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Plasma proteomic profiles predict individual
future health risk

Jia You 1,7, Yu Guo1,7, Yi Zhang1,7, Ju-Jiao Kang 1, Lin-Bo Wang 1,
Jian-Feng Feng 1,2,3,4,5 , Wei Cheng 1,2,5,6 & Jin-Tai Yu 1

Developing a single-domain assay to identify individuals at high risk of future
events is a priority for multi-disease and mortality prevention. By training a
neural network, we developed a disease/mortality-specific proteomic risk
score (ProRS) based on 1461 Olink plasma proteins measured in 52,006 UK
Biobank participants. This integrative score markedly stratified the risk for 45
common conditions, including infectious, hematological, endocrine, psy-
chiatric, neurological, sensory, circulatory, respiratory, digestive, cutaneous,
musculoskeletal, and genitourinary diseases, cancers, and mortality. The dis-
criminations witnessed high accuracies achieved by ProRS for 10 endpoints
(e.g., cancer, dementia, and death), with C-indexes exceeding 0.80. Notably,
ProRS produced much better or equivalent predictive performance than
established clinical indicators for almost all endpoints. Incorporating clinical
predictors with ProRS enhanced predictive power formost endpoints, but this
combination only exhibited limited improvement when compared to ProRS
alone. Some proteins, e.g., GDF15, exhibited important discriminative values
for various diseases. We also showed that the good discriminative perfor-
mance observed could be largely translated into practical clinical utility. Taken
together, proteomic profiles may serve as a replacement for complex labora-
tory tests or clinical measures to refine the comprehensive risk assessments of
multiple diseases and mortalities simultaneously. Our models were internally
validated in theUKBiobank; thus, further independent external validations are
necessary to confirm our findings before application in clinical settings.

Risk stratification is critical for the identification of high-risk indivi-
duals and disease prevention, especially at an early preclinical stage1,2.
However, comprehensive risk assessments of human diseases fre-
quently require a rigorous accumulation of predictors, one disease at a
time. The resultant risk score for each disease would be severely
restricted in clinical practical application because of the time and cost

involved in gathering the information3. Accordingly, a single-domain
assay that could inform on multiple diseases simultaneously becomes
crucial4. Asmany nations now recommend routine check-ups entailing
blood tests in the prevention of several commondiseases, proteomics-
based risk scores may hold a major promise to improve multi-disease
risk prediction5,6.
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The human blood proteomeprovides a holistic readout of human
health states through an untargeted assessment of thousands of cir-
culatingmolecules,which can integrate the influences and interactions
of genetics, lifestyle, environment, comorbidities, and drugs7. While
this ‘omics’ approach has been linked to the discovery and under-
standing of gene-protein interactions8–12, biomarkers in individual
diseases and risks5,13–18, aging19–21, and drug pharmacology22, its
potential as a convenient tool to simultaneously and systematically
assess the risk of multiple future health problems remains to be
investigated. To date, most proteomic-based predictive studies have
been undertaken in cross-sectional manners, and several of them
leveraged case-control approaches to understand the plasma pro-
teomic difference between healthy population and individuals diag-
nosed with certain diseases, e.g., dementia23, Alzheimer’s disease24,
coronary heart disease25 and Type I diabetes26. Possibly biased by
reverse causality, such studies have failed to identify proteomic sig-
natures prior to disease onset. Although case-control studies are
informative and can elaborate disease-related protein profiles to a
certain extent, longitudinal designs that estimate early molecular sig-
natures associated with disease incidence are more appropriate for
risk stratification. Furthermore, despite the fact that the same mole-
cular basis has been revealed in several closely linked diseases27–29,
knowledge of the shared pathways underlying less overtly relevant
ones is sparse, and a correspondingly systematic understanding of
different incident diseases in humans is lacking.

Here we explored the potential of proteomic profiles to inform
the prediction of multi-disease and mortality risk (Fig. 1). We con-
structed a disease/mortality-specific proteomic risk score (ProRS)
based on 1461 Olink plasma protein measurements for 45 conditions
comprising infectious, blood, endocrine, mental, neurological, sen-
sory, circulatory, respiratory, digestive, skin, musculoskeletal, and
genitourinary diseases, cancers, and mortality. We extensively
explored the proteomic profiles by incorporating them into Cox pro-
portional hazard regressions, modeling the risk for individual out-
comes, and comparing the predictive power of ProRS with that of
established clinical predictors. Moreover, we investigated the shared
proteomic profiles and the clinical utility of proteomics across multi-
ple incident diseases and mortalities.

Results
Study population
This study adopted 52,006 participants with blood proteomics data
currently available in the UK Biobank (UKB), and the population had a
median age of 58 years (interquartile range (IQR) 50–64), of whom
53.9% were female, and mainly consisted of white ethnicity (93.7%).
Median years of education were 11 (IQR 10–15), body mass index was
26.8 (IQR 24.2–29.9), systolic blood pressure was 138.0mmHg (IQR
126.0–152.0), and 5481 (10.6%) people were current smokers (Table 1).
Detailed summary statistics and notations of all 54 clinical predictors
are shown in SupplementaryData 2. During amedian follow-up timeof
14.1 (IQR 13.4–14.8) years until March 2023, 5625 participants died
(10.82%), 7654 people developed cancer (15.76%), and the most com-
mon specific diseases were hypertension (n = 4911, 15.96%) and anemia
(n = 4528, 9.31%). See Supplementary Data 1 for statistics of each
endpoint.

