
Article https://doi.org/10.1038/s41467-023-43616-1

Evolution of masting in plants is linked to
investment in low tissue mortality

Valentin Journé 1 , Andrew Hacket-Pain 2 & Michał Bogdziewicz 1

Masting, a variable and synchronized variation in reproductive effort is a
prevalent strategy among perennial plants, but the factors leading to inter-
specific differences in masting remain unclear. Here, we investigate inter-
annual patterns of reproductive investment in 517 species of terrestrial
perennial plants, including herbs, graminoids, shrubs, and trees. We place
these patterns in the context of the plants’ phylogeny, habitat, form and
function. Our findings reveal that masting is widespread across the plant
phylogeny. Nonetheless, reversion frommasting to regular seed production is
also common. While interannual variation in seed production is highest in
temperate and boreal zones, our analysis controlling for environment and
phylogeny indicates that masting is more frequent in species that invest in
tissue longevity. Our modeling exposes masting-trait relationships that would
otherwise remain hidden and provides large-scale evidence that the costs of
delayed reproduction play a significant role in the evolution of variable
reproduction in plants.

In perennial plants, reproduction can occur through spatially syn-
chronized seed production, which varies substantially over time. In
some years, investment in seed production is much higher than
average, while in other years plants allocate few or no resources to
reproduction, resulting in what is known as masting1,2. The con-
centration of reproduction in intermittent years appears heritable3,
and helps alleviate pollen limitation and reduce seed predation but
comes at the cost of skipped reproductive opportunities4–7. The
varying balance ofmasting costs and benefits is likely responsible for
the rich diversity of reproductive behaviors observed in perennials,
ranging from relatively regular fruiting to rare reproduction hap-
pening at long lags1,8–11. Large-scale variation in masting benefits is
better explored compared to costs1,9,11,12. For example, interannual
variation in seed production is high in the temperate zone, where the
benefits of starving and satiating specialist seed predators are the
greatest1,13. In contrast, the costs of missed reproductive opportu-
nities have long been only theorized to be higher in species with high
population growth rates and low adult survivorship5,14, but this has
remained challenging to test. Here, using trait-based approaches, we
provide support for this central tenet of masting theory, showing

thatmasting predominately occurs in specieswith conservative plant
tissues.

Accessible trait-based approaches can serve as indicators of life
history strategies, aiding in the identification of functional constraints
and trade-offs15–18, and providing an avenue to investigate how varying
costs of reproduction (skipped reproduction) shapes the evolution of
masting. High stem tissue density (i.e. wood density) provides
mechanical strength and reduces mortality, but limits growth rates,
which distinguishes strategies reliant on stress persistence from rapid
utilization of ephemeral opportunities17. We can thus expect stronger
masting in species with high stem tissue density, as lower mortality
rates due to stronger stress resistance should buffer against missed
reproductive opportunities14,19,20. Similarly, productive but short-lived
leaves with high nitrogen content and low leafmass per area (LMA) are
characteristic of cheap, acquisitive leaves that are efficient in resource-
rich environments and associatedwith high population growth rates20.
Such leaves should be thus associatedwith low interannual variation in
reproduction1,21. In addition, high interannual variation should be also
associated with large seeds if expensive reproduction strongly
depletes resources after reproductive events5,22. Although these links
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are theoretically established in the literature, supporting evidence is
scarce, as data on seed production accumulate slowly and require
significant investment23,24.

The relationships between traits at large scales are complicatedby
their often-neglected direct (conditional) and indirect (marginal)
relationships25,26, through the intricate connection of climate, geo-
graphy, or phylogeny. In the case ofmasting, stem tissue density tends
to be high in the tropics where interannual variation in seed produc-
tion is low9,17. Therefore, a negative correlation between interannual
variation in seed production and stem tissue density could be an
indirect relationship resulting from latitudinal covariance in these
traits. Alternatively, the relationship could be direct if the low inter-
annual variation in seed production requires species to produce con-
servative stems. Indirect relationships may also arise from
phylogenetic conservatism. Certain taxa may exhibit large interannual
variations in seed production and high stem tissue density even if
environmental conditions that select one or both traits change. Tra-
ditional summaries such as principal component analysis (PCA) sum-
marize correlations that include all the indirect ways traits could be
associated26,27. To address this issue, novel methods such as joint
attribute modeling enable the decomposition of relationships into
direct and indirect, driven by either climate or phylogeny26,28. These
statistical tools synergize with the recent advancement of global
coordination in monitoring and seed production data synthesis,
allowing tests of decades-old assumptions of the field while account-
ing for longstanding issues with covariance between variables.

