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ZeroBind: a protein-specific zero-shot pre-
dictor with subgraph matching for drug-
target interactions

Yuxuan Wang 1, Ying Xia 1, Junchi Yan 2, Ye Yuan 1, Hong-Bin Shen 1 &
Xiaoyong Pan 1

Existing drug-target interaction (DTI) prediction methods generally fail to
generalizewell to novel (unseen) proteins and drugs. In this study, we propose
a protein-specificmeta-learning framework ZeroBind with subgraphmatching
for predicting protein-drug interactions from their structures. During the
meta-training process, ZeroBind formulates training a protein-specific model,
which is also considered a learning task, and each task uses graph neural
networks (GNNs) to learn the protein graph embedding and the molecular
graph embedding. Inspired by the fact thatmolecules bind to a binding pocket
in proteins instead of the whole protein, ZeroBind introduces a weakly
supervised subgraph information bottleneck (SIB) module to recognize the
maximally informative and compressive subgraphs in protein graphs as
potential binding pockets. In addition, ZeroBind trains the models of indivi-
dual proteins as multiple tasks, whose importance is automatically learned
with a task adaptive self-attention module to make final predictions. The
results show that ZeroBind achieves superior performance on DTI prediction
over existing methods, especially for those unseen proteins and drugs, and
performs well after fine-tuning for those proteins or drugs with a few known
binding partners.

Identifying the interactions between drugs and targets (proteins) plays
a crucial role in the process of drug discovery1–3. However, the tradi-
tional experimental methods for resolving the crystal structures of
drug-protein complexes to identify the drug-target interactions are
costly and time-consuming3–5. In order to reduce costs, in silico
approaches are gaining more attention. Instead of taking massive
candidates into an in vitro search, it is more efficient and less costly to
use computational approaches to virtually screen outmost candidates
prior to an in vitro search. Generally, there are two major groups of in
silico approaches, docking simulations and data-driven learning-based
methods. Docking simulations utilize the 3D structure of drug mole-
cules and target proteins to identify their potential binding sites,which
are also time-consuming1,6,7. In contrast, due to the rapid development

of machine learning, utilizing the features derived from proteins and
drugs to identify their interactions achieves both high accuracy and
low cost.

Data-driven learning methods generally formulate drug-target
interaction (DTI) prediction as binary classification or regression
tasks8–11, where interacting pairs of proteins and drugs are extracted
from existing databases like BindingDB12, CHEMBL13, PDBbind14,15, and
DrugBank16. Since the nature of potency values is logarithmic, a
decrease in kinetic constants from micromolar to nanomolar levels
results in an exponential change. Thus, the output values of regression
tasks are normally defined as the negative log of kinetic constants, i.e.,
Ki, Kd , IC50 and EC50. For classification tasks, a threshold is set to
define binding or nonbinding according to Ki, Kd , IC50, and EC50
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Machine learning-based methods from molecules and proteins fea-
turesmainly focus on learning a good representation ofmolecules and
proteins, which are then fed into a classification/regression model to
perform the prediction task8–11,19.

Recently, deep learning has achieved exciting results in DTI pre-
diction by learning from known drug-target interactions. However,
these methods cannot generalize well to those unseen proteins and
drugs8,20. Similarity/distance-based20–23 and network-based24–26 meth-
ods, which utilize protein-protein similarity, drug-drug similarity and
known DTIs, achieve overestimated performance on the transductive
test9, where both proteins and ligands in the test set are present in the
training set. In addition, there are often few known binding drugs with
a newly discovered target protein, making it difficult to work on the
inductive test, where both proteins and ligands in the test set are
absent in the training set. Currently, most existing methods focus on
how to effectively learn representations of molecules and proteins,
and then feed the representations into classification or regression
models8–11,19. The representation learningmethods, like DeepPurpose8,
take molecular fingerprints and SMILES27 strings as the molecular
features and amino acid sequences as protein features. Then they
apply a convolutional neural network (CNN)28, recurrent neural net-
work (RNN)29 or Transformer30 model to embed the input features. To
take spatial information into consideration, some methods apply
CNNs to 3D images derived from structures of proteins andmolecule31.
GNN32 has gainedmuchattention in recent yearsdue to its capability of
handling graphs as non-Euclidean structured data33. Other methods
utilize GNNs to embed graphs of proteins and molecules to perform
DTI prediction10. DTI prediction also benefits from the rapid devel-
opment of GNNs since both drug and target protein are naturally
graph-structured data. GEFA34 combines pre-trained protein embed-
dings and a graph-in-graph neural network with an attention
mechanism to capture the interactions between drugs and protein
residues. Thus, it is reasonable to use GNNs for the representation
learning of proteins and drugs.

However, classical pair-input approaches often take drug-
protein pairs as training samples by concatenating and feeding
their representations into a dense layer to identify the interactions.
However, these approaches may fail at inductive tests for unseen
proteins and drugs not seen during the model training, which is due
to their potential shortcuts35 that remember the degree ratio of
binding annotations in the training set rather than learning the
molecular features of interactions9. To generalize to unseen pro-
teins and drugs, AI-Bind leverages network-derived negatives and
pre-training to resolve the shortcut learning issue9. Furthermore,
proteins may have diverse binding patterns with drugs, which can
be captured by training a protein-specific model for individual
proteins. Recently, a ligand-based method MetaDTA36 is developed
as a few-shot predictor for proteins with a few known binding drugs
under the meta-learning framework. However, MetaDTA does not
support zero-shot prediction for unseen proteins without known
binding drugs in the training set.

To address these challenges, we propose a protein-specific zero-
shot predictor ZeroBind for drug-target interaction prediction under
the meta-learning framework. ZeroBind adopts the meta-learning fra-
meworkMAML++37 as the training strategy andeachbasemodelmakes
binding drug predictions of a specific protein, whichmainly consists of
four modules: (1) a Graph Convolutional Network (GCN) encoder
learning the embeddings of the molecule graph and protein graph, (2)
a Subgraph Information Bottleneck (SIB) module generating the
essential IB-subgraph of the protein graph as a potential binding
pocket, (3) a Multilayer Perceptron (MLP) module concatenating the
protein IB-subgraph embedding andmolecular embedding to perform
DTI prediction, and (4) a task adaptive self-attention module to mea-
sure the importance of different tasks, where different DTI tasks con-
tribute differently to the meta-learner. The generated task weight is

used forweighted average loss and further incorporated into themeta-
learning procedure.

In summary, our contributions are as follows: (1)We formulate the
drug-target interaction prediction for unseen drugs and proteins as a
zero-shot learning problem. The general knowledge of DTI prediction
learned fromexistingproteins, drugs, and their interactionswithmeta-
learning strategy have a greater ability for generalization to unseen
proteins and drugs than existing methods. (2) We train one DTI task
model per protein, where task adaptive self-attention is designed to
calculate the contributions ofmultipleDTI tasks to the protein-specific
meta-learner. Thus, each protein-specific model captures individual
binding patterns to drugs. (3)Weproposemodel-agnostic IB-subgraph
learning to automatically discover compressed subgraphs as potential
binding pockets in proteins instead of redundant graph information
derived from thewholeprotein. (4)Weconduct extensive experiments
on three independent zero-shot test sets and one few-shot test set.
Results show that ZeroBind consistently outperforms existing meth-
ods. Further validation of real-world SARS-COV-2 drug-target binding
prediction demonstrates the reliability of ZeroBind predictions and
the subgraphs detected by IB-subgraph learning align well with the
known binding pockets in proteins.

