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Human and mouse neutrophils share
core transcriptional programs in both
homeostatic and inflamed contexts

Nicolaj S. Hackert 1,2,3,4,12, Felix A. Radtke 1,2,5,6,7,12, Tarik Exner1,2,12,
Hanns-Martin Lorenz1, Carsten Müller-Tidow 8,9, Peter A. Nigrovic 3,5,
Guido Wabnitz 2 & Ricardo Grieshaber-Bouyer1,2,9,10,11

Neutrophils are frequently studied in mouse models, but the extent to which
findings translate to humans remains poorly defined. In an integrative analysis
of 11 mouse and 13 human datasets, we find a strong correlation of neutrophil
gene expression across species. In inflammation, neutrophils display sub-
stantial transcriptional diversity but share a core inflammation program. This
program includes genes encoding IL-1 familymembers, CD14, IL-4R, CD69, and
PD-L1. Chromatin accessibility of core inflammation genes increases in blood
compared to bone marrow and further in tissue. Transcription factor enrich-
ment analysis implicates members of the NF-κB family and AP-1 complex as
important drivers, and HoxB8 neutrophils with JunB knockout show a reduced
expression of core inflammation genes in resting and activated cells. In inde-
pendent single-cell validation data, neutrophil activation by type I or type II
interferon, G-CSF, and E. coli leads to upregulation in core inflammation genes.
In COVID-19 patients, higher expression of core inflammation genes in neu-
trophils is associated with more severe disease. In vitro treatment with GM-
CSF, LPS, and type II interferon induces surface protein upregulation of core
inflammation members. Together, we demonstrate transcriptional conserva-
tion in neutrophils in homeostasis and identify a core inflammation program
shared across heterogeneous inflammatory conditions.

Neutrophils mediate homeostatic and inflammatory processes and
display substantial phenotypic and functional heterogeneity. While
animal models fuel fundamental discoveries in immunology, differ-
ences between humans and mice can impair the translation of
findings1. To maximize impact on human health, life sciences increas-
ingly benefit from seamless transitions between themouse and human
system. However, due to structural and functional differences in gen-
omes, it is often unclear which aspects reflect conserved biology.
Therefore, integrative analyses of cellular systems across species are
important for the success of translational research.

Structurally, the mouse and human genomes are closely related.
They harbor ~16,000 protein-coding genes considered to be one-to-

one orthologs with high confidence2. However, structural orthology
does not equal functional similarity since expression patterns of
orthologous genes can deviate substantially across organs and
development3. In leukocytes, expression of most orthologous genes
and lineage-specific genes, in particular, is well-conserved between
humans andmice4. Despite this overall similarity, different species can
display substantial differences in ortholog expression between
tissues5. For example, human neutrophils are highly abundant in
defensins, yet their mouse orthologs are expressed in gut epithelial
cells, not in neutrophils. Furthermore, neutrophils display high phe-
notypic and functional heterogeneity as a function of organ, matura-
tion, and inflammatory condition6–9, but whether a core inflammation
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program consisting of genes that become induced across a range of
inflammatory conditions exists is not known. It is thus unclear how
similarities and differences between human and mouse tran-
scriptomes should be interpreted, particularly in the context of dif-
ferent inflammatory conditions.

To address these gaps in knowledge, we perform an integrative
analysis of resting and inflamed leukocytes from humans and mice
and assess the degree of conservation of gene expression. We find
that human and mouse transcriptomes can be analyzed together
and that lineage-specific gene expression was closely related
between humans and mice. We further study how the neutrophil
transcriptome changes in inflammation, using awide range of studies
covering in vitro and in vivo inflammation as well as resting condi-
tions in human10–21 and mouse12,22–31. While transcriptional responses
to different activating stimuli are heterogeneous, we identify a core
inflammation program in neutrophils conserved across species and
conditions. We predict upstream regulators and find increasing
accessibility of core inflammation program members in ATAC-seq.
JunB−/−HoxB8 cells display a lower upregulation of core inflammation
genes when stimulated with zymosan compared to wild-type cells.
In single-cell RNA-seq data from resting and activated neutrophils,
stimulation with type I and II interferon, G-CSF, E. coli is associated
with higher expression of core inflammation genes. Further, neu-
trophils from COVID-19 patients with more severe disease display
higher expression of core inflammation genes. Finally, we validated
members of the core inflammation program using flow cytometry of
stimulated human andmouse neutrophils and identified an interplay
between tissue of origin and stimulation in driving the phenotype of
the neutrophil inflammatory response. Our approach illustrates that
multiple datasets of mouse and human gene expression data can be
effectively combined to identify patterns shared across conditions
and conserved across species. This approach can be transferred to
other cell types and organisms to facilitate studies comparing gene
expression across species.

Results
Integrative analysis of leukocyte gene expression across species
To assess gene expression similarities and differences between
human and mouse immune cells, we obtained bulk RNA-seq data
from six sorted leukocyte lineages from the Haemopedia atlas12,32

(Supplementary Fig. 1). This dataset consisted of a total of 76 samples
of T cells, B cells, dendritic cells, monocytes, NK cells, and neu-
trophils (Supplementary Fig. 1). Sequencing depths for samples
across all lineages are shown in Supplementary Fig. 2a, b, and
detailed quality control metrics are summarized in Supplementary
Data 1. We then integrated gene expression matrices by mapping
protein-coding, one-to-one orthologous genes with high confidence,
according to ENSEMBL33.

To evaluate the robustness of this approach, we performed a
principal component analysis on the integrated expressionmatrix. For
each lineage, up to 200 lineage-associated genes were selected. Here,
sample distribution was driven predominantly by lineage, followed by
species (Fig. 1a). As envisioned, lineage-associated gene expression
was highest in each respective lineage and occurred across species in
all lineages (Fig. 1b). Similarly, clustering of sample-wise Pearson cor-
relation coefficients based on these genes was driven predominantly
by lineage, confirming that in our analytical approach, lineage identity
dominates species differences (Fig. 1c).

Correspondingly, expression of key lineage-associated genes was
highly conserved between humans and mice (Fig. 1d), such as CSF3R
and CHI3L1 in neutrophils, CD19 and CD22 in B cells, CD3 molecules
and CD28 in T cells, NKG7 and GZMA in NK cells,MSR1 and SERPINB2 in
monocytes and FLT3 and MYCL in dendritic cells. The highest corre-
lation between human and mouse gene expression was observed
in neutrophils (r =0.79), followed by T cells (0.65), B cells (0.65),

Monocytes (0.56), and a weaker correlation in NK cells (0.24) and
dendritic cells (0.22) (Fig. 1d).

This analysis demonstrates that mapping one-to-one orthologs
allows an integrated analysis of leukocyte transcriptomes across spe-
cies to identify conserved and divergent expression patterns of
structurally related genes. Of note, although these data indicate a
higher correlation in neutrophils compared to other lineages, this
effect may have been influenced by smaller library complexities in
neutrophils.

Transcriptional conservation in resting neutrophils
To systematically analyze which genes display similar and divergent
expression across species, we integrated transcriptional profiles of
resting (not activated) neutrophils available through the Sequence
ReadArchive (SRA). In this context, restingneutrophilsweredefined as
those isolated from blood or tissue in the absence of disease or
experimental manipulation. In a total of 84 human and 39 mouse
samples, we observed a high correlation in overall gene expression,
transcription factor expression, and lineage-associated gene expres-
sion across humans and mice (Pearson’s r between 0.78–0.87,
P < 2.2 × 10−16) (Fig. 2a). These results were remarkably similar to those
obtained from the more homogenous Haemopedia dataset, further
illustrating the robustness of this approach even when integrating
multiple datasets from different sources.

We next focused on neutrophil lineage-associated genes and
defined five GENE: Gene (HUMAN: Mouse) pairs based on their expres-
sion patterns. In addition to one-to-one orthologs, we considered high-
confidence one-to-many and many-to-many orthologs.

Orthologs with high expression in both humans and mice inclu-
ded the key neutrophil genes CSF3R (encoding the G-CSF receptor),
CXCR2, NCF4 (neutrophil cytosolic factor 4), the transcription factors
MCL1, SPI1 (encoding PU.1, an essential transcription factor for term-
inal granulopoiesis34,35) and JUNB, a transcription factor prominently
expressed in late neutrotime which plays a vital role in the inflamma-
tory response of neutrophils9,36 (Fig. 2b). As CSF3R, CXCR2 and JUNB
expression changes along neutrophil development, their concordance
in expression might suggest that the analyzed neutrophils from
humans and mice were of comparable developmental stage.

Orthologs with higher expression in human neutrophils included
FCGR3A and FCGR3B (encoding CD16A and CD16B, respectively),
whichboth are one-to-many orthologs ofmouse Fcgr4. This group also
included the receptor for activated complement (C5AR1) and CXCR1,
the receptor for CXCL8 (human)/KC (mouse). Genes with higher
expression in mouse neutrophils included the protease Mmp9, Camp
(encoding Cathelicidin Antimicrobial Peptide), Il1b, and Retnlg
(encoding Resistin-like gamma) (Fig. 2b).

Of note, most genes in categories 1–3 were one-to-one orthologs,
although 13/133 (9.8 %) were one-to-many orthologs. However, well-
known neutrophil genes without one-to-one orthologs were also
identified (categories 4 and 5) and included CXCL8 in humans, a
cytokine abundantly expressed in blood neutrophils, and Ccl6, one of
the most abundant chemokines in mouse neutrophils (Fig. 2b).
Enrichment for neutrophil-related GO terms was found across all five
groups of genes (Supplementary Fig. 3).