ProRS stratifies the risk of multiple diseases and mortality
The ProRS was derived from a single-domain assay of 1461 plasma
proteomic data through an established ProNNet model. The ProNNet
served as a feature extractor to translate the proteomic data into a list
of 45 vectorized probabilities, named ProRS, and each probability was
treated as the future incident risk corresponding to 45 endpoints,
covering different categories of diseases and mortalities (Fig. 1). Par-
ticipants with a higher percentile of ProRS at baseline exhibited ele-
vated observed event rates across all 14 disease categories and all-

cause mortality (Fig. 2a and Supplementary Fig. 3). Age showed a sig-
nificantly positive correlation with ProRS for all 45 endpoints. Except
for obesity and breast cancer, the correlation coefficients between
ProRS and age exceeded 0.1, and the strongest associations were
found in eye problems (correlation coefficients [95% CI]: 0.78
[0.77–0.78]), cancer (0.70 [0.70–0.71]), and circulatory system dis-
orders (0.67 [0.66–0.68]). Significant differences existed between
ProRS scores in males and females across 42 endpoints, except for
prostate cancer, breast cancer, and inflammatory bowel disease.
Among individuals at the same percentile of ProRS, males had a
notably elevated risk of cancer, circulatory system disease, and all-
cause mortality when compared to females (Fig. 2a, Supplemen-
tary Data 4).

TheKaplan-Meier survival curves showeddistinctive paths between
the tertiles stratified by ProRS (Fig. 2b and Supplementary Fig. 4).
Compared with the bottom tertile, individuals with ProRS in the top
tertile had more than fivefold elevated risk of all-cause mortality (odds
ratio (OR) [95% confidence interval (CI)]: 11.83 [10.11–13.55]) and blood
and immune disorders (5.08 [4.66–5.50]). In contrast, the ORs were
much smaller for skin disorders (1.82 [1.50–2.14]) and digestive system
disorders (1.65 [1.48–1.82]). Within a detailed classification scheme, the
top tertile of ProRS resulted in event rates more than fivefold higher
compared with the bottom tertile across 16 out of 26 specific diseases
and all four causes of mortality (Supplementary Data 5). Of note, the OR
exceeded 20 in death caused by the respiratory system (OR [95% CI]:
53.80 [38.17–69.43]), dementia (32.83 [21.18–44.48]), death caused by
the circulatory system (29.51 [21.68–37.34]), diabetes (23.58
[19.36–27.79]), and obesity (20.45 [15.00–25.89]).

We investigated the predictive abilities of ProRS across different
time windows, for most endpoints, the ProRS achieved the highest
area under the ROC curve (AUC) when forecasting outcomes hap-
pening within 5 years, suggesting a pivotal role of plasma proteomics
in detecting near-term risks. For some endpoints, the over 10-year
model showed the highest AUC, including eight disease categories,
three specific diseases (viral infections, neurotic disorders, and sleep
disorders), and death caused by the nervous system (Supplemen-
tary Data 6).

Discriminative improvements over clinical predictors
We investigated the predictive information of ProRS and three clin-
ical predictor sets with increasing complexity (including Age+Sex,
Serum (25 serums), and PANEL (all 54 clinical predictors)) for each
endpoint.

The protein-only model, the CPH model fitted with ProRS only,
yieldedHarrell’s C-indexes greater than0.80 in all-causemortality, two
causes of death (respiratory system and circulatory system), and seven
specific diseases, including diabetes, lung cancer, prostate cancer,
dementia, obesity, chronic obstructive pulmonary disease, and renal
failure. In most endpoints, ProRS alone had significantly greater or
comparable discriminative performance than Age+Sex, Serum, and
PANEL. Furthermore, the ProRS significantly outperformed all three
sets of clinical predictors in particular diseases, including five disease
categories (diseases of infections, blood and immune disorders, ner-
vous system disorders, respiratory system disorders, and genitour-
inary system disorders), seven specific diseases (bacterial and viral
infections, leukemia, anemia, dementia, heart failure, and chronic
obstructive pulmonary disease), and all-cause mortality and its four
causes (Fig. 3, Supplementary Data 7). It demonstrates that ProRS
generally contains more competitive predictive information than Age
+Sex, Serum, and PANEL.

When incorporating ProRS into the Age+Sex or Serum models, a
significant enhancement in predictive capability was observed across
almost all endpoints (13 disease categories, all-cause mortality, 23
specific diseases, and four causes of death in the Age+Sex model; all
endpoints in the Serum model), but the combination did not
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significantly exceed ProRS alone in most endpoints. Of note, the
protein-only model exhibited significantly improved discrimination in
predicting breast cancer, prostate cancer, leukemia, dementia, Par-
kinson’s disease, all-cause mortality, death caused by the nervous
system, death caused by the circulatory system, and death caused by
the respiratory system when compared to the combination of Serum
and ProRS.