Results
Overview of ZeroBind
In this study, ZeroBind formulates the DTI prediction as a meta-
learning task and proposes a meta-learning framework to solve the
generalization problem of unseen proteins and drugs in DTI predic-
tion. Specifically, a meta-learning task is defined as binding drug pre-
dictions of a specific protein, where IB-subgraph learning is leveraged
to automatically discover compressed subgraphs as potential binding
pockets in proteins and a self-attentionmechanism is designed to learn
weights for each task of a protein. The flowchart of ZeroBind is illu-
strated in Fig. 1.

In detail, ZeroBind uses network-based negative sampling9 as data
augmentation to alleviate the annotation imbalance (Fig. 1a, Methods
section). Figure 1b, c illustrates the ratio of positive samples before and
after network-based negative sampling on the training set, indicating
that network-based negative sampling alleviates the annotation
imbalance to a certain extent. Then, it samples the DTIs into the sup-
port and query set (Fig. 1d), where the support set is used to train the
meta-learner and the query set is used to train the task-specificmodels.
After repeating N inner steps, all losses are weighted to optimize the
meta-learnerwith gradient descent. For eachprotein, ZeroBind trains a
DTI prediction task. Figure 1e gives the architecture of the base model
in ZeroBind,where theprotein graph andmolecule graph are fed into a
backbone GCN to learn embeddings for drugs and proteins. Further-
more, a weakly supervised Subgraph Information Bottleneck (SIB)
module is designed tomodel anddiscover potential binding pockets in
proteins. The SIB module not only reduces redundant information to
boost the performance, but also brings interpretable insights into
ZeroBind by identifying the critical residues in the protein. Figure 1f
introduces an adaptive self-attention module to measure the con-
tribution of each task of a protein, where different DTI tasks contribute
differently to the meta-learner. ZeroBind support predicting DTIs in
zero-shot and few-shot scenarios. The former uses themeta-learner to
make predictions directly without fine-tuning using the samples of
proteins inmeta-testing, and the latter uses the protein-specificmodel
to make predictions with fine-tuning using the samples of the protein
in meta-testing.

ZeroBind outperforms existing methods in both zero-shot and
few-shot settings for DTI prediction
To demonstrate the advantages of ZeroBind, we compare it with
multiple baseline methods and calculate the area under the receiver
operating characteristic (AUROC) and the area under the precision-
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Fig. 1 | The framework of ZeroBind. a Network-based negative sampling strategy.
The bipartite network consisting of drugs and protein targets: The square nodes
represent the protein nodes and the circle nodes represent the molecule nodes,
and there are only edges between different types of nodes, representing the cor-
responding drug-target interaction. Solid lines represent existing drug-target
interactions (DTIs) and dotted lines represent the generated negative interactions
with the shortest path distance≥ 7.bThepositive ratio of the training set before the
network-based negative sampling strategy. c The positive ratio of the training set
after the network-based negative sampling strategy. d Given the support set and
query set, Lsupport is first calculated and utilized to update the base model with
parameter θ to a task-specific model with parameter θ0 using the support set of
each task, and then the task-specificmodel calculates theLquery using the query set
of the task. After repeating N inner steps, all losses are weighted average by
ωTi

n oN

i = 1
, and gradient descent is further performed to optimize the meta model.

e The architecture of the base model in ZeroBind. For each task, the protein graph
and the molecule graph are fed into a backbone graph convolutional network
(GCN) with parameters θP and θM, respectively, to obtain their embeddings. Sub-
sequently, a SIB module is proposed to generate the IB-subgraph of a protein as
potential binding pockets in a weakly supervised way. The protein subgraph
embedding is concatenated with the molecular embedding and they are fed into a
Multilayer Perceptron (MLP) module to identify the interactions. f Task adaptive
attentionmodule. It takes the concatenationof theprotein embeddingGp,k and the
average of all molecule embeddings Gi

m,k

n om

i = 1
in the query set as the task

embedding. After using the self-attention layer to compute the weight of each task,
denoted as ηTi

n oN

i= 1
, the overall loss is averaged and incorporated into the meta-

training process for updating the model parameters. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-023-43597-1

Nature Communications |         (2023) 14:7861 3



recall curve (AUPRC) on three independent test sets and one few-shot
test set. To ensure the effectiveness of performance comparison, we
conduct five independent experiments with five random seeds for
datasets partitioning and model training, and report the average
results along with standard deviation.

The overall performances of all methods in three independent
test sets are reported in Fig. 2a (Supplementary Table 1). ZeroBind
achieves an AUROC of 0.9521(±0.0034), 0.8681(±0.0052),
0.8139(±0.0035) in the Transductive, Semi-inductive, and Inductive
test sets, respectively. We can see that ZeroBind outperforms all
baseline methods in the Transductive, Semi-inductive, and Inductive
test sets. Compared to the best baseline method, ZeroBind achieves
relative improvements in AUROC with 2.86% on the Transductive test
set, 10.29% on the Semi-inductive test set, and 3.38% on the Inductive
test set, the corresponding t-test p-value is 1.02 × 10−6, 8.02 × 10−11,
3.06 × 10−7, respectively. Moreover, the relative improvements of
AUPRC are 1.00% on the Transductive test set, 0.96% on the Semi-
inductive test set, and 1.21% on the Inductive test set compared to the
best baseline method, the corresponding t-test p-value is 8.93 × 10−8,
5.15 × 10−3, 1.56 × 10−5, respectively. In addition, on the three test sets,
we observe that the performance of all methods decreases, indicating
that a certain external shortcut learning exists for the Transductive
test set.

Figure 2a shows that AI-bind and our proposed ZeroBind out-
perform other baseline methods on the Inductive test set due to the
incorporation of network-based negative sampling and unsupervised
pre-trained embeddings to avoid the potential shortcut learning. Zer-
oBind achieves stable and better performance at Transductive and
semi-inductive test sets than baseline methods, indicating that Zer-
oBind can effectively learn useful embeddings of proteins and drugs.
Furthermore, ZeroBind achieves better performance in the inductive
test set thanAI-Bind. Thepotential reason is thatZeroBinduses ameta-
learning framework to obtain a general knowledge of DTI prediction
across multiple proteins, which can generalize well to the DTI predic-
tion of unseen proteins and drugs.

We also evaluate the protein-specific DTI prediction performance
of ZeroBind with other baseline methods on the inductive test set and
semi-inductive test set (Fig. 2b). After excluding proteins without
binding or nonbinding labels, we obtain 775 proteins with binding

drugs and one task model is trained per protein, here ZeroBind is
evaluated on the combined inductive and semi-inductive test sets.
ZeroBind achieves an average AUROC of 0.78, which is higher than the
AUROC 0.66 of DeepConv-DTI, 0.68 of GraphDTA, 0.69 of Deeppur-
pose, 0.75 of AI-bind and 0.73 of DrugBAN across the 775 proteins. Of
the 775 proteins, ZeroBind outperforms DeepConv-DTI, GraphDTA,
Deeppurpose, AI-bind, and DrugBAN for 525, 491, 305, 180 and 346
proteins, respectively. For each method, we present the number of
proteins that this method outperforms other methods (Fig. 2c)
according to the number of binding molecules. We observe that Zer-
oBind outperforms other baseline methods for the most proteins in
the three ranges, especially for the proteins with only 1–10 known
binding molecules, followed by AI-Bind.

