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Spatiotemporal dynamics of traffic
bottlenecks yields an early signal of
heavy congestions

Jinxiao Duan 1,2, Guanwen Zeng2,3, Nimrod Serok4, Daqing Li3,
Efrat Blumenfeld Lieberthal 4 , Hai-Jun Huang 1 & Shlomo Havlin 2

Heavy traffic jams are difficult to predict due to the complexity of traffic
dynamics. Understanding the networkdynamics of traffic bottlenecks canhelp
avoid critical large traffic jams and improve overall traffic conditions. Here, we
develop a method to forecast heavy congestions based on their early propa-
gation stage. Our framework follows the network propagation and dissipation
of the traffic jams originated from a bottleneck emergence, growth, and its
recovery and disappearance. Based on large-scale urban traffic-speed data, we
find that dissipation duration of jams follows approximately power-law dis-
tributions, and typically, traffic jams dissolve nearly twice slower than their
growth. Importantly, wefind that the growth speed, even at thefirst 15minutes
of a jam, is highly correlated with the maximal size of the jam. Our metho-
dology can be applied in urban traffic control systems to forecast heavy traffic
bottlenecks and prevent them before they propagate to large network
congestions.

Urban traffic congestion1,2 is an everyday troubling phenomenon
where many large traffic jams are triggered by uncertain congestion
sources, also known as traffic bottlenecks3. The challenges of under-
standing complex congestion propagation have stimulated extensive
traffic flow approaches to modeling and understanding urban traffic
dynamics. Some of them investigated the spontaneous occurrences of
congestion, including the kinematic wave theory4,5, the cellular auto-
maton models6,7, and the three-phase traffic theory8–10. Attention is
also paid to understanding the jam formation for the known causes,
including the queue model11, the lane-changing model12–14, and the cell
transmission model15,16 (see Supplementary Note 1). In recent years,
emerging theories from other natural systems have been borrowed
and applied to traffic systems for network’s propagation of traffic
congestions, such as the cascading failure models17–20, epidemic
models21–23, and congestion tree method24,25. Studies of traffic condi-
tion prediction26–34 and travel demand control35–43 also considered
congestion propagation and suggested that understanding such spa-
tiotemporal dynamics, especially their bottlenecks, could be effective

for forecasting them and thus have the potential to prevent conges-
tions from spreading44.

A recent study of ref. 21 formulated and validated the macro-
scopic propagation and dissipation of overall traffic congestions by a
susceptible-infected-recovered model. Since macroscopic traffic con-
gestions in the overall network are comprised of numerous frag-
mented congestion components45 that could be created by specific
bottlenecks, overall traffic conditions could be improved by identify-
ing the spatiotemporal dynamics of bottlenecks. Identifying traffic
bottlenecks will not only help avoid themselves but also alleviate other
associated congested roads due to network propagation. However,
existing bottleneckmethods46–50 characterizing the queues and delays
associated with a specific traffic bottleneck are mostly based on the
single-car particles in a simplified corridor51. Suchmethodsmay not be
suitable for describing network dynamics of urban traffic bottlenecks.
This is because urban congestions often exhibit strong spatial
dependencies in which multiple-dimensional road segments adjacent
to a bottleneck have a greater risk of becoming congested1,20,21,45,52. In

Received: 10 March 2023

Accepted: 14 November 2023

Check for updates

1School of Economics and Management, Beihang University, Beijing 100191, China. 2Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel.
3School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China. 4Azrieli School of Architecture, Tel Aviv University, Tel Aviv
6997801, Israel. e-mail: efratbl@tauex.tau.ac.il; haijunhuang@buaa.edu.cn; havlins@gmail.com

Nature Communications |         (2023) 14:8002 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-7449-1282
http://orcid.org/0000-0002-7449-1282
http://orcid.org/0000-0002-7449-1282
http://orcid.org/0000-0002-7449-1282
http://orcid.org/0000-0002-7449-1282
http://orcid.org/0000-0003-3660-0035
http://orcid.org/0000-0003-3660-0035
http://orcid.org/0000-0003-3660-0035
http://orcid.org/0000-0003-3660-0035
http://orcid.org/0000-0003-3660-0035
http://orcid.org/0000-0002-9001-9172
http://orcid.org/0000-0002-9001-9172
http://orcid.org/0000-0002-9001-9172
http://orcid.org/0000-0002-9001-9172
http://orcid.org/0000-0002-9001-9172
http://orcid.org/0000-0002-9974-5920
http://orcid.org/0000-0002-9974-5920
http://orcid.org/0000-0002-9974-5920
http://orcid.org/0000-0002-9974-5920
http://orcid.org/0000-0002-9974-5920
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43591-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43591-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43591-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43591-7&domain=pdf
mailto:efratbl@tauex.tau.ac.il
mailto:haijunhuang@buaa.edu.cn
mailto:havlins@gmail.com


the present study, we introduce a simple dynamic framework and
demonstrate empirically that it can quantitatively capture the net-
work’s propagation and dissipation of the congested components
connected to specific traffic bottlenecks.

