we first applied PhenoSV to
91 coding SVs from a cohort with congenital abnormalities44. Since
each patient’s HPO terms are available, we correlated pphen

sv�gene (α = 1)
with four confidence groups of disease-related genes predicted by the
original study. As shown in Fig. 4a, PhenoSV produces consistent
results on the gene level with theoriginal study in general, wheregenes
in a higher confidence group exhibit higher pphen

sv�gene scores (Spear-
man’s rho =0.556, p <0.0001). We also noticed several outlier genes
with high pphen

sv�gene scores in the non-driver gene group that are less
consistent with predictions from the original study. We then investi-
gated the SV (chr16:28473235-30186830, deletion, GRCh38) that pro-
duced the outlier gene (MAPK3) with the highest pphen

sv�gene score. Within
the 57 protein-coding genes affected by this SV, two genes (SH2B1 and
PRRT2) were categorized as tier 2 disease-related genes in the original
study, and six genes (CLN3, TUFM, KIF22, ALDOA, TBX6, and CORO1A)
were categorized as tier 3 genes. The average pphen

sv�gene score for tier 2,
tier 3, and the rest of the genes are 0.52, 0.45, and 0.16, respectively.
We noticed that MAPK3 was not categorized as a disease-related gene
by the original study, but it had the highest pphen

sv�gene score of 0.95 by
PhenoSV. Our result is supported by a previous study by Park et al.,
providing evidence that MAPK3 plays a potential role in the

pathogenesis of autism spectrum disorder (ASD) using Drosophila
models56. Additionally,MAPK3 is located in a 593 kb recurrent deletion
region on 16p11.2, which is associated with neurodevelopmental dis-
orders, and MAPK3 has a Simons Foundation Autism Research Initia-
tive (SFARI)57 gene score of 2 (“StrongCandidate”), with 11 rare variants
(10 missense variants, one stop loss variant) reported in genetic stu-
dies on ASD. To elucidate how each genetic feature from an individual
genome segment contributes to the pathogenic prediction of this SV,
we visualized input x gradient values within each genome segment
(Fig. 4b). Although segments of protein-coding genes play amajor role
in determining the psv score as expected, noncoding intergenic seg-
ments stillmake contributions by capturing important features suchas
context-dependent tolerance score (CDTS)58 and lncRNA annotations.
Individual features, such as CADD score, haploinsufficiency score (HI),
and 20-way phyloP score, are the major contributors to the general
pathogenicity of MAPK3. These results further demonstrate the
advantages of PhenoSV in interpreting coding SVs on the gene level.

PhenoSV determines disease-related genes indirectly affected
by noncoding SVs
To evaluate gene-level PhenoSV predictions for noncoding SVs, we
applied PhenoSV to an ASD dataset with 222 noncoding SVs that dis-
rupt cis-regulatory elements of variant-intolerant genes (CRE-SVs)45. In
the original study, paternally inherited CRE-SVs were observed to be
over-transmitted to affected offspring and not to their unaffected
siblings, whereas maternally inherited CRE-SVs did not show this pat-
tern. Consistent with findings of the original study (Fig. 4c), we found
an over-transmission of paternally inherited CRE-SVs to cases (67/100;
transmission rate = 67%; binomial test p value = 0.0009), and mater-
nally inherited CRE-SVs were not significantly different from the
expected 50% transmission rate (47/79; transmission rate = 59%;
binomial test p value = 0.11). After stratifying CRE-SVs into pathogenic
(psv�gene ≥0:5) and benign (psv�gene<0:5) groups using PhenoSV, a
slightly larger effect size of over-transmissionpatternwas observed for
paternally inherited pathogenic SVs (29/41; transmission rate = 71%;
binomial test p value = 0.01) than benign SVs (38/59; transmission
rate = 64%; binomial test p value = 0.04). Although statistical sig-
nificancewas not achieveddue to limited sample sizes (pathogenic SVs
vs. benign SVs, two-sided proportion test p value = 0.656), these
results suggest the values of PhenoSV in determining pathogenic
genes indirectly affected by noncoding SVs. When classifying patho-
genic CRE-SVs and benign CRE-SVs, different thresholds of psv�gene

(such as top and bottom30%quantiles) can be used andwe found that
different thresholds do not influence the overall conclusion of the
analysis (Supplementary Materials, Tables S7 and S8). We also applied
PhenoSV to 373 noncoding SVs from an epilepsy cohort, with 150 SVs
from patients and the rest 223 from controls46. The original study
revealed that rare noncoding SVs near epilepsy genes were enriched in
the patient group compared with the control group. Instead of using
distance to the nearest epilepsy gene as a pathogenicity proxy, we
used psv, psv�gene of the most-affected epilepsy gene, and psv�gene of
the closest epilepsy gene to evaluate each SV’s effects on epilepsy-
related genes between patients and controls. We did not observe a
significant difference in overall SV pathogenicity (psv) between
patients and control individuals (see the left panel of Fig. 4d). Yet, we
found significantly more epilepsy-related SVs in the patient group,
which do not necessarily affect the nearest epilepsy genes (see the
middle and the right panel of Fig. 4d), indicating psv�gene of the most-
affected epilepsy gene is a better proxy than psv�gene of the closest
epilepsy gene. Again, these results demonstrate the values of PhenoSV
in determining disease-related genes from SVs, including genes
beyond the genomic regions of SVs that are not the closest genes to
the SVs.

To further examine what features within and outside of noncod-
ing SV segments contribute to PhenoSV predictions, we investigated
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three pathogenic SVs that are known to indirectly impact the down-
stream gene of SOX9 with diverse phenotypes59–61. Here, PhenoSV
correctly predicted SVs’ functional impacts on SOX9, with psv�gene

being 0.63, 0.61, and 0.74, respectively. Results show that important
features within the segments of target genes span all six feature
categories (Fig. 4e–g). In contrast, evolutionary constraints within SV
segments, such as conservation state annotations, are themajor forces
to yield pathogenic predictions for SOX9, especially the genome seg-
ment between KCNJ2 and SOX9 (Fig. 4f). This is in line with previous
research59–61 that disruptions of a highly conserved genome region
between KCNJ2 and SOX9 play a pivotal role in various SOX9-related
diseases. Taken together, PhenoSV can identify the critical pathogenic
genes under either direct or indirect effects of SVs and can contribute
to the interpretation of SVs in disease association studies.

