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Accurate and efficient estimation of local
heritability using summary statistics and
the linkage disequilibrium matrix

Hui Li1, Rahul Mazumder2 & Xihong Lin 1,3

Existing SNP-heritability estimators that leverage summary statistics from
genome-wide association studies (GWAS) are much less efficient (i.e., have
larger standard errors) than the restricted maximum likelihood (REML) esti-
mators which require access to individual-level data. We introduce a new
method for local heritability estimation—Heritability Estimation with high
Efficiency using LD and association Summary Statistics (HEELS)—that sig-
nificantly improves the statistical efficiency of summary-statistics-based her-
itability estimator and attains comparable statistical efficiency as REML (with a
relative statistical efficiency >92%). Moreover, we propose representing the
empirical LD matrix as the sum of a low-rank matrix and a banded matrix. We
show that this way of modeling the LD can not only reduce the storage and
memory cost, but also improve the computational efficiency of heritability
estimation. We demonstrate the statistical efficiency of HEELS and the
advantages of our proposed LD approximation strategies both in simulations
and through empirical analyses of the UK Biobank data.

In the last decade, advances in biotechnology have enabled the esti-
mation of genetic variance contributed by genotyped variants without
requiring assumptions about the shared environmental effects1–6.
These methods estimate the so-called SNP-heritability (h2

SNP), defined
as the proportion of phenotypic variance caused or tagged by geno-
typed variants, and have led to critical insights into the genetic archi-
tectures of complex traits and diseases7. The existing h2

SNP -estimation
methods canbebroadly categorized as either basedon individual-level
genotypic and phenotypic data1,2,8–11, or based on summary statistics
from genome-wide association studies (GWAS)3,4,6,12.

Estimators that use individual-level data are generally more pre-
cise (i.e., have smaller standard errors), but the applicability of these
methods is limited due to data-sharing restrictions. On the other hand,
h2
SNP -estimation methods that are based on GWAS summary statistics

are more widely applicable, but they suffer the drawback of low sta-
tistical efficiency11,13. For instance, studies have shown that the variance
of the h2

SNP estimates from LD-score regression (LDSC) is much larger
than that of a REML-based estimator14,15. Other methods, such as
Generalized Random Effects (GRE) and Randomized HE-regression

(RHE-reg) are also less precise than REML based on
simulation results10,11. To address the limitations of existing methods,
we introduce Heritability Estimation with high Efficiency using LD and
association Summary Statistics (HEELS)—an accurate and statistically
efficient estimator of h2

SNP that only requires summary-level statis-
tics. Our method is applicable and most suitable to local heritability
estimation.

Our work has two main contributions to the literature of h2
SNP

estimation. First, we propose an iterative procedure that uses
variant-level statistics to solve the REML-score equations by trans-
forming the Henderson’s algorithm for variance component esti-
mation in linear mixed models (LMMs)16,17. The variant-level
statistics required by HEELS includes the marginal association sta-
tistics fromGWAS and the correlation statistics estimated in-sample
(i.e., empirical LD matrix). We show both analytically and through
extensive simulations that the HEELS estimator attains a compar-
able level of statistical efficiency or precision as the conventional
individual-level-data-based REML estimators, such as GREML1 and
BOLT-REML2. The relative efficiency of HEELS is significantly higher
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than that of the state-of-the-art summary-statistics-based methods,
i.e., the estimates from HEELS have much smaller variances.

Second, we introduce a low-dimensional representation of the LD
as the sum of a banded and a low-rank matrix ("Banded + LR"). This
structure is motivated by the fact that releasing the empirical LD is
beneficial for many downstream analyses that utilize variant-level
statistics10,18, but doing so is difficult due to the high dimensionality of
LD. Although efforts to release large LD matrices are underway19,
better approximation strategies are needed to facilitate efficient
sharing of the LD matrix and to improve the computational efficiency
of analyses that involve LD. In this work, we show that our proposed
“Banded + LR" structure can ameliorate the challenges associated with
LD in heritability estimation.We use an optimization approach to solve
for the best representation of LD and we evaluate the performance of
different low-dimensional approximations in the context of h2

SNP esti-
mation. Compared to existing methods, our proposed approach not
only achieves greater approximation accuracy, but also yields herit-
ability estimates that are less biased.