Many studies have provided important foundations to define or
empirically identify urban traffic bottlenecks. The primary methods
are based on the congestion level of a road segment itself. For exam-
ple, a road with an average velocity lower than 20 km/h is regarded as
the traffic bottleneck3. Network and percolation approaches24,25,45,52–55

have been recently developed to identify bottlenecks of traffic con-
gestions by considering spatiotemporal traffic dynamics. For instance,
a recent method has combined congestion propagation into a “tree”
structure24,25 to identify the origins of congestions and traffic jams that
are likely to stem from them in real-time traffic. Such methods refer-
red to the earliest congested street as the “trunk” (or bottleneck), and
the neighboring congested streets that developed in the following
times represent the “branches” of the trunk. They found that bottle-
necks associated with heavy congestion usually do not reappear on
different days and hours. Luan et al.26 used Bayesian methods to infer
the congestion propagation from a given congestion bottleneck. They
found that a change in the location of congestion source can lead to
distinctly different congestions. Thus, a suitable forecastingmethod is
highly necessary to identify bottlenecks that will yield large and costly
traffic jams. However,methodologies that address the identification of
the most critical bottlenecks in order to stop them from growing to
significant congestion components, are still missing.

In this paper, we quantitatively investigate the congestion pro-
pagation and dissipation which originate from specific traffic bottle-
necks in traffic networks, and provide an early signal for forecasting
the oncoming significant congestions. To this end, we follow the entire
spatiotemporal process of each congestion component from its
emergence as a bottleneck until its disappearance. We distinguish the
evolution of traffic bottlenecks for each congestion component
between the growth stage and recovery stage. We follow congestion
dynamics that emerged from all bottlenecks in 1 month of traffic net-
works in two large cities in China, and find that the recovery duration
of jams associated with each bottleneck follows a power-law

distribution with very similar exponents in different days. Interest-
ingly, we observed that the recovery duration of congestion compo-
nents is typically nearly twice compared to its growth duration. Our
study suggests an effective early predictive method of large jams. This
method is based on our finding that the sizes of congestion compo-
nents are highly correlated with their growth speed. In particular, we
find that the growth speed of jams in their very early propagation
stage, is also highly correlated with the maximal size of the jams, and
therefore, this early speed can be used to predict major bottlenecks
with high accuracy.

Results
Dynamics of traffic bottlenecks
We analyze real-time traffic datasets that include the time-dependent
velocity of each road segment for one month in two large cities in
China, Beijing and Shenzhen. The velocity matched to each road is
aggregated from numerous trajectory records recorded by GPS devi-
ces in floating cars, with a resolution of 1min54. The studied time
periods are 00:00–24:00 for 30 days during October 2015 (for more
details of the dataset, see Methods, Supplementary Note 2 and Sup-
plementary Figs. 1 and 2). We identify the traffic bottlenecks based on
the jam tree structure24 that assigned the earliest congested road
downstream of the congestion component as the traffic bottleneck.
The new congestions in neighboring upstream roads are associated
with the bottleneck if they become congested no longer than a pre-
defined time θ after the bottleneck or an existing downstream neigh-
boring congestion in the component (see Methods).

To trace the spatiotemporal propagation and dissipation of traffic
bottlenecks in empirical traffic data, we follow a bottleneck jam from
its emergence to disappearance and calculate the number of existing
congested roads SðtÞ associated with this specific bottleneck over its
evolution (see Fig. 1a and Methods). This dynamic network process of
congestions from a bottleneck can distinguish the time evolution of
size S between two stages: growth and recovery stages. The peak time
tP when size SðtÞ of congestions connected to a bottleneck reaches
maximum SP is regarded as the end of growth stage and the beginning
of the recovery stage, see Fig. 1. We define the entire lifespan T of a
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Fig. 1 | Demonstration of jam propagation and dissipation from a typical bot-
tleneck in traffic network. aDemonstration of congestion size S associated with a
bottleneck in an illustrated network. b Several snapshots of the congested road
segments during the growth stage at 7:20, 7:30, and 7:50 for a specific but typical
bottleneck on Monday, October 12, 2015, in Beijing. The congestions originated
from the bottleneck (circled red solid link), and gradually developed to more
congestion (light red dashed links) in the upstreamneighboring streets. The arrows
of the links are the directions of traffic flow. c The size S changes over time. This

congestion component lasted for more than 3 h after its bottleneck emerged. Its
maximal size SP reached 11 road segments at 7:50, and then the size S began to
decrease until it completely vanished at 10:50. Note that the recovery duration is
much longer than the growth, which is a common feature of the bottleneck
dynamics (see Fig. 2). d Several snapshots of the congested road segments during
the recovery stage at 7:50, 8:20, and 10:40. The congestion component gradually
dissolves after its maximal size (light green dashed links) as the road segments
become no longer congested.
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bottleneckdynamics as the sumof the duration TG of the growth stage
and the duration TR of the recovery stage, i.e.,

T =TG +TR ð1Þ

here, the growth duration TG is the time interval between the earliest
time when a bottleneck emerges and the time it reaches its maximal
size, SP , and the recovery duration TR is the time interval between the
peak time and the time when the bottleneck jam has been completely
dissolved and the traffic flows are uncongested again.