We further evaluate ZeroBind against the baselinemethods on the
few-shot test set. ZeroBind andother baselinemethods arefirst trained
with the training set as the pre-training model, and further fine-tuned
on each few-shot fine-tuning set and evaluated on the corresponding
few-shot test set. The performance of ZeroBind model and other
baselines on the few-shot test set is shown in Fig. 2d (Supplementary
Table 2). In the few-shot test, ZeroBind outperforms the best baseline
methods with relative improvements of AUROC 1.55% and AUPRC
1.62%. The potential reason is that the meta-learning framework has
the strong generalization ability to quickly adapt to additional protein
taskswith a few training samples.We can see that fine-tuning improves
the zero-shot prediction performance by a large margin, which is very
useful for the real-world application scenario that a protein has only a
few known binding drugs.

ZeroBind detects the subgraphs that align well with known
binding pockets of proteins in a weakly supervised way
ZeroBind does not use binding pocket information as ground truth
labels for model training, instead, it uses the global DTI labels as a
weakly supervised labels. To demonstrate that the IB-subgraph mod-
ule in ZeroBind is able to detect the binding pocket in the protein, we
use the Jaccard similarity coefficient38 to compare the predicted
bindingpocket against the true binding pocket on PDBbind dataset14,15.
The true binding pocket information containing pocket residues and
3D coordinate locations are downloaded from PDBbind, which con-
tains 14,000 binding residues for 535 proteins. The Jaccard similarity
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Fig. 2 | Performance comparison of ZeroBind with baseline methods in zero-
shot and few-shot scenarios. a Zero-shot performance evaluation with ZeroBind
and baseline methods on three independent test sets. b Area Under the Receiver
Operating Characteristic Curve (AUROC) comparison of the protein-specific Zer-
oBind and the baseline methods for 775 proteins in the combined inductive and
semi-inductive test set. The color of points stands for the number of training
proteins. c The number of proteins that the method performs the best among the

comparedmethods for the combined inductive and semi-inductive test sets.d Few-
shot performance comparison of ZeroBind with baseline methods on the few-shot
test sets. Supplementary Tables 1 and 2 provide the data statistics for zero-shot and
few-shot prediction with two-sided t-test without adjustment. Source data are
provided as a Source Data file. AUPRC refers to Area Under the Precision-
recall Curve.
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coefficient is used to calculate the degree of intersection between two
sets of individual DTIs, and the formula is defined as
Jaccard similarity coef f icientðP̂,PÞ= P̂\P

P̂∪P
, P̂ represents the set of

predicted binding pocket residues by ZeroBind for a DTI, and P
represents the set of true binding residues in the pocket for this DTI.

In addition, we calculate the Jaccard similarity coefficient of
predicted binding pockets nodes and the first-order neighbors of
the true binding pocket nodes as Jaccard similarity coef f icient

ðP̂,PneighborÞ=
P̂\Pneighbor

P̂∪ Pneighbor
, Pneighbor represents the set of first-order

neighbor pockets of the real binding pocket.

Figure 3a, b shows the distribution of Jaccard similarity coeffi-
cients of predicted binding pockets with true binding pockets and
the first-order neighbors of true binding pockets, respectively.
ZeroBind yields average Jaccard similarity coefficients of 0.358 and
0.605, respectively. For the neighboring pockets, Jaccard similarity
coefficients are above 0.5 for most pockets. The results show that
despite some discrepancy between the predicted binding pockets
and true binding pockets, the predicted binding pockets are mostly
around the true binding pockets, indicating the effectiveness of the
generated IB-subgraph in ZeroBind as the potential binding pocket
with some biological interpretability. We further conduct an
experiment of randomly sampled residues as potential protein
pockets, here denoted as ZeroBindrandom. The results are shown in
the ablation studies and here we also calculate the Jaccard similarity
coefficients of randomly sampled binding residues with true

binding pockets and the first-order neighbors of true binding
pockets, respectively. The ZeroBindrandom yields an average Jaccard
similarity coefficients of 0.013 and 0.072 (all the values are below
0.2), which is much smaller than that of ZeroBind, respectively. As
shown in Fig. 3a, b, we can see that the randomly selected binding
residues have little overlap with the true binding pockets or their
neighbors in proteins. The results indicate that the SIB module in
ZeroBind learns the potential binding pockets instead of other
unrelated factors, since the DTI binding information is to a certain
extent able to guide the IB-subgraph module to locate potential
binding pockets.

To further demonstrate the effectiveness of the IB-subgraph
module, we train a variant ZeroBind for those proteins with known
binding pockets using true binding pocket as the node assignment
matrix Z for the inductive test set. This variant ZeroBind achieves an
average AUROC of 0.8278, which is higher than the AUROC 0.8032 of
the ZeroBind that uses learned node assignment matrix Z by a narrow
margin. The experimental results further validate the effectiveness of
the IB-subgraph module in ZeroBind.

We further visualize the generated IB-subgraph as the potential
binding pocket for Serine/threonine-protein kinase N1 protein in
Fig. 3c, d. We can see that although the IB-subgraph introduces some
false positive binding residues due to no known binding pocket
information for IB-subgraph module training, the potential binding
residues included in the IB-subgraph contain most of the true binding
residues deposited in BioLip39.
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Fig. 3 | ZeroBind is able to detect binding pockets of proteins in a weakly
supervised way. a The distribution of Jaccard similarity coefficients of the pre-
dicted binding pockets with the true binding pockets and randomly selected
binding residues as binding pockets with the true binding pockets of individual
DTIs. b The distribution of Jaccard similarity coefficients of the predicted binding
pockets with the first-order neighbors of true binding pockets and randomly
selected binding residues as binding pockets with the first-order neighbors of true

binding pockets of individual DTIs. c The Serine/threonine-protein kinase N1 pro-
tein. Experimentally validated DTI binding pocket queried by BioLiP. The blue part
represents the experimentally validated binding pocket along with the residue
name and number. d The potential binding pocket predicted by IB-subgraph in
ZeroBind. The red part represents the helix structure of protein, the yellow part
represents the loop structure of protein and the green part represents the sheet
structure of protein. Source data are provided as a Source Data file.
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ZeroBind is able to predict potential drugs against SARS-COV-2
Proteins
To better demonstrate the effectiveness of ZeroBind, we use Auto-
Docking simulations to validate its predicted potential drugs targeting
the SARS-COV-2 proteins. Auto-Docking simulation is a time-
consuming but reliable tool to simulate the drug-target binding pro-
cess. To respond quickly to public health emergencies, we need to
validate ZeroBindonproteins thatdon’t havemanybindingmolecules.
Thus, we apply ZeroBind to predict the interactions between the
structures of 10 SARS-CoV-2 viral proteins not in the training set and
10,000 drugs in PubChem40, where the PDB IDs for SARS-COV-2 pro-
tein structures are given in Supplementary Table 3. Then, we choose
top-10 binding confidence pairs based on the predicted scores by
ZeroBind and further perform Auto-Docking simulations to validate
the effectiveness of ZeroBind predictions with AutoDock Vina41.