Adding ProRS to PANEL significantly improved predictive
information over PANEL for 11 disease categories, all-cause mortality,
20 specific diseases, and four causes of death. It’s worth noting that,
in more than one-third of endpoints, the combination of ProRS and

PANEL produced comparable C-indexes to ProRS alone. For the
remaining endpoints, combining PANEL with ProRS yielded
improved prediction performance compared to models based solely
on single-domain source data. However, the extent of the enhance-
ment in predictive capabilities was limited when compared to using
ProRS alone. In addition, we examined the impact of plasma pro-
teomics on diseases in the presence of established risk factors. After
adjusting PANEL in the Cox proportional hazard models, ProRS was
still significantly associated with 13 disease categories, all-cause
mortality, 24 specific diseases, and four causes of death (Supple-
mentary Data 8).

Fig. 1 | Study overview. First, we extracted data from 52,006UKBparticipantswith
a median follow-up time of 14.1 years, including 45 endpoints defined by three-
character ICD10 codes, 1461 plasma proteomics, and 54 clinical predictors span-
ning demographic, lifestyles, physical measures, medical and medication history,
family disease history, and serum assays. Next, we developed a proteomic neural
network to generate proteomic risk scores (ProRS) for each endpoint. Downstream
survival analysis was performed using Cox proportional hazard models to explore

ProRS and clinical predictor sets individually or in combinations. The model
establishment and evaluations were implemented through internal leave-one-
region-out cross-validation. Our investigation not only focused on evaluating
models’ efficacy in stratifying populations at risk but also aimed to inform their
potential clinical utility. CPH model Cox proportional hazard model, ProRS pro-
teomic risk score.
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Contributions of proteins to prediction across the spectrum of
diseases
By employing the SHapley Additive exPlanations (SHAP) values, we
sorted the plasma proteins based on their importance in predicting
different endpoints. This enabled us to identify the most important
discriminators (top 1%) associated with each condition. Some proteins

play crucial roles in the prediction of various diseases. Of particular
note, the GDF15, which emerged as a robust predictor across all 14
categories of disorders and all-cause mortality and even ranked first
among different causes of death and seven specific diseases, namely
bacterial infections, anemia, mood disorders, arrhythmias, heart fail-
ure, inflammatory bowel disease, and renal failure (Fig. 4a, Supple-
mentary Data 9). Similarly, CDCP1, CXCL17, EDA2R, and HAVCR1
demonstrated important predictive value acrossmore than tendisease
categories. The direction of associations between these proteins and
different diseases remained consistent (Fig. 4b). In contrast, NEFL,
BCAN, TNFRSF10B, and CA14 exhibited importance in relatively fewer
disease categories. Proteins such as NTproBNP, TSPAN1, and ACE2
were deemed important only in two disease categories.

Subsequently, we focused on cancer and dementia, two diseases
receiving much attention in recent decades30 (Fig. 5). Proteins includ-
ing CXCL14, GDF15, HAVCR1, and CDCP1 were identified as pre-
dominant contributors to the risk of cancer. We confirmed that higher
plasma levels of CXCL14, GDF15, HAVCR1, CDCP1, TSPAN1, LTBP2, and
ACTA2 were associated with higher risk, while higher plasma levels of
RET showed a protective effect. For dementia, NEFL, BCAN, GFAP, and
GDF15 were themain proteins influencing disease risk. Consistent with
previous findings, we observed the risk effects of CDCP131, 32, EDA2R33,
and HAVCR134. Further, we identified ACTA2, LTBP2, and NCS1 as
potential contributors to dementia risk. Comprehensive data for all
investigated endpoints can be found in Supplementary Data 9.

Model calibration and clinical utility
The ProRS showed great performance in discriminating populations at
risk, but such results could not implicate whether ProRS should be
used in clinical practice. To provide a statistic of immediate clinical
interpretability, we further assessed the predictive models by exam-
ining calibrations and conducting decision curve analysis. Except for
viral infections, models for almost all endpoints were well calibrated,
where the observed risk and the predicted risk showed consistency
(Fig. 6a–d, Supplementary Figs. 5 and 6). Figure 6e–h and Supple-
mentary Figs. 7 and 8 display the net benefit curves, showing the trade-
offs of benefits and harms for clinical decisions based on different
models across a range of decision thresholds.

We specifically investigated the clinical utility of ProRS in two
scenarios. First, we evaluated the performance of ProRS and two sets
of clinical predictors with distinct complexity (Age+Sex and PANEL)
individually. Second, we combined the ProRS with these two sets of
clinical predictors to uncover potential net benefits. Formost diseases,
the protein-onlymodel showed greater net benefit compared with the
models solely based on Age+Sex or PANEL. The addition of ProRS to
Age+Sex or PANEL substantially improved the clinical utility, but the
combination performed similarly to ProRS alone. Within a certain
range of decision thresholds, ProRS even demonstrated a higher net
benefit compared to the combination approach (most notably all-
cause mortality and, to a lesser extent, dementia and heart failure). In
contrast, if ProRS did not surpass these two sets of clinical predictors
in discrimination, no superiority or improvement in clinical utility
could be observed, as is the case in cancer (Fig. 6e).