Figure 1 demonstrates the real-time spatiotemporal dynamics of a
typical bottleneckonMonday,October 12, 2015, in Beijing,where three
snapshots of the congested roads connected to the bottleneck during
growth stage are displayed in Fig. 1b and three snapshots of the con-
gested roads connected to the bottleneck during recovery stage are
displayed in Fig. 1d. During the growth stage, increasing of the newly
congested road segments associated with the bottleneck is faster than
the recovered road segments, and this jam component propagates to
its maximal size SP = 11 at 7:50 (Fig. 1b, c). After the peak time, the
congestions began to dissolve and the size of the jam component
started to decrease, reaching size S = 4 at 8:20, and size S = 1 at 10:40.
By 10:50, the jam component dissolved completely and resulted in
uncongested traffic. Once the traffic congestion created by a specific
bottleneck has been dissolved, a new bottleneckmay emerge from the
same place to initiate another congestion component (more patterns
of bottleneck dynamics are given in Supplementary Figs. 3 and 4).

Additionally, we find that the network’s propagation and dis-
sipation of traffic congestions originated from a specific bottleneck,
can be quantitatively described by a simple dynamical equation

dSðtÞ
dt

=GðtÞ � RðtÞ ð2Þ

which is an extension of the classical bottleneck model37,47,56 that
characterizes the queues from a bottleneck as the accumulations of
single-car particles in a simplified corridor (see Supplementary Note 3
and Supplementary Fig. 5). Here, GðtÞ and RðtÞ are respectively the
number of newly developed congested roads and the number of newly
recovered roads associated with the bottleneck at time window t (see
Supplementary Note 4 and Supplementary Figs. 6 and 7). Therefore,
the existing size SðtÞ in the congestion component at time window t is
the integration of the differencebetweenGðtÞ andRðtÞ from the time tB
when a bottleneck B occurred up to current time window t, given by

SðtÞ=
Z t

tB

ðGðuÞ � RðuÞÞdu ð3Þ

Distributions of growth and recovery durations
To explore the evolution durations of growth and recovery stages, we
follow thedynamics (or lifespan) of each traffic bottleneck in the entire
roadnetworks of Beijing and Shenzhenduring 1month. To this end,we
compute the vectors of growth duration TG = fT 1

G, � � � ,TN
Gg and recov-

ery duration TR = fT 1
R, � � � ,TN

R g. Here, Ti
G and Ti

R are respectively the
growth and recovery durations of bottleneck i, and N is the total
number of bottlenecks, which is over 670,000 during a typical work-
day in Beijing and over 180,000 in Shenzhen. The distributions of
durations TG and TR on Friday, October 16, 2015, in both cities are
presented in Fig. 2a, b. The results show that the distribution of TR is
significantly broader than that of TG. Bottlenecks spend at most
100min to reach the maximal size SP , while they might spend up to
1000min to recover to an uncongested state. The complementary
cumulative distribution function (CCDF) of growth duration TG is well

Fig. 2 | Distributions of growth duration and recovery duration. The CCDF of
growth duration TG follows approximately an exponential distribution, and the
CCDF of recovery duration TR follows approximately a power-law distribution. The
data are taken for Friday, October 16, 2015, for (a) Beijing and (b) Shenzhen. We
accumulate the data for all days in 1 month together and find CCDF of the growth
duration above 40min could be described by exponential distributions with
smaller exponent λG (Supplementary Fig. 24). The exponents λG andβR for eachday
in the entire month for (c) Beijing and (d) Shenzhen. The values of the mean ratio

<r> for each day in the entire month for (e) Beijing and (f) Shenzhen. The days
between October 1 and October 7 are the seven holidays of China’s National Day.
October 11, 17, 18, 24, and 25 are the regular weekends, and the other 18 days are
workdays. The mean values and standard deviations in subfigures (c–f) are calcu-
lated for 18 workdays. As the model selection analyses (Supplementary Note 8 and
Supplementary Table 1) suggest, the p value and the well-fitted curves support that
the exponential distribution describes well for the main part of TG.
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approximated by the exponential distribution

pðTG ≥ xÞ∼ e�λGx ð4Þ

with exponents λG of 0.24 for Beijing and0.27 for Shenzhen onOct. 16.
The CCDF of recovery duration TR is well approximated by the power
law distribution

pðTR ≥ xÞ∼ x�βR ð5Þ

with βR of 1.82 for Beijing and 1.92 for Shenzhen. We fit both the CCDF
(Supplementary Figs. 8–11) and probability distribution (Supplemen-
tary Figs. 12 and 13) to describe the main part of TG and TR, and find
that they have similar distribution patterns in different days. In addi-
tion, CCDF of the ratio r =TR=TG of each congestion component fol-
lows also a power-law distribution pðr ≥ xÞ∼ x�βr with exponents βr

around 2.1 ± 0.09 on workdays in Beijing and 2.16 ± 0.05 on workdays
in Shenzhen (see Supplementary Figs. 14 and 15 for CCDF of r, and
Supplementary Figs. 16, 17 and 18 for distribution of r). For sensitivity
analysis, we absorb very short roads into the junctions or consider
congestion length in the definition of congestion size S(t), and find that
the CCDFs of the TG and TR are robust (Supplementary Note 5 and
Supplementary Figs. 19, 20 and 21). We also study the bottleneck
dynamics by smoothing the traffic conditions in different time
intervals, and find CCDFs of TG and TR follow similar distributions
(Supplementary Fig. 22).