The average binding affinity of the top-10 predicted pairs by
ZeroBind is −7.42 kcal/mole (Fig. 4a), which are promising drug-target
pairs and also validate the reliability of ZeroBind predictions42. As
demonstrated in9, the average binding affinities are close to −7.5 kcal/
mole for three binding pairs of SARS-COV-2 proteins and drugs. Fur-
thermore,we simulate thedrug-target binding complexbetweenORF8
accessory protein and VZBSCWDKCMOJCR-UHFFFAOYSA-N drug in
Fig. 4b, it yields a relative goodbinding affinity scoreof −8.4 kcal/mole.
Andwe also simulate the drug-target binding complex betweenORF3a
protein andOLTVRSUIOUTBRQ-UHFFFAOYSA-N drug in Fig. 4c, which
yields a binding affinity score of −5.8 kcal/mole. As shown in Fig. 4b, c,

we can see that the predicted drugs bind well to the pockets in SARS-
COV-2 proteins. In future work, we expect ZeroBind to validate the
potential drugs against the target proteins, especially those proteins
with no verified drugs.

Ablation studies on ZeroBind
Todemonstrate the added valueof individualmodules in ZeroBind,we
also conducted an ablation study to evaluate the effectiveness. The
details of ZeroBind with different modules are illustrated as follows:
(1) ZeroBindMAML-: Train the base model of ZeroBind directly without

the meta-learning strategy.
(2) ZeroBindSIB-: Using all node embeddings of the protein to identify

the interaction instead of applying a SIB module to find the IB-
graph on the protein graph.

(3) ZeroBindattention-: ZeroBind without task adapted attentionmodule
to balance the importance of different tasks.

(4) ZeroBindGIN: ZeroBind uses GIN instead of GCN as the
backbone GNN.

(5) ZeroBindrandom: ZeroBind sets the node assignmentmatrix Z in Eq.
(4) randomly.

The results are shown in Table 1. For ZeroBindMAML-, we observe a
significant decrease in the semi-inductive and inductive test sets,
demonstrating that the meta-learning training strategy provides the
powerful generalization ability to unseen proteins and drugs. We can
see that ZeroBindSIB- yields a lower performance without the SIB

b c

Drug InChI Key Protein name Affinity
kcal/mole

1 MCQZAGJMVRHLNR-QRWMCTBCSA-N nucleocapsid protein N-terminal RNA binding
domain

-8.2

2 VHGZTJJXZVYRMV-UHFFFAOYSA-N ORF7A encoded accessory protein -6.9

3 IXUYOKHQKZFALL-UHFFFAOYSA-N ORF7A encoded accessory protein -7.8

4 BBGGFNJGPUEVOH-UHFFFAOYSA-N u1S2q 1-RBD Up Spike Protein Trimer -6.9

5 OLTVRSUIOUTBRQ-UHFFFAOYSA-N ORF3a -5.8

6 DETCTMVFPAAUFQ-UHFFFAOYSA-N main protease -8.0

7 PCVZZJWGMJBSKX-FBMWCMRBSA-N Orf9b -8.2

8 FDPSDGIMOWDYAV-NDEPHWFRSA-N u1S2q 1-RBD Up Spike Protein Trimer -6.5

9 VZBSCWDKCMOJCR-UHFFFAOYSA-N ORF8 accessory protein -8.4

10 FZHRJVXERYVRSK-BZSNNMDCSA-N Main Protease (Mpro) H172Y Mutant -7.5

a The top-10 drug-target pairs for SARS-COV-2 proteins by ZeroBind

-8.4 kcal/mol

-5.8 kcal/mol

Fig. 4 | ZeroBind predicts binding drugs for SARS-COV-2 proteins. a Top 10
drug-target binding pairs of SARS-COV-2 proteins. b The drug-target binding
complex between the drug InChI Key VZBSCWDKCMOJCR-UHFFFAOYSA-N and
SARS-CoV-2 ORF8 protein. The green part represents the main part of the protein,
the blue part represents the binding drug and the red part represent potential
binding sites consisting of the residue nameand number. cThedrug-target binding

complex between the drug InChI Key OLTVRSUIOUTBRQ-UHFFFAOYSA-N and
SARS-CoV-2 ORF3a protein. The purple part and blue part represents the twomain
chains of ORF3a protein, the green part represents the binding drug and the red
part represent potential binding sites consisting of the residue name and number.
Source data are provided as a Source Data file.
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module to find the IB-subgraph, indicating the embedding of the
whole protein is less effective than the subgraph embedding. The
potential reason is that redundant graph information exists in the
whole protein graph, further indicating that the molecule binds to a
binding pocket instead of the whole protein. ZeroBindattention- performs
slightly worse than ZeroBind, indicating the necessity of task adaptive
self-attention module to balance different DTI tasks for different pro-
teins.We also see a performancedecline forZeroBindsampling-, due to the
lack of the value-generated nonbinding annotations by network-based
negative samplings that is able to alleviate the potential short-cut
learning. For ZeroBindGIN, there is no significant difference in the per-
formance comparedwith ZeroBind, which indicates that the backbone
GNN has a smaller impact on the performance than other modules in
ZeroBind. Compared to randomly selected binding pockets,
ZeroBindrandom performs worse than ZeroBind, further validating the
effectiveness of the SIB module for detecting potential binding pock-
ets. Moreover, we can see that ZeroBindrandom with randomly selected
pockets performs worse than ZeroBindSIB- without the IB-subgraph
module, indicating that initially inaccurate binding pockets guides the
model to not locate true binding pockets, resulting in a wrong DTI
prediction.

Discussion
The interaction of proteins with drug molecules is an important
research topic, especially in the face of proteins and drug molecules
not seen in the training set. Considering the information of proteins
and molecules simultaneously is an under-explored idea to solve this
problem. In this study, we formulate the drug-target interaction (DTI)
prediction as a meta-learning task and propose a meta-learning fra-
mework called ZeroBind to solve the generalization problemof unseen
proteins and drugs in DTI. Specifically, a meta-learning task is defined
as binding drug predictions of a specific protein. The results demon-
strate that ZeroBind outperforms existing methods in zero-shot and
few-shot scenarios. In addition, the subgraphs learned by SIB alignwell
with binding pockets in the protein, where randomly selected residues
as binding pockets almost do not overlap with true binding pockets.
Furthermore, we validate ZeroBind’s performance in a real-world
scenario, where it predicts drug-target bindings for SARS-COV-2.

Due to the rapid development of the research on GNNs, proteins
andmolecules can be encoded in a more natural form than sequences
in previous studies. In addition, the meta-learning strategy also pro-
vides a more precise way of delineating the protein-specific DTI task
space, which is also consistent with the experimental workflow for

proteins in real drug experiments. However, ZeroBind also has some
limitations, such as the difficulty of meta-learning training, where the
training procedure is complex and prone to instability.

