
Article https://doi.org/10.1038/s41467-023-43600-9

Spatial transcriptomics deconvolution at
single-cell resolution using Redeconve

Zixiang Zhou 1,2,3, Yunshan Zhong 1,3, Zemin Zhang 1,2 & Xianwen Ren 1

Computational deconvolution with single-cell RNA sequencing data as refer-
ence is pivotal to interpreting spatial transcriptomics data, but the current
methods are limited to cell-type resolution. Here we present Redeconve, an
algorithm to deconvolute spatial transcriptomics data at single-cell resolution,
enabling interpretation of spatial transcriptomics data with thousands of
nuanced cell states. We benchmark Redeconve with the state-of-the-art algo-
rithms on diverse spatial transcriptomics platforms and datasets and
demonstrate the superiority of Redeconve in terms of accuracy, resolution,
robustness, and speed. Application to a human pancreatic cancer dataset
reveals cancer-clone-specific T cell infiltration, and application to lymph node
samples identifies differential cytotoxic T cells between IgA+ and IgG+ spots,
providing novel insights into tumor immunology and the regulatory
mechanisms underlying antibody class switch.

Spatial transcriptomics (ST) technologies provide new tools to identify
the cellular organization and interactions of biological samples, which
is pivotal to biomedical studies. Multiple ST technologies have been
developed and applied to mouse and human brains, lymph node,
heart, etc., providing novel insights into cellular communication net-
works underlying different conditions. However, sequencing-based ST
technologies, e.g., the 10x Genomics Visium platform and Slide-seq1,
are essentially of a spot-by-gene matrix structure, needing additional
data to provide the cellular information. While the commercial emer-
gence of imaging-based ST technologies, e.g., seqFISH+2, MERFISH3,
10x Genomics Xenium4, and NanoString CosMx5, provides subcellular
resolution, these technologies are limited by low gene throughput,
with hundreds of customized genes detected, making their discovery
potential unparallel to whole transcriptome-wide spatial technologies.
Therefore, integrative analysis of whole transcriptome-wide ST data
together withmatched single-cell RNA sequencing (scRNA-seq) data is
of high significance for biological discoveries.

Multiple effective and efficient algorithms have been proposed
for integrative analysis ofwhole-transcriptome ST and scRNA-seqdata.
The current algorithmscan be categorized to twogroups: (1)mapping-
based methods, e.g., NovospaRc6, Tangram7, Celltrek8, and
CytoSPACE9, which map single cells to the positions of ST data
according to gene expression similarity or related measures; and (2)

deconvolution-based methods, e.g., CARD10, RCTD11, cell2location12,
DestVI13, SpatialDWLS14, SPOTlight15, STRIDE16, CellDART17,
Celloscope18, DSTG19, and Stereoscope20, which try to reconstruct the
ST observations by modeling the experimental process as sampling
from different combinations of single cells. Mapping-based methods
are superior to the current deconvolution-based methods regarding
their single-cell resolution as the resolution of current deconvolution
methods is limited to tens of cell types. However, mapping-based
methods may introduce artificial biases during the mapping process
due to the absenceof strong constraint on the reconstruction accuracy
of the ST observations. It is urgently needed to develop a
deconvolution-based algorithm with single-cell resolution to fully
release the biological information hidden in ST data.

In this study, we develop an algorithm, named as Redeconve21, to
estimate the cellular composition of ST spots. Different from previous
deconvolution-based algorithms, Redeconve introduces a regularizing
term to solve the collinearity problem of high-resolution deconvolu-
tion, with the assumption that similar single cell states have similar
abundance in ST spots. This algorithmic innovation not only improves
the deconvolution resolution from tens of cell types to thousands of
single cell states, but also greatly improve the reconstruction accuracy
of ST data, enabling illustration of the nuanced biologicalmechanisms
hidden in the ST data. Stringent comparison with the state-of-the-art
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algorithms including cell2location, CARD, DestVI, CellTrek, NovoS-
paRc, and Tangram demonstrates the superiority of Redeconve in
terms of reconstruction accuracy, cell abundance estimation per spot,
sparseness of the reconstructed cellular composition, cell state reso-
lution, and computational speed. Application to human pancreatic
cancer data reveals novel insights into tumor-infiltrating CD8 + T cells,
and application to human lymph node data reveals new clues for the
regulatory factors of IgA+ and IgG+ B cells.

Results
Redeconve: a quadratic programming model for single-cell
deconvolution of ST data
Redeconve uses scRNA-seq or single-nucleus RNA-seq (snRNA-seq) as
reference to estimate the abundance of different cell states in each
spot of ST data (Fig.1a). Different from previous deconvolution
methods, Redeconve does not need to group single cells into clusters
and then do deconvolution. Instead, Redeconve treats each cell of the
sc/snRNA-seq data as a specific cell state serving as reference to esti-
mate the cellular composition of ST data. The direct usage of sc/
snRNA-seq data as reference is conceptually direct and computation-
ally efficient, with the potential to handle the heterogeneity of ST data.
However, direct usage of sc/snRNA-seq data as reference will intro-
duce a new challenge, i.e., collinearity. That is, multiple single cells
have similar profiles of gene expression, prohibiting the accurate
estimation of the abundance of individual cell states. We introduce a
biologically reasonable heuristic by assuming that similar cells have
similar abundancewithin ST spots, and thusmathematically introduce
a regularization term in the deconvolution model based on non-
negative least regression. Solving this regularized deconvolution
model by quadratic programming will produce robust estimation of
the cellular composition at single-cell resolution for each spot of
ST data.

High accuracy, resolution, robustness, efficacy, and scalability
of Redeconve
We applied Redeconve to multiple ST datasets from various platforms
(10xVisium, Slide-seq v2, ST, etc.) and compared theperformancewith
other methods. We first compared the consistency of results among
different methods at the cell-type resolution based on a human breast
cancer dataset. The results suggested that deconvolution-based
methods including Redeconve had higher consistency with each
other than mapping-based methods (Fig. 1b), indicating the relative
superiority and robustness of deconvolution-based methods. This
observation is confirmed on additional ST datasets (Supplementary
Fig. 1). Different from previous deconvolution-based methods which
only reported cell-type-level results, Redeconve can further dictate
fine-grained cell states at single-cell resolution (Fig. 1c and Supple-
mentary Fig. 2). On a ST dataset from a human breast cancer sample,
Redeconve resolved 249 different cell states from 9 major cell types
(Fig. 1c). On a ST dataset frommouse cerebellum, Redeconve resolved
1000 different cell states from 14major cell types (Fig. 1c). In contrast,
the resolution of previous deconvolution methods is limited by the
clustering results of sc/snRNA-seq data.