The average ratio <r> for all the congestion components is eval-
uated by

<r>=
1
N

X
1≤ i≤N

ri =
1
N

X
1≤ i ≤N

Ti
R

Ti
G

ð6Þ

where the values of <r> are 2.06 for Beijing and 1.74 for Shenzhen on
Oct. 16. This shows that, on average the recovery duration of a con-
gestion component is 2.06 times of its growth duration in Beijing, and
1.74 times in Shenzhen. This demonstrates the strong asymmetry
between network’s propagation and dissipation of bottlenecks, which
could be explained by the theory of phase transition in traffic network
flows. The propagation of urban traffic congestion has been regarded
as the percolation in the system54,57, and the traffic systems have
exhibited phase transitions as the traffic congestion components are
close to the critical point in the self-organized process7,45. It has been
found that the recovery of the systems against the perturbations can
be slowing down, when the system is close to such critical point, also
called “critical slowing down”58–61. As the results in our manuscript, the
power-law distribution of the congestion dissipation indicates that the
traffic systems might be near the critical points of the self-organized
process. Thus, the slower recovery of the system could be the result of
the “critical slowing down” mechanisms62.

Comparing growth and recovery stages on different days, we find
that the exponential exponents λG of growth duration and power law
exponents βR of recovery duration are stable for the same type of days
(Fig. 2c, d). This may indicate the stable self-adaptability of the traffic
system in the dynamicsof congestion evolutions45 (See Supplementary
Note 6 for further discussions of the exponents). In Fig. 2e, f, we
compare the average ratio <r> between the recovery duration and
growth duration on 30 days during October 2015 in both Beijing and
Shenzhen. The results show that <r> has a stable value for a specific
type of day. In both cities, values of <r> on workdays are larger than
those on holidays. This means that on workdays, the recovery stage of
the congestion components takesmuch longer time than their growth
stage compared to holidays. The values of <r> could be influenced by
the heavy tails of the recovery duration (Supplementary Note 7 and
Supplementary Fig. 23). The “critical slowing down” effect58 becomes
more significant for those bottlenecks with large recovery duration.

This could be related to the fact that nonlinear mechanisms exist
between the congestion propagation and dissipation processes given
the complex urban traffic network topologies and the travelers’ real-
time self-adaptive route choice behaviors58,63,64.

Correlation between spatial and temporal dynamics
We further explore the relationship between temporal and spatial
dynamics of traffic bottlenecks, by examining the correlation between
the maximal size SP and the growth speed of the congestion compo-
nents. For that, we define and calculate the average growth speed of
congestion component associated with each bottleneck. The average
growth speed VA is defined as the maximal size SP divided by its
growth duration TG, i.e.,

VA =
SP
TG

ð7Þ

A larger VA means that a bottleneck induces more associated
congestions per unit time. Here, VA is calculated by the average
number of the increased congested road segments in every 5min.
Figure 3a, b shows the relationship between SP and VA on October 16,
2015, in Beijing and Shenzhen (for similar results on other days, see
Supplementary Figs. 25 and 26). These box plots of SP are classified
into different groups by the values of VA. It is seen that congestion
components having a larger speed VA aremore likely to reach a larger
congestion size (In Supplementary Fig. 27, the positive relationship of
VA and SP is also observed by plotting the density surfaces). The linear
correlation between the maximal size SP = fS1P , � � � ,SNP g and the average
growth speed VA = fV 1

A, . . . ,V
N
A g of these congestion components is

also characterized by the high values of Pearson correlation coeffi-
cients ρSP ,VA

. When omitting isolated bottlenecks with SP = 1, the value
of ρSP ,VA

on Oct. 16, 2015 is 0.75 for Beijing and 0.79 for Shenzhen,
indicating that SP and VA have a strong positive linear correlation.

Figure 3c, d shows that in both cities, the values of the correlation
ρSP ,VA

are stable for the same type of days. The correlation coefficients
are larger on holidays than on workdays, and also larger in Shenzhen
than in Beijing. Note also that in the middle of holidays (days Oct. 3–5)
the correlations are higher due to less traffic demand.We alsofind that
the bottlenecks which create large congestions are less probable to
sustain for a very long duration (Supplementary Figs. 28 and 29). This
could be because drivers are strongly averse to very large congestions
in the self-organization process of their game behavior, and would like
to make adaptive choices to deviate from the long queues65,66. More-
over, well-developed traffic control technologies could have also
focused on alleviating these heavy congestions67. Even so, as can be
seen in the figures (Supplementary Figs. 28 and 29), very large con-
gestions can still be sustained for hours.

An early signal for forecasting heavy congestions
The average growth speedhas been found in previous subsection tobe
correlated with the jam size. However, this correlation can only be
determined at the endof the growth stage and thus it is not suitable for
predicting heavy bottlenecks before their full growth.