In this study, we explore the relationship between masting, phy-
logeny, climate, and functional diversity across 517 species of vascular
plants, including herbs, graminoids, shrubs, and trees from various
biomes (Fig. 1). We use MASTREE+, a database that provides infor-
mation on annual variations in plant reproductive effort24. We char-
acterize the variability of seed production in each species using two
commonly usedmasting metrics, the coefficient of variation (CV), and
the lag-1 temporal autocorrelation (AR1),which describes the tendency
of high seed production years to be followed by low seed
production1,29. Using joint attribute modeling, we extract conditional
relationships driven by climate and phylogeny and associate large
interannual variation in seed production with a need for conservative

tissues. This provides large-scale evidence that the costs of delayed
reproduction play a significant role in the evolution of variable
reproduction.

Results
Masting on the spectrum of plant form
We start with results derived from the traditional principal component
analysis (PCA) approach to illustrate the challenges associated with
mixing conditional and marginal relationships. Principal component
analysis of functional traits andmastingmetrics indicates thatmasting
is largely independent of functional traits. The PCA of six functional
traits and masting metrics indicated that the 517 species examined
here had two primary sources of variation: an axis of leaf economics
(Axis 1: leaf mass per area, leaf nitrogen, leaf area) and plant size (Axis
2: seed mass, plant height, and stem tissue density), with no con-
tributions from masting metrics (i.e. coefficient of variation, CV, and
the lag-1 of temporal auto-correlation, AR1 of seed production).
Instead, masting generated a distinct axis of variation (Axis 3), with
species exhibiting high CV and negative temporal autocorrelation of
seed production concentrated at one end of the axis (Fig. 2 & Fig. S1).
However, the correlation summary mixed conditional and marginal
relationships conferred by phylogeny and climate, which each had
strong effects on masting, as explained below.

Masting on the Tree of Life of plants
The coefficient of variation (CV) and the lag-1 temporal auto-
correlation (AR1) exhibited phylogenetic coherence, with CV coher-
ence being about twice as strong (CV: λ =0.48, p <0.0001; AR1:
λ =0.27,p < 0.0001, as shown in Fig. 3 andFig. S3). Several groupswere
found to have a high concentration of species with a very high coef-
ficient of variation in seed production (Fig. 3). These groups included
Poales’ Chionochloa and Miscanthus. The Pinales order also included
high-CV genera such as Abies, Juniperus, and Picea, as well as mixed
ones such as Pinus. Fagales were also mixed, including high-variability
genera suchasBetulaceae andmixedones such as Fagaceae, which had
high-CV Fagus and diverse Quercus. Low CV was common in Magno-
liales, Gentianales, and some genera of Cornales andMalvales, such as
Cistaceae and Cornaceae. Highly negative temporal autocorrelation of
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Fig. 1 | MASTREE+ sites used in the analysis, and climatic space for the species
analyzed. a Location of MASTREE+ sites (red dots) included in this study (data
displayed in VanderGrinten IVprojection).bClimatic distributionofour sites. Each
dot represents average climatic conditions (mean annual temperature, MAT, and

mean annual precipitation, MAP) at the species distribution level (n = 517 species).
Data on species distribution was largely derived from the Global Biodiversity
Information Facility (GBIF, www.gbif.org) (seeMethods). TheWhittaker biomeplot
is included in the background for context.
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seed production was a characteristic trait of Fagales (Fig. S3). Other
groups, such as Rosales or Pinales, were mixed, while Malpighiales,
Gentianales, and Magnoliales were dominated by positive
autocorrelation.