Discussion
Leveraging systematic information from proteomic profiling, we
found that the integrative proteomic statusmarkedly stratified the risk
for 45 common conditions, including infectious, hematological,
endocrine, psychiatric, neurological, sensory, circulatory, respiratory,
digestive, cutaneous, musculoskeletal, and genitourinary diseases,
cancers, and mortality. Notably, ProRS yielded much better or com-
parable predictive performance than conventional clinical predictors
for almost all endpoints, and combining clinical variables with ProRS
did not demonstrate substantial advantages over ProRS alone. Some
proteins, such as GDF15, exhibited important discriminative values for

Table 1 | Participants’ characteristics of UK Biobank

Participants
characteristics

All participants
(N = 52,006)

Female
(N = 28,056)

Male
(N = 23,950)

Demographic

Age 58 [50–64] 58 [50–63] 59 [50–64]

Ethnicity (white) 48,517 (93.7%) 26,204 (93.8%) 22,313 (93.7%)

Townsend depriva-
tion index

−2.1 [−3.6 to 0.8] −2.1 [−3.6 to 0.7] −2.1 [−3.6 to 0.9]

Education, years 11 [10–15] 11 [10–15] 11 [10–15]

Lifestyle

Current smoker 5481 (10.6%) 2492 (8.9%) 2989 (12.5%)

Frequent alcohol
intake

35,615 (68.6%) 17,248 (61.6%) 18,367 (76.9%)

Regular activity 39,548 (78.0%) 21,094 (77.2%) 18,454 (78.9%)

Physical measures

Body mass index 26.8 [24.2–29.9] 26.2 [23.5–29.8] 27.3 [25.0–30.0]

Basal metabolic
rate, kj

6360 [5489–7581] 5552 [5184–6000] 7657 [7037–8355]

Systolic blood
pressure, mmHg

138 [126–152] 135 [122–150] 141 [130–154]

Disease and medication history

History of diabetes 2948 (5.7%) 1098 (3.9%) 1850 (7.7%)

History of
hypertension

14,605 (28.1%) 6745 (24.0%) 7860 (32.8%)

Cholesterol
medications

9678 (18.9%) 3747 (13.5%) 5931 (25.2%)

Family disease history

Parents’ history of
diabetes (single)

7565 (16.7%) 4293 (17.2%) 3272 (16.1%)

Parents’ history of
diabetes (both)

603 (1.3%) 319 (1.3%) 284 (1.4%)

Parents’ history of
dementia (single)

5421 (12.0%) 3132 (12.6%) 2289 (11.2%)

Parents’ history of
dementia (both)

222 (0.5%) 121 (0.5%) 101 (0.5%)

Serum

HDL cholesterol,
mmol/L

1.4 [1.2–1.7] 1.5 [1.3–1.8] 1.2 [1.1–1.4]

Triglycerides,
mmol/L

1.5 [1.0–2.1] 1.3 [1.0–1.9] 1.7 [1.2–2.4]

Glucose, mmol/L 4.9 [4.6–5.3] 4.9 [4.6–5.3] 5.0 [4.6–5.4]

HbA1c, mmol/mol 35.3 [32.9–38.1] 35.3 [32.9–37.9] 35.4 [32.8–38.3]

IGF-1, nmol/L 21.2 [17.4–24.7] 20.6 [16.8–24.4] 21.7 [18.1–25.1]

Alanine amino-
transferase, U/L

20.0 [15.3–27.1] 17.5 [13.9–22.8] 23.4 [18.2–31.4]

Albumin, g/L 45.1 [43.4–46.9] 44.9 [43.2–46.6] 45.4 [43.7–47.2]

Creatinine, umol/L 70.7 [61.4–81.4] 63.2 [57.0–70.5] 80.2 [72.6–88.9]

Leukocyte count,
109 cells/L

6.6 [5.6–7.9] 6.6 [5.6–7.8] 6.7 [5.6–7.9]

Erythrocyte count,
1012 cells/L

4.5 [4.2–4.8] 4.3 [4.1–4.5] 4.7 [4.5–5.0]

Platelet count, 109

cells/L
248.0
[213.0–287.0]

261.0
[225.2–300.0]

233.2
[201.0–269.0]

Continuous data are described as median [interquartile range], and categorical variables are
presented as numbers (percentages). See Supplementary Data 2 for full clinical predictors and
detailed notations.
IGF-1 insulin-like growth factor 1, HDL high-density lipoprotein.
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various diseases. In addition, and importantly, these discriminatory
improvements could be translated into clinical utility for a wide range
of potential decisions.

A single plasma protein is unlikely to predict the risk of multiple
disease events simultaneously. Overcoming the hurdles of proteomic
techniques, the risk score we constructed, based on 1461 proteins,
stratified risk trajectories well for all endpoints studied. We modeled
the score on the processpreceding the onset of the disease rather than
on the outcome of clinical treatment, which is essential for the early
identification of individuals in need of more intensive therapeutic

interventions and for significantly advancing the window for inter-
ventional treatment. Patients’ age is an important component of risk
stratification, as older patients are at higher risk of multiple morbid-
ities and death35. Our score does not rely on people’s age, but a higher
ProRS typically indicates an older age and a higher risk of adverse
disease outcomes. Notably, among people at the same percentile of
ProRS,men had a higher risk of cancer, circulatory systemdisease, and
all-cause mortality than women, consistent with the view that sex and
disease are interrelated36. The male predisposition to cancer may be
affected by the genetic programming of male cells, the post-pubertal