Thus, while resting human and mouse neutrophils display con-
served expression of many key neutrophil genes and transcription
factors, gene expression can deviate substantially in the same lineage
between species, even for structurally highly related genes.

A core inflammation program is shared across conditions and
conserved across species
We next assessed how the expression of one-to-one structural ortho-
logs changes in different inflammatory contexts. Neutrophils display
varied phenotypes in homeostasis and inflammation6,7,9,37, but it is
unknown if a proportion of the transcriptional characteristics of
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different neutrophil states is shared across different inflammatory
conditions9. Here, resting neutrophils were defined as above and
compared with their respective inflammatory condition.

To identify changes in inflammation, we analyzed 11 studies
encompassing a total of 46 resting and 66 activated neutrophil sam-
ples across different conditions (Fig. 3a, Supplementary Data 2). We

tested for differential expression of genes with high-confidence one-
to-one orthologs according to ENSEMBL separately within each study,
comparing all reported conditions against their own resting controls
to reduce the effect of technical variation between studies.

Compared to controls, inflamed neutrophils displayed 975
(median) differentially expressed genes (adjusted P < 0.05, absolute
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log2 fold change ≥ 0.5). These comprised 621 (median) significantly
increased and 205 (median) significantly decreased genes (Supple-
mentary Fig. 4a). Both the number of differentially expressed genes
and the genes themselves were heterogeneous—concordant with
the diverse transcriptional responses neutrophils can undergo in
inflammation.

We next searched for potential overlap in the inflammatory
response shared across conditions. Such an overlap may represent a
“core inflammation program”, from which neutrophils preferentially
upregulate genes across a broad range of activating conditions.

We used Fisher’s combined test to obtain a combined test statistic
for each gene, summarizing individual comparisons from all datasets
(Supplementary Data 3). Based on the elbow of the P-value-rank plot,
we selected from the top 500 genes with the lowest P-value those with
absolute log2 fold change ≥0.5 (Fig. 3b).

A total of 221 genes displayed consistent changes in inflamma-
tion across studies: 179 genes were upregulated across comparisons
(the “core inflammation program”), and 42 genes were down-
regulated (Fig. 3c). Effect sizes of those 221 up- and downregulated
genes agreed well across all tested comparisons and across species
(Fig. 3c, Supplementary Fig. 4b).

Core inflammation genes included the IL-1molecules IL1A and IL1B,
the LPS co-receptor CD14, the adhesion molecule ICAM1, the lectin
receptor CD69, CD40, IL4R and CD274 (encoding PD-L1) (Fig. 3c, d).
Downregulated genes in inflammation included the cyclin-dependent
kinase CDK5R1, TLR5 (encoding Toll Like Receptor 5, an essential
pathogen recognition receptor38), CXCR4, CD101, and the member of
the mitogen-activated protein kinase family MAP3K15 (Fig. 3c, d).

As expression of CD101 and CXCR4 changes throughout neu-
trophil maturation and aging, we compared the fold change of these
markers between neutrophils activated in vitro and those activated
in vivo to rule out the effects of differential release from the bone
marrow under stress. No differences were observed in either marker
(Supplementary Fig. 4c), suggesting that the transcriptional down-
regulation of CXCR4 and CD101 observed during neutrophil activation
are cell-intrinsic and do not reflect a different maturation stage of
neutrophils captured in the in vivo studies.

On the level of individual samples, we could confirm that the
group of 179 core inflammation genes had either weak or absent
expression in healthy neutrophils and were induced in inflamed neu-
trophils (Fig. 3d).

Gene set enrichment analysis identified a conserved enrichment
of pathways related to apoptosis, inflammatory response, IL-2 and IL-6
signaling, IFN-γ response, and TNF signaling via NFKB and KRAS sig-
naling (Fig. 3e).

Taken together, this integrative analysis of resting and activated
neutrophils nominated a core inflammation program in neutrophils
which is shared across inflammatory conditions and across species.

The core inflammation program is detectable using different
analytical strategies and in single-cell data
To further test the robustness of the core inflammation program, we
performed two independent analyses. Using a linear mixed model, we
observed high replicability of our results, with differentially expressed
genes (absolute β ≥ 1, Padj < 0.05) identified by the linear mixed model

showing a strong skewing toward low Fisher P-values and a π1-statistic
of 0.71 (Supplementary Fig. 5).

We additionally assessed the replicability of differentially
expressed genes between all tested comparisons. Median values of the
π1-statistic ranged from 0.06 to 0.60, depending on the study, and,
importantly, did not show systematic species-driven differences
(Supplementary Fig. 6a). Normalized enrichment scores for differen-
tially expressed gene sets were in concordance with up-/down-
regulation of the tested sets across all studies, supporting the
existence of a shared core inflammation program. Of note, the
downregulation of specific genes in inflammation was more variable
across studies and hence less informative (Supplementary Fig. 6b).
Pearson correlation coefficients of log2 fold change values showed
strong positive skewing, again pointing toward a core inflammatory
response across conditions and species (Supplementary Fig. 6c).

As an additional analytical approach, we performed a weighted
correlationnetwork analysis (WGCNA)39.WGCNAconstructs correlation
networks and can help to identify clusters of genes (“modules”) that are
co-expressed across different conditions. It identified four modules (19,
5, 8, and 4) with significant enrichment for core inflammatory response
genes (Fisher’s exact test,Padj<0.05). Gene expressionwithin those four
modules increased in inflammation and contained several members of
the core inflammation program (Supplementary Fig. 7).

For validation purposes, we analyzed four recent single-cell RNA-
sequencing datasets that had not been used to derive the core
inflammation program. These included neutrophils from healthy
control individuals and those with mild to moderate or severe COVID-
19 (Combes et al., dataset 1)40, human neutrophils stimulated with
G-CSF, IFN-β or IFN-γ (Montaldo et al., datasets 2+3)41 and mouse
neutrophils infected with E. coli (Xie et al., dataset 4)7.

Expression of most of the 179 core inflammation genes increased
in inflamed neutrophils (Fig. 4a). A gene set was created based on the
179 core inflammation genes, and changes in expression were tested
compared to random background genes with the same expression
abundance. A significant increase in the core inflammation genes
was detected in all conditions and was higher in patients with
severe compared to mild to moderate COVID-19 (Fig. 4b). However,
examination of the expression of the core inflammation program on a
single cell level indicated heterogeneity within the population of
neutrophils, which was characterized by the presence of groups of
cells with exceptionally high or low expression of the defined gene set
in inflamed states (Fig. 4c).

The core inflammation program shows conserved transcrip-
tional regulation across species
To identify putative regulators of neutrophil activation in inflamma-
tion, we applied transcription factor (TF) enrichment analysis indivi-
dually to up- and downregulated genes in each study. TF enrichment
across mouse and human inflamed neutrophils was highly consistent
in TFs with decreasing (Supplementary Fig. 8a) and increasing (Sup-
plementary Fig. 8b) activity.

Transcription factors that we found to be enriched in genes
expressed in resting neutrophils includeAKNA, PU.1 (encoded by SPI1),
FOXO3, FOXO1, TFEB, RARA, and STAT5B (Supplementary Fig. 8a).
Transcription factors thatwe found to be enriched in genes associated

Fig. 1 | Integrative analysis of leukocyte gene expression across species.
a Principal component analysis based on per-species mean-centered log2(CPM) of
lineage-specific genes shows a distribution driven predominantly by lineage.
b Concordant expression of the top lineage-specific genes for each lineage in each
species. Shown is the average of log2(CPM) centered expression values in each
lineage. The number of lineage-specific genes shown is indicated on the left, up to
200 genes are shown per lineage. For each lineage, 8 genes with the highest
expression in the respective cell line are labeled. c Lineage-specific gene expression
dominates the species effect. Shown is the clustering of Pearson’s R based on the

centered expression of top lineage-specific genes. d Neutrophils display the
strongest correlation of lineage-specific gene expression across humans and mice
compared to other leukocyte lineages. Gene expression (mean-centered
log2(CPM)) of lineage-specific genes was defined as above. Pearson correlation
coefficient and P-value (two-sided) between human (x) and mouse (y) gene
expression are shown on the top left (B cells: r =0.65, P < 2.2e-16; Dendritic cells:
r =0.22, P =0.3; Monocytes: r =0.56, P < 2.2e-16; Neutrophils: r =0.79, P < 2.2e-16;
NK cells: r =0.24, P =0.005; T cells: r =0.65, P < 2.2e-16). The top 10 most abun-
dantly expressed genes are labeled. Source data are provided as a Source Data file.
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with inflamed neutrophils included CSRNP1, PLSCR1, FOS, FOSB, the
NF-κB components NFKB1/NFKB2, the emergency granulopoiesis
transcription factor CEBPB and JUNB (Supplementary Fig. 8b).

To reduce this selection of transcription factors to those with the
highest changes in inflammation, we compared the predicted reg-
ulatory activity of transcription factors and their respective gene

expression in inflammation. This analysis highlighted that the genes
encoding for CSRNP1, JUNB, CEBPB, XBP1, and ETS2 were strongly
upregulated in inflamed neutrophils while also displaying strongly
increased regulatory activity (Fig. 5a).

On the level of individual studies, we also found high consistency
in the transcription factors predicted to be enriched in genes

r = 0.84 , P < 2.2e−16
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upregulated and downregulated in activated neutrophils (Supple-
mentary Fig. 8c). These results were consistent with an independent
enrichment analysis performed separately for each species (Supple-
mentary Fig. 8d, e).

Migration into tissue and activation significantly enhance
chromatin accessibility and expression of core
inflammation genes
If genes in the core inflammation program are predisposed to be
upregulated, then chromatin accessibility for these genes should
increase upon neutrophil maturation, migration into tissues, and
exposure to inflammatory stimuli.