We applied HEELS to estimate the local SNP-heritability of a wide
range of complex traits and diseases in the UK Biobank (UKB). Con-
sistentwith our simulation results, the estimates fromHEELS arehighly
concordantwith the estimates fromREML.Weused themore precisely
estimated local bh2

SNP estimates from HEELS to contrast the genetic
architectures and to prioritize genetic regions that are enriched for
related traits (e.g., lipid traits, blood-cell and leukocyte traits).

In summary, we focused on improving the statistical efficiency of
the heritability estimator using variant-level summary statistics. We
chose LMM as the simplest and most widely understood model to
demonstrate the merits of our approach in terms of statistical effi-
ciency gain both conceptually and empirically. We hope our work can
encourage future development ofmethods that producemore precise
heritability estimates.

Results
Overview of HEELS
In a nutshell, HEELS uses variant-level statistics, including marginal
association statistics and the LDmatrix, to estimate SNP-heritability by
iteratively solving the REML score equation17. Because the score
equations solved by HEELS are identical to those solved by GREML1,
HEELS yields heritability estimates that are as precise as thosebasedon
REML-based estimateswhich typically require individual-level data.We
first introduce some notations and define h2

SNP under the linear mixed
model, assuming individual-level data is available.

Let y be a length-n vector that denotes the phenotypes of n
samples. Denote by X 2 Rn×p the genotype matrix of n individuals
based on p markers or SNPs. We standardize X and y such that the
variance of the phenotypes is 1 and the variance of each marker-
specific genotype vector is 1/p, or diag(X⊤X/n) = 1/p.Weuse anadditive
geneticmodel for the phenotypes asy =Xβ + ϵ, whereβ is ap × 1 vector
assumed to follow Nð0,σ2

g IpÞ and ϵ is a length-n vector distributed as
ϵ∼Nð0,σ2

eInÞ. Under these assumptions, y ~N(0,V), where the
variance-covariance matrix is V � varðyÞ= σ2

gXX
> + σ2

eIn. SNP-
heritability is defined as h2

SNP = σ
2
g=ðσ2

g + σ
2
e Þ (Methods).

Now suppose we do not have access to the individual-level data,X
and y, and are only provided with the marginal association statistics,
S =X⊤y and the LD matrix R =X⊤X. (For the sake of simplicity of
exposition, we omit the scaling by 1=

ffiffiffi
n

p
for Sor 1/n forR, as the scaling

does not affect the derivation of the HEELS estimator.) We show that
the REML score equations for ðσ2

g ,σ
2
e Þ can be solved using these

summary-level statistics, i.e., S and R only, by applying the Sherman-
Woodbury matrix identity to the Anderson’s algorithm for solving the
variance components (Supplementary Notes). HEELS iterates between
updating the Best Linear Unbiased Predictor (BLUP) estimates of the
joint effect sizes bβ and updating the variance component estimates
ðσ2

g ,σ
2
e Þ until convergence. Let the superscript (t) denote the value of a

variable or a parameter at iteration t. The HEELS estimation procedure
is as follows:
1. Update the BLUP joint effect size estimates using:

bβðtÞ
= ½WðtÞ��1

S, where WðtÞ =
½ bσe

2�ðtÞ

½cσg
2�

ðtÞ Ip +R ð1Þ

2. Update σ2
g using:

½bσ2
g �

ðt + 1Þ
=

bβðtÞ>bβðtÞ

p� trð½WðtÞ��1Þ
ð2Þ

3. Update σ2
e using:

½bσ2
e �

ðt + 1Þ
=
y>y� S>bβðtÞ

n
ð3Þ

We initialize ½σ2
e �

ð0Þ
,½σ2

g �
ð0Þ

with some random values on (0, 1), and
repeat steps 1–3 until convergence, i.e., change in bσ2

g ,bσ2
e between two

consecutive iterations is sufficiently small. The HEELS estimator for
heritability is ĥ

2

HEELS = bσ2
g=ðbσ2

g + bσ2
eÞ.