PhenoSV determines genes associated with distinct phenotypes
from large SVs
Large SVs that affect similar genome regions can often lead to various
phenotypes, impacting different sets of genes. This phenomenon
poses a significant challenge for conducting association studies and
identifying disease-related genes from such large SVs, as it requires a

massive sample size to achieve sufficient statistical power. Using a
curated dataset of SVs affecting overlapping genome regions and
potentially associated with inherited diseases and cancers, we inves-
tigated how PhenoSV can aid in disease association studies and
determining genes responsible for distinct phenotypes within
large SVs.

Wefirst applied PhenoSV to 123dosage-sensitive rare copynumber
variant (rCNV) segments that are associated with at least one disorder
derived from genome-wide meta-analyses47 to further validate if Phe-
noSV gene scores can be used as a good measure of pathogenicity in
disease association studies. As indicated in the original study, deletion
segments with large effect sizes of penetrance are enriched for genes
under strong constraints compared to those with small effect sizes of
penetrance when using minimum LOEUF (loss-of-function observed/
expected upper bound fraction) per segment as gene constraints
measurement. This enrichment pattern was not observed for duplica-
tion segments. We similarly found that highly penetrant deletion seg-
ments have significantly lower min LOEUF scores than incompletely
penetrant deletion segments (Wilcoxon rank-sum test, High OR vs. Low
OR: p value =0.012), but not for duplication segments (Wilcoxon rank-
sum test, High OR vs. Low OR: p value =0.065; left panel of Fig. 5a).
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Fig. 4 | Evaluation of the performance of PhenoSV in identifying phenotype-
related genes affected by SVs. a Boxplot of pphen

sv�gene scores (y-axis, α = 1) in four
groups of driver genes affected by 91 coding SVs predicted by the original study on
congenital abnormality (x-axis). Median (center line), IQR (box limits), and outliers
(points) that exceeding 1.5x IQR were shown in the boxplot. b Displayed are
input × gradient values of top 50 important features (row) for each genome seg-
ment (column) of the SV (chr16:28473235-30186830, deletion, GRCh38), including
protein-coding genes segments (black borders) and intergenic noncoding seg-
ments (no borders). Colors of column names represent values of pphen

sv�gene ranging
from 0 (blue) to 1 (red) with α = 1. c Transmission rate of paternal (case: n = 100,
control: n = 26, left panel) and maternal (case: n = 79, control: n = 17, right panel)
noncoding SVs to cases and controls with (blue and red) and without (black) being
stratified by psv�gene. Error bars represent 95% CI of transmission rate, where the
center is observed transmission rate. d Displayed are cumulative affected sample
numbers (y-axis) with psv (left panel), psv�gene of the most affected epilepsy gene

(middle panel), and psv�gene of the nearest epilepsy gene (right panel) larger than
given thresholds (x-axis) of 150 patients and 150 controls on average. Confidence
intervals of controls (blue shade area between dashed lines) are calculated by
randomly sampling 150 samples from 223 controls for 100 times. Area of orange
shades represent enrichment score, defined as integrated cumulative number of
affected patient samples over upper bound of the 95% confidence interval of
controls. e–g Displayed are input × gradient values of top 50 important features
(row) for each genome segment of the SVs affecting SOX9 gene (e: Gordon et al.59,
GRCh38, chr17:70685120-70964563, deletion; f: Kurth et al.60, GRCh38,
chr17:70134929-71339950, duplication; g: Benko et al.61, GRCh38, chr17:71072938-
71767918, duplication). Genome segments (column) include SV segments (red
borders) and distal genes within TAD (no borders). Colors of column names
represent values of psv�gene ranging from 0 (blue) to 1 (red). Source data are pro-
vided as a Source Data file.
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While when we measured gene constraints using maximum PhenoSV
gene scores (psv�gene) of each segment, the enrichment pattern is more
pronounced and significant for both deletions and duplications (Wil-
coxon rank-sum test, High OR vs. Low OR, deletions: p value =0.007,
duplications: p value =0.0003), and deletions segments have more
pathogenic effects than duplication segments in both low-OR and high-
OR groups (Wilcoxon rank-sum test, deletions vs duplications, LowOR:
p value =0.0015, High OR: p value <0.0001; right panel of Fig. 5a). We
further stratified these rCNVs by whether they are established GD

(genomic disorders) rCNVs, which are sites of recurrent rCNVs often
formed by non-allelic homologous recombination and were compiled
by the original study based on prior surveys. As shown in Fig. 5b,
established GDs are significantly enriched for genes under stronger
constraint in the highORgroup (Wilcoxon test, p value =0.008) but not
in the lowORgroup (Wilcoxon rank-sumtest,p value =0.411) compared
to unestablished rCNVs when using min LOEUF as the gene constraint
measurement. Likewise, this trend becomes more pronounced and
both significant for high-OR and low-OR groups when measuring gene
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constraints by maximum PhenoSV gene scores (Wilcoxon rank-sum
test, Low OR: p value =0.002, High OR: p value =0.007). The above
results again demonstrate PhenoSV can prioritize pathogenic genes
within large pathogenic SVs containing many genes.