To test this hypothesis, we analyzed chromatin accessibility
data derived from bone marrow, blood, and an air pouch model of
acute inflammation. These data were generated using Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-Seq), a
method that tests genome-wide chromatin accessibility. Briefly,
ATAC-seq allows the analysis of chromatin accessibility by sequen-
cing DNA fragments that are bound by a hyperactive Tn5 transpo-
sase, which preferentially inserts sequencing adapters into open
chromatin regions42. In the air pouch model (executed on C57BL/6J
mice), blood neutrophils first migrate into a sterile membrane in the
skin before being activated by zymosan in the air pouch36. Of the 179
core inflammation program genes, 29 displayed increasing accessi-
bility in blood vs. bone marrow, compared to only 10 genes with
decreased accessibility (Fig. 5b). Neutrophils that had transmigrated
from the blood into the membrane displayed enhanced accessibility
of 78 genes. This increase was significantly (P = 5.1 × 10−9) higher
than the increase of 29 genes for neutrophils in blood compared to
bone marrow.

Similar skewing toward enhanced accessibility of core inflamma-
tion genes was observed when membrane vs. bone marrow (89 up,
P = 1.2 × 10−13), inflamed air pouch vs. blood (85 up, P = 1.5 × 10−11), and
inflamed air pouch vs. bone marrow (100 up, P = 2.1 × 10−17) were
compared to blood vs. bone marrow. (Fig. 5b). The number of genes
with increased accessibility was significantly higher than expected by
chance, as compared to the accessibility of randomly selected back-
ground genes. Importantly, the genes with increased and decreased
accessibility were highly consistent across the comparisons (Fig. 5c).

After finding that core inflammation genes have increased chro-
matin accessibility even before the onset of inflammation, we searched
for potential driver transcription factors displaying increasing
expression and regulatory activity in inflammation. Comparing motif
enrichment (HOMER) with actual expression change in air pouch vs.
blood, we observed an increase in both measures for a remarkably
restricted set of transcription factors, namely ATF3, BATF, FOSL1,
JUNB, and JUN (Fig. 5d).

We next investigated whether the core inflammation program
represents a group of genes from which neutrophils preferentially
draw upon exposure to inflammatory stimuli. If this were the case,
then it would be more likely for core inflammation genes to be

upregulated in inflammation compared to all other genes. We ana-
lyzed RNA-seq data from differentiated HoxB8 neutrophils stimulated
with or without zymosan for 2 h36. We observed that in activated
neutrophils, a significantly higher proportion of core inflammation
genes (107/179 ≈ 60 %) was upregulated than expected by chance
(36–74 genes in 1000 simulations using expression-matched back-
ground genes; Poverrepresentation = 6.5 × 10−41) (Fig. 5e).

When evaluating predicted conserved regulatory activity and
change in chromatin accessibility together, JUNB emerged as a pro-
minently affected transcription factor and has previously been
shown to control neutrophil activation36 and to be highly expressed
upon neutrophil activation43. On the other hand, CEBPB has pre-
viously been shown to be a key transcription factor mediating
emergency granulopoiesis44 and showed a high predicted regulatory
activity in our analysis with limited changes in chromatin accessi-
bility. To assess the impact of two transcription factors identified in
our enrichment analysis on the expression of core inflammation
program genes, we repeated the same analysis in differentiated
HoxB8 neutrophils carrying a genetic knockout of either JunB or
Cebpβ. CEBPB showed upregulation in inflamed neutrophils as well
as increased regulatory activity. In addition, JUNB, which plays
an important role in the inflammatory response of neutrophils9,36,
also had increased motif enrichment in the air pouch vs. blood
comparison.

Based on these analyses, we expected a modest reduction in the
expression of core inflammation genes in Cebpβ−/− cells and a stronger
reduction in JunB−/− cells. Indeed, this was the case: In a direct com-
parison of resting knockout (JunB−/− and Cebpβ−/−) versus wild-type
cells, we observed a significantly stronger downregulation of the core
inflammation program in JunB−/− cells (69 genes; P = 1.5 × 10−9) than in
Cebpβ−/− cells (43 genes; P =0.0011) (Fig. 5e and Supplementary Fig. 9).

Comparing zymosan-stimulated knockout cells versus wild-type
cells, we again saw a significant downregulation of core inflammation
genes in the JunB−/− condition (51 genes; P = 0.0025) but not in
the Cebpβ−/− condition (25 genes; P = 0.79) (Fig. 5e and Supplemen-
tary Fig. 9).

Together, these results indicate that maturation and migration
into an inflamed tissue site predisposeneutrophils to upregulate genes
of the core inflammation program and that knockout of Cebpβ and
especially JunB leads to aweaker induction of core inflammation genes
compared to WT cells.

Members of the core inflammation program can be validated on
the protein level in activated human and mouse neutrophils
To validate members of the core inflammation program experimen-
tally, we filtered the list of genes by surface proteins, yielding 36
markers (Fig. 6a)45. Based on antibody availability, we developed a flow
cytometry panel including canonical lineage markers (human: CD15,
mouse: Ly6G) and five proteins predicted to be part of the core
inflammation program: CD14, CD69, CD40, CD274 (PD-L1) and IL-4R
(Supplementary Tables 1 and 2).

Fig. 2 | Conservation of neutrophil gene expression in homeostasis. a Strong
correlation of gene expression between resting human (x) and mouse (y) blood
neutrophils. Left: all genes (r =0.84, P < 2.2e-16). Middle: transcription factors,
highlighted in green (r =0.87, P < 2.2e-16). Transcription factors were retrieved
from a curated set of transcription factors in ChEA3. The top 5 TFs (based on the
sum of the average expression in human andmouse) were labeled and highlighted
in red. Additionally, we manually labeled and highlighted the genes JUND, KLF2,
ATF3, CEBPA, CEBPB, and CEBPE. Right: lineage-specific genes as depicted and
defined in Fig. 1, highlighted in green (r =0.78, P < 2.2e-16). Neutrophil genes were
labeled as in Fig. 1c and highlighted in red. Shown are (log2(TPM+1)) expression
values. Pearson correlation coefficients between human and mouse gene expres-
sion for the three groups as well as P-values (two-sided) are shown in the upper left
of each panel. b Neutrophil lineage-associated genes with orthologs can show

concordant or discordant expression across species. Gene expression heatmap
(log2(TPM+1)) of neutrophil lineage-associated genes that were assigned to five
different expression profile groups: high expression in both species, high expres-
sion in human/mouse and low in the other species, high in human/mouse and no
high-confidence ortholog; see “Methods”. Gene-gene pairs of particular impor-
tance in neutrophils are highlighted (HUMAN SYMBOL:Mouse Symbol). Annotated
are Orthology relationships between the respective genes as well as species in
which the gene was detected as lineage-associated. Right, violin plots of selected
gene-gene-pairs show their expression in individual samples for each species.
Benjamini-Hochberg adjusted P-values derived from a gene-wise likelihood ratio
test between two linear mixed models with and without species as fixed effect are
shown for each highlighted gene-gene pair; see “Methods”. Source data are pro-
vided as a Source Data file.
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We isolated human neutrophils fromperipheral blood andmouse
neutrophils from bone marrow and cultured them over 48 h with or
without the addition of GM-CSF + LPS and GM-CSF + IFN-γ (Fig. 6b).

Prolonged cell culture without activation led to an increase in
CXCR4 and loss of CD62L and CD101 in human cells, whilemouse cells
showed a reversed phenotype with upregulation of CD62L and CD101

as well as a downregulation of CXCR4, suggesting continued matura-
tion of bone marrow neutrophils in vitro and not classical neutrophil
aging (Supplementary Fig. 10). Compared to unstimulated cells, acti-
vated mouse neutrophils significantly upregulated the predicted core
inflammation programmarkers CD14, CD40, CD69, PD-L1, and IL-4R in
the condition containing LPS and all but CD69 in the condition
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containing IFN-γ (Fig. 6c). Human neutrophils displayed a highly con-
cordant increase in those markers. CD69 and PD-L1 increased with
similar magnitude, while upregulation of CD14 was stronger in mouse
neutrophils compared to human neutrophils. In human neutrophils,
upregulation of CD40 was restricted to a small (~2%) population of
neutrophils (in line with previous findings46) but reached significance
on the bulk level for both stimulations (Fig. 6c).

Differences were also noticeable between inflammatory condi-
tions. Inmouseneutrophils, the combination of GM-CSF and LPS led to
a stronger increase in the expression of CD14, CD69, IL-4R, and CD40
compared to GM-CSF and IFN-γ. The reverse was true for PD-L1, which
is driven substantially by IFN-γ signaling8. Further, IFN-γ stimulation
reduced CD69 expression, while LPS increased it. In human neu-
trophils, the combination of GM-CSF and IFN-γ leads to stronger
increases in CD14, CD69, IL-4R, and PD-L1 than the combinationof GM-
CSF and LPS.

A combined diffusion map analysis revealed a high degree
of overlap between mouse and human neutrophils, while cell dis-
tribution was driven predominantly by experimental conditions
(Fig. 6d). Correspondingly, activated neutrophils of both species
displayed a continuous upregulation of the inflammatory response
markers (Fig. 6e).

These findings confirm the predicted activation markers, further
substantiating the conservation of inflammatory response programs in
neutrophils while also revealing differences between species and
inflammatory conditions.