In addition to the robustness and resolution superiority, Redec-
onve also improves the reconstruction accuracy of gene expression
per spot, and the improvement is independent on similarity measures
such as cosine similarity, Pearson’s correlation, and Root Mean Square
Error (RMSE) between the true ST gene expression profile and the
reconstructed gene expression vector (Fig. 1d, and Supplementary
Figs. 3–4). Redeconve also reached high accuracy of estimated cell
abundance (based on a ground truth by nucleus counting, Fig. 1e and
Supplementary Fig. 5), and superior computational speed (Fig. 1f and
Supplementary Fig. 6). When suitable reference is provided, e.g.,
matched scRNA-seq data, Redeconve can reach >0.8 cosine accuracy
for most ST spots (Fig. 1d). With no suitable reference available (for

example, only snRNA-seq data are accessible for brain samples),
Redeconve still outperforms other methods (Fig. 1d). Pairwise com-
parison between Redeconve and other methods further shows the
superiority of Redeconve on almost all spots regarding the recon-
struction accuracy (Supplementary Figs. 7–12). Because Redeconve
conducts deconvolution analysis spot by spot, parallel computation is
enabled and thus Redeconve demonstrates superior computation
speed compared with current deconvolution algorithms (Fig. 1f and
Supplementary Fig. 6).

To evaluate the performance of Redeconve in estimating the
absolute abundance of cells within ST spots, we applied Redeconve to
three datasets: Mouse Brain, PDAC and Human Breast Cancer Xenium,
in which the cell counts were obtained by nucleus counting based on
image segmentation12,22,23. Without any priori information, the results
of Redeconve showed high conformity with the “ground-truth” cell
counts (Fig. 1e), similar to those methods with cell counts (or cell
density) as priori knowledge e.g., cell2location and Tangram (Supple-
mentary Fig. 5). We used Shannon entropy to estimate the potential
number of different cell states within each spatial spot (see Methods
for details about using perplexity as a metric). Redeconve revealed
high spot heterogeneity by showing that some spots had complex
cellular composition while others had a relatively simple one. In con-
trast, the entropy of other methods is uniformly high, showing that
each spot had been composed of almost all the cell types in reference,
which is unrealistic (Supplementary Fig. 13).

Single-cell resolution is unique to Redeconve compared with
previous deconvolution algorithms
Then we examined whether the current deconvolution-based algo-
rithms could be upgraded to single-cell resolution by switching the
required cell types to thousands of single cells as Redeconve does.
Among all the methods we evaluated, only cell2location and DestVI
completed the task but took a rather long time comparedwith the cell-
type inputs (Supplementary Fig. 14) while other algorithms reported
errors. Although single-cell inputs improved the reconstruction accu-
racy of cell2location on the ST data of a human lymph node sample
based on the 10x Genomics Visium platform, cell2location did not
reach improvement on the human pancreatic tumor and mouse brain
datasets, and DestVI failed on all three evaluations (Supplement
Fig. 15). In contrast, Redeconve outperformed cell2location andDestVI
on almost all spots of the evaluated datasets (Fig. 2a). When switching
the inputs from cell types to single cells, DestVI achieved well sparsity
regarding the different cell states within each spot (measured by
perplexity according to Shannon entropy), similar to the performance
ofRedeconve. But cell2location reported extremelyhighperplexity for
most spots, indicating overpredicted presence of almost all cell types
and thus high false positive rate (Fig. 2b). Therefore, changing inputs
from cell types to single cells cannot upgrade the performance of
current algorithms to levels parallel to that of Redeconve, and the
superiority of Redeconve analysis is mainly derived from algorithmic
innovation.

Evaluating the impact of cell-type resolution on deconvolution
by simulation
To evaluate how the cell-type resolution of reference data impacts the
deconvolution analysis, we devised a series of simulation experiments
to showcase the performance differences of Redeconve and the state-
of-the-art algorithms. We constructed three pseudo-bulk RNA-seq
datasets by averaging the gene expression data of individual cells
based on scRNA-seq data from the PDAC24, human lymph node12,25 and
human testis26 datasets separately (Fig. 2c and Methods). Then we
applied Redeconve and cell2location, the only alternative method
capable of this task. With direct comparison with ground-truth, the
results indicate that Redeconve performs substantially better than
cell2location, as evidenced by its significantly higher accuracy
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(Supplementary Figs. 16–18). When examining the relationship
between accuracy and number of clusters in single-cell reference,
Redeconve showed an increase in accuracy when the number of
clusters grows, while cell2location experienced a sharp drop (Fig. 2d).
This suggests thatRedeconve is capable of handling large-scale scRNA-
seq datamore effectively and can usefiner-grained clusters to increase
accuracy instead of becoming confused. Furthermore, simulation

experiments also corroborate the validity of using perplexity as a
metric of sparsity (Supplementary Table 1 and Methods).

Evaluating the estimating accuracy of cell-type proportion by
10x Genomics Xenium data as ground truth
Single-cell ST platforms, such as MERFISH3, Xenium4 and CoxMx5, are
commercially emerging as a powerful tool for the high-resolution
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mapping of the precise location of single cells, but are limited by the
number of genes profiled during experiments because customized
probes specific to target genes need to be designed and synthesized
before experiments. The high resolution of these platforms provides
natural ground truth to evaluate the performance of Redeconve. Here,
we used a human breast cancer Xenium dataset generated by 10x
Genomics4 to evaluate the performance of Redeconve regarding
reconstruction of ST spot expression profiles, cell type proportion
predictions and abundance of individual cell states. This dataset
encompasses not only Xenium data containing coordinates and
expression profiles of segmented single cells, but alsomatched scRNA-
seq (including 5’, 3’ and scFFPE-seq) and Visium data, enabling us to
generate ground truths for Visium spots regarding cell abundances
and cell type proportions (SeeMethods for details). 3906 Visium spots
overlapped with the Xenium data were extracted for comparative
analysis (Fig. 3a). Compared with the state-of-the-art algorithms
including cell2location, DestVI, CARD, NovoSpaRc, CellTrek, and
Tangram, Redeconve demonstrated superior cosine similarities
between the predicted cell type proportions and the ground truths for
most of the Visium spots (Fig. 3b). Specially, Redeconve exhibited
superior performance on more than 60% and 70% of spots compared
to alternative deconvolution-based or mapping-based methods,
respectively (Supplementary Fig. 19). Redeconve, cell2location and
Tangram demonstrated comparable performance in estimating the
absolute cell abundance within Visium spots, as evidenced by high
Pearson’s correlation with the ground-truth cell counts indicated by
the overlapped cell counts according to the Xenium data, but the
performance of Redeconvewasmore robust to the selection of scRNA-
seq references (Fig. 3c and Supplementary Fig. 20). Similarly, the
performance of Redeconve in reconstructing the expression profiles
of different Visium spots was also more robust to the selection of
different scRNA-seq references compared with the state-of-the-art
algorithms (Fig. 3d and Supplementary Fig. 21).