We then applied PhenoSV and calculated pphen
sv�gene scores for 377

rCNV-phenotype pairs (consisting of 97 rCNV segments) and 2847
COSMIC CNVs based on HPO terms of the corresponding cancer types
(Table S2). These rCNV segments and COSMIC CNVs have extensive
overlap affecting similar sets of genes, yet leading to distinct pheno-
types that are either inherited diseases or cancers. We got the top 100
genes associated with inherited diseases and the top 100 genes asso-
ciated cancers, respectively, ranked by the maximum pphen

sv�gene scores of
each gene affected by different SV-phenotype pairs. These top genes
can be categorized into three types, that are: (1) 32 overlapping genes
involved in both inherited diseases and cancers, such as NF1 (relates to
both Neurofibromatosis type 162 and Leukemia63), (2) 68 inherited dis-
eases genes (e.g., RAI1 and NRXN1), and (3) 68 cancer genes (e.g., ATR
andRAF1).We then selected rCNVs andCOSMICCNVs that haveoverlap
and simultaneously affect these three types of genes. We identified 4
rCNV segments (16p11.2, 17p11.2, 17q11.2, and 18p11.23-p11.32) and 123
corresponding COSMIC SVs (Table S3, 20 coding SVs and 103 non-
coding SVs). Figure 5c displays the rCNV segment of 17p11.2 that is
associated with several phenotypes of inherited diseases and overlaps
with 8 COSMIC SVs, indicating that SVs in this region may lead to
diverse phenotypes by different genes. The genes that are involved in
both inherited diseases and cancers (e.g., SREBF1 and TOP3A) were
given to high pphen

sv�gene scores for both rCNVs and COSMIC CNVs. The
genes primarily involved in cancers (e.g., COPS3 andNCOR1) were given
to high pphen

sv�gene scores for COSMIC CNVs but not for rCNVs. Likewise,
the genes that are primarily involved in inherited diseases (e.g., PEMT
and RAL1) were given to high pphen

sv�gene scores for rCNVs but low scores
for COSMICCNVs (Fig. 5d). Collectively, PhenoSVhas unique advantage
in detangling complex SV-phenotype associations and determining
genes responsible for different phenotypes affected by SVs.

Discussion
While long-read sequencing technologies significantly improved the
number of detectable SVs per genome, it remains challenging to
identify pathogenic SVs and assess the impacts of individual genes
affectedby the SVs. In this study,wedevelopedPhenoSV, a phenotype-
aware and interpretable model to score and prioritize disease-related
SVs. Unlike most existing machine learning-based methods that only
work for a subset of SV types, PhenoSV can interpret all major types of
SVs, including deletions, duplications, insertions, inversions, and
translocations, regardless ofwhether the SVs are coding or noncoding.
The interpretability of PhenoSV enables the identification of critical
genes affected by SVs and important genomic features linked to
pathogenicity, making it an invaluable tool for disease research.
Through extensive testing on labeled SV datasets, PhenoSV demon-
strates improved predictive accuracy on the functional impacts of SVs
than existing methods, especially for noncoding SVs. Applications in
unlabeled disease datasets suggest the superior interpretability of

PhenoSV, which can determine disease-related genes affected by SVs,
including genes within and outside SV-affected genomic regions
responsible for different phenotypes.

We believe that this improved predictive performance andmodel
interpretability result from three aspects of PhenoSV. First, we have
overcome the data limitation by matching pathogenic noncoding SVs
with their closest common noncoding SVs and training them together
with a vast number of coding SVs. Due to the positional proximity, the
regulatory information learned fromcoding SVs can significantly aid in
predicting the functional impacts of noncoding SVs on distal genes. In
comparison, existing approaches typically separate different types of
SVs into different categories for model building, potentially losing the
ability to borrow information across SV types. Second, we have inte-
grated hundreds of genomics features across six functional categories
for each genome segment impacted. This enables us to capture a wide
range of informationwith a complete picture of the functional impacts
of SVs on genes, across a diverse range of tissue types or cell types.
Third, the PhenoSV workflow and model architecture are specially
designed to address challenges in predicting the pathogenicity of SVs.
To increase the interpretability of results on the gene level, PhenoSV
dissects SVs into sequences of genome segments and models SV
interpretation as a MIL problem. To make accurate genome-wide
predictions, especiallywhen inferring long-range functional impacts of
noncoding SVs on distal genes, PhenoSV adopts a transformer-based
architecture with two types of masked attention heads. These atten-
tion heads can learn two types of information separately: whether the
given noncoding SV can alter expression levels of the target gene and
whether the target gene is dosage sensitive to cause diseases. Taken
together, these advancements render unique advantages to PhenoSV
in identifying disease-related SVs and pinpointing critical genes that
can be subject to manual examinations for further confirmation.

We also acknowledge several limitations of PhenoSV that can be
improved in future research. In this study,weused aggregated features
based on multi-experiment or multi-tissue samples for epigenetic
activity35 and cis-regulatory genome annotations38,64. Although SVs’
impacts on genes may be tissue-dependent, much more labeled SVs
with tissue-specific pathogenicity scores will be needed to train a
model that can account for such information. We thus made the
compromise of training a general model that is not tissue-specific, so
that PhenoSV relies on pre-determined sets of candidate genes when
interpreting the impacts of noncoding SVs, either by distance or TAD
annotations. Since not all labeled SVs have the corresponding tissue
source information and TAD annotations are tissue-dependent, we
useda sub-optimaldistance-based strategy todetermine the candidate
gene sets for all SVs during training. Nevertheless, tissue-specific TAD
annotations can be used to derive more defined candidate gene sets
when using PhenoSV. This capability is facilitated by the current
command-line tool of PhenoSV, which enables users to employ their
own TAD annotations, such as tissue-specific TAD, for specific ana-
lyses. Asmore experimental data, such asHi-C data, becomes available
and expand existing tissue-specific genome annotations, more effi-
cient approaches will be explored for further improvements. In

Fig. 5 | PhenoSV predictions aid in identifying disease-related genes from SVs
that are implicated in distinct phenotypes. a Comparisons of genes covered by
incompletely penetrant rCNV segments in the bottom third odds ratios (Low OR,
n = 12deletions andn = 27duplications) andhighlypenetrant rCNVsegments of the
top third odds ratios (High OR, n = 16 deletions and n = 25 duplications).
b Comparisons of genes covered by incompletely penetrant rCNV segments in the
bottom third odds ratios (Low OR, 29 unestablished rCNV and 10 established GD)
and highly penetrant rCNV segments of the top third odds ratios (High OR, n = 24
unestablished rCNV and n = 17 established GD). a, b Gene constraints were mea-
sured by minimum LOEUF (left panel) scores and maximum psv�gene scores (right
panel) of genes affected by each rCNV segment. Median (center line), IQR (box
limits), and outliers (points) that exceeding 1.5x IQR were shown in the boxplot.