Neutrophil origin and inflammatory condition influence the
expression of the core inflammation program
Neutrophil heterogeneity is influenced by the tissue
microenvironment6,9. To evaluate the impact of tissue origin on the
phenotype of neutrophils in inflammation, we performed stimulation
experiments with paired leukocyte preparations from blood, bone
marrow, and spleen of wild-type BL6 mice. In a principal component
analysis of flow cytometry data, resting neutrophils clustered closely
together, but each tissue remained distinguishable based on subtle
baseline expression differences in IL-4R, CD69, and CD40 (Fig. 7a).
Inflamed neutrophils deviated markedly from their resting counter-
parts and reached distinct states as a function of tissue and inflam-
matory condition (Fig. 7a).

Neutrophils from all tissues upregulated CD69 and IL-4R, sug-
gesting that these markers can be utilized as neutrophil activation
markers across a variety of conditions (Fig. 7a). In contrast, expression
of CD40, CD14, and PD-L1 showed greater tissue dependence. CD40
(evident most prominently in mouse neutrophils) was robustly upre-
gulated in splenic neutrophils and less prominently in blood neu-
trophils. Conversely, CD14 and PD-L1 expression was inducible to a
greater extent in blood neutrophils and bone marrow neutrophils but
less in splenic neutrophils.

We also noted differences related to activating stimuli, for
example, throughmore prominent PD-L1 inductionby IFN-γ compared
to LPS. The single-cell analysis highlighted a continuum of states in all
organs (Fig. 7b), driven by increasing expression of the core inflam-
mation markers (Fig. 7c). Importantly, the core program was already
inducible in bone marrow neutrophils, suggesting that in vitro and
adoptive transfer experiments performed with bone marrow neu-
trophils can recapitulate important features of neutrophil biology in
inflammation.

Discussion
Neutrophils are important mediators of immune defense and prota-
gonists in immune-mediated diseases. Mouse and human neutrophils
differ in morphology, frequency in blood (humans ~50–70%, mice
~10–25%), and expression of marker proteins. For example, mouse
neutrophils are defined by surface expression of Ly6G, not present in
the human genome, whereas mouse neutrophils lack expression of
defensins47.

Both in humans and mice, neutrophils are phenotypically het-
erogeneous acrossdifferent tissues and inflammatoryconditions37,48,49.
Recent studies suggest that neutrophil heterogeneity in homeostasis is
driven by a chronological sequence of maturation and activation
termed neutrotime, whereas the combination of aging, tissue factors,
environmental features, and inflammatory signals promote their
polarization toward distinct states6,7,9.

While the neutrotime signature can be detected in both species
and this overarching principle of neutrophil ontogeny is likely con-
served across humans andmice, it is poorly understoodwhich features
of the neutrophil inflammatory response are shared across species.
Furthermore, it is unclear which aspects of the neutrophil inflamma-
tory response reflect a general inflammatory response program shared
acrossmultiple inflammatory conditions andwhich features are highly
specific to certain triggers or sites of inflammation.

To address these gaps in knowledge, we performed an integrative
analysis of resting and inflamed RNA-seq samples from humans and
mice. We validated our computational approach by comparing gene
expression conservation across six immune cell lineages: T cells, B
cells, monocytes, dendritic cells, NK cells, and neutrophils. Expression
of lineage-specific genes was generally well-conserved across humans
and mice. Intriguingly, neutrophils displayed both the greatest num-
ber of lineage-specific genes and the highest correlation of gene
expression between mice and humans, suggesting a higher degree of
conservation in this phagocytic cell compared to other lineages.

While different inflammatory conditions induced highly hetero-
geneous responses in neutrophils, our combined analysis allowedus to
predict a core inflammation program conserved across mice and
humans. The robustness of this program was underscored by the high
concordance between the gene set derived from Fisher’s combined
test and complementary approaches based on a linearmixedmodel as

Fig. 3 | A core inflammation program is conserved across mouse and human
neutrophils. a Overview of the 11 studies integrated for analysis. Differential
expression testing was performed independently for each study, resting neu-
trophils within each study were used as control. b A combined analysis of the
neutrophil response to activation/inflammation identifies 179 consistently upre-
gulated (core inflammation program) and 42 downregulated genes in inflamma-
tion. Shown are all (N = 9697) tested genes ranked by their −log10 Benjamini-
Hochberg adjusted Fisher P-value (adjusted Fisher’s combined test on two-sided P-
values from individual differential expression analyses for each comparison). The
500 genes with the lowest P-values were subjected to an additional filtering step
based on a log2 fold change cutoff ≥0.5 and ≤−0.5 for upregulated and down-
regulated genes. Highlighted (IL4R, CD14, CD69, CD274, CD40) upregulated genes
were validated experimentally (Figs. 6 and 7). c 42 genes downregulated in
inflammation and 179 core inflammation genes are shared across studies. Shown
are the log2 fold changes across comparisons of genes up- and downregulated in

inflammation. Rows represent a comparison, columns represent genes that passed
our meta-analysis thresholds. Columns are arranged by the mean log2 fold change
across all comparisons. For each direction, the 15 genes with the highest absolute
log2 fold change are labeled, as well as genes encoding for proteins validated in
Figs. 6 and 7.dCore inflammation genes are not expressed in resting neutrophils in
both species and are induced upon activation. Shown is a heatmap with relative
expression values (z-score for each gene across samples) of the core inflammation
genes. Each column represents a gene, and each row a sample. P-values: Results of a
Benjamini-Hochberg adjusted Fisher’s combined test. We labeled the top 20 genes
with the lowest P-values, genes that were also labeled in (c), and manually labeled
TRAF1 and JUNB. e Conserved Gene Set Enrichment Analysis based on rankings
derived from each comparison’s log2 fold changes. Heatmap showing normalized
enrichment scores. Only pathways that have been significant in more than 50% of
comparisons are depicted. Gray fields indicate nonsignificant NES values. Source
data are provided as a Source Data file.
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well as weighted correlation network analysis (WGCNA39,50,51). It is
important to note that different analytical strategies may be used to
derive this core inflammation program, each detecting a varying
number of genes. The situation is similar for differential gene expres-
sion in general, which depends on the chosen method, as has been
reviewed extensively52. Nevertheless, our analysis indicates that a

groupof genes exists fromwhichneutrophils preferentially drawwhen
they become activated across humans and mice and across a large
range of conditions and disease states. The conservation of a small set
of transcription factors predicted to regulate a broad variety of con-
ditions across humans and mice highlights the conserved nature of
gene expression in neutrophils.

Combes Montaldo I Montaldo II Xie

Con
tro

l
M

/M

Sev
er

e

Con
tro

l

G−C
SF

Con
tro

l

G−C
SF

IF
N−b

et
a

IF
N−g

am
m

a

Con
tro

l

E. c
oli

Dataset
Species
Condition

Dataset

Combes
Montaldo I
Montaldo II
Xie

Species

Human
Mouse

Condition

Control
Inflamed

Expression

−0.5

0

0.5

a

**
***

0.0

0.4

0.8

1.2

Con
tro

l

M
/M

Sev
er

e

Combes et al.

*

0.00

0.25

0.50

0.75

1.00

Con
tro

l

G−C
SF

Montaldo et al. (I)

******
***

0.0

0.5

1.0

1.5

Con
tro

l

G−C
SF

IF
N−b

et
a

IF
N−g

am
m

a

Montaldo et al. (II)

*

0.0

0.2

0.4

0.6

0.8

Con
tro

l

E. c
oli

Xie et al.

C
or

e 
P

ro
gr

am
 G

en
e 

S
et

 S
co

re

b

Combes Montaldo I Montaldo II Xie

0 5 0 5 10 15 −5 0 5 10 15 −5 0 5 10
0

5

10

15

0

3

6

9

0

5

10

2.5

5.0

7.5

10.0

12.5

0.00

0.25

0.50

0.75

1.00

Core Program
Gene Set Score

0 5 0 5 10 15 −5 0 5 10 15 −5 0 5 10
0

5

10

15

0

3

6

9

0

5

10

2.5

5.0

7.5

10.0

12.5

Inflammation

Control

Inflamed

UMAP 1

U
M

A
P

 2

c

Article https://doi.org/10.1038/s41467-023-43573-9

Nature Communications |         (2023) 14:8133 9



To validate the predicted core inflammation program in different
models, we analyzed differential gene accessibility in ATAC-
sequencing data from a mouse air pouch model of inflammation. We
found a significant proportion of core inflammation program genes to
be more accessible with maturation and in pro-inflammatory condi-
tions. While this model is very specific, it covered neutrophils from
different maturation stages and presented the opportunity to study
transmigrated and activated neutrophils separately. Further, analysis
of the transcriptome on a single cell level in both in vivo and in vitro
inflamed neutrophils of both species allowed us to validate the core
inflammation program. While the overall enrichment of the proposed
gene set on a pseudo-bulk level was clearly evident, our analyses also
suggested significant heterogeneity within the population of inflamed
neutrophils, consistent with recent analyses7,9,40,41. These analyses
further highlight the predictive value of the program in a method not
used in its generation.

HoxB8-derived neutrophils are a powerful tool to model neu-
trophil function. We assessed the differential expression of zymosan-
activated HoxB8-derived neutrophils versus control, showing a sig-
nificant overrepresentation of core inflammation genes in activated
neutrophils. Zymosan-activated myeloid cells through TLR2 and is a
commonly used pro-inflammatory trigger. The core inflammation
program was reduced in resting cells carrying a knockout of key reg-
ulators of thisprogram(JunB−/− andCebpβ−/−). Core inflammation genes
were also significantly less upregulated in zymosan-stimulated JunB−/−

cells, indicating an impaired neutrophil inflammatory response in
these cell lines. Concordant with previous reports of a more limited
impact of the Cebpβ knockout on inflammatory neutrophil functions
compared to the JunB knockout36, the underrepresentation of core
inflammation genes was nonsignificant in our analysis.