Single-cell resolution by Redeconve enables identification of
pancreatic cancer-clone-specific T cell infiltration
To demonstrate the power of deconvolution at single-cell resolution
on solving practical biological problems, we further investigated the
Redeconve results of the human pancreatic ST dataset24. The ST is
from the original ST platform, and scRNA-seq data from the same
individual were obtained through InDrop. Redeconve with single cells
as reference outperformed other methods regarding the reconstruc-
tion accuracy for almost all the spots (Fig. 4b, c and Supplementary
Fig. 7). Using cell types as reference and varying the cell-type resolu-
tion from 20 to 318 clusters, Redeconve still resulted in stable superior
performance compared with other methods (with the same inputs)
(Supplementary Fig. 22), suggesting the advantage of Redeconve by
excluding the interference of single-cell reference vs cell-type refer-
ence, althoughRedeconve is theonly algorithmdesigned to take single
cells as reference as we demonstrated in the previous sections.
Benchmark regarding individual cell types again showed the super-
iority of Redeconve. We identified marker genes for each cell type
(Supplementary Table 2), and calculated the expression consistency

between ST observation and reconstructed profiles by different algo-
rithms across all spots (See Methods for details). Redeconve out-
performed other algorithms on most cell types (13/20 in top one),
especially for cancer, ductal, endocrine cells, and demonstrated
comparable performance to the best performers on the remaining of
cell types (20/20 in top three, Supplementary Fig. 23a, b). In addition,
theperformanceof Redeconve, cell2location, andTangramwas robust
to cell type abundance variations in scRNA-seq data, while the per-
formances of DestVI, CARD, andNovoSpaRcwerepositively correlated
with cell type abundances (p-value < 0.05) (Supplementary Fig. 23c).

Histological analysis based on H&E staining identified four tissue
regions: pancreatic, cancer, duct epithelium, and stroma24 (Fig. 4a).
Redeconve, CARD, and DestVI successfully distinguished the four types
of tissue regions, consistent with histological analysis (Supplementary
Fig. 24,). Meanwhile, cell2location, NovoSpaRc and Tangram failed in
several conditions (Fig. 4d and Supplementary Fig. 24). Further
inspection into a specific spot in the upper cancer region (Fig. 4d, the
upper zoomed-in piechart) shows that deconvolution-based methods
(Redeconve, cell2location, DestVI and CARD) are able to detect fibro-
blast, which is known to be abundant in pancreatic cancer24,27,28, while
mapping methods (Tangram and NovoSpaRc) fail in this task.

Then we examined the detailed characteristics of tumor-
infiltrating T cells based on these results, which is important to
understand the tumor immune microenvironment of pancreatic can-
cers. The results of cell2location, NovoSpaRc, Tangram and DestVI
reported T cells in almost all spots (Fig. 5a), inconsistent with the
nature of PDAC as cold tumors; Meanwhile, Redeconve and CARD
clearly suggested the sparsity of tumor-infiltrating T cells in pancreatic
cancer, consistent with the spatial distribution of T cell-related genes
(CD3, IL32 and TMSB4X, Fig. 5a, Supplementary Figs. 25–27). As CARD is
limited by the cell-type resolution, it is difficult to provide more
detailed insights, but Redeconve analysis enables deeper investigation.
We identified three T cells in the reference scRNA-seq data that
appeared in multiple ST spots, indexed as “T.cell.8”, “T.cell.11” and
“T.cell.35” separately (Fig. 5b). By examining their expression profiles
in the reference scRNA-seq, we identified T cell 11 as regulatory T cell
(CD4+ FOXP3+) and 8 and 35 as CD8+ cytotoxic T cells. For fair com-
parison, we further divided T cells in the scRNA-seq referencedata into
three groups, i.e., cytotoxic, helper and regulatory T cells and used
these three T cell types together with other cell types as reference to
re-run other deconvolution algorithms (Supplementary Fig. 28). Con-
sistent with the spatial distribution of CD8 and FOXP3, the result of
Redeconve is the most reasonable (Supplementary Figs. 25 and 27).
According to the Redeconve deconvolution results, almost all the
T cells within cancer region were similar to regulatory T cell 11, and T
cell states similar to 8 and 35 only appeared outside or at the edge of
the cancer region (Fig. 5b, c), consistent with the immune suppressive
status of the cancer region of pancreatic tumors24,29.

We further conducted co-localization analysis of these three T cell
states with the resting cell states by calculating the Pearson correlation
coefficient of abundance across all spots based on the Redeconve
results (Fig. 5d). The results suggested that the regulatory T cell state
similar to T cell 11 mainly co-localized with macrophages similar to

Fig. 1 | Overview of the Redeconve algorithm and benchmark analysis.
a overview of Redeconve workflow for deconvoluting spatial transcriptomics data.
Redeconve requires sc/snRNA-seq data together with spatial transcriptomics data
as input and performs deconvolution by solving a regularized non-negative least
regression model with the aims to estimate cellular composition across spots at
single-cell resolution. b heatmap illustrated median spot-level Spearman’s corre-
lation of cell type proportions among different algorithms on a human breast
cancer dataset. c Sankey diagram demonstrated the cell-type and single-cell reso-
lutions of Redeconve results on human breast cancer and mouse cerebellum
datasets, respectively. The bar height of cell types or single cells refer to their
estimated abundance after deconvolution. d line chart of cosine similarities

between observed and reconstructed expression profiles per spot based on six ST
datasets. N = 4039, 2426, 428, 36550, 2987 and 39431 spots for human lymph
nodes, human breast cancer, PDAC (pancreatic ductal adenocarcinoma), human
testis, mouse brain and mouse cerebellum respaectively. Spots were sorted by an
ascending order of the cosine similarities. e Pearson correlation of cell abundances
between Redeconve and the cell counts per spot based on a mouse brain dataset.
The ground truth cell counts per spot was obtained by nucleus counting of cell
segmentation image12. f computational efficiency of different deconvolution-based
andmapping-basedalgorithmson a human lymphnodesdataset. Sourcedata of 1c-
e are provided as a Source Data file.
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Fig. 2 | Performance benchmarking with single-cell inputs and simulated
datasets. Redeconve, cell2location and DestVI are currently the only three
deconvolution-based tools with the ability to handle thousands of cell states.
a cosine similarity between true and reconstructed spatial expression profiles
based on Redeconve, cell2location and DestVI with 1000 single cells as input. Each
dot represents a spot of the ST data. b the number of different cell states within
each spot estimated by the perplexity of cell state composition per spot for results

of Redeconve, cell2locationandDestVIwith 1000single cells as input (SeeMethods
for details). c workflow of generating simulation data. ScRNA-seq data were
aggregated to a pseudo-bulk, which was then used for deconvolution analysis and
the results were used for downstream analyses in (d). d cosine similarity between
true and reconstructed spatial expression profiles vs. number of clusters on
simulated pseudo-bulk. PDAC, pancreatic ductal adenocarcinoma. Source data of
2a, b and d are provided as a Source Data file.
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Fig. 3 | Benchmarking Redeconve performance on a human breast cancer
Xeniumdataset. a Left: OverlappedXeniumcells and Visium spots were illustrated
on H&E image. Right: the overlapped region was employed for benchmarking
Redeconve performance by introducing different single-cell references to predict
expression profiles, cell type proportions, and cell abundances. b line chart of
cosine similarities of cell type proportions between ground truths and algorithm-
basedpredictions per spot.N = 3906 spots for the dataset and spots were sortedby
an ascending order of the cosine similarities. c Heatmap illustrating the pairwise
Pearson’s correlation of cell abundances among the ground truth, Redeconve,
cell2location and Tangrambased on various single cell references. d violin and box