Two-sidedWilcoxon rank sum test p value < 0.05*, <0.01**, <0.001***. cDisplayed is
an example of overlapping rCNV (chr17:16816686-20396687) and 8 COSMIC SVs
affecting similar sets of genes, including genes associated with both inherited
diseases and cancers, genes primarily associated with inherited diseases, genes
mainly associatedwith cancers, and other genes. dHeatmapof gene-level PhenoSV
predictions (pphen

sv�gene) for 8 COSMIC SVs (upper panel) and 9 rCNV-phenotype pairs
from (c). Genes associated with both inherited diseases and cancers, and genes
mainly associated with cancers were given high scores for COSMIC SVs. Genes
associated with both inherited diseases and cancers, and genes mainly associated
with inherited diseases were given high scores for rCNVs. Source data are provided
as a Source Data file. LOEUF loss-of-function observed/expected upper bound
fraction, GD genomic disorder.
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addition, machine-learning-based models largely rely on existing
labeled datasets for training and testing. Since the number of inser-
tions, inversions, and translocations in the existing labeleddatasets are
too small to train a model directly, PhenoSV used deletions and
duplications to approximate the impacts of these SV types to over-
come data limitations. Labeled insertions, inversions, and transloca-
tions were only used as test datasets to evaluate the performance of
PhenoSV and will not influence PhenoSV performance. However, we
should acknowledge that the test dataset of inversions is still small, and
users shouldbemore cautiouswhen interpreting results on inversions.
Similarly, the number of noncoding SVs is limited in our training
dataset. To train amodel that can accurately predict the pathogenicity
of noncoding SVs, we devised a strategy that makes the input features
of coding SVs and noncoding SVs “look alike” (see Supplementary
Materials). This approach enabled us to utilize information from cod-
ing SVs to enhance the training for noncoding SVs. Yet, the scarcity of
pathogenic noncoding SVs in our training and testing dataset, along
with the lack of tissue-specific functional annotations, remains a
notable limitation that requires further improvement once appro-
priate datasets become available. Furthermore, to mitigate potential
bias in the interpretation of SVs due to inherent distinctions between
autosomes and sex chromosomes, as well as the absence of specific
genomic features, such as gwRVIS and JARVIS, on sex chromosomes,
our training efforts for PhenoSV only focusedon autosomes.While our
analysis results have shown that PhenoSV generalizes well in inter-
preting SVs on sex chromosomes, it is important to note that PhenoSV
is trained on autosomes. Caution should still be exercised when
interpreting SVs on sex chromosomes, including the sex of the indi-
vidual and themode of inheritance of the disease under consideration.
Additionally, considering that the current labeled SV dataset primarily
relies on the GRCh38 genome build, PhenoSV has naturally adopted
the same genome reference. The advent of long-read sequencing
technology, which enables the complete sequencing of the human
genome65, also accentuates the necessity of expanding PhenoSV’s
capabilities to encompass the T2T-CHM13 genome build and pan-
genome reference build, to interpret SVs in those newly sequenced
regions. Finally, one additional practical limitation is that due to the
use of a rich set of features in themachine-learningmodel, the file size
for the feature set becomes very large (currently over 100GB),making
it difficult for typical users to take advantage of the model when they
need to download a large file for local analysis. To address this con-
cern, we have implemented a web server, so that users can use a web
application to performanalysis on small set of SVs and examine results
without command-line tools. As an additional alternative approach for
users, we developed PhenoSV-light, which is a lightweight version of
PhenoSV using only 42 carefully selected features with dramatically
reduced file size (Table S5). Despite its reduced complexity, PhenoSV-
light demonstrates comparable predictive accuracy to the original
PhenoSV, except for translocations (see Supplementary Materials and
Fig. S2). This practical alternative offers enhanced accessibility and
usability of PhenoSV, and we have also implemented this functionality
in the web server.

In summary, PhenoSV is a phenotype-aware machine-learning
model that can accurately score and prioritize disease-related coding
and noncoding SVs. PhenoSV has unique advantage in generating
interpretable results on both the SV level and the gene level, whichwill
significantly facilitate functional studies of SVs and fuel novel biolo-
gical discoveries in disease research. For easy implementation, we
provide a website server at https://phenosv.wglab.org and a command
line tool at https://github.com/WGLab/PhenoSV66.

Methods
Training, validation, and test datasets
We curated a large collection of human SV datasets from multiple
sources to train and test PhenoSV, including ClinVar42 (full release 02/

2022), DECIPHER43 (v11.15), SvAnna-curated dataset26, a curated
translocationdataset basedon chimeric RNAs in non-diseased tissues53

and COSMIC-curated fusion genes (release v97)48, NCBI-curated com-
mon SVs (dbVar nstd186 03/08/2022 version), five LRS
datasets23,29,67–69, three disease cohorts (congenital abnormalities44,
autism45, and epilepsy46), as well as a curated SV data with diverse
phenotypes based on the germline rCNV (rare copy-number variants)
data47 and somatic COSMICCNVdata48 (release v96).Wedefine coding
SVs as the ones overlapping with at least 1 bp on any exon of protein-
coding genes according to the GENCODE v40 annotations70, where
only representative transcripts (tagged as basic) belonging to level1
(validated) or level2 (manual annotation) confidences were kept,
otherwise the SVs are treated as noncoding SVs. It is important to note
that coding SVs include SVs covering coding regions exclusively, as
well as those covering both coding and noncoding regions. Con-
versely, noncoding SVs only cover noncoding regions. We use 0.01 as
the threshold of minor allele frequency (MAF) to decide common SVs
(MAF > 0.01). All SVs not in GRCh38 build were converted to GRCh38
assembly using CrossMap71, and only SVs with over 99%mapping ratio
were kept in our analysis.