Fig. 2 | ProRS is associated with observed event rates and stratifies survival in
multiple diseases. a Observed event frequency for 14 incident disease categories
and all-cause mortality plotted against ProRS percentiles. Age is represented by
varying sizes of dots, while sex is distinguished by different colors of the dots.
b Kaplan-Meier survival plots of 14 incident disease categories and all-cause

mortality according to tertiles of ProRS during follow-up (blue, bottom tertile;
yellow, median tertile; brown, top tertile) with 95% exponential Greenwood con-
fidence intervals. Source data are provided as a Source Data file. ProRS proteomic
risk score.
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sex hormones, and the interactions with sex-specific behaviors (e.g.,
smoking, lifestyle, perceived stress and distress, and dietary habits)36.
Lipid markers and depression may influence the risk of circulatory
disease in men37. Given the current lack of appreciation for persona-
lized disparities and the demands of precision medicine, endeavors to
incorporate age and sex differences into guidelines for risk stratifica-
tion and disease prevention are urgently required.

In line with previous reports demonstrating the high predictive
value of proteomic profiling for multiple health issues, such as cardi-
ovascular events5, 14,38, obesity15, dementia39, and cancer40,41, our study
extends these findings to diseases of all human systems. To our
knowledge, this is the first time that the predictive power of blood
proteomics for a broad range of disease outcomes has been exten-
sively revealed, not only by comparison with a diverse panel of clinical
variables but also by investigating the additional predictive ability of
proteomics beyond clinical predictors. Importantly, we found that
ProRS has much better or comparable predictive performance than
established clinical indicators for almost all investigated endpoints.
Besides, ProRS alone could achieve desirable predictions for most

endpoints, with predictive power comparable or close to that of the
model combining ProRS and clinical indicators. ProRS even out-
performed the recently proposed metabolomic profile, where the
predictive power ofmetabolomic states alone was not superior to that
of the combination of age and sex4. Our data strongly emphasize the
predictive value of blood proteomics as a single-source, individualized
health check tool, alleviating the hassle of multidimensional data col-
lection required for previously proposed risk scores38. Proteomics
analysismay thereforehave great promise as an alternative to complex
laboratory tests or clinical evaluations to improve the assessment of
risk for multiple diseases simultaneously.

Plasma biomarkers reflecting human health status are central to
clinical decision-making. The biomarkers we routinely use tend to
target specific diseases or disease spectrums. Since we found that
certain proteins were associated with different diseases in a highly
concordant direction, interventions on identified shared pathways are
likely to deliver benefits in a consistent manner without increasing the
risk of developing other diseases42. In this scenario, GDF15may serve as
an attractive target for disease intervention given its robust predictive

Fig. 3 | Predictive value of the ProRS in comparison with clinical predictor sets
for multiple diseases. Forrest plot showing the differences in discriminative per-
formance of ProRS (vertical green line), clinical predictor sets only (blue), and the
combination of ProRS and clinical predictor sets (red). Models’ performance is
presented using Harrell’s C-index, where dots represent the means and horizontal

bars represent the 95% confidence intervals derived from cross-validation. Number
of available participants for each endpoint is listed in Supplementary Data 1. The
clinical predictors included three sets with increasing complexity: Age+Sex, Serum
(25 serum measures), and PANEL (all 54 clinical predictors). Source data are pro-
vided as a Source Data file. COPD chronic obstructive pulmonary disease.
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Fig. 4 | Proteins with the most important discriminative value (top 1%) and
their associations with each endpoint. a Stacked bar chart of standardized SHAP
values from ProNNet across 14 disease categories and all-causemortality, numbers
on top of the bars indicate how many disease categories in which this protein
showed the predominant discriminatory significance. We highlighted 34 proteins
that exhibited the most important discriminatory value in two or more disease
categories.bAssociations between proteins are shown in (a) and 45 endpoints. The

color of cells indicates the effect size (HR) between each protein and incident
endpoint. HR was derived based on normalized proteins fitted using Cox propor-
tional hazard models adjusted with age and sex. Asterisks in cells represent sig-
nificant associations after correction for multiple comparison testing (p-
value < 6.84 × 10−6 = 0.01/1461, p-value was derived corresponding to a two-sided
test). Source data are provided as a SourceData file. HRhazard ratio, SHAP SHapley
Additive exPlanations.
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power for all disease categories and all-cause mortality. As mentioned
previously, elevated GDF15 represented a predictor for the future
development of cardiovascular disease43, diabetes44, chronic kidney
disease45, adverse respiratory outcomes46,47, dementia48, cancer49, and
all-cause, cardiovascular, and non-cardiovascular mortality50,51, and
was invariably linked to poor prognosis52. Our findings further
expanded the detrimental effects of elevated GDF15 on all body sys-
tems. This is plausible in that the expression of GDF15 could be
induced in response to cellular stress and mitochondrial dysfunction
in order to maintain cellular and tissue homeostasis53, and we hypo-
thesize that this will play a role in the pathogenesis of various disease
processes. The predictive value of CDCP154, CXCL1755, and EDA2R56 for
diseases has previously focused on cancer, and HAVCR1 has been
shown to be involved in immunity and renal regeneration and is
aberrantly expressed in a variety of tumor types57. We provide
preliminary evidence for the predictive value of these proteins in
multiple diseases, and future relevant studies are needed to verify our
observations.