In the present section, we develop an effective early signal for
forecasting heavy traffic congestions based on the initial growth stage
of jams. For that, we explore if the maximal size SP is correlated to the
earliest attributes of the congestion propagation, i.e., the initial growth
speed VTI

, defined as the value of the early size STI
divided by its initial

growth time TI at an early growth stage. Thus, VTI
is expressed by

VTI
=
STI

TI
ð8Þ

where TI is the time interval between the emergence of a bottleneck
and a selected early time before the congestion component reaches its
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maximal size, and STI
is the number of congested roads connected to

the bottleneck at the chosen early growth duration TI .
As seen in Fig. 4a–c, the box plots of SP grouped by VTI

(TI ranges
from 5 to 15minutes) show that on October 16, 2015, Beijing, the
maximal size SP increases with VTI

at the first 5, 10, or 15min of the
bottleneck dynamics (box plots for Shenzhen show similar patterns,
see Supplementary Fig. 32). This indicates that congestion compo-
nents with a larger initial growth speed even at the earliest stage are
also more likely to reach a larger congestion size. The correlation
coefficients ρSP ,VTI

between the maximal size SP = fS1P , � � � ,SNP g and the
initial growth speedVTI

= fV 1
TI
, � � � ,VN

TI
g are respectively0.66, 0.76, and

0.87 for TI = 5, TI = 10 and TI = 15, which also supports our claim that
the initial growth speed has a strong positive correlation with the
maximal size SP (Fig. 4a–c). In addition, we calculate and compare the
linear correlation ρSP ,VTI

between the maximal size SP and the initial
growth speed VTI

for different TI in workdays and holidays. As seen in
Fig. 4d, e, the values of ρSP ,VTI

for the two cities are around 0.65 to 0.75
for TI = 5min, and increase to a higher plateau, around 0.85 to 0.95,
when VTI

is obtained for 15min and above. Note that correlations
ρSP ,VTI

in holidays are higher due to less traffic demand,whichmay lead
to better prediction results. This suggests that the initial growth speed
in the earliest 15min, could be an effective predictor for the maximal
size of congestions originated from a bottleneck, since the change in
correlations is very little when TI is above 15min.

Forecasting performance for major bottlenecks
Before examining the performance of predicting major bottlenecks
based on initial growth speed VTI

, we evaluate the recurrence of the
bottlenecks on two different days. This is done based on the Jaccard
index J that assesses the overlap (see Supplementary Fig. 33) of bot-
tlenecks or their associated congestion components between 2
workdays. As shown in Supplementary Figs. 34, 35, and 36, the overlap
of associated congestions is higher than the overlap of bottlenecks.
This could be because the congestion propagation mechanism is
fundamental68. Thus, the overall congestion regions could include
similar propagation pathways due to the congestion propagation
mechanism (Supplementary Note 9). Importantly, both Jaccard
indexes JB for bottlenecks and JC for their associated congestions
decrease rapidly with increasing jam size. JB decreases to around 0.05
and JC decreases to around 0.2 when SP is greater than or equal to 20,
meaning that only around 5% of all the heavy bottlenecks and around
20% of their associated congestions (i.e., SP ≥ 20) that appear in both
days are the same. Note that, similarities of large congestions are still
very low even when we relax the overlap definition (Supplementary
Note 10 and Supplementary Figs. 33 and 37). This could be because the
traffic flows are the result of the dynamic self-organization of the game
behaviors of numerous travelers69–71. In the day-by-day game process,
due to risk aversion, travelers have been found to make adaptive
choices and deviate from the congestions in previous days72–75. Thus,

Fig. 3 | Correlation between the spatial maximal size SP and the temporal
growth speed of congestion components. Box plots of size SP grouped by
average growth speed VA on Friday, October 16, 2015, in (a) Beijing and (b)
Shenzhen. Here, VA means the average number of increased congested road seg-
ments every 5min during the entire growth stage, the black numbers on the x-axis
are the range of average growth speed VA, and the red numbers in the bracket are
the median value of each group. The black lines at the bottom, middle and top of
the largest box are respectively 25%, 50%, and 75% percentiles of SP . The tails of the
distributions could be more clearly observed by more quantiles in 0–25% and

75–100% of SP . The outliers are not displayed in the box plots. The growth duration
TG increases with SP on average showing very large fluctuations, as shown in
Supplementary Fig. 30. Pearson correlation ρSP ,VA

for the 30 days during October
2015 in (c) Beijing and (d) Shenzhen. Holidays include the 7 days inChina’s National
Day, and the workdays include 18 days. Bottlenecks with SP ≥ 2 are counted here.
For sensitivity analysis,we absorb very short roads or consider congestion length in
the definition of congestion size SðtÞ, and find that the growth speed of congestion
components is still strongly and positively correlated to their maximal congestion
size (Supplementary Note 5 and Supplementary Fig. 31).
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large congestion events could be less recurrent than expected, and
heavy bottlenecks or their associated congestions in one day cannot
represent much of those in the other days.

We define a major bottleneck (i.e., y= 1) as the bottleneck that
developed into a congestion component with size SP greater than or
equal to a pre-defined threshold SL, and regard it as a minor bottleneck
(i.e., y=0) otherwise. To test the power of predicting major bottlenecks
by V 15, we trained the binary Probit model based on dynamics of all the
bottlenecks on Monday, October 12, 2015, in Beijing (see Methods for
details of the prediction method). We applied the trained model to
predict whether bottlenecks on another workday, i.e., October 16, 2015,
could yield congestion components greater than or equal to SL =20.We
find that when the false positive rate (FPR) is set to 5%, the accuracy of
detecting major bottlenecks is around 88%. The detected and the
undetected major bottlenecks displayed in Fig. 5 indicate that most of
the major bottlenecks in rush and non-rush hours are different, and an
appropriate prediction framework at the early propagation stage is thus
highly needed. Additionally, examples of false positive bottlenecks are
also located in significantly different road segments in rush and non-
rush hours (see Supplementary Fig. 38).