We first collected SVs from ClinVar if they fulfill all the following
requirements: (1) clinical significance of benign, benign/likely benign,
likely pathogenic, pathogenic, pathogenic/likely pathogenic; (2) not
somatic in origin; (3) SV type of copy number loss, deletion, copy
number gain, duplication, insertion, or inversion; (4) SV size ranges
from 50bp to 1Mbp; (5) best placement if there exists multiple pla-
cementsper assembly.We labeledClinVar SVswith clinical significance
of pathogenic or likely pathogenic as pathogenic, and benign or likely
benign as benign (Fig. S5). We similarly retrieved SVs from DECIPHER,
SvAnna, NCBI curated common SVs, and LRS datasets mentioned
above if they qualify: (1) SV size ranges from 50 bp to 1Mbp, and (2) SV
type of deletion, duplication, insertion, or inversion. DECIPHER SVs
with pathogenicity labels other than benign, likely benign, likely
pathogenic, and pathogenic were excluded. We labeled pathogenic
and likely pathogenic of DECIPHER SVs and all SvAnna SVs as
pathogenic.

In this study, our primary focus is on autosomal SVs for training
and testing PhenoSV. Unless explicitly stated otherwise, all datasets
exclusively include autosomal SVs. For deletions and duplications, we
compiled all coding SVs fromClinVar, DECIPHER, SvAnna, and five LRS
datasets together, and all noncoding pathogenic SVs from ClinVar,
DECIPHER, and SvAnna together. SV filtering and unification proce-
dures were then performed to remove noises and redundancies.
Coding SV deletions, coding SV duplications, noncoding SV deletions,
and noncoding SV duplications were preprocessed separately. We set
the reciprocal overlap threshold for SV filtering as 70% and SV uni-
fication as 90%, which are similar to previously used thresholds26,31,72.
For SV filtering, we first excluded all common SVs from the compiled
datasets if they overlapped with any NCBI-curated common SVs
greater than the threshold of 70%. We then dropped both pathogenic
and benign SVs with conflicting labels within three labeled datasets:
ClinVar, DECIPHER, and SvAnna. We also removed rare benign SVs
from unlabeled LRS datasets if they were identified as pathogenic in
any of the three labeled datasets. For SV unification, we constructed an
undirected SV network by connecting SV pairs if they had reciprocal
overlap over 90%. Within each of the connected components of the
network, we ordered SV primarily by starting position and secondarily
by dataset sources of ClinVar, DECIPHER, SvAnna, and LRS datasets.
We dropped the SVs with even indexes and repeated the steps from
constructing the SV network to dropping SVs until there were no SV
pairs exceeding reciprocal overlap threshold of 90%.Afterfiltering and
unification, there are 245 noncoding pathogenic SVs from ClinVar,
DECIPHER, and SvAnna. We then matched each of these SVs with one
NCBI-curated common SV, the closest noncoding SV with a similar set
of candidate target genes. We combined this dataset of matched
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noncoding SVs with all coding SVs from ClinVar that passed the fil-
tering and unification procedure. We split these SVs, containing only
deletions and duplications, into training, validation, and hold-out test
datasets based on chromosomes prevent any information leakage and
to ensure the reliability of our test results. The chromosome numbers
for these splits were selected toproducebalanceddatasets concerning
pathogenic SVs and benign SVs. The training set has 14,292 coding SVs
(6609 pathogenic and 7683 benign) and 330 noncoding SVs (165
pathogenic and 165 benign) from chromosomes 1–10 and 17–22. The
validation set has 2136 coding SVs (990 pathogenic and 1146 benign)
and 46 noncoding SVs (23 pathogenic and 23 benign) from chromo-
somes 11–13. The hold-out test set has 2559 coding SVs (6609 patho-
genic and 7683 benign) and 330 noncoding SVs (165 pathogenic and
165 benign) from chromosomes 1–10 and 17–22. Since we removed
coding SVs that are almost identical to ClinVar coding SVs from
DECIPHER and SvAnna curated dataset, potential information leakage
canbe avoided. All coding SVs fromDECIPHERand SvAnna thatpassed
the filtering and unification are used as independent test datasets:
small (50 bp–100 kbp, 383 pathogenic and 366 benign) and large SV
(100 kbp–1Mbp, 1208 pathogenic and 801 benign) datasets (Supple-
mentary Data 2). Furthermore, we compiled a sex chromosome test
dataset comprising all SVs located on chrX and chrY, sourced from
ClinVar, DECIPHER, and SvAnna. The SV filtering steps employed here
are the same with those applied to autosomal chromosomes. In total,
this dataset includes 2034 pathogenic SVs and 1934 benign SVs.

We compiled all SVs of insertions and inversions from ClinVar,
SvAnna, and five LRS datasets together. To test PhenoSV performance
for insertions and inversions, we randomly sampled the same number
of insertions/inversions that can be treated as benign fromLRSdatasets
to match pathogenic insertions/inversions from ClinVar and SvAnna.
The test insertiondataset includes 175pathogenic insertions (171 coding
SVs and4noncoding SVs) and 175 benign insertions (171 coding SVs and
4 noncoding SVs). The test inversion dataset includes 20 pathogenic
inversions and 20 benign inversions. We further curated a test trans-
location dataset, including 68 pathogenic fusion genes that appeared in
more than 10 cancer samples fromCOSMICdatabase48 and 38 common
chimeric RNAs recurrent in all normal tissue types from a previous
study53. The exact breakpoints for COSMIC translocations were esti-
mated by the middle points of inferred intervals.