Finally, we validated key components of the predicted core
inflammation program experimentally. Using primary human and
mouse neutrophils, we showed that the surface proteins CD14, CD69,
IL-4R, CD40, and PD-L1 are induced by in vitro cytokine stimulation,
and this upregulation is observable in both species, although CD40
was restricted to a small subset of neutrophils in humans, as
expected46.

This finding further underlines the conserved character of the
inflammation program as presented in this study. Interestingly, while
neutrophils from different mouse tissues upregulated the inflamma-
tory response markers, the magnitude of upregulation differed across
bone marrow, spleen, and blood, suggesting that the tissue origin of
neutrophils is an important consideration in experimental studies.

Recently, Jin et al. identified a distinct neutrophil population
termed “antigen-presenting aged neutrophils (APANs)”53. In humans,
this population was characterized as CD66b+CXCR4+CD62LloCD40+

CD86+, while in mice, they were identified as Ly6G+CXCR4+CD62L-/lo

MHCII+CD40+CD86+. APANs were capable of inducing CD4 T cell pro-
liferation via IL-12 and exhibited a hyper-NETosis phenotype. The

presence of these neutrophils in patients with sepsis was associated
with increased mortality. While we also observed the upregulation of
keymarker genes like CD40 in our study’s core inflammation program,
APANsdisplayeddistinct features, such aselevated levelsofCXCR4 and
coexpression with CD74, suggesting a unique neutrophil polarization
state discriminable from both neutrophil aging and canonical activa-
tion. The phenotype observed by the authors suggests the importance
of further studying APANs, their features and their role in antigen
presentation in humans and mice.

The upregulation of IL-4R we observed is concordant with
reports of IL-4R upregulation during sterile information inmice, with
implications for diseases that are IL-4 mediated54. CD14 has recently
been shown to be an important, highly cell-specific mediator of TNF
response in a mouse sepsis model55. Interestingly, CD14+ macro-
phages and neutrophils were found to be key players leading to
lethality in response to TNF (with improved survival in CD14-deficient
mice), which provides a model for the cytokine storm seen in severe
sepsis and provides evidence for the complexity of CD14-mediated
inflammatory response beyond TLR-signaling. These examples
highlight the importance of core inflammation program members
and stress the need to study them in a broad variety of inflammatory
contexts.

The question of how well mouse models mimic human immu-
nology is an area of ongoing debate. Even the same data can support
different conclusions56,57, highlighting the impact of analytical deci-
sions. Furthermore, it is important to compare suitable datasets,
control for batch effects, andmake comparisons to varying controls to
avoid a shared denominator effect56,58,59.

In the context of neutrophils, fundamental differences between
humans and mice exist60,61. Those differences must be considered
when using the mouse as a model to study neutrophil function,
especially in disease, as previously discussed62. Granule proteins found
in neutrophils play a key role in defense against infection. An impor-
tant difference in the granule protein repertoire includes α-defensins,
which exercise antimicrobe63,64 and chemotactic65 activity and are
absent in mouse neutrophils. It is also known that mouse neutrophils
express less MPO, leading to a more limited capability to produce
hypochlorous acid compared to their human counterpart66. The
importance of cytokine production by neutrophils has been increas-
ingly recognized67,68, with some cytokines such as IFN-β and IL-17
apparently expressed in mouse and not human neutrophils. The dif-
ferent immunoreceptor reservoir69 is, in part, a result of pathogen
responses that are exclusive to the human species. For example,
human neutrophils express specific CEACAMs that mediate uptake of
the human-specific pathogen Neisseria gonorrhea.70, which must be
taken into account when modeling neutrophil responses to this
pathogen71. Taken together, these studies provide important context
to be taken into account when interpreting the core inflammation
program identified.

Fig. 4 | Validation of the enrichment of core inflammation genes in single-cell
RNA sequencing. The first dataset (Combes) includes neutrophils of patients
without (control), mild (M/M), and severe cases (severe) of COVID-19. The second
dataset (Montaldo I) was derived from in vivo neutrophils from healthy controls
(control) and patients treated with G-CSF (G-CSF). The third dataset (Montaldo II)
used in vitro stimulation of umbilical cord blood neutrophils with G-CSF, inter-
feron-β, or interferon-γ. The fourth dataset (Xie) consisted of neutrophils isolated
from different organs of mice challenged with E. coli. a Core inflammation genes
show a higher expression in inflamed samples compared to controls. Shown is a
heatmapwithmean scaled expression values of the core inflammationgenes across
all cells per condition and sample. Rows represent genes, columns samples.
b Inflamed cells show a higher gene module score for the core inflammation pro-
gram. Each cell has been scored for the enrichment of the core inflammation
program genes compared to a random reference gene set of similar expression.
Shownare control samples in gray alongside inflamedcells in orange.P-valueswere

derived from a maximum likelihood ratio test of linear mixed models. Box plots:
Median between the 25th and 75th percentile, whiskers extend to 10% and 90%.
Outliers are shown as dots. Top plot: Statistics are derived from a total of 10,782
cells (Control: 1026, M/M: 5732, Severe: 4024) cells from N = 56 independent
samples (PControl:M/M =0.0109, PControl:Severe = 0.000013). Top mid: The experiment
included a total of 48,875 cells (healthy: 12,338, G-CSF: 36,537) from N = 6 inde-
pendent samples (PControl:G-CSF = 0.01416). Bottom mid: A total of 26,312 cells
(Control: 4296, G-CSF: 5049, IFN-beta: 8472, IFN-gamma: 8495) from N = 4 inde-
pendent samples were analyzed (PControl:G-CSF = 9.42 × 10−5, PControl:IFN-
beta = 2.67 × 10−5, PControl:IFN-gamma = 2.71 × 10−5) Bottom plot: Calculation was per-
formed on 26,239 cells (Control: 8990, E. coli: 17,249) from N = 10 independent
samples (PControl:E. coli =0.0376). c UMAP embedding. Coloring by gene set score
(top panel) and the cell’s inflammatory state (bottom panel) shows an increase in
the core inflammation program expression in inflamed samples compared to their
control. Source data are provided as a Source Data file.
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The derivation of the core inflammation program was limited to
bulk RNA-sequencing samples since a similar analysis using single-cell
studies requires datasets that are only now beginning to emerge. To
circumvent potential batch effects, we focused our analysis on studies
with internal controls of resting neutrophils, excluding other poten-
tially interesting studies containing only neutrophils harvested from
inflamed sites. Analyzed sampleswerealso limited by technical factors,

including the known intron retention in neutrophils72, as well as the
less complex transcriptome associated with low RNA and high RNase
content. Furthermore, analysis of single-cell RNA sequencing data,
the ATAC-seq data from the air pouch model of inflammation, and
RNA-seq data from zymosan-activated HoxB8 samples represent only
selected validation strategies in specific modalities of inflammation,
which might limit the generalizability of some of the findings.
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Nevertheless, our combined analysis of 11 human and mouse
neutrophil transcriptomic datasets identified a largely conserved
transcriptomic landscape across species, supporting the use of mouse
neutrophils to illuminate human biology. We furthermore predicted
and experimentally confirmed the existence of a core inflammation
program conserved across human and mouse inflamed neutrophils.
This study sets the stage for more fine-grained analyses of the epi-
genome, transcriptome, and proteome of neutrophils across varying
conditions,which togetherwill paint a clearer picture of the neutrophil
response to different environments. Going forward, genetic pertur-
bations and pharmacological interventions to interfere with patholo-
gic neutrophil activation will be particularly informative if focused on
programs conserved across species. The systems biology approach
presented here can be transferred to other cell types and organisms to
facilitate further studies comparing gene expression across species.

Methods
Ethics approval
Research with healthy human participants followed the declaration of
Helsinki. Blood of healthy donors was collected under IRB-approved
protocols (Heidelberg S-272/2021 andHeidelberg S-285-2015) approved
by the ethics committee of the University of Heidelberg, Heidelberg,
Germany. Informed consent was obtained from all participants.

Experiments involving animals were conducted under the
approval of the Animal Care Facility Heidelberg and the Animalwelfare
officers (approval #T66/21) at the University of Heidelberg, Heidel-
berg, Germany.

We obtained publicly available RNA sequencing data frommouse
andhuman leukocytes throughGEO (262 samples from24 studies) and
integrated these data by mapping orthologous genes. Differential
expression analysis between resting and inflamed neutrophils was
performed separately for each dataset, and the core inflammation
program was derived using Fisher’s combined test. Transcription fac-
tor enrichment analysis was performed using ChEA3 and DoRothEA
and compared to chromatin accessibility data from ATAC-seq
(GSE161765). The impact of Cebpβ and JunB knockout on the core
inflammation program was studied using RNA-seq data from HoxB8
cells (GSE161765). The core inflammation program was validated in
stimulated mouse and human neutrophils by flow cytometry.

Datasets
For all analyses, we used the following datasets:

RNA sequencing
Datasets of interest were identified through a literature search on
PubMed and the NCBI Gene Expression Omnibus. In total, 262 publicly
available RNA sequencing samples from 24 studies were included.

• Lineage atlas dataset (Table 1): 76 samples, 40 human samples,
36 mouse samples. This dataset is a curated subset of the Hae-
mopedia RNA-Seq atlas. Human cells were from buffy coats of
healthy donors, andmouse cells were fromblood, bonemarrow,
spleen, and lymph nodes.