Performances of predicting the major bottlenecks (SL =20) are
assessed next for different values of FPR, for V 5, V 10, V 15, and V 20. In
Fig. 6a, b, the receiver operating characteristic (ROC) curves76 are
obtained and plotted based on the prediction results for Friday,
October 16, 2015, in both Beijing and Shenzhen. The ROC curves indi-
cate that the predictions based on initial growth speed within 15min-
utes of the congestion components are close to the classifier (0,1) for
both cities (ROC curves of other days are similar and presented in

Supplementary Figs. 41 and 42). We also computed the area under the
curve (AUC) for 17 workdays in both cities, as presented in Fig. 6c. The
values of AUC are stable for different days and increase when a longer
duration TI is used to calculate the predictor, i.e., the initial growth
speed. These results suggest that initial growth speedof the congestion
components within its first 15minutes is a very reliable predictor for
forecasting major congestions. Beyond 15min, the performance of the
predictions does not improve significantly. Notably, as seen in Sup-
plementary Note 12 and Supplementary Fig. 43, the prediction timehas
a trade-off with prediction accuracy. In practice, the predictors V 5, V 10,
and V 15 could be comprehensively applied to early identify the heavy
bottlenecks before maximal size or full jam duration.

To further assess the prediction performanceof the growth speed
in the earliest 15min, we forecast whether the bottlenecks will develop
to be greater than or equal to different threshold size SL. As seen in
Fig. 6d and e, the ROC curves of predicting major bottlenecks for
different SL are similar and very close to the classifier (0,1) on October
16, 2015 in both cities. We also computed in Fig. 6f, the AUC values
versus the predefined threshold size SL for 17workdays in both cities. It
is seen that the values of the AUC are stable and very high (around
0.95) for all values of SL. These results strongly support that the initial
growth speed is a reliable and excellent measure for detecting major
bottlenecks at their early stage of propagation. Thus, our prediction
framework helps to understand, forecast, and potentially prevent
major bottlenecks by identifying them at their early propagation
stages. Integrating this framework into existing traffic control systems,
may improve traffic conditions and prevent bottlenecks from reaching
their full potential.

Fig. 4 | Correlation between the maximal size SP and the initial growth speed
VTI

at the earliest stage. Box plots of size SP grouped by initial growth speed VTI

at the earliest (a) 5, (b) 10 and (c) 15min, on October 16, 2015, in Beijing. Here, VTI

means the number of increased congested road segments every 5minutes during
the early growth stage, the black numbers on the x-axis are the range of initial
growth speed VTI

, and the red numbers in the bracket are themedian value of each
group. The outliers are not displayed in the box plots. Pearson correlation ρSP ,VTI

betweenmaximal size SP and the initial growth speed VTI
increases with increasing

the initial growth duration TI , for (d) Beijing and (e) Shenzhen. The correlations
between SP and VTI

are calculated for the congestion components with growth
duration longer than or equal to TI (see Methods). Bottlenecks with SP ≥ 2 are
counted here. Note that above 15min the correlations almost do not increase.
Holidays include the 7 days in China’s National Day, and the workdays include
18 days.
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Discussion
In summary, we analyze the spatiotemporal dynamics of traffic bot-
tlenecks during 1 month in two Chinese metropolises. The empirical
results demonstrate that our framework of dynamics of traffic bot-
tlenecks can successfully characterize both the network’s propagation
and dissipation of urban traffic bottlenecks. We find that the propa-
gation and dissipation processes of congestion components develop
asymmetrically and the duration of recovery stage approximately
follows a power-law distribution. In addition, the recovery duration of
the bottlenecks is found to be typically nearly twice the time it takes to
fully grow. Our findings can provide data explanations for the well-
established models and help extend mesoscopic traffic models in
urbannetworks. For example, the scaling patterns of the jamdurations
in real urban networks can well explain and expand the 1-dimensional
scaling results modeled in existing studies77,78.

Moreover, the empirical results suggest that our method is effi-
cient in forecasting heavy traffic bottlenecks, based on the finding that
the spatial and temporal dynamics of traffic congestions are strongly
correlated. Our empirical analysis shows that the growth speed of
congestion components is highly correlated with the maximal size of
their associated congestions. Most importantly, we find that the initial
growth speed, even at the earliest 15min of the jam’s growth, is useful
in predicting whether a traffic bottleneck will develop into a major
congestion component. Our predictive framework can provide an
alerting indicator that could help urban planners improve real-time
traffic control by addressing the sources of destructive traffic jams
before they develop into their maximal size. The early real-time traffic
control began with the implementation of the traffic signal control
system SCOOT to calculate the size of the queue and time of clearance
given the cyclicflowprofiles79. With artificial intelligence technologies,
and connected-automated vehicles techniques80–82, the model pre-
dictive control framework has been proposed to sense and control
traffic conditions while agents interact with ones in the vicinity67,83–86.
Meantime, the spatial congestion propagation could significantly
influence the coordinated control performances among different sig-
nalized intersections87–89 (Supplementary Note 13). Based on our
identified spatiotemporal propagation mechanisms, the real-time
control systems could consider interrelations among different traffic
regions and perform better coordinated control for the most con-
gested areas before they propagate to a global gridlock jam.