Masting across climates
Although interannual variation (CV) and lag-1 temporal auto-
correlation (AR1) of seed production were not correlated (Fig. S5),
they responded to the climate in opposite ways that resulted in a

convergence of high CV and negative AR1 in the same climates (Fig. 4).
Positive temporal autocorrelationwasobserved in species that grow in
hot and dry environments, such as subtropical deserts or tropical
seasonal forests (Fig. S6), where low CV was also common (Fig. S6).
Conversely, negative AR1 andhighCVwere predicted in temperate and
boreal forests, which are characterized by intermediate annual tem-
peratures andprecipitation (Fig. 4).We also exploredmodels thatwere
supplemented with climate variability (standard deviation of the
monthly mean temperatures and coefficient of variation of the
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Fig. 2 | Masting metrics (coefficient of variation, CV, and lag-1 temporal auto-
correlation of seed production, AR1) on the spectrum of plant functional
traits. a Biplot of principal components that summarized axes 1 and 2, and (b) and
axes 1 and 3. The PCA included plant functional traits (stem tissue density, leaf area,
leaf nitrogen, leaf mass per area LMA, plant height, and seed mass) and masting
metrics (CV and AR1). Arrow length indicates the loading of each considered trait
onto the axes. Points represent the position of species color-coded according to

their growth form (yellow for trees, purple for shrubs, and gray for others that
included graminoid and non-graminoid herbaceous and climbers). c Summary of
PCA loadings, and (d) contributions to the three axes of variation. The bars at (c)
and (d) are color-coded to match the colors of axes (at a, b) to which the traits
loaded the most. The trait probability density function is given in Fig. S1, and CV/
AR1 by growth form with PCA in Fig. S2.
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monthly precipitation), but the inclusion of climate variability has not
improved our model’s fit (Table S2).

Masting and traits, accounted for climate and phylogeny
The conditional prediction from generalized joint attribute modeling
(GJAM), which accounted for the effects of phylogeny and
species climatic niche on masting, revealed that species with dense
tissue stems and conservative leaves characterized by high mass per

area tend to have higher coefficients of variation in seed production
(Fig. 5). There was also a weak (non-significant in the full model)
association between high CV and small seeds (Fig. 5, Table S1). These
effects suggest that correlations (or the lack thereof) observed by PCA
between traits and masting metrics were mainly driven by climate or
shared ancestry. For instance, stem tissue density is highest in climates
wheremasting is lowest (Fig. S7), but this negative covariance changes
sign once the climate is taken into account.
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Fig. 3 | Coefficient of variation of seed production mapped onto a plant phy-
logeny. Warmer colors (reds) indicate higher, while blue lower CV (the phyloge-
netic signal is calculated using Pagel’s λ =0.48, p <0.0001, n = 518 species).

Distributions of the masting metrics are in Fig. S4. Orders of plants are provided at
the periphery of the phylogenetic tree.
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tions of the GJAM-derived coefficients. Specifically, boxes showmean effect size as
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Discussion
Interannual variation in seed production across 517 species is asso-
ciated with restricted climatic and phylogenetic space and con-
servative tissues that include higher stem tissue (wood) density and
higher LMA. First, the coefficient of variation of seed production was
highest in temperate and boreal climates, which supports previous
studies that have shown the CV to be highest at mid-latitudes1,9. Sec-
ond, masting has evolved multiple times across the Tree of Life in
plants, in growth forms ranging from grasses to trees. Nonetheless,
numerous branches have split into high and low-variability groups,
perhaps because species quickly lose their inherited seed production
variability once there is no ongoing selection for it (e.g., low seed
predation or high pollination can be achieved via other routes). Third,
high interannual variation in seed production is concentrated in life
history strategies that invest in low mortality. High survival rates
decrease the costs of missed reproductive opportunities, which is a
major masting cost that can prohibit masting evolution even when
there is a strong selection for it7,19. Thus, costs of delayed reproduction
appear a major factor driving the evolution of masting across species.