• Neutrophil dataset (Table 2): 195 samples (including the
9 Haemopedia neutrophil samples, Choi J 2019), 136 human
samples from 13 studies, 59 mouse samples from 11 studies. All
studies in this dataset were selected only to contain neu-
trophils. A subset of this dataset from studies with inflamed
samples as well as healthy controls was used for differential
expression testing and inflammatory core signature construc-
tion. Other subsets of samples from studies not selected for
differential expression analysis have been used in analyses
focusing on healthy control samples (Fig. 2).

RNA-Seq of HoxB8 cells

• Khoyratty TE 202136 18 samples

ATAC-Seq

• Khoyratty TE 202136 5 peak annotations

Flow cytometry

• This study samples from 8 human donors and 9 mice
• This study samples from different organs of 6 mice

Single-cell RNA sequencing

• Xie et al., 2020
• Montaldo et al., 2022
• Combes et al., 2021

Data retrieval and processing
We downloaded raw sequencing reads for the selected studies to the
MLS&WISO bwForCluster using release 1.5 of the nf-core73 fetchngs
pipeline and quantified them using release 3.6 of the nf-core rnaseq
pipeline. The pipelines were launched using nextflow74 (v22.04.0). To
ensure high reproducibility, all pipeline processes were run inside
singularity (v3.9.2) containers. For bulk RNA-seq samples, we map-
ped all downloaded samples using salmon75 (v1.5.2) with the para-
meters libType set to ‘A’ and indexing the reference genomes with 21
base k-mers. Quantified transcripts were summarized to the gene
level using bioconductor-tximeta76 (v1.8.0). All human samples were
mapped to the GRCh38 genome. All mouse samples were mapped to

Fig. 5 | Genes in the core inflammation program are predisposed to be upre-
gulatedwithmaturation and activation. a Shown is themean log2 fold change of
gene expressions across all comparisons versus the regulatory activity (inverse
logarithm of ChEA3 Scores per species). Colors and sizes indicate −log10(P), using
the Benjamini-Hochberg adjusted P-values from a Fisher’s combined test (Fig. 3).
b–d ATAC-sequencing from the air pouch model36. b Members of the core
inflammation program show increasing chromatin accessibility (blood vs. bone
marrow; membrane and air pouch vs. bone marrow or blood). Genes part of the
inflammatory response programwere compared with the list of genes that showed
increased/decreased accessibility in the depicted comparisons. Asterisks indicate
significance versus 1000 repeats of an accessibility analysis of random RNA-
expression-matched background genes (two-sided studentized bootstrap: P1:
7.26 × 10−8; P2: 6.86 × 10−17; P3: 2.09× 10−21; P4: 1.56 × 10−18; P5: 3.07 × 10−22). Bottom-
right: Two-sided Fisher’s exact test on the number of core inflammatory genes with
increased accessibility versus no increase. FDR-adjusted P-values. c Core inflam-
mation program gene accessibility for each comparison. Rows ordered by nested
decreasing rank of peaks associated with an increase, with both, with none, and

with a decrease. d A subset of transcription factors shows increased motif enrich-
ment and increased gene expression in inflamed neutrophils. Motif enrichment
analysis was performed using HOMER and is compared to the mean log2 fold
change across species. A one-sided motif enrichment analysis was run separately
for increased and decreased accessibility to calculate lnðPÞ. ρ, Spearman’s rank
correlation coefficient with its respective P-value (two-sided). e Analysis of HoxB8
cells thatwere treatedwith zymosan36. Core inflammation genes showupregulation
versus randomgenes in zymosan-stimulatedHoxB8 cells and are downregulated in
JunB−/−. Core inflammation genes in HoxB8 neutrophil RNA-Seq data36. One row per
comparison. Left, experimental conditions for each comparison and respective
statistics. Middle, volcano plots for each comparison. Red, Core inflammation
program members. Members with the highest combined significance and effect
sizes are labeled. Right, histograms showing the percentageof expression-matched
background genes (equally sized gene sets, 1000 simulations) up/downregulated
(see x-axes) in each comparison. Red arrow indicates observed percentage for core
inflammation program members, annotated with its Poverrepresentation (one-sided,
Wallenius method99). Source data are provided as a Source Data file.
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the GRCm39 genome unless stated otherwise. Quality control was
conducted using FastQC (Supplementary Data 1). Author-supplied
metadata was queried using GEOquery77 (v2.64.0) and integrated
manually to ensure consistency across studies (Supplementary
Data 2). R (v4.2.0) was used for downstream analyses. Bioconductor
(v3.15) and additional packages were used for downstream analyses

and visualizations51,78–80. Sequencing depths (total amount of map-
ped reads) for human samples in the lineage atlas dataset ranged
between 11,970,326 and 16,060,356 (median 13,267,958), for mouse
samples between 16,076,257 and 33,595,867 (median 18,689,418;
Supplementary Fig. 2a, b). In the neutrophil dataset, sequencing
depths ranged between 195,712 and 57,144,004 (median 29,741,078)
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for human and between 1,022,486 and 42,005,334 (median
12,429,230) for mouse samples. The subset of samples that was
selected for differential expression testing and inflammatory core
program calculation was sequenced between 8,135,455 and
57,144,004 (median 33,522,466) for human and between 1,022,486
and 36,405,228 (median 6,388,735; Supplementary Fig. 2c, d) for
mouse samples.

For single-cell RNA sequencing data, the raw sequencing reads
were downloaded as described above and aligned using cellranger
(v7.1.0) using the GRCh38 genome for human datasets and mm10
genome for mouse samples, respectively. Downstream analysis was
carried out in Python (v3.10) using the scanpy81,82 API (v1.9.3) for data
analysis and visualization.

Orthology analyses and mapping
For downstreamanalyses, genesweremappedusing ENSEMBLVersion
1072.We restricted all our composite cross-species analyses to protein-
coding genes with a high-confidence orthology relationship and
available gene symbols in both species. Mouse and human gene
expression datasets were combined based on these orthologs.

Identification of lineage-associated genes
Lineage-associated genes were identified using a linear model-
based differential expression test, implemented in limma83

(v3.52.0) and edgeR84–86 (v3.38.0). Differential expression testing was
restricted to protein-coding genes that could be assigned high-
confidence orthologs between human and mouse samples. We con-
structed a cross-species count matrix based on those mappings
and referred to each mapped gene by its human gene symbol.
Counts were filtered using edgeR’s filterByExpr filtering approach.
We applied TMM normalization to account for differences in library
composition. We then transformed counts to log2(CPM) values and
estimated weights for each observation using voom. We applied
limma to fit a linear model to our data and calculated differential
expression for a given lineage against all remaining lineages. Lineage-
associated genes were defined as genes that were differentially
expressed in each lineage against all other lineages at a Benjamini-
Hochberg corrected P-value of ≤0.05 and a log2 FC >0. Genes were
ranked according to their F statistic, and up to 200 genes were
selected per lineage.

Lineage PCA, correlation analysis, and clustering
We used these balanced lineage-associated gene sets to perform
PCA as well as correlation and clustering analysis on all samples.
Human and mouse samples were combined as described above. To
emphasize our focus on comparisons between lineages, we mean-
centered log2(CPM) for each species prior to combining the count
matrices. A PCA was computed for all integrated samples, taking
the concatenated lineage-associated gene sets as input features.
Correlation of expression analyses was performed based on the
same features, calculating Pearson’s r correlation coefficient for
each inter-sample combination. We subsequently performed a
hierarchical clustering analysis on the obtained correlation
coefficients.

Comparison of neutrophil lineage gene expression profiles in
resting neutrophils
To compare expression patterns of neutrophil lineage-associated
genes in resting human and mouse neutrophils, we first defined
lineage-associated genes for human and mouse samples separately.
We defined those genes as lineage-associated that were upregulated
(Benjamini-Hochberg corrected P-value of ≤0.05 and a log2 FC >1) in
neutrophils against all other lineages.We nextmapped those gene sets
to their human and mouse counterparts, considering only high-
confidence one-to-one, one-to-many, and many-to-many orthology
relationships. Based on thosemappings, wemerged all genes detected
as lineage-specific in either of the considered species.We also included
genes detected as lineage-specific in either species but could not be
mapped to a high-confidence ortholog. The obtained genes were
subset only to include genes that showed evidence of expression in the
inflammatory dataset.

Taking the computed mappings and log2(TPM+1) expression
values of mapped gene-gene pairs, we tested for differential expres-
sion of those pairs between species using a linearmixedmodel87 (lme4
v1.1-29) accounting for study-related batch effects by including the
study annotation as a random effect:

Full model: log2(TPM+1) ~ species + (1|study)
Null model: log2(TPM+1) ~ (1|study)
P-values were computed by performing a likelihood ratio test

between these models. We subsequently adjusted those values using
the Benjamini-Hochberg correction method based on the total num-
ber of tested gene-gene pairs (genes that appeared as lineage-specific
in either specieswere expressed in the inflammatory dataset and could
be mapped to one or more counterparts with high confidence).

Using the average expression of mapped gene-gene pairs and dif-
ferential expression P-value, we defined 5 different expression profiles:
Genes that showed high (>95th percentile of all genes that were
detected as lineage-specific in either species) average expression levels
in both species and did not exhibit differential expression between
species (Benjamini-Hochberg corrected P-value ≥0.05, absolute beta <
1). Additionally, we defined 4 divergent clusters of genes that had high
expression levels in only one of both species and showed evidence of
differential expression (Benjamini-Hochberg corrected P-value <0.05,
absolute β ≥ 1) or were abundantly expressed but could not be assigned
an orthologous gene in the other species respectively.