Tobetter alleviate traffic congestions, our framework andfindings
can also be applied in the well-developed real-time navigation

systems90,91 or demand management strategies63,64,69,71,73,75,92. Urban
traffic control systems shouldbe connected tonavigation apps towarn
travelers, in near real-time, to avoid the roads that may lead to a heavy
traffic bottleneck63,64,69,93. On one hand, warning travelers with alter-
native routes to be far away from the predicted heavy congestion
regions73,75 could alleviate the traffic flows in predicted areas. On the
other hand, rescheduling departure timeof the potential travelerswith
no alternative routes by road pricing strategies71 could reduce traffic
demand in the predicted area. These methods of demand manage-
ment have also been found effective in alleviating congestion in earlier
studies63,64,93. Moreover, coordinated management from the supply
side could also help to alleviate the traffic on the predicted heavy
congestions69. While such interventions may cause congestions in
other locations, our real-time updated framework can alert the control
system about new heavy bottlenecks before they emerge. Considering
our propagation mechanism in the above well-established technolo-
gies, the real-time traffic management and organization would be
better developed in the near future. This will provide not only accurate
predictions but also effective mitigation of heavy congestions.

Methods
Dataset
The Beijing road network has over 52,000 road segments (links) and
27,000 intersections (nodes), and the Shenzhen road network has
over 22,000 road segments (links) and 12,000 intersections
(nodes). The empirical datasets contain time-dependent velocity
records of both cities for 30 days during October 2015 with a
resolution of 1 minute. For a road with an outlier of velocity record,
we handle it as congested state if it connects its upstream and
downstream roads that are congested in the predefined chron-
ological order (Supplementary Note 2 and Supplementary Fig. 1).
The distribution of road velocity suggests that the road velocity
records are generally stable over 5-minute interval (Supplementary
Note 2 and Supplementary Fig. 2). Large-scale network topology,
huge traffic flow, serious traffic jams, diverse traffic bottlenecks, as
well as the high-quality datasets make these two cities ideal for the
analysis of bottleneck dynamics.

Bottlenecks and their associated congestions
Since traffic congestion state at time t can be described by the average
relative velocity during a short time interval52, we use the average
relative velocity calculated in every 5minutes to represent the

Fig. 5 | The detected major bottlenecks (true positive) and the undetected
major bottlenecks (false negative) when the FPR is set as 5%.Major bottlenecks
(SL = 20) during (a) rush hours (7:00 a.m.–9:00 a.m.) and (b) non-rush hours
(12:00 p.m.–14:00p.m.) on October 16, 2015, in Beijing. The red stars are the true
positive bottlenecks that are predicted asmajor bottlenecks and actuallygrew tobe

amajor size. The green stars are the false negative bottlenecks that are predicted to
be minor bottlenecks but actually developed to be major. The CCDF of maximal
jam size SP is seen in Supplementary Note 11 and Supplementary Fig. 39. The CCDF
of jam duration T for the large congestion components is seen in Supplementary
Note 11 and Supplementary Fig. 40.
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congestion weight WeðtÞ of road e at time window t, i.e.,

WeðtÞ=
UeðtÞ
U95

e
ð9Þ

Here, UeðtÞ is the velocity of road e at time window t, and U95
e is

95% percentile of velocity records of road e, which approximates the
standard maximal velocity on this road. In this paper, road e is regar-
ded as congested if WeðtÞ<0:5, and non-congested otherwise26.

After having the congestion weightWeðtÞ, we identify bottlenecks
using the jam tree structure defined by ref. 24. We identified the bot-
tlenecks, and thenewly congestedor the recovered roads from themas
the following steps: i) Obtaining the time-interval matrix of the con-
tinuous congestion states. ceðtÞ is the time interval during which road e
has been continuously congested up to the time window t. ii) Identi-
fication of bottleneck. The bottleneck is the road segment that has
been continuously congested for the longest interval ceðtÞ in down-
stream of a congestion component. iii) Identification of newly con-
gested road segments. A neighboring upstream congested road is
regarded as a new congestion associated with a bottleneck at time
window t if it became congested no later than a predefined time
interval θ (set as 10min generally) after the bottleneck or another
congested road connected to the bottleneck. iv) Identification of
recovered road segments. A road is regarded as recovered from the
bottleneck at time window t, if it (or another congested road that
connected it to the bottleneck) returned to an uncongested state (see
SupplementaryNote 4 and Supplementary Fig. 6). The existing number

of congested roads, i.e., size S(t), includes newly congested links and
removes those recovered. In the recovery process, the existing size S is
decreasing over time since the newly recovered congested roads occur
more quickly than newly developed congestions (Supplementary
Note 4 and Supplementary Fig. 7). In our algorithm, if the recovery of
the bottleneck is earlier than other neighboring branches, the branches
that belonged to the recoveredbottleneck are not considered anymore
to be associated with the original (recovered) bottleneck.

Pearson correlation
The Pearson coefficient represents the degree of linear correlation
between two variables. To observe the linear correlation between the
maximal size SP and the average growth speed VA or the initial growth
speed VTI

, we calculated Pearson correlation between them. For two
variables X = fx1,x2, � � � ,xng and Y = fy1,y2, � � � ,yng, the Pearson correla-
tion ρX ,Y is

ρX ,Y =
covðX ,Y Þ
σXσY

=
E½ðX � μX ÞðY � μY Þ�

σXσY
ð10Þ

where n is the number of samples, μX and μY are the mean values of X
and Y, and σX and σY are the standard deviations of X and Y. ρX ,Y is in
the range of�1 to 1. ρX ,Y = ± 1means variables X and Y have the highest
linear correlation.When calculating ρSP ,VTI

for congestion components
with growth duration longer than or equal to TI , the samples are
downsized in a short TI and upsized in a long TI by observations
obtained from different resolutions.