With growing evidence that dementia prevention might be
attainable by modifying risk factors58, our findings are com-
plementary to this work by spotting populations that would benefit
most from preventive interventions. We confirmed the associations
of NEFL59, BCAN60, GFAP61, and GDF1548 with dementia and suggested
that the abnormal levels of these proteins may imply a high risk of
developing dementia. For cancer, CXCL14 showed the greatest pre-
dictive importance. The levels of CXCL14 expression were closely
linked to some clinicopathologic factors, including tumor-node-
metastasis stage, tissue differentiation, and tumor size, which have
heretofore been noted as possible predictors for the early recurrence
and death of cancer62.

Good discrimination and calibration across various prediction
horizons for each outcome are paramount to the clinical utility of risk
models63. As one of the largest and most comprehensive population
cohorts in theworld, UKB enables us to evaluate clinical usefulnesswith
high precision and powerful efficacy64. In the current study, the
proteomics-based scores not only exhibited favorable discriminative
performance for an array of diseases but allmodels werewell calibrated
to guarantee the reproducibility and reliability of the results. We also
proved that the observed discriminative gains could be translated to
practical utility gains. The findings provide strong evidence for the
promotion of proteomics in clinical practice, which could help improve
risk assessment for numerous diseases from a holistic perspective of
humanhealth and further contribute to the implementation of targeted
disease prevention strategies and tailored treatments.

This study has numerous advantages, including the application of
high-throughput proteomic technologies, the large community-based
prospective cohort sample, the long follow-up period, and the com-
prehensive assessment of disease outcomes. Several limitations also
merit discussion. First, some proteins that were not included in the
Olink panels but could predict multi-disease outcomes may have been
omitted. Yet, the purpose of this study was to assess the feasibility of
the proteomics-based risk score for clinical use, not to discover novel
proteins. However, we cannot rule out the possibility that the pre-
dictive value of a larger protein panel may be superior. Second, the
incidence of disease events is probably lower than that in other
reported cohorts given that the UKB population tends to be healthier
and less deprived64. Nevertheless, the large cohort size and the het-
erogeneity of exposures allow for valid scientific inferences about
proteomic-disease relationships that are widely generalizable64. Third,
the majority of UKB participants are white and European. Whilst we

Fig. 5 | Plasmaproteins attributions for cancer and dementia.The circular SHAP
plots of cancer (a) and dementia (b) show the extent to which each protein would
affect the proteomic neural networkmodel. Proteins shown in the figure were pre-
selected through age- and sex-adjusted CPH models under Bonferroni correction
(p-value < 6.84 × 10−6 = 0.01/1461, p-valuewasderived corresponding to a two-sided
test). The important proteins ranking in the top 1%, as determined by SHAP values,
are bolded to emphasize their significance in disease prediction. The width of the
range of the bars indicates the extent of proteins’ contribution to disease

prediction, with wider bars reflecting a greater contribution. The color of the bars
represents themagnitude of plasmaproteins, ranging from low (blue) to high (red),
as depicted in the color bar above the middle. Deviations toward the center and
periphery signify protective and risk contributions, respectively. Noted, four of the
top 15 proteins selected by SHAP were not shown in dementia as they did not
surpassmultiple testing, probably due to their nonlinear effect or high correlations
with adjusted covariates. Source data are provided as a SourceData file. CPHmodel
Cox proportional hazard model, SHAP SHapley Additive exPlanations.
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conducted internal cross-validations and all models were well cali-
brated, ourfindingswarrant validation in a large, unselected, ethnically
diverseprimary carepopulationusing an independent external dataset
before application in routine care.

Blood proteomics demonstrated tremendous advantages in
improving risk stratification and possessed desirable predictive per-
formance for a wide range of diseases and mortalities, even out-
performing established clinical predictors. These discriminatory
values could also be largely translated into practical clinical utility.
Taken together, our work underscores the critical potential of pro-
teomic profiling as a single-domain assay to inform the risk ofmultiple
diseases and mortalities simultaneously.

Methods
UK Biobank study cohort
We performed a retrospective study by extracting data from the UK
Biobank (UKB) cohort, a global biomedical database of half a million
UK participants aged 40–69 years at baseline. Participants were
enrolled from 2006 to 2010 in 22 recruitment centers across the UK. A
randomized subset of UKB participants was conducted proteomic
profiling on blood plasma samples collected from UKB participants’
baseline recruitment. We excluded those over 30% of missingness in
proteomics data and finally included 52,006 participants who had a
median follow-up of 14.1 years until March 2023. The study was con-
ducted following the Declaration of Helsinki. All participants provided
written consent, and approval was given by the North West Multi-
centre Research Ethics Committee (MREC, https://www.ukbiobank.ac.
uk/learn-more-about-uk-biobank/about-us/ethics). This research has
been conducted using the UK Biobank Resource under approved
application number 19542.

This study adopted 45 endpoints, including 14 disease categories,
26 specific diseases, all-cause mortality and 4 cause-specific mor-
talities. Endpoints were ascertained and classified according to the ICD
10 codes (Supplementary Data 1), extracted from first occurrences
data (UKB category 2401-2417) that mapped from data sources of
primary care (category 3000), hospital inpatient (category 2000), self-
reported medical conditions (UKB field 20002) and death register
records (field 40001 and 40002). Participants’ follow-up started from
the date of their first visits to the UKB assessment centers (baseline
time), the same time that blood samples and other clinical information
were collected, and participants’ follow-up was censored upon the
earliest date of disease diagnosis, death, or the last available date from
the hospital or general practitioner, whichever occurred first (cen-
sored time). Exclusion criteria for each endpoint were defined as any
diagnosis sourced from self-reported clinical records or any incidents
indexed before the baseline of the respective disease category that the
endpoint belongs to.