The IB-subgraph method offers an interpretable ability of the
model for understanding representation learning. In ZeroBind, the
potential binding pockets are automatically detected with the weakly
supervised IB-subgraph method that does not use binding pocket
annotations as labels. To the best of our knowledge, still no published
methods use IB-subgraph or other subgraph-based methods to iden-
tify potential binding pockets in the proteins, existing subgraph-based
methods are focused on drug molecules. In the current study, we do
not incorporate real binding pocket information into model training,
since the binding pocket data is far less than the DTI data, and the
protein structures predicted by AlphaFold2 still have no known bind-
ing pocket annotations. Of the proteins in the benchmarkdataset, only
535 proteins have a part of known binding pockets. Thus, it is difficult
to train the SIB module in ZeroBind for all proteins to detect binding
pockets using the local binding pocket labels. Instead, we train the SIB
module of ZeroBind using the global DTI binding labels, which
potentially guides the SIB module to locate the potential binding
pockets in proteins. As shown in our experiment, ZeroBind with true
binding pockets yields better performance. A future update of Zer-
oBind is expected to take true binding pocket information into the
training process tomake amore accurate fitting to the DTI problem, if
we can collect more true binding pocket data.

Furthermore, the base model in ZeroBind is GCN and there have
been more advanced neural architectures for protein-molecule bind-
ing, such as SE(3)-equivariant GNN used in EquiBind43. In future work,
we expect to investigate more advanced GNNs in ZeroBind.

Methods
Dataset generation and augmentation
BindingDB12 is a public database of DTI interactions, which deposits
binding affinity data between drugs (drug-like molecules) and target
proteins. It currently contains over 2,600,000 experimentally deter-
mined binding affinities of protein-drug complexes between over
8000 protein targets and over 1,100,000 small molecules.

To create the training and test datasets for ZeroBind, we apply
several filtering and preprocessing steps to create a high-quality
benchmark dataset. First, data points are filtered with “single protein”
for the “target type” attribute, and kinetic constants Ki, Kd , IC50 and
EC50 for the “standard type” attribute. In addition, all target proteins
should be human or human-like proteins, so they are filtered using

Table 1 | Performance evaluation of ablation studies on ZeroBind

Metric Model Transductive test Semi-inductive test Inductive test

AUROC ZeroBindMAML- 0.8632 ±0.0071 0.7835 ±0.0063 0.6153 ±0.0031

ZeroBindSIB- 0.8556 ±0.0056 0.8018 ±0.0121 0.7122 ± 0.0042

ZeroBindattention- 0.9057 ±0.0078 0.8352 ± 0.0020 0.7585 ±0.0026

ZeroBindsampling- 0.9066 ±0.0018 0.8280 ±0.0031 0.7852 ±0.0043

ZeroBindGIN 0.9412 ± 0.0050 0.8652 ±0.0046 0.8025 ± 0.0027

ZeroBindrandom 0.8865 ± 0.0017 0.8254 ±0.0082 0.7562 ± 0.0031

ZeroBind 0.9521 ± 0.0038 0.8681 ± 0.0065 0.8139 ± 0.0045

AUPRC ZeroBindMAML- 0.9540 ±0.0044 0.9115±0.0010 0.8547 ±0.0027

ZeroBindSIB- 0.9385 ±0.0117 0.9375 ±0.0028 0.9242 ±0.0058

ZeroBindattention- 0.9789 ±0.0050 0.9742 ±0.0065 0.9408 ±0.0061

ZeroBindsampling- 0.9782 ±0.0027 0.9645 ±0.0063 0.9655 ±0.0057

ZeroBindGIN 0.9831 ± 0.0043 0.9850 ± 0.0058 0.9817 ± 0.0062

ZeroBindrandom 0.9635 ± 0.0056 0.9375 ±0.0151 0.9288 ±0.0071

ZeroBind 0.9896 ± 0.0013 0.9880 ± 0.0062 0.9872 ± 0.0020

The average is reported after performing each experiment five times, along with the standard deviation. The bold face indicates the method is the best across the compared methods.
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“Homo sapiens” for “Target Source Organism” attribute. After
excluding proteins that don’t have SwissProt name andmolecules that
cannot be handled by RDKit44, 1,500,000 protein-drug pairs were
collected. We use the threshold in AI-bind9, which treats kinetic con-
stants Ki,Kd , IC50 and EC50<1000nMas positive samples and >106 nM
as negative samples.

To demonstrate the effectiveness of ZeroBind, we construct three
independent test sets for model evaluation through protein sequence
similarity clustering by cd-hit and molecule scaffold split: (1) Trans-
ductive test set, where molecules with the same scaffold and proteins
with the samecluster are in the training set, but their interactions donot
exist in the training set; (2) Semi-inductive test set,where theproteins in
the same cluster are in the training set, but themolecules with the same
scaffold are not; (3) Inductive test set, where molecules with the same
scaffolds and proteins in the same clusters are not in the training set.

We first use cd-hit, a widely used program for clustering protein
sequences, to cluster 1603 proteins into 1101 clusters with a similarity
threshold 0.4. Through comparing molecule scaffolds, we split the
molecules into the training molecule set and test molecule set with a
training ratio of 0.95, and ensure that these two sets do not have
overlapping scaffolds. As themeta-learning-based framework requires
sufficient data, we first divide the clusters that have any protein with
the number of associatedmolecules <20 into the test clusters, and the
remaining clusters as the training clusters. Then, we construct the
training set using 95% of the proteins in the training clusters and
SMILES in the trainingmolecules set. The remaining 5% of the proteins
in the training clusters and smiles in the trainingmolecules set areused
as the Transductive test set. Finally, the proteins and smiles both in the
test clusters andmolecule set are further used as the Inductive test set,
and the rest data are used as the Semi-inductive test set. During the
model training, the cross-validation approach is applied for model
optimization.

In addition, we construct another few-shot test set with combin-
ing the Semi-inductive test set and the Inductive test set to evaluate the
few-shot learning power of ZeroBind. Then, we randomly select 5
positive and 5 negative DTIs of eachprotein as the few-shot fine-tuning
set, and the rest DTIs of each protein as the few-shot test set. Proteins
that don’t have enoughpositive or negativeDTIs are excluded fromthe
few-shot fine-tuning set and the few-shot test set. The details of the
training set and four test sets are given in Table 2.

We observe there exists data imbalance in the training set, and
most proteins have a high positive ratio. AI-bind9 demonstrates that
the annotation imbalance causes the network to learn topological
shortcuts instead of the binding patterns of drug-target interac-
tions. Similar to AI-Bind9, we use the network-based negative sam-
pling of training datasets as data augmentation to alleviate the
annotation imbalance. Specifically, we construct a bipartite drug-
target network. The bipartite network is illustrated in Fig. 1a. Dijk-
stra’s Algorithm is used to find the shortest path distances between
any pairs of nodes in the network, and we consider the node pairs
with the shortest path distance ≥ 7 in the network as non-binding
pairs. After this processing, the annotation imbalance was slightly
relieved as shown in Fig. 1b, c.

The 3D structures of 996 proteins in this study are downloaded in
PDB format from the RCSB Protein Data Bank (https://www.rcsb.org)45,
and the rest 3D structures of 635proteins arepredictedbyAlphaFold246.
In addition, we download the true binding pocket information con-
taining pocket residuals and pocket 3D coordinate locations from the
PDBbind database, which contains binding pockets for 14,336 DTIs.