Three unlabeled SV datasets from human disease cohorts were
curated as additional test datasets. Autosomal SVs of deletions and
duplications larger than 50 bp were kept. For the congenital abnorm-
ality cohort, we used the CNV cohort data from a previous study44. We
excluded patients with multiple potentially pathogenic SVs as anno-
tated by the original study. For the autism cohort45, we combined the
discovery and the replicate datasets. For the epilepsy cohort, we only
kept rare noncoding SVs. Finally, the congenital abnormality cohort
contains 91 coding SVs, and the autism cohort has 222 noncoding SVs,
with 126beingpaternal and96beingmaternal. The epilepsycohorthas
373 SVs, with 150 SVs from epilepsy patients and 223 SVs from control
individuals. Note that, most (>99%) of the noncoding SVs in the autism
cohort and the epilepsy cohort have no overlap (defined previously as
having 70% of bases that are covered by SVs in the training data) with
noncoding SVs in the training dataset.

We also curated a dataset comprising germline rCNV segments47

and somatic COSMIC CNVs48 that affect overlapping genome regions
but lead to distinct phenotypes. rCNVs potentially associated with
inherited diseases are derived from genome-wide meta-analyses.
COSMIC CNVs are compiled from tumor samples from patients with
diverse types of cancer. We downloaded the consensus set of 178
disease-associated rCNVs from a previous study47 and excluded the
rCNVs exceeding the 70% thresholdof reciprocal overlapswith anySVs
in the training data. This leaves us 123 rCNV segments. We retrieved
89,057 autosomal SVs of deletions or duplications larger than 50 bp
fromCOSMIC. In total, 83,503 SVs that can bemapped to specific HPO

terms based on their histology information were kept. We require
rCNVsegments to overlapwith at leastoneCOSMICCNVs and similarly
require COSMIC CNVs to overlap with at least one rCNV segment by
setting the reciprocal overlap threshold as 70%. This final dataset
contains 377 rCNV-phenotype pairs (97 rCNV segments) and 2847
COSMIC CNVs from 11 cancer types (Table S2).

SV segmentation
We segment the genomic region of interest potentially affected by a
given SV into a sequence of genomic segments. For a coding SV, we are
interested in the genomic region coveredby this SV. Thus, the sequence
of genomic segments comprises all protein-coding genes and inter-
genic noncoding areas covered by the SV ordered by their starting
positions. Note that it is possible to have two consecutive genic seg-
ments because some genes overlap, and each segment will represent
the full-length gene regardless of the overlapping status. For a non-
coding SV, the genomic region potentially affected by this SV includes
the area within and outside this SV. In this study, we consider the 1Mbp
flanking regions of noncoding SVs unless explicitly mentioned other-
wise. The segment sequence of a noncoding SV includes protein-coding
geneswithin this pre-determined genomic region of interest, intergenic
noncoding regions, and the noncoding SV itself, ordered by their
starting positions. We add zero-padding segments as pseudo noncod-
ing segments at the front and end of every genomic segment sequence
to ensure there are noncoding segments for genes to attend to within
the attention heads of type 1 (Fig. 1b). It’s important to highlight that
there exists a significant imbalance between the numbers of coding SVs
and noncoding SVs in our training dataset. To mitigate the class
imbalance issue, we designed the segmentation strategy above to bal-
ance between coding SVs and noncoding SVs in the input feature space.
See Supplementary Materials for more detailed discussions.

Feature annotation
We integrated 64 annotation types and performed one-hot encoding
into 238 features that are used to annotate genomic segments. These
238 features can be grouped into six functional categories, including
deleteriousness scores, epigenetic activities, disease constraints, gen-
ome element annotations, evolutionary constraints, and SV types (see
Supplementary Data 1 for details). These features are functionally
diverse with different genome coverage and resolution scales,
including genome-wide, coding- and noncoding-region features, and
at the locus, gene, or segment levels. For example, we incorporated
segment-level genome annotation features, such as super-enhancers73

and chromatin states74. We also included gene-level disease constraint
features, such as dosage sensitivity-related scores of pHaplo and
pTriplo47. This way, we could utilize these features collectively to
account for the impacts on genes when disrupting genome regulatory
elements. After downloading all 64 annotation types, we first used
customized bash scripts to transform each feature into a bigwig track
file using tools including BEDTools75, BEDOPS76, and UCSC
bedGraphToBigWig77. All features in the GRCh37 build were converted
into GRCh38 assembly using CrossMap71. We used genome copy
number for the last feature dimension to represent different SV types.
Deletions and duplications covered by SVs were encoding as 1 and 0,
respectively. We encoded the SV type feature for genomic segments
outsideof SVs as0.5, due to the lackof copynumber changes (Fig. S1a).
We performed one-hot encoding for all other categorical features,
such as chromatin states, making the final annotation feature number
being 238. For features having multiple scores on a single nucleotide
position, such as CADD scores78, we combined them into one score
using the maximum one. Then, these bigwig track files were used to
annotate each genome segment of each SV based on customized
python scripts using assigned summary statistics for aggregation
(Supplementary Data 1). For features having partial coverage within
the genomic segment, weonly aggregated feature scores on the region
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that is covered. For instance, if the aggregation method is “mean”, we
divided the sumof the feature scores within the segment region by the
covered feature length within the segment. We used zero score for
features with no coverage within the segment region. Finally, all
segment-wise feature scores were normalized using min-max scaling,
that is score�minðscoreÞ

max scoreð Þ�minðscoreÞ, where the empirical min and max were esti-
mated from SVs in the training dataset without being segmented.