Differential expression testing
We performed differential expression analyses between inflamed and
resting conditions on a total of 112 samples from N = 11 (human: 7,
mouse: 4) studies. To account for potential batch effects between
studies, we used DESeq288 (v1.36.0) in each of the studies individually
to identify differentially expressed genes in inflamed compared to
healthy control samples. Each study’s gene list was pre-filtered to only
include genes with counts >1 in at least 1 sample before differential
expression analysis, based on the negative binomial distribution. To
remove noisewhile preserving significant differences, log2 fold change
results were then shrunk using the apeglm package89. Differential gene
expression results were additionally filtered through DESeq2’s default
independent filtering approach, as well as its count outlier filtering.

Fig. 6 | Experimental validation of the core inflammation program on the
protein level. a Inflammation-specific protein-coding genes were identified by fil-
tering the genes depicted in Fig. 3c for the surfaceome as previously described45.
Genes that encode proteins selected for validation (based on antibody availability
and panel design) are labeled in red. b Experimental overview. Human and mouse
neutrophils were isolated from peripheral blood or bone marrow, respectively,
cultured 48 h, and analyzed in flow cytometry. c Flow cytometry analysis of resting
and activated mouse and human neutrophils. The gating strategy is depicted in
Supplementary Fig. 11. Significance indicates adjusted P-values of a Dunn’s test

(two-sided) that followed a Kruskal-Wallis H test (significant for all markers). Exact
P-values are provided in the Source Data file. d Top, diffusion map embedding of
neutrophils from humans andmice cultured for 48hwith or without GM-CSF+ LPS
andGM-CSF+ IFN-γ. Diffusionmapembedding calculatedbasedonCD69, CD14, IL-
4R, and PD-L1. Bottom, diffusion map embedding of human and mouse neu-
trophils, colored by species. e Diffusion map embedding colored by marker
expression highlights a continuum driven by increasing expression of the activa-
tion markers. Source data are provided as a Source Data file.
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Identification of a core inflammation program
To assess which inflammation-driven changes in the neutrophil tran-
scriptome are shared across conditions and conserved across species,
we applied a Fisher’s combined test to the adjusted P-values of each
gene in each study, restricting the analysis to genes that passed our
expression filter as well as DESeq2 filters in ≥80% of studies. This
analysis provided a Benjamini-Hochberg-corrected composite P-value
for all genes and allowed us to rank genes by their likelihood of dys-
regulation in inflammation. Additionally, we calculated a mean log2
fold change for each gene across all studies.

Based on a rank-P-value plot (Fig. 3b), we determined a P-value
cutoff at a rank equaling 500, corresponding to an adjusted Fisher
P ≤ 6.164117 × 10−40. Genes with an absolute log2 fold change greater
than or equal to 0.5 and an adjusted P-value below our defined
threshold were considered conserved in inflammation. We defined the

upregulated subset (log2 FC ≥0.5) of those conserved genes as the
core inflammation program.

Pathway enrichment analysis
Inflammatory pathway enrichment analysis was performed for each
study individually using the fGSEA implementation of the Gene Set
Enrichment Analysis method. For each study, the differential expres-
sion analysis results were ranked by log2 fold change. Enrichment was
calculated for hallmark gene sets that were retrieved from the Mole-
cular Signatures Database90 (v7.5.1).

Data preprocessing for single-cell RNA-seq
Datasets were imported using the raw count matrices from cellranger.
First, empty droplets were determined by estimating the profile of
ambient mRNA and testing deviations from this profile using a
Dirichlet-multinomialmodel ofUMI count sampling as implemented in
the EmptyDrops method91 (implemented in the DropletUtils package,
v1.18.1). Ambient RNA correction was applied using the soupX-
algorithm92 (v1.6.2), and doublets were determined using a computa-
tional doublet detection tool that uses artificially created cell doublets
to identify real cell doublets by nearest-neighbor-analysis in gene
expression space93 (v1.12.0). Cells expressing hemoglobin-related
genes in a proportion above 0.02 were excluded, as well as cells con-
taining less than 250 (Xie et al., Montaldo et al.) or 100 (Combes et al.)
unique genes per cell. Cells with a content above 5% (Xie et al.) or 10%
(Combes et al., Montaldo et al.) of mitochondrial genes were also
excluded. Cell types were identified using the SingleR package94

(v2.0.0) in R with BlueprintEncodeData and MonacoImmuneData as
reference datasets for human datasets and ImmGenData as reference
dataset for mouse data, as provided by the package celldex94 (v1.8.0).
Data were log-normalized, and neutrophils were selected. For UMAP
visualization, the 2000 genes containing the highest variance were
selected and UMAP was computed using the scanpy API with default
settings.

Gene set enrichment in single-cell RNA-seq
The gene counts were normalized and log1p transformed using
scanpy. The enrichment of genes belonging to the core program was
quantified using the difference between the average expression of the
core inflammation program genes and the average expression of a
random reference set of genes95 that have been sampled to match the
expression distribution of the core inflammation program (scanpy
score_genes function with default settings). We tested for enrichment
in inflamed conditions using a linear mixed model with the sample
(and organ for the dataset from Xie et al.) as a random effect and the
respective treatment as a fixed effect. For datasets with multiple
inflamed conditions, a respective model was created for each com-
parison separately. P-values were calculated by performing a max-
imum likelihood test between both models as described above. For
visualization, the gene set scores were quantile-capped to the 5th and
95th percentile.

Transcription factor enrichment analysis
In order to identify regulators associated with genes induced or
downregulated in inflammation, we used ChEA396 with default settings
as described9, using the 250most significantly up- and downregulated
genes, respectively, for each condition, ranked by their adjusted P-
value. We then calculated the arithmetic mean of the negative loga-
rithms of the ChEA3 scores per species and transcription factor to
compare average TF activity across species.

We used a paired t-test to assess significant differences between a
TFs ChEA3-enrichment in up- against downregulated genes across all
comparisons. The resulting P-values were corrected using a Benjamini-
Hochberg correction for all tested TFs. We used these corrected P-
values to determine if a TF was significantly more enriched in genes

Table 1 | Lineage atlas dataset

Lineage Species N samples

B cells Human 8

Dendritic cells Human 7

Monocytes Human 7

Neutrophils Human 3

NK cells Human 5

T cells Human 10

B cells Mouse 2

Dendritic cells Mouse 4

Monocytes Mouse 6

Neutrophils Mouse 6

NK cells Mouse 2

T cells Mouse 16

Table 2 | Neutrophil dataset

Species Study name Used for signature construction N samples

Human Adrover JM 202010 FALSE 6

Human Catapano M 202011 FALSE 11

Human Choi J 201912 FALSE 3

Human Franco LM 201913 FALSE 2

Human Grabowski P 201914 FALSE 22

Human Vecchio F 201819 FALSE 8

Human McCreary M 2019 TRUE 10

Human Miralda I 202016 TRUE 16

Human Mistry P 201917 TRUE 28

Human Ter Haar NM 2018107 TRUE 6

Human Thomas HB 201518 TRUE 12

Human Wright HL 201321 TRUE 6

Human Wright HL 202020 TRUE 6

Mouse Bhalla M 202122 FALSE 7

Mouse Casulli J 201923 FALSE 3

Mouse Coffelt SB 201524 FALSE 4

Mouse Choi J 201912 FALSE 6

Mouse Germann M 202026 FALSE 4

Mouse Hsu BE 201927 FALSE 4

Mouse Zhu YP 201831 FALSE 3

Mouse Gal-Oz ST 201925 TRUE 12

Mouse Hutchins AP 201528 TRUE 4

Mouse Stasulli NM 201529 TRUE 6

Mouse Yan Z 201930 TRUE 6
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upregulated in inflammation or vice-versa. We subsequently inferred
transcription factor activity using DoRothEA97 (v1.8.0) and decoupleR98

(v2.2.2), taking advantage of the species-specific transcription factor
databases. Here, log2 fold change matrices per species served as input,
leading to enrichment scores with their respective P-values. For down-
stream analyses, we calculated themean enrichment scores per species
and preserved the highest observed P-value for each transcription fac-
tor. For data visualization (Fig. 5a), only transcription factors where the
respective gene had an assigned P-value in Fisher’s combined test are
shown (N =680). Genes encoding transcription factorswith amean log2
fold change ≥0 were merged with transcription factor scores that were
derived from the upregulated score set (as in Supplementary Fig. 8b),
and genes with a mean log2 fold change <0 were merged with tran-
scription factor scores that were derived from the downregulated score
set (as in Supplementary Fig. 8a). Labeling was selectively applied for
genes encoding transcription factors with the 10 highest absolute log2
fold changes per direction which fall under the adjusted Fisher’s com-
bined P-rank cutoff of 500 genes, as well as the 5 transcription factors
with the lowest P-values and CEBPB.

ATAC-sequencing analysis
We retrieved ATAC-sequencing data from mice that were subjected
to the air pouch model of acute inflammation (GEO: GSE161765,
mapped to the GRCm38 genome). Genes annotated based on dif-
ferentially accessible peaks as defined in the study (Padj < 0.05, log2
fold change > 1.5) were compared with the conserved upregulated
genes as defined in the core inflammation program. The ratio and
number of core inflammation program genes that were associated
with projected increased accessibility served as an input for pairwise
Fisher’s exact tests, and P-values were adjusted using the Benjamini-
Hochberg method. For each comparison, the significance of the
number of core inflammation genes with increased accessibility was
retrieved by comparing the number with the results of this analysis
using a 1000-fold repeated random selection of expression-matched
background genes (as described below for RNA sequencing).