Graph construction for proteins and drugs
In this section, we first introduce the construction of drug graphs and
protein graphs, and then give formal definitions of the DTI task and its
derivatives, zero-shot DTI predicting task and few-shot DTI
predicting task.

After using RDkit44 to construct amolecule fromaSMILES27 string,
we apply the encoding format used in Open Graph Benchmark (OGB)
datasets47 to obtain molecular representation. Specifically, atom che-
mical features consist of atomic number, chirality, atomic formal
charge, number of hydrogen atoms attached, radical electrons num-
ber, hybridization type, and aromatic. Geometric features consist of
atom degree, and a binary value that whether in the ring is used for
encoding node representation. Edge features consist of bond type,
bond stereo and a binary value that whether bond is conjugated.

Definition 1:Wedefine adrug as a graphdenoted asGm = Vm,Em

� �
,

whereVm is thenode set representing the atomsof amolecule and Em is
the edge set indicating which pair of nodes are connected.

Definition 2: We define a protein graph as Gp = Vp,Ep

n o
from the

protein 3D structure, where Vp is the node set of the residues, Ep is the
edge set indicating which pair of residue nodes are connected. In this
study, if the Euclidean distance between two residues in 3D structure
space is less than 8 angstroms (Å)48, the two residue nodes are con-
nected with one edge in the protein graph.

For proteins without known 3D structures, we useAlphaFold246 to
predict their structures as complementary. The node features of the
protein graph are initialized with pre-trained ESM-249 emebddings, a
general-purpose protein language model, of the residues to incorpo-
rate prior knowledge. The edge features of the protein graph are the
Euclidean distance between the pairs of nodes. The whole process of
constructing a protein graph is shown in Fig. 5.

In this work, we train a DTI task per protein.
Definition 3: We define a DTI task Tp from a task set T for meta

learning as Tp = p,Mp

n o
, where p is a protein in the protein set P and

Mp is the drug set of its corresponding binding molecules and non-
binding molecules.

Definition 4:Wedefine the zero-shot DTI predicting task inherited
from DTI task, which represents that the meta-model is directly used
for prediction without fine-tuning with samples of the protein inmeta-
learning test set.

Definition 5: We define the few-shot DTI predicting task inherited
from DTI task, which uses the protein-specific model for prediction
after fine-tuning with samples of the protein in meta-testing.

The few-shot DTI prediction schedule and zero-shot DTI predic-
tion schedule are shown in Fig. 5c.

Meta-learning setup in ZeroBind
Themeta-learning framework was originally proposed to learn general
knowledge acrossmultiple related tasks within a distribution and used
this general experience to quickly adapt to additional tasks and
improve prediction performance50. There are twomain types of meta-
learning framework: (1) Gradient-basedmethods: The classic gradient-
based method MAML51 uses a meta-learner to learn a good initializa-
tion by summing upmultiple task losses and updating the parameters
across tasks. Therefore, MAML could achieve both high accuracy and
speed for generalization; (2) Metric-based methods: The prototypical
network52 is a classic metric-based meta-learning algorithm that
directly trains the vector representation (i.e., prototypes) of each
category. Once a good feature extractor is trained, the category of a
new sample is determined by its closest prototype in the vector space.

Table 2 | The details of the training set and four test sets

Dataset Number of
proteins

Number
of drugs

Number of
interactions

Training set 426 248,997 392,032

Transductive test set 392 16,946 17,314

Semi-inductive
test set

1575 159,182 228,320

Inductive test set 688 7261 10,165

Few-shot test set 1253 127,665 160,948
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In our study, we apply gradient-based methods MAML as the training
strategy. Besides, we followMAML++37 tomake some improvements to
stabilize the training process of MAML.

In the details of ZeroBind, several techniques includingmulti-step
loss optimization (MSL), learning per-layer per-step learning rates and
gradient directions (LSLR), subgraph informationbottleneck (SIB), and
task adaptive self-attention are applied to improve the performance of
ZeroBind.We build the zero-shot learning framework based onMAML.
First, we randomly initialize the network parameter θ. Given training
tasks (proteins) sampled from the task distribution T, MAML aims to
learngood initial parameters that can quickly adapt to additional tasks.
For a pair of a protein and drug, we sample a 2-way, k-shot, m-query
training task. Of these three hyperparameters, 2-way is set up since
there are only two types of labels of binding and nonbinding in the
classification task. In the original MAML framework, the model first
trains k data samples of each label for several inner steps to learn a
task-specific model and then tests onm data samples. After obtaining
the loss for each task,MAMLapplies the gradient descentwith the sum

or average of the loss across all tasks. Here we refer the training task
and test task as the support set and query set, respectively. However,
MAML suffers from instability during training and is sensitive to neural
network architectures and a large number of hyperparameters.
Therefore, we follow MAML++37 training procedure, which leverages
multi-step loss optimization (MSL) and learning per-layer per-step
learning rates and gradient directions (LSLR) in MAML.

Specifically, the multi-step loss optimization calculates the loss of
the query set after each inner step, and optimizes the base network
with the support set after all inner step optimization is completed.
More formally, we optimize the model parameters as follows:

θ=θ� α∇θ

XB
b= 1

XN
i =0

υiLTb
f
θbi

� �
ð1Þ

where α is the learning rate,LTb
f
θbi

� �
denotes the loss of the query set

after every inner stepoptimizationwith the support step and υi denotes
the importance of step i generated by the number of inner steps.
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Fig. 5 | The data processing of ZeroBind. a The process of constructing a protein
graph from the protein 3D structure. Instead of using peptide bonds as edges, we
connect two residues with the cutoff distance < 8 angstroms (Å), where edges and

node features are extracted using ESM-2 pretrained model. b An example of the
protein graph construction from the protein 3D structure. c The few-shot DTI
prediction process and zero-shot DTI prediction process.
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TheLSLRmodule sets the learning rate to be learnableparameters
for each layer at each inner step. Without adding much computation,
different learning rates are automatically learned for each layer at each
step, which may help alleviate overfitting.

To summarize the meta-learning procedure in ZeroBind (Boxes 1
and 2), the model is first updated to task-specific models using the
support set of each task, and then calculates the loss of the query set of
the task. After repeating N inner steps, the losses of all query sets are
weighted averageby fηTi

gN
i= 1

, and areused tooptimize themeta-model
by gradient descent. After trainingwith a sufficient number of samples,
the learned model has a good capability of predicting DTI for unseen
molecules and proteins or quickly adapting to additional protein tasks
with a few training samples. Themeta-learning procedure of ZeroBind
is shown in Fig. 1d.

Architecture of base model in ZeroBind
Figure 1e shows the architecture of the base model in ZeroBind, which
mainly consists of three modules: a GNN module to obtain the
embedding of molecules and proteins, a SIB module to find the most
predictive subgraph as the binding pocket in the protein, and a dense

module with concatenating protein subgraph representation and
molecular representation to score the interactions.