plot of cosine similarities between observed and reconstructed expression profiles
forRedeconve and alternative approacheswith different single cell references (3’, 5’
and scFFPE-seq). The numberof independent single cells in the references are 5527,
13,808 and 28,180 respectively. The center line and the bounds of box refer to
median, Q1 and Q3 of scores and the whisker equal to 1.5*(Q3–Q1). The minimum
and maximum scores refer to Q1-whisker and Q3+whisker. GT, ground truth.
scFFPE-seq, single-cell Formalin Fixed Paraffin Embedded sequencing. Source data
of 3b-d are provided as a SourceDatafile. Display items in thisfigureweremanually
generated in Inkscape by the authors.
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macrophages B. 6, 8, and 16 together with duct cells of two different
states. Interestingly, T cell 8 and 35 were mainly co-localized with
cancer cells, indicating dispersed cancer cells outside the cancer
region. Although provided scRNA-seq reference with higher T cell
resolution (cytotoxic/helper/regulatory T cells), such co-localization
was not observed by other methods (Supplementary Fig. 29).

Furthermore, these two T cell states were separately co-localized
with different cancer clones, with T cell state 8 co-localizedwith cancer
clone B and 35 with cancer clone A. Differential gene expression ana-
lysis based on the reference scRNA-seq data further indicated the
differences between these two pairs of T cells and cancer cells (Fig. 5e,
f). It is revealed previously that TM4SF1+ cancer cells denoted late-
stage while S1004A+ cancer cells (clone B) denoted early-stage30–32.
Our analysis identified the co-existence of TM4SF1+ cancer cells (clone
A) and S1004A+ cancer cells (clone B)with differentCD8+ T cells, which
is important to understand the interactions between cancer and

T cells. We found that interferon-induced genes (IFIT1 and IFI44L, for
example) andHLA-related genes (HLA-A,HLA-B andHLA-C) were all up-
regulated in cancer clone B (Fig. 5f), and correspondingly T cell state 8,
which is colocalized with cancer clone B, had high expression of
HMGB2, HLA-B and HLA-C (Fig. 5f), indicating well-stimulated T cell
response33,34. In contrast, T cell state 35 was HMGB2-negative, HLA-low
and TMBS10-positive and co-localized withmore A-typemacrophages,
indicating a less efficacy state33,34. Therefore, with accurate deconvo-
lution at the single-cell resolution, Redeconve can reveal detailed cell-
cell interactionat single-cell level and enables discoveries revealing the
underlying mechanisms of tumor immunity.

Redeconve sheds novel insights into the regulatorymechanisms
underlying antibody class switch
Redeconve were further applied to analyze an ST data of human sec-
ondary lymphoid organs12. We again compared Redeconve with other

Fig. 4 | Single-cell deconvolution of a human PDAC (pancreatic ductal adeno-
carcinoma) ST dataset. a four regions were annotated by histological analysis of
the original paper: pancreatic, ductal, cancer and stroma regions24. b spatial dis-
tribution of the cosine similarity between true and reconstructed expression

profiles per spot by different computational methods. c pie charts displaying the
spatial distribution of the estimated cell type proportion per spot by different
computational methods. RBC red blood cell. mDC myeloid dendritic cell. pDC
plasmacytoid dendritic cell. Source data are provided as a Source Data file.
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methods on this dataset. In terms of cosine similarity-based recon-
struction accuracy, Redeconve achieved mean similarities of 0.868
and significantly outperformed other methods (Fig. 1d). Redeconve
achieved high reconstruction accuracy for almost all spots, while, as
for other methods, low similarities regions were obvious (Supple-
mentary Fig. 30). We further checked the sparsity of the results by
calculating L0-norm. L0-norm of Redeconve has a reasonable dis-
tribution between 4 and 32, indicating that only dozens of cell states
appear in one spot. In contrast, other methods except CellTrek
demonstrated results that almost all cell types appeared in every spot.
CellTrek, amapping-based algorithm, reached low level of L0-norm by
generating many “zero-cell” spots, of which Redeconve successfully
reconstructed the cellular composition (Supplementary Fig. 31).

We further characterized the spatial heterogeneity at single cell
resolution to explore the potential regulators of antibody class switch
based on this human lymph node data. During the antibody matura-
tion, an activated B cell can change its antibody production from IgM
to either IgA, IgG, or IgE depending on the functional requirements,
which is termed as class switching35. However, the detailed regulators
underlying antibody class switching is unclear. Consistent with pre-
vious examples, Redeconve outperformed other methods in recon-
structing the ST gene expression profiles for almost all spots (Fig. 1d).
Spatial pie chart showed that Redeconve produced obvious regional
division, while other methods showed blurred or even no boundaries

(Fig. 6a). CellTrek failed to analyze some of the spots. Furthermore,
compared with cell-type deconvolution, Redeconve identified 159
different cell states from 17 cell types (Supplementary Fig. 2). 12 dif-
ferent B plasma cell states were identified in the ST data, which can be
further divided into 3 groups (IgA + , IgG+ and negative) based on the
expression of IGHA and IGHG genes. Interestingly, we found that IgA+
and IgG+ B plasma cells are spatially mapped to spots in different
regions with little overlap, whichmeans that we could define IgA+ and
IgG+ spots based on the abundance of those B plasma cells (Fig. 6b).
Next, we took one spot in each of the two regions for detailed
inspection at the single-cell resolution. The cell proportion of the two
spots shows thatCD8+ T cells account for a large proportion in the IgA+
spot, suggesting latent interactions between CD8+ T cells and IgA+ B
plasma cells (Fig. 6c). To confirm the universality of such phenom-
enon, we conducted differential gene expression analysis between IgA
+ and IgG+ spots to identify up-regulated and down-regulated genes
(Fig. 6d). As we expected, IGHA and IGHGwere the most differentially-
expressed genes; Genes associated with T cells (TRAC, TRBC2, CD3D,
CD8A for example) were more up-regulated in IgA+ spots, confirming
the existence of such interaction. Since lymph node is one of the
organs that generate IgA+ plasma cells, the IgA+ spots might be the
potential induction sits for IgA+ plasma cells, and CD8+ T cellsmay play
an important role in such process (Fig. 6d). Further co-localization
analysis provides more insights (Fig. 6e). We found co-localization of

Fig. 5 | Cancer-clone-specific CD8+T cell infiltration revealed by Redeconve in
human pancreatic cancer. a abundance of T cells per spot estimated by different
methods. b single-cell identity of infiltrated T cells revealed by Redeconve. The
three T cells are indexed as “T.cells.8”, “T.cells.11”, “T.cells.35” separately. c single-
cell identity of different cancer clone cells revealed by Redeconve, together with
their abundance difference. d co-localization of the three T cell states with other
cellular states. Nodes represent single cells and edges represent co-localization
(Pearson correlation of cell abundance >0.4). Cancer clone-specific CD8 + T cell
infiltration was revealed. e dot plot displaying characteristics genes among the
three T cell states with different spatial preference with cancer clones A and B.