RNA-sequencing analysis of zymosan-treated HoxB8 cells
We retrieved featureCounts (per ENSEMBL-ID) from HoxB8 cells that
were subjected to differentiation and zymosan treatment (GEO:
GSE161765, mapped to the GRCm38 genome). Differential expression
analysis was performed as described in the respective section above.
We restricted the analysis to HoxB8 cells that were differentiated for
5 days and then compared (1) wild-type cells that were treated for 2 h
with zymosan (50 µg/ml) or DMSO (control), (2) resting stable knock-
out HoxB8 cell lines versus wild type, (3) zymosan-treated stable
knockout HoxB8 cell lines versus zymosan-treated wild-type HoxB8
cells. A significant up- or downregulation of core inflammation pro-
gram genes was then assessed by performing pairwise over-
representation analyses. For each overrepresentation analysis, we
defined differentially expressed genes as genes with an FDR ≤0.05 and
a |log2 fold change| ≥ 1. We then used goseq (v1.48.0) to calculate a
Probability Weighting Function for the given set of genes, and calcu-
lated P-values by approximating the true distribution by the Wallenius
non-central hypergeometric distribution as previously described99.

The control expression was calculated as previously described95.
For each comparison, the gene expression was distributed in 25 bins.
Then, each core inflammation program member was assigned to its
respective bin. The randomized sets were then sampled according to
the distribution of core inflammation program gene expressions. This
sampling was repeated 1000 times.

Experimental validation
The list of ranked conserved inflammatory response genes was filtered
to include genes encoding surface proteins using the surfaceome
resource45. The remainingN = 69 surface protein-encoding genes were

then filtered by available human and mouse antibodies (BioLegend),
and a panel consisting of CD14, CD69, CD40, IL-4R, and PD-L1 was
selected for validation.

Human samples
Neutrophils were isolated using density gradient centrifugation with
Polymorphprep as previously described8: 30ml whole blood was
layeredonto 20mlPolymorphprep (Progen#1114683) and centrifuged
at 535 × g for 35min. The PBMC-containing layer was discarded by
suction, and neutrophils were recovered and subjected to hypotonic
lysis using 0.2% NaCl. The cells were subsequently washed with cell
culture medium (RPMI 1640 (Gibco #21875-034)) supplemented with
10% heat-inactivated FBS (PAN Biotech #3302/P101102) and 1% Gluta-
MAX (Gibco #35050-061) and seeded at 5 million cells per 6 wells in a
total volume of 5ml at a humidified atmosphere at 37 °C with 5% CO2.
The cells were cultured over 48 h either in the absence of cytokines
(vehicle control), with GM-CSF + IFN-γ or GM-CSF + LPS. GM-CSF was
used at afinal concentrationof 100U/ml (R&D#215GM), IFN-γ at 10 ng/
ml (BioLegend #570208), and LPS at 100ng/ml (Invivogen #tlrl-
3pelps). After 48h, 1 million cells were collected and stained using the
Zombie Yellow Fixable Viability Kit (BioLegend #423103) for live/dead
discrimination, followedby an antibody panel (Supplementary Table 1)
in 50 µl of FACS buffer (2% FBS, 5mM EDTA and 0.1 sodium azide in
PBS) for 25min.

Mouse samples
Mice were housed under SPF conditions with a 12 h light/dark cycle, a
humidity of 50–60%, a temperature of 22 ± 2 °C and food and water
available ad libitum.Male and female C57BL/6Jmice were sacrificed by
cervical dislocation, and bone marrow was extracted by flushing with
RPMI. Neutrophils were enriched by density centrifugation using His-
topaque 1077 (Sigma-Aldrich #10771) and Histopaque 1119 (Sigma-
Aldrich #11191). Cells were recovered from the interphase of both
Histopaque layers and centrifuged. Cells were washed with RPMI
containing 10% FBS and 1% Glutamax and seeded at 106 cells/ml in 48
well plates in a total volumeof 500 µl. MouseGM-CSF (Peprotech #315-
03, 100 U/ml), mouse IFN-γ (Peprotech #315-05, 10 ng/ml), and LPS
(Invivogen #tlrl-3pelps, 100 ng/ml)were added to themedium for 24 h
and 48h in combination as indicated in the respective figures. Cells
cultured in the absence of cytokines were used as controls. After the
indicated times, cells were collected and stained with the antibody
panel (Supplementary Table 2) in 50 µl of FACS buffer containing 2%
FBS, 5mM EDTA and 0.1% sodium azide.

To assess neutrophils from different organs, mice were sacrificed
by cardiac puncture under generalized anesthesia. Subsequently, the
femora and tibiae were flushed with PBS to obtain bone marrow. Any
remaining fat was removed from spleens, and splenic tissue was
mechanically disintegrated using the back of a syringe. Cells were
pelleted at 400×g, and erythrocytes were lysed using ACK Lysing
Buffer (Lonza #10-548E) for 5min at 4 °C. Cells were seeded at 106

cells/ml in 48 well plates in a total volume of 500 µl. Cytokines were
added as described above for a total of 8 h.

Flow cytometry
Flow cytometry was performed on a BD LSRII flow cytometer. At least
50,000 events were recorded per sample. FCS files were exported by
FACSDiva and subsequently gated and compensated in FlowJo
(v10.8.0) for single, living, andCD15+ (human) and Ly6G+ (mouse) cells.
Eosinophils were excluded based on high autofluorescence in the live/
dead (Pacific Orange) channel (Supplementary Fig. 11). Gated events
and their median fluorescence intensity values were exported and
concatenated into a single-cell experiment usingCATALYST100 (v1.16.2)
in R (v4.2.0). The dataset was arcsinh transformed using manually
determined cofactors8,101 and clustered by FlowSOM clustering and
Consensus-Plus-Metaclustering. For combined analysis of human and
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mouse cells, both datasets weremean-centered, scaled, and combined
into one SingleCellExperiment. Dimensionality reduction was per-
formed using the DiffusionMap algorithm as implemented in the
CATALYSTpackagewith standard settings. For visualization, a random
subset of 1500 cells per sample was plotted using ggplot2102 (v3.3.5).
Principal components were calculated based on the median fluores-
cence values of the respectivemarker proteins per sample and plotted
using matplotlib (v3.5.1) in Python (v3.9.1).

Gene ontology enrichment analysis
We used EnrichR103–105 to assess enriched gene sets in a given list
of genes. The analysis was restricted to terms annotated in
GO_Biological_Process_2021.

Linear mixed-effect model
To validate the core inflammation program derived from Fisher’s
combined test, we globally tested for differential expression between
resting and inflamed cells including all samples used in the Fisher’s
combined testing approach. We accounted for batch effects by cor-
recting gene counts for the study using ComBat-Seq106 (sva v3.44.0).
From batch-corrected counts, we calculated TMM-normalized log2
countspermillion thatwere subsequentlyquantile normalizedand then
used as input for linear modeling. Modeling was implemented using
lme487 (v1.1-29) to fit a linearmixed-effects model (LMM) to normalized
counts. The linear formulae we fit for each gene were defined as f ull :
expression∼ condition+ 1jstudy and reduced : expression∼ 1jstudy,
where the variable to test for was condition, and the study was used as
the covariate thatwas considered to be the randomeffect.We retrieved
β as an estimate for the log2(FC) from the full model and subsequently
performed a likelihood ratio test to compare the full with the reduced
model and to retrieve the respective P-values. P-values were then
adjusted using the Benjamini-Hochberg procedure. We accounted
for batch effects by correcting gene counts using ComBat-Seq106

(sva v3.44.0).

π1-statistic
Using the qvalue-package39,50,51 (v2.28.0), we calculated the π1-statistic
(1- π0) as an estimated proportion of truly significantly differentially
expressed genes for a given set of P-values. To account for a selection
of genes potentially biased toward low P-values when testing for the
replicability of DEGs between studies, qvalue-calculation was imple-
mented via the qvalue_truncp function.

Gene expression modules using WGCNA
For WGCNA39 analysis, we selected the same samples that were used
for differential expression testing. We accounted for batch effects by
correcting gene counts usingComBat-Seq106 (sva v3.44.0). Frombatch-
corrected counts, we calculated TMM-normalized log2 counts per
million that were subsequently quantile normalized and then used as
input for WGCNA. The network was constructed as a signed network,
using a soft thresholding power of 13, a minimum module size of 30,
and a merge cut height of 0.25. Modules with more than 1000 genes
were removed from subsequent analyses.

Statistical analyses
Correlations indicated on scatter plots represent Pearson’s R (Pearson’s
correlation coefficient) with their respective P-value. For comparisons
of themean, we used theMann-Whitney U test (two groups) or Kruskal-
Wallis H test (three groups) if the Shapiro-Wilk test indicated non-
normality in at least one group. When multiple comparisons were
performed, P-values and/or asterisks indicate adjusted P-values using
the Holm-Bonferroni method unless stated otherwise. For pairwise
comparisons, the Mann-Whitney U test was used post-hoc, taking mul-
tiple comparisons into account using the Holm-Bonferroni method. To
test for categorical associations, we used Fisher’s exact test. Asterisks

represent the following P-value ranges: P>0.05, ns. 0.01 < P≤0.05, *.
0.001 < P≤0.01, **. 0.0001 < P≤0.001, ***. P≤0.0001, ****.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data was used frompublicly available platforms (Gene
Expression Omnibus and European Nucleotide Archive), and all
accession numbers are listed in Supplementary Data 2. Flow cyto-
metry data have been deposited at flowrepository.org under the
accession FR-FCM-Z6U3 and FR-FCM-Z6U4. All other data are avail-
able in the article and its Supplementary files or from the corre-
sponding author upon request. Source data are provided with
this paper.

Code availability
Analysis code is publicly available on GitHub: https://github.com/rgb-
lab/inflamed_neutrophil_transcriptome.
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