Graph neural network-based representation learning for proteins
and drugs. After constructing drug and protein graphs for a given
protein-drug pair, wefirst embed themolecule atom features to vector
space with randomly initialized parameters. We denote the node
embedding of the molecule as XmRNm*Dm , and also as the initial node
embedding of GNN, denoted asG 0ð Þ

m , whereNm is the number of nodes
andDm is the dimension of the node embeddings. Here, we denote the
graph convolutional network (GCN) based molecule backbone as
GCNm, which is used to learn the graph embedding from themolecule
graph. Then, the l-th layer output of GCNm can be formulated as:

G lð Þ
m =RELU ÂmG

l�1ð Þ
m W l�1ð Þ

m +b l�1ð Þ
� �

ð2Þ

where Âm represents the adjacentmatrix of a graph,G l�1ð Þ
m denotes the

node embedding of l � 1ð Þ-th layer and W l�1ð Þ
m is the learnable weight

matrix.
For protein graphs, we initialize the node embedding G 0ð Þ

p of a
protein graph with ESM-2, a pre-trained general-purpose protein
embedding. Similarly to the molecule graph, a GCN-based backbone
GCNp is used to learn the graph embedding from the protein graphs.
Then, the l-th layer output of GCNp can be formulated as:

G lð Þ
p =RELU ÂpG

l�1ð Þ
p W l�1ð Þ

p +b l�1ð Þ
� �

ð3Þ

Subgraph learning in ZeroBind for potential binding pockets in
proteins. Considering that a molecule binds to a binding pocket in the
protein instead of the whole protein, after the protein backbone GCN,
we apply a model-agnostic SIB module53 to identify the most inter-
pretable subgraph with the most crucial information associated with
the DTI task, where the learned subgraph corresponds to the binding
pocket on the protein graph. The SIBmodule is proposed to recognize
a compressed subgraph named IB-subgraph under the information
bottleneck (IB) principle. The IB-subgraph could also eliminate the
noisy and redundant graph information. In our DTI task, the DTI score

BOX 1

ZeroBind training process
Require: Gτ

m,G
τ
p,Y

τ
n o

: training data;
While not done do:

Sample batch of tasks Tτ ∼p τð Þ
For all Tτ do
Sample k examples as support sets of Tτ Gτ

mn,G
τ
pn,Y

τ
n

n ok

n= 1
2 Gτ

m,G
τ
p,Y

τ
� �

Sample m examples as query sets of Tτ Gτ
mn,G

τ
pn,Y

τ
n

n om

n= 1
2 Gτ

m,G
τ
p,Y

τ
� �

θbase  θ
For i=1 to inner steps do:
Calculate the inner step loss weight ωi

yτ
in

� �k
n= 1 =BaseModel Gτ

Pn

� �k
n= 1, Gτ

Mn

� �k
n= 1;θbase

� �
Lτ

i  Eq: 11ð Þwith yτ
in

� �k
n= 1

θbase optimize with yτ
in

� �k
n= 1

yτ
in

� �m
n= 1 =BaseModel Gτ

Pn

� �m
n= 1, Gτ

Mn

� �m
n= 1;θbase

� �
Lτ

i  Eq: 11ð Þwith yτ
in

� �m
n= 1

End for
Lτ = ωi

� �N
i= 1 � Lτ

i

� �N
i= 1

End for
ηi

� �N
i= 1  Eq: 14ð Þ

θ θ� α∇θ

P
Tτ ∼p τð Þηi �Lτ

End while

BOX 2

BaseModel forward process
Require: GP,GM

� �
: training data;

GP =GNNP GP;θP
� �

GM =GNNM GM;θM
� �

Z Eq: 4ð Þwith GP,GM

� �
GPsub  Eq: 5ð Þwith Z,GP

� �
For i=1 to num steps do

LMI�pro  Eq: 8ð Þwith GP,GPsub;φ2

� �
LMSE  Eq: 6ð Þwith Z
Lcls  Eq: 10ð Þwith Gm,GPsub;Y

� �
LBase  Eq: 11ð Þwith Lcls,LMSE,LMI�pro

� �
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is largely determined by the protein pocket features, which are the
subgraph information bottleneck of the protein graph or the potential
drug binding sites in the protein.

The SIB module contains a subgraph generator for node assign-
ment and a dense layer to guarantee that the generated subgraph
matches the IB-subgraph. The subgraph generator is a Multi-layer
Perceptron (MLP), which takes the protein node embedding and the
molecule embedding as the input and outputs the node assignment
matrix Z, which is formulated as follows:

Z = Sof tmax MLP concatenate G lð Þ
p ,G lð Þ

m

� �
;φ1

� �� �
ð4Þ

Gsub =Z
TG lð Þ

p 0½ � ð5Þ

where the output of theMLP is a n ×2matrixwith the number of nodes
n. After applying Sof tmax on the output of MLP layer, each row of Z is
the probability of the corresponding node belonging to the Gsub and
�Gsub, denoted as p hi 2 Gsubjhi

� �
,p hi 2 �Gsubjhi

� �� 	
,where Gsub repre-

sents the generated subgraph of protein graphGP and �Gsub represents
the leftover subgraph of protein graph. After training with a sufficient
number of training samples, the learned node assignment matrix Z is
supposed to approach to 0 or 1. Thus, the generated IB-subgraph
embedding can be obtained by taking the first row of the product
between ZT and node embedding.

To stabilize the training process of the subgraph generation and
separate p hi 2 Gsubjhi

� �
from p hi 2 �Gsubjhi

� �
, we apply a connectivity

loss as follows:

LMSE =MSE diag Norm ZTAZ
� �� �

� diag I2
� �� �

ð6Þ

where Norm �ð Þ is the row normalization, A is the adjacency matrix of
protein graph GP and I2 is a 2 × 2 identity matrix. Minimizing LMSE

could encourages p hi 2 Gsubjhi

� �
,p hi 2 �Gsubjhi

� �� 	! 0,1½ �= 1,0½ �,
which results in a distinctive Z to stabilize the training process and a
compact topology in the subgraph.

Formally, the subgraph information bottleneck seeks the IB-
subgraph by optimizing the following objective function:

max
Gsub

I Y ,Gsub

� �� βI G,Gsub

� �
ð7Þ

where β is a weight, Y represents the label associated with G, and G
represents the original graph. I Y ,Gsub

� �
and I G,Gsub

� �
respectively

represents themutual information between Y ,Gsub

� �
and G,Gsub

� �
, and

Gsub represents the IB-subgraph embedding.
To optimize the objective function, the lower bound of the first

term is formulated as the opposite number of classification loss
between the ground truth label and predicted label with subgraph
embedding. By minimizing the classification loss, the lower bound of
I Y ,Gsub

� �
achieves the maximum value. For the second term, the

DONSKER-VARADHAN representation54 of the KL-divergence is
applied to approximate the upper bound of I G,Gsub

� �
. The approx-

imation of I G,Gsub

� �
can be formulate as:

max
φ2

LMI�pro φ2,Gsub

� �
=

1
N

XN
i= 1

Dense Gi,Gsubi
;φ2

� �

� log
1
N

XN
i= 1,j≠i

e
Dense Gi ,Gsubj

;φ2

� � ð8Þ

where Dense �ð Þ is the dense network of several MLP layers with the
concatenation of the embedding of G and Gsub as the input.