Masting is a widespread phenomenon in the Tree of Life of plants.
Although the coefficient of variation (CV) of seedproduction exhibited
relatively strong phylogenetic coherence, branches lacking closely
related species that have reverted from masting to regular seed pro-
duction were rare. For instance, the Betulaceae family, comprising
Betula, Carpinus, and Alnus, displayed generally high variability, with
exceptions including Alnus hirsuta and Betula pendula. The closely
related Chionochloa species all showed highly interannually variable
seeding patterns, with related Dactylis glomerata being a low-
variability exception. Perhaps the high costs of high seed production
variability mean that if the need for masting (e.g., high seed predation
rates or low pollination efficiency) can be circumvented through less
costly alternatives, regular seeding re-evolves. In this context, oaks
represent a notable example of diversity and rapid transitions between
low and highly variable strategies, contrasting with Pinales, where
masting was lost less frequently. A comparison of these two groups to
understand why masting is almost always beneficial in Pinales, such as
Picea or Abies, but can quickly cease to be so inQuercus, is a promising
area for future research. Are the costs of masting systematically
smaller in Pinales, or is the need for masting (e.g., low pollination
efficiency) systematically greater? One interesting way forward is to
examine this question in light of the high resprouting abilities of oaks
but not pines30.

A high coefficient of variation in seed production does not
necessarily imply a need for negative lag-1 temporal autocorrelation,
indicating that the two can evolve independently9,10. High CV values
without strongly negative AR1 may happen if mast years are not fol-
lowed by complete failure years9,10. However, climate effects on these
metrics lead to the convergence of high CV and highly negative AR1 in
the same boreal and temperate habitats. Predator satiation is most
effective at mid-latitudes13, which is often explained by a lower diver-
sity of alternate food resources for seed consumers that helps control
their populations1,9. Thus, the high potential effectiveness of predator
satiation may lead to stronger selection for both high CV and negative
AR1 in such biomes. Alternatively, species in the boreal and temperate
zones may rely less on mutualistic interactions31, which tend to select
against masting1,11,32. For example, wind pollination is less frequent at
low latitudes33, and the absence of negative AR1 may help avoid the
starvation of animal pollinators in these systems. Finally, to the extent
that negative AR1 reflects resource depletion following high-seeding
years34,35, convergence between high CV and negative AR1 could be
driven by stronger resource constraints in certain climates21. Irre-
spective of the reason, in climates where high CV and negative AR1 co-
occur, masting-driven pulsed resources would be expected to involve
frequent famines36,37, creating an especially unstable base of foodwebs
in these biomes.

Masting is associated with a restricted functional trait space. High
interannual variation in seed production is common in species with
high stem tissuedensity and, to a lesser extent, in specieswith high leaf
mass per area (LMA). These species invest heavily in constructing tis-
sues, resulting in slower returns on nutrient investment but higher
survival through higher defenses against physical damage and
herbivores17,38,39. Theoretical models suggest that the significant costs
of missed reproductive opportunities can prevent the evolution of
masting, even in the presence of significant benefits such as improved
pollination and reduced seedpredation7,14,19. In this context, our results
support this long-standing theory, testing of which has previously
been frustrated by lack of data.What ismore, recent studies suggested
that the other theoretical masting cost, negative density-dependent
seedling survival5,40, may be lower than expected. Theory predicts that
negative density-dependent seedling survival can prohibit the evolu-
tion of masting in plants that have high adult survival40. However,
recent evidence implies that masting does not result in lowered
seedling survival in Sorbus aucuparia12, andmay even increase seeding
survival in tropical communities41. Generally, negative density depen-
dence appears fairly weak on average and highly variable among spe-
cies, suggesting that its generality may be overstated42. Together with
our results, these suggest that the costs of delayed reproduction may
be a major mechanism driving the evolution of masting across plant
life history strategies.

We also found no support for theories linking high CV with large
seed5,22. We speculate that the tendency for high CV in small-seeded
species, in contrast to theoretical predictions, may result from con-
trasting selection pressures. For example, small seeds are correlated
with seed bank persistence in the soil43, which is another way to cir-
cumvent the costs of missed reproductive opportunities19. Conse-
quently, if there are ways that small-seeded species can reduce the
costs of missed reproduction, masting might evolve more readily,
offsetting the expected direct effect of large seeds on masting.