f volcano plot displaying differentially expressed genes between the two cancer
clones. The blue and red points refer to up-regulated genes in clones A and
B-enriched spots, respectively. Vertical dashed line shows the cutoff of log fold
change (±0.3). Horizontal dashed line shows the threshold of -lg p (1.301). T cell
response-related genes including interferon-stimulating genes and human leuko-
cyte antigens were up-regulated in clone B-enriched cells. The two-side exact test
was applied in edgeR for the statistical test and the p-values were calculated
without adjustments. Treg, T regulatory. Source data are provided as a Source
Data file.
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Fig. 6 | Single-cell deconvolution of a human secondary lymphoid organ ST
dataset by Redeconve revealed differences between IgA+ and IgG+ spots
regarding cellular composition. a pie chart displaying the spatial distribution of
the estimated cell type proportion by different methods. b spatial distribution of
IgA+ and IgG+ B plasma cells revealed by Redeconve. c comparison of the cell
proportion of two selected spots (the IgA+ and IgG+ spots in Fig. 6a with green
squares). d volcano plots showing the differential gene expression between IgA+
and IgG+ spots. The red andblue point refer to up-regulatedgenes in IgG+ and IgA+
spots respectively. Vertical dashed line shows the cutoff of log fold change (±0.3).
Horizontal dashed line shows the threshold of -lg(p), namely 1.301. The two-side

exact test was applied in edgeR for the statistical test and the p-values were cal-
culated without adjustments. e co-localization network of IgA+ and IgG+ B plasma
cells within the ST data. Nodes represent single cells and edges represent co-
located single cells (Pearson correlation of cell abundance >0.2). Abbreviations: GC
germinal center, DZdark zone, LZ light zone, prePB preplasmablast,memmemory,
cDC classical dendritic cell, Endo endothelial, FDC follicular dendritic cell, ILC
innate lymphoid cell, NK natural killer, NKT natural killer T, TfH T follicular helper,
Treg T regulatory, VSMC vascular smooth muscle cell. Source data of 6a-d are
provided as a Source Data file.
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IgA+ plasma cells with CD8+ cytotoxic T cells, consistent with previous
observation that CD8+ cytotoxic T cells can help the formation of IgA+
plasma cells36,37. Furthermore, co-location of IgG+ plasma cells and
macrophages was identified (Fig. 6e), indicating the roles of macro-
phages during the genesis of IgG+ plasma cells38,39. Hence, deconvo-
lution at single cell resolution by Redeconve gains additional insights
that may be helpful for uncovering previously opaque biological
question.

Discussion
Integrative analysis of disassociated single-cell and in situ ST data is
pivotal to construct a comprehensive map of the cellular composition
and interactomes of tissues. However, because of technological lim-
itations, current computational methods for integrative analysis of
single-cell and ST data are limited to the cell type resolution. To deep
mine the biomedical information hidden in the single-cell and ST data,
here we present Redeconve, a single-cell resolution deconvolution
algorithm for integrative analysis of ST data with sc/snRNA-seq data as
reference based on a quadratic programming model with regulariza-
tion of cell-cell similarity, which enables building of comprehensive
spatial maps at single-cell resolution for diverse tissues.

We performed stringent evaluation on multiple datasets from a
diverse set of ST platforms. The results suggested superiority of
Redeconve compared with the state-of-the-art deconvolution-based
and mapping-based algorithms in terms of resolution, accuracy,
sparsity, robustness, and computational speed. Such improvement
from cell-type to single-cell resolution unlocks novel biological dis-
coveries as exemplified by applications in human pancreatic cancer
and lymph node samples.

While Redeconve enables deconvolution at single-cell resolution
and thus will be a powerful tool for biomedical discoveries, matching
between scRNA-seq and ST data appears to be an important factor
determining the quality of deconvolution analysis as shown by our
evaluation on different tissues (Fig. 1d). Therefore, construction and
selection of reference scRNA-seqdata according to the specific STdata
configuration will be critical in future applications.

Although Redeconve demonstrates superior computational effi-
cacy comparedwith the state-of-the-art deconvolution algorithms, the
single-cell resolution may require extensive computational cost for
resolving thousands of cellular states, especially when the cellular
throughput of scRNA-seq technologies increases exponentially.
Because of the computational complexity of quadratic programming,
Redeconve can currently resolve thousands of cellular states based on
a standard machine. An enhanced version based on algorithmic inno-
vation or hardware acceleration is needed to handle scRNA-seq data-
sets of tens of thousands of cellular states.

Deconvolution at single-cell resolution unlocked by Redeconve
may also benefit the imputation of ST data with the aid of the rich
information in scRNA-seq data. Redeconve has implemented a func-
tion to reconstruct the gene expression profiles of individual spots
based on the single-cell deconvolution results based on a parsimony
principle. The imputed ST datamay bemore informative to dissect the
cellular states of specific tissues.

In summary, we present an algorithm named as Redeconve for
conducting deconvolution-based analysis of scRNA-seq and ST data at
single-cell resolution. The usage of Redeconve is expected to help
mapping the cellular architecture at fine granularity across diverse
biomedical situations including tumor, immune, development, neu-
rology, and other health and disease conditions. Applications to
human pancreatic cancer and lymph nodes showed the potential of
Redeconve to bring completely novel insights due to the single-cell
resolution unlocked and the superior technical metrics of Redeconve
compared to the current state-of-the-art algorithms. We expect
Redeconve will be a useful tool to advance the application of scRNA-
seq and ST technologies in diverse research disciplines.

Methods
Algorithm
Model overview. In general, we apply an improved linear regression
model to deconvolute ST data at single-cell resolution. Given a single-
cell (or single-nucleus) expression matrix X with dimensions
ngenes ×ncells and a ST expression matrix Y with dimensions
ngenes ×nspots as input, Redeconve returns a matrix β with dimensions
ncells ×nspots indicating the estimated number of each cell in each spot.
The goal of our model is to optimize the following loss function for
each spot separately:

LðβÞ : = PJ

j = 1
yj �

PI

i = 1
xijβi

� �2

+ c � P
i1≠i2

Ri1 ,i2
ðβi1

� βi2
Þ2

s:t:βi ≥0 for i= 1, 2, . . . , I

ð1Þ

Here i= 1, 2, . . . , I denotes cells and j = 1,2, . . . ,J denotes genes. The
first term is the traditional Least Square (LS) term and the second term
is a regularization term, c is a hyperparameter tuning the weight
between the two terms. We will later explain the regularization term in
details.

Note that this is a typical quadratic programming problem, so we
can rewrite our goal as:

minβ
1
2 β

TGβ� dTβ

s:t:aTβ≥ b
ð2Þ

Where G is the Hessian matrix, dT = ð2Pjyjx1j, . . . , 2
P
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Sowe can efficiently solve this problemwith the solve.QP function
in R package “quadprog”.

The regularization term. In sc/snRNA-seq data, the collinearity among
cells is serious: cells of the same cell type have very similar expression
profiles. This problem would lead to instability of coefficients and
reduction of efficiency when directly doing linear regression. To solve
this collinearity problem, we further include a regularization term into
the loss function. By add this term, we aim at stabilizing the coeffi-
cients while having minor effect on the residuals.