Blood proteomics and clinical predictors
UK Biobank Pharma Proteomics Project consortium generated blood-
based proteomic data. Blood samples were collected in EDTA (9mL)
vacutainers, and fractioned to 850 µL aliquots of EDTA plasma, buffy
coat, and red cells. The plasma samples were stored in a −80 °C freezer
before being shipped on dry ice to Olink Analysis Service in Sweden.
Proximity Extension Assay, in combination with Next-Generation
Sequencing65, was utilized to parallelly measure 1463 unique proteins
from April 2021 through January 2022. Following stringent quality
control (see details in biobank.ndph.ox.ac.uk/ukb/ukb/docs/PPP_Pha-
se_1_QC_dataset_companion_doc.pdf), proteins were measured across
four panels containing cardiometabolic, inflammation, neurology, and

Fig. 6 | Model calibration and predictive value of ProRS translate to potential
clinical utility. a–d Calibration curves for CPH models, including three models
based on ProRS and two clinical predictor sets (Age+Sex and PANEL) individually,
and twomodels based on their combinations (Age+Sex+ProRS, PANEL+ProRS) for
the endpoints cancer (a), dementia (b), heart failure (c), and all-causemortality (d).
e–h Endpoint-specific net benefit curves standardized by endpoint prevalence,
where vertical solid gray lines indicate ‘treat all’; cancer (e), dementia (f), heart

failure (g), and all-cause mortality (h). The standardized net benefit of ProRS is
compared with Age+Sex or PANEL. We also compare the combination (Age+Sex
+ProRS, PANEL+ProRS) with ProRS. The red color-filled area indicates the gains in
benefit achievedby ProRS comparedwith clinical predictors. The green color-filled
area indicates the added benefit of the combination compared with ProRS. Source
data are provided as a SourceDatafile. CPHmodelCoxproportional hazardmodel,
ProRS proteomic risk score.
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oncology proteins. Details on sample selection, in addition to pro-
cessing and quality control information for the Olink assay, are pro-
vided in previous publications66,67. We finally included 1461 unique
proteins inour study after the exclusionof thosewithmissingnessover
50%. Supplementary Data 10 lists all proteins used in this study.

To investigate the predictive ability of proteomics incorporated
with other accessible measures, the study adopted a wide range of
clinical variables (n = 54) collected at baseline, including demographic
information (n = 5), lifestyle factors (n = 6), physical measurements
(n = 7), disease and medication history (n = 7), family disease history
(n = 4) and serum biochemistry data (n = 25). Specifically, we delivered
three sets of variables, Age+Sex, Serum (25 serums) and PANEL (all 54
variables). See SupplementaryData 2 for all clinical predictors adopted
in this study.

ProNNet and ProRS
To exploit the potential of plasma proteomics as a single-domain assay
to simultaneously predict multi-endpoints onset, we developed a
multilayer perceptron neural network and named it ProNNet. The
ProNNet model comprises two modules: a comorbid network to
roughly evaluate the overall health conditions and an endpoint-
specified network to customize the risk prediction task to each end-
point (Supplementary Fig. 2). The comorbid network contains two
identical branches with output targets as the total number of the 14
disease categories indexed before (left branch) and indexed after
(right branch) the baseline assessments. In other words, the comorbid
network was trained to learn how many disease categories have been
indexed in the past and will be indexed in the future. Features derived
from the comorbid network learnt information of estimating the
overall level of an individual’s health conditions; thus, such latent
features could donate potentially contribution to the endpoint-
specific prediction task. The input of the comorbid network was 1461
vectorized plasma proteins and it passed into two identical branches
that contained four fully connected dense layers that each connected
with ReLu activations68 of 512, 256, 128 and 64 nodes, respectively. As
the number of disease category was a continuous variable, linear
activation was adopted as the final activation function. The perfor-
mance of the comorbid network yielded mean absolute errors (MAEs)
of 1.84 ± 0.32 and 1.41 ± 0.10 for the number of comorbidities before
and after the baseline, respectively, and fitted results were shown in
Supplementary Fig. 9. The comorbid network was pre-trained, and its
frozen weights of the last layers were passed into the endpoint-
specified network, which was designed with an encoding block like
that of the comorbid network branch, and weights were concatenated
in an intermediate dense layer before passing to the endpoint, ReLu
activations were employed to connect the dense layers and Sigmoid
activation was used before the final output layer. The loss function for
the comorbid network was the summation of mean squared errors
with equal weights to both branches and log loss was adopted for the
endpoint-specified network. Both networks were trained with Adam
optimizer69 with a learning rate of 1e-05, batch size of 128, and epochs
of 1000. Toavoid overfitting, themodel training process early stopped
upon the epoch that no decremental of validation loss was observed
after the next 25 iterations. We optimized the above hypermeters with
grid search from optimizer space of SGD, RMSprop and Adam with
learning rates of 10−1 to 10−6 with step of timing 0.1. ProNNet was
developed using Keras (v2.7.0) under Python.