In summary, our analysis supports the idea that the extent of year-
to-year variation in masting is regulated by a species’ phylogeny,
location (climate), and life history (plant form). The effects of climate
and phylogeny on mast seeding and functional traits necessitated
conditional predictions that extracted direct associations27,28. A PCA
analysis that combined all the ways in which variables can be linked
suggested that masting created a third, mostly independent dimen-
sion of variation in plant traits. This outcome would support a twin-
filter model, according to which primary strategies, such as the fast-
slow leaf economics spectrum44, determine plant persistence for cli-
mate and habitat norms, whereas traits involved in episodic events,
including reproduction, affect fitness regardless of other traits45.
In other words, masting would evolve whenever there is a need for it,
regardless of the plant form. However, by extracting direct effects, we
showed that links among traits and variation in seed production were
concealed by their covariance with climate and phylogeny. That
modeling reversed the analytical outcomes, showing that the costs of
delayed reproduction may prevent masting in fast-growing, low-
survival plant forms. The required next step is to directly link masting
with life history traits (population growth rate, size at sexual maturity,
mortality rates) which, with growing data availability46, may soon
become feasible.

Methods
Data description
Our analysis is based on MASTREE+, a database of annual records of
population-level reproductive effort of 974 from all vegetated
continents24. For our analysis, we excluded time series that were on an
ordinal scale and those based on pollen measurements. We analyzed
two subsets of the data.One, broader,was limited to time serieswith at
least 5 years of observations. That analysis is reported in themain text.
Second, a more restrictive analysis included time series with at least
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10 years of records. Results of that analysis are reported in the Sup-
plementary Section and provide quantitatively the same outcomes.

Masting metrics. We computed the coefficient of variation (CV,
standard deviation divided by mean of seed production) for each site-
species combination. The CV is commonly used in masting studies to
describe inter-annual variations of seed production1,29,47. We also
computed lag-1 temporal auto-correlation of seed production (AR1),
which characterized the tendency of high-seeding years to be followed
by low-seeding years. For each species, we computed the average CV
and AR1. To compute auto-regressive correlation we used the acf
function in R48.

Functional traits. We extracted species-level functional traits from49,
which include LeafMassArea (LMA, in g.m−2), stem tissue density (SSD,
in mg.mm−3), plant height (ph, in m), leaf nitrogen (ln, in mg.g−1), seed
size (sm, in mg), and leaf area (la, in mm−2), and plant growth form
(Fig. S8).We obtained plant growth form,which includes trees, shrubs,
and other categories, with graminoid and non-graminoid herbaceous,
and climbers (see distribution in Fig. S2).

Full trait information obtained from49 was available for 210 species
fromMASTREE+ database. To increase species coverage, we performed
a trait-imputationprocedure.Weusedmachine learning that accounted
for species phylogeny50,51. We filled only species that had information
for at least three functional traits (out of six used in the analysis)18,50.
First, we log10 transformed known functional traits and incorporated
phylogenetic information for each species52. The phylogenetic infor-
mation was summarized by eigenvectors extracted from a principal
coordinate analysis (PCoA), which represented the variation in the
phylogenetic distances among species. We used the first ten axes of
PCoA for the imputationprocess50,52. Thephylogenywasobtainedusing
the R package V.Phylomaker253,54, with the GBOTB.extented.TPL
tree as a backbone55,56, and scenario S3 to generate the phylogeny54,57.
Imputation ofmissing trait informationwithmachine learning has been
done through theRpackagemissForest58. That imputation allowedus
to increase the sample size (i.e. species for which we had full traits and
seed production data) to 517 species. The GJAM model without trait
data imputation generatedqualitatively similar results for CV (Table S1).
In the case of AR1, lack of trait imputation resulted in a positive asso-
ciation between leaf N and AR1, and a negative between height and AR1
being significant. That hints that acquisitive leaves may buffer against
strong post-mast seeding failure21, although it is unclear why smaller
plants have more negative AR1. For consistency, we discuss only the
results with the data imputation in the main text.