In the regularization term c
P

i1≠i2
Ri1 ,i2

ðβi1
� βi2

Þ2, Ri1 ,i2
is a measure

of similarity between cell i1 and i2, which is

Ri1 ,i2
=

ri1 , i2 , ri1 ,i2 > 0

0, ri1 ,i2 ≤0

(
ð4Þ

Where ri1 ,i2 is the Pearson correlation coefficient between cell i1 and i2.
Namely, when the Pearson correlation coefficient is greater than zero,
Ri1 ,i2

is equal to the Pearson correlation coefficient; otherwise Ri1 ,i2
is

zero. So, we manually bring the coefficients of cells whose expression
profile is similar closer. By doing this, we can guarantee the robustness
and precision of our result.

Determination of the hyperparameter. A key point of this model is
how to select the hyperparameter: an extremely small hyperparameter
will make the regularization term ineffective, while an extremely large
one will greatly affect the fitting residuals. An ideal hyperparameter
should be as large as possiblewhile affecting the fitting residual as little
as possible. Here we offer 3 ways to set the hyperparameter:
1. “default”: use the default hyperparameter we set according to the

number of cells and genes;
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2. “customized”: set the hyperparameter arbitrarily by the user;
3. “autoselection”: automatically calculate and select the optimal

hyperparameter.

In mode “default”, we use the following formula to set the
hyperparameter:

c= c0 � ngenes=n
2
cells ð5Þ

Where c0 is a predetermined constant and is set to 105. The idea of this
formula is: (1) the LS term is approximately proportional tongenes, so as
ngenes increases c should synchronously increase; (2) the regularization
term is approximately proportional to the square of ncells, so as ncells

increases c should decrease by n2
cells.

In mode “autoselection”, we apply the following method to
determine the optimal hyperparameter:
1. We first calculate a hyperparameter cd according to the formula in

mode “default”, and set up a series of hyperparameter
c1, c2, c3, c4, c5 as 0:01cd , 0:1cd , cd , 10cd , 100cd ;

2. Then we run deconvolution with these hyperparameters sepa-
rately, and calculate the residual εi for each ci;

3. We further calculate:

di =
Δε
Δc

=
εi + 1 � εi
ci + 1 � ci

ð6Þ

4. Wecheck thesedi, then choose ci thatmaximizesdi as theoptimal
hyperparameter (This indicates: if the parameter continues to
increase, the residual will increase significantly). Namely, we
choose ci that satisfies:

maxi21,2,���,Idi =
εi + 1 � εi
ci + 1 � ci

ð7Þ

By this procedure, we can get the hyperparameter thatmaximizes
the power of regularization term while having minor effect on the
LS term.

We use examples to illustrate the effect of hyperparameters on
the results. We applied Redeconve to the human lymph node dataset
with a series of different hyperparameters from 0 to 1e08, then cal-
culated the deconvolution residuals (RMSE_normal) to evaluate the
effect of hyperparameter (Supplementary Fig. 32). The results showed
that an optimal hyperparameter can enhance the deconvolution pre-
cision in addition to avoiding co-linearity caused by closely similar cell
states. Also, the hyperparameter would also affect the number of cell
states selected in the result. A bigger hyperparameter would lead to
more cell states selected (Supplementary Fig. 33). We set the hyper-
parameter as 0 and 1e04 separately on the PDAC dataset. With a
hyperparameter of 1e04, more T cells were detected than a hyper-
parameter of zero in the PDAC dataset (Supplementary Fig. 34). Con-
sidering the distribution of CD3+ cells (Shown in Supplementary
Figs. 25–27), this example clearly illustrates how the hyperparameter
enables biological discovery.

Data preprocessing
To run the deconvolution, the following data preprocessing steps are
necessary. Note that some steps are alternative according to
users’ needs.
1. Get the expression profiles of cell type/Sampling of single cells. If

a cell-type deconvolution is to be run, we will estimate the
expression profile �xij of cell type i and gene j as the average
expression of gene j across all cells within cell type i. If a single-cell
deconvolution is to be run and the number of single cells is
overwhelming, we will take stratified samples of cells by cell type
to get a rational number of cells.

2. Gene filtering. Deconvoluting with tens of thousands of genes is
time-consuming or even misleading, so we select highly variable
genes before deconvolution for computational efficacy. Filtering
criteria include the following three standards: (1) These genes
appear in both sc/snRNA-seq data and ST; (2) The variance of
these genes in sc/snRNA-seq data must be larger than a threshold
(default is 0.025); (3) The average counts per spot must be bigger
than a threshold (default is 0.003). This finally results in ~8000
genes for deconvolution. Redeconve allows deconvolution with-
out gene filtering with higher computational cost.

3. Normalization of reference. We add a pseudo-count of 0.5 to the
“zeros” in sc/snRNA-seq data, and normalize sc/snRNA-seq data to
TPM (transcripts per million). Preprocessing operations are not
needed for ST data.

Real datasets for benchmarking
PDAC. ST data of a human pancreatic ductal adenocarcinomas
(PDAC-A) with 438 spots and sample-matched scRNA-seq data
(InDrop) with 1926 single cells across 20 cell types were integrated by
Moncada et al., and an intersection of 19,736 genes was used in our
study. The annotation of four main structural regions based on his-
tological analysis by Moncada et al. was used during our analysis to
depict the spatial characteristics of the ST data.

Human lymph node. Human lymph node Visium data were down-
loaded from the 10x Genomics website (https://www.10xgenomics.
com/resources/datasets/human-lymph-node-1-standard-1-1-0), which
includes a total number of 4035 spots. ScRNA-seq data were collected
from Kleshchevnikov et al, of which 73,260 cells across 34 cell types
were collected. Since this scRNA-seqdataset captured awide spectrum
of immune cell states spanning lymph nodes, tonsils and spleen, we
used it as reference to reveal the phenotypic diversity of immune cells
when deconvoluting at single cell resolution.

Mouse cerebellum. The DropViz scRNA-seq dataset were generated
by Saunders A. et al. andwere collected byCable D.M. et al. alongwith
the annotations of the cells. The Slide-seqmouse cerebellumdatawere
collected by Cable D. M. et al. using the Slide-seq v2 protocol11. Both of
these datasets were downloaded from https://singlecell.
broadinstitute.org/single_cell/study/SCP948/robust-decomposition-
of-cell-type-mixtures-in-spatial-transcriptomics#study-download.

Human breast cancer. Human Breast Cancer Visium data related to
the Wu et al. study40 was available at https://zenodo.org/record/
4739739#.Ys0v6jdBy3D. Sample ‘CID4290’ that includes 2426 in tissue
spots was used for deconvolution. ScRNA-seq data that includes
100,064 single cells with annotations (Access number: GSE176078, the
NCBI GEO database) served as reference to do deconvolution analysis.