To minimize I G,Gsub

� �
, several inner steps of the maximum opti-

mization of LMI�pro are applied to minimize the upper bound
of I G,Gsub

� �
.

After obtaining the embedding of the generated protein IB-sub-
graph, we concatenate the molecular embedding and protein IB-
subgraph embedding as the input to the MLP classification layer. The
DTI classification loss could be formulated as:

ŷ=MLP concatenate Gm,Gsub

� �
;θcls

� � ð9Þ

Lcls = � y log ŷ� 1� yð Þ log 1� ŷ
� � ð10Þ

The overall loss can be formulated as:

min
θM ,θP ,φ1 ,φ2,θcls

Lbase =Lcls + λ1LMSE + λ2LMI�pro ð11Þ

s:t:φ*
2 = argmax

φ2

LMI�pro

where λ1 and λ2 are weights to balance the importance of different
losses, θM,θP are the parameters of GCNm and GCNp, φ1 is the para-
meters of IB-subgraph generator, φ2 is the parameters of the dense
network, and θcls is the parameters of the MLP layer.

Here, we summarize the training process, the Lcls measures the
discrepancy between the estimated distribution and the original data
distribution by utilizing the cross-entropy between the predicted
values and the ground truth (the DTI labels instead of binding pocket
labels). The LMSE , as indicated by Eq. (6), encourages the node
assignmentmatrix Z to approach close to either 1 or 0. TheLMI�pro, as
indicated by Eq. (8), represents an approximation of I G,Gsub

� �
intro-

duced in Eq. (7). To maximize Eq. (7) and achieve subgraph informa-
tion bottleneck, the lower bound of I Y ,Gsub

� �
needs to increase as

much as possible and the upper bound of I G,Gsub

� �
needs to decrease.

Therefore,webegin byperforminggradient descent on thenegative of
LMI�pro within the dense network. The goal is to maximize LMI�pro
and achieve the upper bound of I G,Gsub

� �
, thus satisfying the con-

straints of Eq. (11). After that, we utilize gradient descent to optimize
Eq. (11). By optimizingLcls, we increase the lower bound of I Y ,Gsub

� �
,

and decrease the upper bound of I G,Gsub

� �
by optimizing LMI�pro.

This approach aims to maximize Eq. (7) and seek the subgraph infor-
mation bottleneck for detecting potential binding pockets in proteins.

In our task, we aim to find the protein binding pocket under the
weakly supervised training process, since the amount of protein
binding pockets data ismuch smaller than the amount of binding data.
So we design the IB-subgraph to find the protein binding pockets
optimized on theDTI binding labels insteadof binding pocket labels in
proteins. Considering the protein pockets are determined by both
proteins and molecules, we take the concatenation of molecule
embedding and protein embedding as input when we generate the
node assignment matrix Z in Eq. (4).

Task adaptive self-attention
In a traditional meta-learning schedule, batch size tasks are sampled
and treated with the same weight when applying mini-batch gradient
descent. However, the same weight of multiple tasks can’t reflect the
importance of different tasks contributing to the meta-model opti-
mization. We further design a task adaptive self-attention module
(Fig. 1f) to learn the importance of different tasks automatically. Since
each task is a DTI prediction of a specific protein, we take the con-
catenation of protein subgraph embedding and the average of the
embeddings of all molecules in the query set as the task embedding.
The self-attention module is:

hTb
= concatenate Gp,Mean Gi

m

n om

i = 1

� �� �
ð12Þ
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Q=WQ hTb

n oB

b= 1

K =WK hTb

n oB

b= 1

V =WV hTb

n oB

b= 1

ð13Þ

ηTb

n oB

b= 1
=Attention Q,K ,Vð Þ= sof tmax

QKTffiffiffiffiffiffi
dk

p
 !

V ð14Þ

Lall =
XB
b= 1

ηTb
Lquery,b ð16Þ

where Tb is one of the DTI tasks, hTb
represents the task embedding,

WQ , WK and WV are learnable parameter matrices, Q,K,V are the
generated attention matrices, dk is the dimension of task embedding
to normalize the variance of QKT and stabilize gradient values during
training, and ηTb

is the generated weight to balance the importance of
different task.

MetaDTA36 uses multi-head cross-attention network to capture
the relationships between the support and the query ligands insteadof
different proteins, where it does not use any protein information. In
contrast, ZeroBind utilizes a task adaptive self-attention module to
learn the importance for different tasks of proteins, and it focuses on
the shared binding patterns among different proteins.

Experimental settings
We take graph convolutional networks as base graph neural net-
work. In our experiment, the GCN layer number of GCNP is set as 4
and we set the embedding dimensions as 1280,512,256,256,256, and
the GCN layer number of GCNM is set as 3, the embedding dimen-
sions we set are 256,256,256. We set the update step in inner loops
as 5. 20 inner steps of the maximum optimization of LMI�pro are
applied. We set the λ1 and λ2 as 0.05. The learning rate of optimi-
zation of LMI�pro is set at 0.01. The meta learning rate is using
simulated annealing algorithm. We use Pytorch to implement the
model and run it on a GPU.

Baseline methods
We compare ZeroBind with multiple baselines to evaluate its advan-
tages, and calculate the area under the receiver operating character-
istic (AUROC) and the area under the precision-recall curve (AUPRC)
on three independent test sets and one few-shot test set.
1. DeepConv-DTI11: DeepConv-DTI trains a CNN to learn the

embedding of the neighboring residues and an MLP to learn the
molecular fingerprint, which is concatenated to make DTI
prediction.

2. GraphDTA10: GraphDTA leverages multiple types of GNN models
to embed molecular embeddings and a CNN model to embed
protein residue features.

3. Deeppurpose8: Deeppurpose is a state-of-art deep learning library
for DTI prediction with multiple backbone networks. Here we use
CNN as the backbone network for learning embeddings of both
drugs and proteins.

4. AI-bind9: AI-bind uses pre-trainedmol2vec and protvecmodels to
initialize the molecule embedding and protein embedding, and
makes the DTI predictions by concatenating the molecule
embedding and protein embedding.

5. DrugBAN55: DrugBAN uses a deep bilinear attention network
(BAN) framework with domain adaptation to explicitly learn local
pairwise interactions between drugs and targets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The online webserver is freely available at http://www.csbio.sjtu.edu.
cn/bioinf/ZeroBind/. The benchmark dataset is collected from the
original database BindingDB (https://www.bindingdb.org/bind/
downloads/BindingDB_All_2D_202311_sdf.zip) and it is freely available
at http://www.csbio.sjtu.edu.cn/bioinf/ZeroBind/datasets.html along
with the SARS-COV-2 test dataset, and the experimental protein
structure data used in this study are downloaded from the RCSB PDB
database (https://www.rcsb.org/downloads/) and the predicted struc-
tures by AlphaFold are downloaded from AlphaFold Protein Structure
Database (https://www.alphafold.ebi.ac.uk/). All PDB and AlphaFold
codes can be found on GitHub (https://github.com/myprecioushh/
ZeroBind). Source data are provided with this paper.

Code availability
The source codes of ZeroBind are available on GitHub (https://github.
com/myprecioushh/ZeroBind), together with a usage documentation
and setup environment.
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