Abiotic variables. We determined the species’ climatic niche by using
species occurrences extracted from Global Biodiversity Information
Facility (GBIF, www.gbif.org) through the rgbif package59 (data
request: https://doi.org/10.15468/dl.jxyrhk)60. We removed species
occurrences from GBIF that are incorrectly or vaguely reported and
outliers by using theRpackageCoordinateCleaner61 to keepprecise
species locations (mean number of occurrences for our species =
7609, CI975 = [1; 105,093]). Next, for each occurrence, we extracted a
mean annual temperature (MAT, in °C) and mean annual cumulative
precipitation (MAP, in cm)byusingCHELSAdata62, and averaged those
values from all occurrences per species to one value per species range
(MAT and MAP). For each species, we used average species climatic
conditions from MASTREE+ if the number of sample sites from MAS-
TREE+ was higher than the number of species occurrences from GBIF
(n = 55 species). We used GBIF-based climate to accommodate func-
tional traits and masting metrics at species-wide averages. None-
theless, MAT and MAP obtained through MASTREE+ sites and GBIF
present strong correlations (Fig. S9), and using both provides quali-
tatively the same results.

Analysis
Phylogenetic analysis. We estimated the phylogenetic signal of the
coefficient of variation (CV) and temporal auto-correlation (AR1) of
seed production with Pagel’s λ63. Pagel’s λ is based on the Brownian
Motion evolutionary model and ranges from 0, when there is no
phylogenetic signal, to 1 where the phylogenetic signal is estimated to
be very strong. The Pagel’s λ was estimated by using the phyolosig
function fromphytoolsRpackage64 and visualizedwithggtree65.We
used a plant phylogenetic tree provided by55.

Multivariate analysis. We used the principal component analysis
(PCA) to describe the multivariate trait spectrum, which included the
six functional traits and two masting metrics (CV and AR1). We kept
functional traits log10 transformed. We standardized and centered
variables. We used ade466 R package. Moreover, we estimated the
occurrence probability of trait combination in two-dimensional space
(determined by the PCA axis 1 and 2, or by axis 2 and 3) with their
bivariate trait combinations. We used the two-dimensional kernel
density estimation and determined the highest probability trait
occurrence18,51.

Joint model analysis. We jointly modeled functional traits and mast-
ing metrics using the generalized joint attribute modeling (GJAM,28).
Average climatic conditions per species range (occurrences obtained
via GBIF, see above) were included as predictors, i.e. mean annual
temperature (MAT) andmean annual precipitation (MAP). We tested a
set of models with different combinations of the interaction between
MAP and MAT, and their quadratic terms. Model selection was based
on the Deviance information criterion (DIC). The GJAM allowed us to
accommodate the dependence between traits and phylogeny as ran-
dom groups. To this end, we followed past studies that used a similar
approach27,67, and grouped species according to genus or family (when
the genus had <10 species).Weused the ’multiple’ category for families
with <5 species.

We accommodated themutual dependence structureof traits and
isolated their effect on masting metrics through conditional
prediction27,68. Conditional prediction offers an estimation of the
relationships between traits and masting metrics while accounting for
the effects that come through climate and phylogeny. These condi-
tional parameters are obtained via gjam R package28, by specifying
traits being conditioned (here, functional traits) on the variable of
interest (here, CV and AR1 of seed production). In doing this, we first
estimate how responses (functional traits and masting metrics) cor-
relate with climate. Next, the relationships among responses are esti-
mated, after accounting for the predictors (climate and phylogeny).
The gjam is an open-access R package gjam available on CRAN.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study have been deposited in the Open Science
Framework (OSF) (https://osf.io/57w2q/). The fullMASTREE+dataset is
available in24. Traits have been downloaded from49. Climate data have
been extracted from CHELSA at https://chelsa-climate.org/.

Code availability
R statistical software v4.3.0 was used in this work48. All analyses used
published R packages.
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