Human testis. The processed Human Testis Slide-seq dataset was
download from https://www.dropbox.com/s/q5djhy006dq1yhw/
Human.7z?dl=0 and sample ‘Puck5’ with 36,591 spots was used for
evaluation in this study41. The reference scRNA-seq data that includes
6490 single cells was obtained from the NCBI GEO database with
access number GSE112013, and the corresponding annotations were
available in the supplementary information Table S1 by Guo et al.

Mouse brain. 10x Visium and snRNA-seq data (includes annotation)
were available in the ArrayExpress databasewith accession numbers E-
MTAB-11114 and E-MTAB-11115, respectively12. Sample ‘ST8059048’
containing 2987 spots was used for evaluation in this study, and all
40,532 single cells across 59 cell types served as reference. In addition,
the corresponding data of nuclei counts estimated by histological
image segmentation based on deep learning s was downloaded from
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https://github.com/vitkl/cell2location_paper/blob/master/notebooks/
selected_results/mouse_visium_snrna/segmentation/144600.csv.

Human breast cancer xenium. The Human Breast Cancer Xenium
dataset is available at https://www.10xgenomics.com/products/
xenium-in-situ/preview-dataset-human-breast. A single FFPE tissue
block was analyzed by scFFPE-seq, Visium and Xenium. In addition, 3’
and 5’ gene expression data from dissociated tumor cells is also
available4.

Comparing Redeconve with alternative methods
We compared Redeconve with recently developed deconvolution-
based methods (cell2location, DestVI13 and CARD10) as well as
mapping-based methods (NovoSpaRc, CellTrek8 and Tangram7).

Criteria of selecting alternative methods. In considering which
methods to include for the comparison, we required methods that (1)
are specifically designed for end-to-end estimating the abundance/
proportion of cells or cell types using scRNA-seq and ST data as input;
(2) demonstrate superior performance in the corresponding publica-
tions and third-party evaluation papers; and (3) are peer reviewedwith
a publicly available software implementation before Dec 2022.

Parameter setting. Prediction results for the 6 datasets were obtained
by running the corresponding programs of the algorithms aforemen-
tioned based on the default settings except some special considera-
tions: (1) 1000 cells were randomly selected in NovoSpacRc to avoid
large number of total cells; (2) 1000 stratified samples of cells were
used for Redeconve in almost all the datasets except PDAC where we
used total 1926 cells; (3) minCountGene and minCountSpot of the
createCARDObject function were set to 0 to prevent unexpected gene
or spot filtering in CARD. The output of each method was either a cell-
by-spot matrix represented absolute abundance (Redeconve, Tan-
gram) or proportion (NovoSpaRc) of single cells existing at each spot
or estimated cell-type abundance (cell2location) or proportion
(DestVI, CARD) matrix except CellTrek, of which the outcome was
predicted spatial coordinates for individual cells. Hence, for CellTrek,
we obtained cell-by-spot abundancematrix by assigning single cells to
specific spots according to whether the spot area designed by ST
platforms covered the predicted coordinates. We only evaluated
CellTrek on the two 10x Genomics Visium-based datasets (human
lymph node and human breast cancer) because of running errors on
other ST datasets in our computational environment.

Calculating performance metrics. To demonstrate superior perfor-
mance of Redeconve, we firstly estimated predicted expression pro-
files for spatial spots. For all datasets, spot-wise cosine similarities,
Pearson’s correlations and RMSEs between observed and predicted
spot-by-gene expression matrix were calculated. In order to compute
thesemetrics based on the output of each algorithm,we calculated the
predicted expression matrix through two ways: (1) for Redeconve,
NovoSpaRc, CellTrek and Tangram, we multiplied spot-by-cell abun-
dance or proportion matrix by the cell-by-gene sc/snRNA expression
matrix; (2) for cell2location, DestVI and CARD, we multiplied the cell-
type abundance or proportion matrix by the reference cell-type
expression matrix, where the reference was generated through aver-
aging sc/snRNA expression data according to cell types. When calcu-
lating RMSEs, the total number of UMIs for each spot in both observed
and predicted expression profile was normalized to ngenes. We then
estimated sparsity of the results through calculating cell-type pro-
portion matrices of all programs and comparing the results according
to cell-type information entropy and L0 norm. The L0-norm represents
number of cell types present at each spot (nonzero values). We also
evaluated the performance of cell abundance estimation by Pearson’s
correlation between results of individual methods (Redeconve,

cell2location, CellTrek and Tangram) and the cell numbers estimated
by histological image segmentation based on deep learning for the
mouse brain dataset. Finally, computational efficiencies were esti-
mated through comparing total time spent by each algorithm on a
computer with Intel(R) Xeon(R) Platinum 8253 CPU, where we set the
maximumnumber of cores to 96. In addition, we tested the run timeof
these programs on a single NVIDIA A40 card if GPU acceleration sup-
ported (cell2location, DestVI, NovoSpaRc, and Tangram).

Assessment at single cell resolution. Cell-by-spot abundance matrix
is required for comparison among deconvolution-based methods at
single-cell resolution. We, therefore, applied Redeconve with
1000 single cells sampled from the reference scRNA-seq data for the
two ST datasets (PDAC and human lymph node) and assigned every
single cell a unique cell type since cell2location, DestVI and CARDonly
support cell-type deconvolution. The result matrices of Redeconve,
cell2location and DestVI (no result was available for CARD because of
running errors) was obtained according to the corresponding default
settings. Cosine similarity, information entropy, perplexity and run-
time efficiencies were evaluated as mentioned above.

Information entropy and perplexity. We calculate Information
entropy H and perplexity P for each spot separately by the following
formula:

H = �
X

i

βi log2 ðβiÞ ð8Þ

P =2H ð9Þ

where i= 1, 2, . . . , I denotes different cell states. βi were normalized in
advance so that their sum equaled to 1 (i.e., they denote proportion
rather than absolute abundance). When β is uniformly distributed
(namely βi is a constant,

1
I, for all i), we can know by simple calculation

that the perplexity equals to the number of states I. This means that
perplexity can reveal the number of states when the distribution is
uniform. For other distributions, perplexity can also approximately
represent the number of states. “Number of states” in the setting of
single-cell deconvolution refers to “number of cell states (or types)”.
Namely, the perplexity of each spot can approximately represent the
number of cell states/types occurred in this spot. By calculating
perplexity on simulated and real datasets, we have verified that
perplexity showed good consistency with number of non-zero cell
types/states in the result, but poor consistency with absolute cell
abundance (Supplementary Fig. 35 and Supplementary Table 1).

Cell-type level benchmark based on the PDAC dataset. Marker
genes were first identified for each cell types (Supplementary Table 2).
Then, for each cell type, similarities of marker genes expression
between ST observation and reconstructed profiles by different algo-
rithms across all spots were calculated. Ranks of cosine similarities of
individual cell types were used as metrics to summarize the overall
performance. In addition, linear regression and statistical test were
used to show relationship between cell type abundances and perfor-
mance metrics.