PhenoSV architecture and training
PhenoSV has two major components, a feature extractor and a classi-
fier. The feature extractor takes a sequence of annotated genomic

segments XSV 2 RnSV × 238 and outputs an overall SV-level embedding
and a list of gene-level embeddings. nsv is the number of genomic
segments for a given SV, including two zero-padding segments. We
first use two fully connected layers with dimensions of 800 and 512 to

project XSV 2 RnSV × 238 into Xembed 2 RnSV × 512, where each genomic
segment is independent without information exchange. Xembed is then
fed into four consecutive transformer blocks containingmaskedmulti-
head attention (MHA) layers with standard residual connection and
layer normalization40 to update sequence embeddings into those with

contextual information, denoting as Xout 2 RnSV × 512. Relative posi-
tional encoding is used with maximum absolute distance being set as
20 segments79. We set the number of attention heads within each
transformer block as 8. For each attention head h, the input feature

matrix is linearly projected to Qh (query), Kh (key), and Vh (value),
each with a dimension of nSV ×64: Values represent the contextual
information that each genomic segment injects into other segments.
Queries represent the current information of a given genomic seg-
ment, and keys represent the information of the target genomic seg-
ments from which the query segment gets information. Then, the

updated feature embedding for ith segment in head h becomes:

Zh
i,* =

PnSV
j = 1aijðVh

j , � + γVij Þ, Zh 2 RnSV ×64. γVij is a vector of length 64,

encoding pairwise relative positions between the ith and jth segment

of distance ji� jj for Vh. Here, ah
ij =

exp ehijPnSV
k = 1

exp eh
ik

is a normalized weight

coefficient, controlling howmuch information the ith segment should
get from the jth segment in the attention head h. The raw weight

coefficient ehij is computed by ehij =
Qh

i,* Kh
j,* + γ

K
ij

� �T

ffiffiffiffi
64

p +Mh
ij . Similar to γVij , γ

K
ij is

a relative positional embedding forKh.Mh 2 RnSV ×nSV is a maskmatrix

that adjusts pairwise attention weights ehij between genomic segments

based on the types of segment pairs. Intuitively, we would like ele-
ments of protein-coding genes to query information from either
themselves to model direct effects or from target noncoding regions
to model indirect effects. Thus, two types of mask matrices are
designed to explicitly model two different attention mechanisms. For

the first 4 heads modeling the indirect effects, Mh
ij = 0 if (1) the ith

segment is protein-coding genes, and the jth segment is either non-
coding segments for coding SVs or SV-affected region for noncoding
SVs or the zero-padding elements; or (2) the ith segment is noncoding

regions, and i= j. Otherwise,Mh
ij = −999. For the rest 4 heads modeling

the direct effects, protein-coding genes only query information from

themselves andMh = I, where I is identitymatrix.We drop all segments
that are not protein-coding genes from Xout and use a max-pooling
layer to aggregate gene-level embeddings into the overall SV embed-
ding. The classifier contains a fully connected layer of dimension 128
and a logit classifier. It can take the SV-level embedding to generate
PhenoSV score for SV-level pathogenicity, denoted aspsv. The classifier
can also take the list of gene-level embeddings and output a list of
PhenoSV gene scores of {psv�gene1

,psv�gene2
, . . . ,psv�genem

}, represent-

ing the pathogenicity ofm genes affected by the SV. Note that when a
noncoding SV is intronic, the left and right adjacent segments

represent the same gene with two PhenoSV gene scores. We use the
maximum one of these two scores for this gene’s final PhenoSV
gene score.

Although coding SVs and noncoding SVs were trained together,
their confidence scores have intrinsically different scales, with non-
coding SVs having high sensitivities but low specificities (Table S1). We
conduct an additional calibration stepwithin the logit space to provide
pathogenicity scores with a probabilistic interpretation, allowing us to
classify a call as pathogenic when the value of psv or psv�gene surpasses
0.5. Specifically, the raw confidence score of p0 will be transformed as
followed: pc = sigmoidðlog p0

1�p0 � log s
1�sÞ. s is the optimal cutoff value

with s =0:4934 for coding SVs and s=0:7901 for noncoding SVs,which
are determined by Youden index in the hold-out test dataset. After
calibration, we noticed a more balanced sensitivity and specificity for
noncoding SVs (Table S1). When prior phenotype information is
available, a list of phenotype-gene association scores will be generated
using percentile-transformed Phen2Gene scores, whose minimum
value is used in imputing gene scores outside the list. For an SV
impacting m genes, we denote phenotype-gene association scores
as {pgene1�phen,pgene2�phen, . . . ,pgenem�phen}, and use themaximumvalue
to define the phenotype-SV association score psv�phen. Then, the
phenotype-aware PhenoSV score can be expressed by
pphen
sv =psv ×p

α
sv�phen, and the phenotype-aware PhenoSV gene score is

pphen
gene =pgene ×p

α
gene�phen. Here, α is a parameter with non-negative

values controlling for the degree of phenotype dependency. When
α =0, pphen

sv is equal to psv that is independent of phenotypes.Whenα is
increased, pphen

sv becomes more reliant on phenotype associations.
Taken together, PhenoSV can predict functional consequences of

a given SV by generating: (1) PhenoSV SV score psv that represents the
general pathogenicity of the SV, (2) PhenoSV gene score psv�gene that
represents the general pathogenicity of a specific gene affected by the
SV, (3) phenotype-aware PhenoSV SV score pphen

sv that represents the
pathogenicity of the SV relating to given phenotypes, and (4)
phenotype-aware PhenoSV gene score pphen

sv�gene that represents the
pathogenicity of a specific gene relating to given phenotypes affected
by the SV (Fig. 1b).

PhenoSV was trained for 100 epochs with Adam optimizer by
setting β1 = 0:9, β2 =0:98 and ϵ= 10�9. The final model was chosen
from the epoch when validation loss achieved the lowest during
training. Cosine annealing with linear warmup was used for learning
rate scheduler, with 20 epochs for warmup and the rest 80 epochs for
cosine decay. Themaximum learning rate is 0.0001.We used drop-out
rate of 0.2 and the weight decay parameter of 0.0001 for model
training regularizations. Batch size was set as 256, with accumulating
gradients for every 4 batches.