Fig. 6 | Performance of predicting major bottlenecks based on initial
growth speed. ROC curves of predicting whether a bottleneck would grow up into
a major congestion size of 20 road segments or above, based on VTI

within the
earliest 5, 10, 15, and 20min of their propagation. The prediction results shown are
for October 16, 2015, in (a) Beijing and (b) Shenzhen. c The AUC value increases
when the predictor VTI

is calculated based on a longer initial duration TI . The error
bars are calculated based on the prediction results of 17 workdays. The small
standard deviations show that the values are stable. Note the almost plateau seen
for TI ≥ 15 minutes.The ROC curves of using VTI

within 15min to predict whether a

bottleneck develops into at least 10, 15, 20, and 25 congested roads. The curves are
based on the prediction results for October 16, 2015, in (d) Beijing and (e) Shenz-
hen. f The values of AUC for predictingmajor bottlenecks by VTI

within 15minwith
different size thresholds SL. The error bars are calculated based on the prediction
results in 17 workdays. The small standard deviations show that the prediction
performances are stable. The prediction results are also found stablewhen training
the model on different days. For sensitivity analysis, we absorb very short roads or
consider congestion length in the definition of congestion size S(t), and find robust
prediction performance (Supplementary Note 5 and Supplementary Fig. 44).
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Jaccard index
The Jaccard index is used for measuring repetition between the bot-
tlenecks or their associated congestions on different days. For two
sample sets X and Y, the Jaccard index is defined as the ratio between
the size of the overlap and the size of the union of the observed sample
sets, i.e.,

J =
jX \ Y j
jX ∪ Y j =

jX \ Y j
jX j+ jY j � jX \ Y j ð11Þ

where J is in the range of 0 to 1. J = 1 means sets X and Y are wholly
overlapped and J =0 means sets X and Y are wholly different.

Prediction method
To conduct the prediction, we train the binary Probit model (a basic
binary classifier) based on the evolutions of traffic bottlenecks on
Monday, October 12, 2015, and use the initial growth speed VTI

till an
early growth time TI to predict the probability Pi that a bottleneck on
another workday may develop into a major congestion component.
The utility function (y*i ) of bottleneck i with the explanatory variable
VTI

is expressed as

y*i =a1 +a2V
i
TI
+ εi, yi = 1 if y

*
i >0 ð12Þ

where a1 is a constant, a2 is a coefficient, and εi is the error term
assumed to follow a standard normal distribution. Based on the esti-
mated â1 and â2, the probability for yi = 1 is expressed as

piðyi = 1jVTI
Þ=piðy*i>0Þ=piðεi>� ðâ1 + â2V

i
TI
ÞÞ=Φðâ1 + â2V

i
TI
Þ ð13Þ

where Φ is the cumulative density function (cdf) of the standard nor-
mal distribution. Prediction based onVTI

is conducted in the following
way: the probability Pi of whether a bottleneck would become major
till the time TI , is calculated as the highest possibility that a bottleneck
may become major based on VTI

till time TI , i.e.,
Pi = maxfpiðyi = 1jVtÞg, t ≤TI . If the probability Pi reaches a threshold
Pthre, a bottleneck is classified as major. The prediction result γi of a
bottleneck couldbe true positive (TP), false positive (FP), true negative
(TN), or false negative (FN), i.e.,

γi =

TP, Pi ≥ P
thre and yi = 1

FN, Pi<P
thre and yi = 1

TN, Pi<P
thre and yi =0

FP,Pi ≥P
thre and yi =0

8>>>><
>>>>:

ð14Þ

When obtaining the prediction results γ for different threshold
Pthre, the ROC curve can be plotted by the results of the true positive
rate (TPR) versus the false positive rate (FPR). The x-axis is the FPR,
representing the ratio between the number of minor bottlenecks
wrongly categorized as positive and the total number of actual minor
bottlenecks. The y-axis is the TPR, representing the ratio between the
number ofmajor bottlenecks correctly categorized as positive and the
total number of actual major bottlenecks. i.e.,

FPR=
NFP

NFP +NTN
ð15Þ

TPR=
NTP

NTP +NFN
ð16Þ

where NFP is the number of FP observations, NTN is the number of TN
observations, NTP is the number of TP observations, and NFN is the
number of FN observations. The AUC represents the performance of
separability that the classifier can distinguish between the major and

minor bottlenecks. The curve through (0,1) and AUC= 1 represent that
the classifier has the best performance to separate each bottleneck
correctly.

Data availability
The necessary data generated in this study have been deposited in the
Github database https://github.com/JinxiaoDuan/DynamicsOfBottlencks
to enable the reproducibility of the results in the paper. The raw velocity
data are protected and unavailable due to data privacy laws.

Code availability
We provide the source codes of our algorithms in GitHub https://
github.com/JinxiaoDuan/DynamicsOfBottlencks to enable the repro-
ducibility of our findings.
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