Cell abundance of ST spots on PDAC dataset. To generate ground
truth of cell abundance for each ST spot, we first registered H&E and
fluorescent images using Adobe Photoshop CC. Such registration
enabled the determination of spatial coordinates for ST spots. After
that, Cellpose13 was applied through squidpy14 to detect cell nuclei
from theH&E image. Finally,wecounted the absolute number of nuclei
within each spot and referred to these values as cell abundance.
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Generating and analyzing simulation datasets
We used 3 scRNA-seq data to generate simulation data separately:
PDAC, human lymph node and human testis. Prior to analysis, all
scRNA-seq data were down-sampled to around 1000 cells, with the
exception of PDACwhich contained a total of 1926 cells. To generate a
pseudo-bulk for subsequent deconvolution, all single-cells were
aggregated together and assigned anabundance valueof 1. Toperform
deconvolution, we clustered the scRNA-seq reference with 5 different
resolutions using FindCluster() function in Seurat package. Together
with directly using all single-cells as input, this results in 6 groups of
references. Then the differently annotated references were used for
deconvolution by Redeconve and cell2location and the results were
used to compare with ground-truth, calculate cosine similarity and
perplexity (Fig. 2c, d and Supplementary Figs. 16–18).

Benchmarking on human breast cancer Xenium dataset
TheHumanBreast Cancer Xeniumdataset contains scRNA-seq, Visium
and Xenium data for a single FFPE tissue block. By mapping Xenium
cells to Visium spots, it becomes possible to generate ground truth
data regarding cell abundances and cell type proportions. To achieve
this, we chose Replicate 1 of Xenium data to align spatial locations of
Xenium cell centers to corresponding H&E images through translation
and rotation. After that, a key-point registration approach was
employed to alignH&E images inXeniumandVisiumdata basedon 155
manually identified landmark features on commonly shared micro-
structures. Then, FindHomography() function in cv2 package with
RANSAC method was applied to transform Xenium to Visium coordi-
nates. Hence, the ground truths of cell abundance were generated
through counting the transformed cell centers located within each
Visium spot. To further generate ground truths of cell type proportion
for Visium spots, we labeled each cluster in scFFPE-seq and Xenium
data with a corresponding cell type designation (Supplementary
Table. 3–4). The proportions of various types of Xenium cells in Visium
spots were considered as ground truth cell type proportions.

Based on the generated ground truths, we computed spot-wise
cosine similarities between predicted and ground truth cell type pro-
portions for Redeconve and alternative methods. In this approach, we
chose scFFPE-seq data as reference for the deconvolution. In addition,
Pearson’s correlation was applied to measure the performance of cell
abundance estimation for Redeconve, cell2location and Tangram.
Finally, a selectionofdistinct single-cell references (including 5’, 3’, and
scFFPE-seq) were applied for the purpose of assessing robustness of
the computational algorithms.

Downstream analyses after Redeconve deconvolution
Human lymph node. We firstly ran Redeconve on default setting to
obtain deconvolution result at single-cell resolution. Then, we inves-
tigated the spatial distribution of plasma cells after grouping these
plasma cells into IgA + , IgG+ and others based on the expression of
IGHA1, IGHG1, IGHG3 and IGHG4. IgA+ and IgG+ spotswere determined
by the following three steps: (1) identifying the top 50% spots with the
highest abundance of IgA+ and IgG+ plasma cell enriched, which were
named as spot sets A andG; (2) identifying the difference sets between
A andG, and naming asAD andGD; (3) selecting spots fromADandGD
with the top 1% IgA+ and IgG+plasma abundance, whichwere assumed
tobe IgA+ and IgG+ spots respectively. EdgeR42 was applied to perform
differential gene expression analysis and identified significantly dif-
ferential genes between IgA+ and IgG+ spots. Then, we calculated
Pearson’s correlation coefficient among single cell states in the refer-
ence across IgA+ and IgG+ spots and took single cells as nodes and
correlated cells (Pearson >0.2) as edges to generate the cell-cell co-
location network.

PDAC. We ran Redeconve with all the 1926 single cells as reference,
and all the parameters were kept default. For downstream analyses, we

first compared Redeconve with existing tools as described in the
aforementioned sections. Then, to study the distribution of T cells, we
distinguished fromNK cells T cells by the expression of CD3D, CD3E or
CD3G in the scRNA-seq data. We further picked out those T cells that
frequently appeared in the ST spots (T cells 8, 11, and 35). To study the
spatial colocalizationof these T cellswith other cells, we calculated the
Pearson’s correlation of cell abundance across spatial spots, and gen-
erated a colocalization network of single cell resolution using those
cell pairs whose Pearson correlation were greater than 0.4 with the R
package igraph43.

Statistics and reproducibility
For all datasets except for PDAC, we down sampled the sc/snRNA-seq
reference to around 1000 cells. Stratified sampling was performed
when cell types are available, otherwise simple random sampling was
performed. The exact number of chosen cells for each dataset are as
follows: human breast cancer: 1001, human lymph nodes: 1000,
human testis: 999, Mouse Brain: 1003, Mouse cerebellum: 1003,
human breast cancer Xenium (scFFPE): 1001, human breast cancer
Xenium (3’): 998, humanbreast cancer Xenium (5’): 1002. The seedwas
set to 2233. All other parts of this study do not involve randomization.
The Investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The PDAC
data used in this study are available in the Gene Expression Omnibus
database under accession code GSE111672. The processed human
lymph nodes Visium data are available at 10x Genomics website
[https://www.10xgenomics.com/resources/datasets/human-lymph-
node-1-standard-1-1-0]. The processed human lymph nodes scRNA-seq
data are available fromKleshchevnikov et al. [https://cell2location.cog.
sanger.ac.uk/browser.html]. The mouse cerebellum data used in this
study are available in the Single Cell Portal database under accession
code SCP948 [https://singlecell.broadinstitute.org/single_cell/study/
SCP948/robust-decomposition-of-cell-type-mixtures-in-spatial-
transcriptomics#study-download]. The processed human breast can-
cer Visium data are available at zenodo [https://zenodo.org/record/
4739739#.Ys0v6jdBy3D]. The processed human breast cancer scRNA-
seq data used in this study are available in the Gene Expression
Omnibus database under accession code GSE176078. The processed
human testis Slide-seq data are available at dropbox [https://www.
dropbox.com/s/q5djhy006dq1yhw/Human.7z?dl=0]. The processed
human testis scRNA-seq data used in this study are available in the
Gene Expression Omnibus database under accession code GSE112013.
The processedmousebrain Visiumdata used in this study are available
in the ArrayExpress database under accession code E-MTAB-11114. The
processedmouse brain snRNA-seq data used in this study are available
in the ArrayExpress database under accession code E-MTAB-11115. The
processed Visium, 3’ scRNA-seq, 5’ scRNA-seq and scFFPE-seq for
human breast cancer Xenium dataset are available at 10x Genomics
website [https://www.10xgenomics.com/products/xenium-in-situ/
preview-dataset-human-breast]. Source data are provided with
this paper.

Code availability
The codes used to generate the figures in this paper is available at
https://codeocean.com/capsule/1351962/tree/v1. The package is avail-
able on GitHub with detailed documentation at https://github.com/
ZxZhou4150/Redeconve, https://doi.org/10.5281/zenodo.838415221.
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