Survival analysis of proteomic risk score and clinical predictors
We divided the participants into tertile groups based on stratified
ProRS anddrewKaplan-Meier plots for each endpoint to visualize their
survival curves. We also fitted Cox proportional hazard (CPH) models
with different sets of clinical predictors. Specifically, we initially
developed models only learned from ProRS; next, we fitted models
using clinical predictors sets of Age+Sex, Serum, and PANEL; lastly, we

combined ProRS with each of the above clinical predictors set to
explore its additive predictive values. Statistical significance test
between paired C-index was implemented through a one-shot non-
parametric approach in consideration between metrics calculated on
the same sample, and this was implemented through R package
CompareC (v1.3.2)70. CPHmodels were implementedwith CoxPHFitter
from the lifelines package (v0.27.4) under Python with a penalizer of
0.01 to facilitate model convergence.

Proteomic attribution estimates
Shapley Additive exPlanations (SHAP)71, a game theoretic approach,
was employed to explore the proteomic attribution for each endpoint
within the ProNNet model. The SHAP framework enables to identify
thepredictors’ importanceand indicates their predictive effects, either
positive or negative, along with the variations of the variables’ mag-
nitude. SHAP values derived in our analysis were post-processed by
dividing the summation over all 1461 proteins to allow aggregation
over each fold of the testing set. We reported the top 1% proteins (15/
1461≈ 1%) ranked based on SHAP values. SHAP values were calculated
basedonDeepExplainer in thepackage shap (v0.41.0) under Python. In
addition, we also investigate the associations of proteins by using the
CPH model with adjusted covariates of participants’ age and sex.
Bonferroni corrections were applied across all association hypothesis
tests by using a family-wise error rate (FWER) of 6.84 × 10−6 (0.01/1461)
as the threshold of statistical significance under two-sided tests.

Statistical analysis
The CPH models fitted with ProRS and clinical predictors were asses-
sed with Harrell’s C-index, which varies between 0.5 for a non-
informativemodel and 1 for a perfectly discriminating one. Calibration
plots were employed to visually depict the agreement between pre-
dicted risks versus observed event rates. Net benefit curves were
drawn to observe the additive predictive value of the ProRS to differ-
ent sets of clinical predictors.

We investigated the predictive value of ProRS under different
incident timewindows of within 5 years, within 10 years and beyond 10
years by treating incident events as binary indicators. Specifically, for
evaluations within 5- and 10-year time windows, any events incident
beyond 10 years after baseline were treated as no incidence. To eval-
uate performance on incidents beyond 10 years, participants with
events indexed within 10 years were removed. We reported predictive
metrics of the area under the Receiver Operating Characteristic (ROC)
curve (AUC), the area under the precision-recall curve (APR) and other
metrics of accuracy, sensitivity, and specificity, which were derived
based on the cut-off upon achievement of the largest Youden index.

Both the ProNNetmodel and the following survival analysis of the
CPH model were developed and evaluated using internal leave-one-
region-out cross-validation. The study cohort was split based on the
geographical locations of a total of 22 assessment centers, and they
were merged into ten regions in the UK as our data partition criteria.
Participants’ statistics and demographical information summaries
were reported in Supplementary Data 3. A detailed cross-validation
pipelinewas shown in Supplementary Fig. 1 that nine folds of datawere
utilized formodel training and the remaining one for testing, and such
a schemewas iteratively repeated until all folds had been used as both
training and testing sets. Specifically, hyperparameter tuning was
performed during the ProNNet training, and it was conducted using
randomly partitioned fivefold cross-validation within the training set
itself. Once the hyperparameters were determined, the ProNNet was
then retrained based on all individuals in the training set. Next, ProRS
in both training and testing sets were derived through the established
ProNNet. Given pre-calculated ProRS, the following CPH model can
then be established and evaluated in a cross-validation manner. It
should be noted that testing sets were kept intact and solely used for
model evaluations. Predictive metrics were reported with means and
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95% confidence intervals calculated under ten iterative folds of
testing data.

During the development of ProNNet models and CPH models,
continuous variables were standardized, and categorical ones were
one-hot encoded. For continuous data, missingness was imputed
through the K-nearest neighbors algorithm72, which works by identi-
fying the nearest 50 individuals defined using Euclidean distances and
imputing with their medians. Categorical data were imputed with
mode. Notably, missingness was imputed for proteomic data and
clinical data independently, and the procedure was implemented
under each fold of data partitioned by cross-validation. All modeling
and statistical analysis were implemented under Python (v3.9.16). Data
imputation and statistical analysis employed the package of scikit-
learn (v1.2.2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in the present study are available from UKB with
restrictions applied. Data were used under license and are thus not
publicly available. Access to the UKB data can be requested through a
standard protocol (https://www.ukbiobank.ac.uk/register-apply/).
Data used in this study are available in the UK Biobank under appli-
cation number 19542. All data supporting the findings described in this
manuscript are available in the article and in the Supplementary
Information and from the corresponding author upon request. Source
data are provided with this paper.

Code availability
All software used in this study is publicly available. The code used in
this study can be accessed at https://github.com/jasonHKU0907/
FutureHealthProteomicPrediction.
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