PhenoSV for insertions, inversions, and translocations
Although PhenoSV was trained using deletions and duplications, it can
be adapted to SV types of insertions, inversions, and translocations.
We treat deletions and duplications as the basic forms of SVs exerting
functional impacts on genes and approximate the impacts of inser-
tions, inversions, and translocations using deletions and duplications
(Fig. 2), though the original feature profiles of these SV types can be
different from thoseofproxies. For an insertion,wemainly consider its
impacts on disrupting the local genomic element by treating it as a
100bp deletion centered at the insertion breakpoint (Figs. 2b and S3).
For an inversion, we consider the impacts of its two breakpoints and
treat genes fully incorporated by the inversion region as unimpacted
(Figs. 2c and S3). When the breakpoint of the inversion is located
within a gene, regardless of an exon or an intron, we treat it as a
deletion truncating the 3’ side of the gene by the breakpoint because
the promoters of affected genes and their 5’UTRs are intact. When the
breakpoint of the inversion is located within a noncoding region, we
treat it as a 100bp deletion centered at the breakpoint as a proxy,
similar to an insertion. Note that, when one breakpoint disrupts a gene
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and the other disrupts noncoding region, we mainly consider the
impacts of the first breakpoint that has direct impact on a gene.
The overall pathogenicity for an inversionwith two breakpoints is thus
the maximum of the two psv. For a translocation, we always consider
the impacts of both 5’ and 3’ breakpoints, which can potentially pro-
duce gene truncations and fusion genes, see Fig. 2d for more details.

SV prioritization using PhenoSV
We performed SV prioritization using simulated SV profiles in
patients, each with one true disease-related SV and ~19,000 back-
ground ones. We collected all pathogenic SVs that passed the
abovementioned filtering and unification steps and with phenotype
information, including 1007 coding SVs from ClinVar in the hold-
out test dataset, 494 SVs from the independent test datasets of
DECIPHER and SvAnna, all 193 noncoding SVs from ClinVar, DECI-
PHER, and SvAnna, and all 150 insertions and inversions from Clin-
Var and SvAnna. Each of those pathogenic SVs was treated as the
true disease-related SV for one patient. Note that, for coding
pathogenic SVs from DECIPHER, we only kept the ones that fully or
partially contribute to a given patient’s phenotypes. Due to the
limited number of labeled pathogenic noncoding SVs, we incorpo-
rated all noncoding SVs we could gather. Theremay be a low level of
information leakage present in noncoding SV prioritizations. We
randomly sampled 25,000 background SVs by allele frequency from
a background SV dataset for each SV profile. This background SV
dataset has 364,961 SVs compiled from NCBI-curated common SVs
and the long-read rare SVs, including deletions, duplications,
inversions, and insertions. All allele frequencies of rare background
SVs were imputed as 0.01. Since background SVs can overlap, we
first clustered SVs and only randomly sampled one from each
cluster for each final simulated SV profile. This is to ensure the
simulated SV profiles are realistic without overlapping SVs. Thus,
each patient’s simulated SV profile contains ~19,000 background
SVs with about 8000 being rare novel SVs. We first filtered out all
common SVs (MAF < 0.01) from each of the simulated SV profiles
and then used pphen

sv to prioritize SVs of each patient’s profile by
setting α = 0, 0.2, 0.4, 0.6, 0.8, and 1, respectively. When setting
α = 0, pphen

sv is equivalent with psv without using any phenotype
information. Phenotype information in DECIPHER and SvAnna
datasets is given in the format of HPO terms, whereas ClinVar pro-
vides MONDO, OMIM, ORPHA, MeSH, and HPO terms depending on
SV sources. We mapped all phenotype terminologies into HPO
terms that can be used as inputs of Phen2Gene. However, we clarify
here that other phenotype-based gene prioritization tools80–83 can
also be used here as well, with simple reformatting of output files
from such tools.

Statistics and reproducibility
PhenoSV was trained on 2 NVIDIA A100 GPUs using Pytorch Lightning
framework (1.6.4).WeperformedSV-wise annotations for both coding-
and noncoding-SVs for the PhenoSV-XGBoost model. We conducted
grid search usingRpackage of caret (6.0.94)84 tofind theoptimal set of
hyperparameters using the same training and validation splits as the
PhenoSV model, and XGBoost model was trained using R package of
xgboost (1.7.5.1). The hyperparameters searched included the max
depth of a tree (6, 10), percentage of features used (0.5, 0.75, 1), and
the number of trees (100, 200). The optimal hyperparameters of the
finalmodel aremax tree depth as6, percentage of features as0.75, and
the number of trees as 100. Predictions of benchmark methods of
CADD-SV, AnnotSV, and StrVCTVRE were obtained from the official
web servers by uploading bed files containing test SV coordinates
(CADD-SV: https://cadd-sv.bihealth.org; AnnotSV: https://lbgi.fr/
AnnotSV/; StrVCTVRE: https://strvctvre.berkeley.edu). Predictions of
SVScore (https://github.com/lganel/SVScore) were obtained by run-
ning the command line tool. Scores of SVSCORETOP10 were used as

SVScore predictions. Simulated SV profiles used for prioritizations
were first transformed into VCF file format required by SvAnna
(https://github.com/TheJacksonLaboratory/SvAnna) and then ana-
lyzed using the command line tool. All statistical analyses were per-
formed in R, version 4.2.2. AUC values for model performances were
calculated using R package of pROC (1.18.4)85.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The simu-
lation and benchmarking data are provided at https://github.com/
WGLab/PhenoSV66. The training and testing data can be accessed
through ClinVar (full release 02/2022) [https://ftp.ncbi.nlm.nih.gov/
pub/clinvar/vcf_GRCh38/archive_2.0/2022/], DECIPHER (v11.15)
[https://www.deciphergenomics.org], COSMIC (release v97 for gene
fusion data and release v96 for somatic CNV data) [https://cancer.
sanger.ac.uk/cosmic], dbVar (nstd186, nstd152, nstd162, nstd175)
[https://www.ncbi.nlm.nih.gov/dbvar/studies] and Supplementary
files of papers mentioned in the “Methods” section. Source data are
provided with this paper.

Code availability
The software with source codes is available at https://github.com/
WGLab/PhenoSV66. A companion web server can be accessed at
https://phenosv.wglab.org.
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