We provide derivation details on the updating Eqs. (1–3) and
further explain the intuition behind these expressions in the Supple-
mentary Notes. Notably, the algorithm above does not use the raw
individual-level data X or y, but only utilizes summary statistics S and
R, which are sufficient statistics for the variance component para-
meters in our model. When sample variance y⊤y/n is known, imple-
menting the procedure above is straightforward.When it is not known,
we can use the Z-scores, approximate y⊤y/n by 1 and rescale bσ2

g ,bσ2
e at

each iteration. Similar approximation strategies have been adopted by
other summary-statistics-based methods20.

The primary reason for the high statistical efficiency of HEELS is
that the estimating equations of ðσ2

g ,σ
2
e Þ solved by HEELS are identical

to the REML score equations of ðσ2
g ,σ

2
e Þ17. We developed our procedure

by applying the Woodbury matrix identities to Henderson’s iterative
algorithm16,17,21, which are known to be useful for computing the
maximum-likelihood estimators in a linear mixed model22,23. The main
contribution of our method lies in the transformation of this algo-
rithm, such that only variant-level statistics are needed. The asymp-
totic variance of the variance components can be derived using the
likelihood theory. Importantly, the variance estimator can also be re-
expressed using summary statistics S,R only, and thus the uncertainty
in our estimates can be quantified without access to the individual-
level data as well. We apply the multivariate delta method to obtain a
plug-in estimator of the variance of ĥ

2

HEELS (Methods).

Accuracy and statistical efficiency of the HEELS estimator
To evaluate the performance of the HEELS heritability estimator, we
performed simulations using the genotype array data of 332, 430
unrelated British white individuals in the UK Biobank. We define rela-
tive efficiency (RE) of a heritability estimator as the ratioof the variance
of the GREML estimator and the variance of the estimator in
comparison24,25. A high RE implies that the estimator ismore precise or
has a lower variance. We selected GREML1, LDSC3, GRE10 and HESS12 as
the representative h2

SNP -estimators to be compared with HEELS. The
othermethods are not included in our comparison due to our focus on
improving the statistical efficiency of summary-statistics-based herit-
ability estimators. In the Supplementary Notes, we provide a more
comprehensive review of the existing h2

SNP -estimation approaches,
with their key advantages and limitations summarized (Supplementary
Table 1).

We first simulated quantitative phenotypes using the LMMmodel,
where the causal effect sizes of all genetic markers follow a normal
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distribution and contribute to the genetic variance equally. We found
that HEELS is unbiased in finite samples and attains high statistical
efficiency. In particular, we found a high degree of concordance
between the estimates from REML-based estimators (such as GREML
andBOLT-REML)whichuse individual-level data and those fromHEELS
which only relies on variant-level summary statistics (Fig. 1). When the
full set of samples in the UKB is used, the relative statistical (RE) effi-
ciency of HEELS reaches as high as 99.44%, whereas GRE and LDSC
have much lower RE’s of 19.81% and 8.68%, respectively (Table 1).

LDSC’s lack of statistical efficiency has been observed in previous
studies12,14,26,27. We provide a stylized argument to contrast the statis-
tical efficiency of LDSC and HEELS under the framework of moment-

matching methods14 (Supplementary Notes). Briefly, the score equa-
tions solved by HEELS coincide with the estimating equations of the
most efficient generalized method-of-moment estimator. Since LDSC
can be viewed as a method-of-moment estimator with sub-optimal
weights, its statistical efficiency is expected to be lower than that of
HEELS. In simulations,we found that GRE andHEELS areboth unbiased
regardless of sample size, but GRE is less statistically efficient that
HEELS (Supplementary Fig. 1). The variability of the GRE estimates is
particularly high when sample size is small, as expected from the
theory and the derivation of GRE10. Even when the full UKB is used, the
variance of ĥ

2

GRE is still five times as large as that of the HEELS
estimator.

Fig. 1 | Comparison of the performance of HEELS with different methods using
simulation studies. Simulated phenotypes using real genotypic data from the UK
Biobank, array SNPs on chromosome 22 with MAF > 0.01 (n = 30, 000, p = 9, 205).
a Local h2

SNP estimates from HEELS using summary statistics vs GREML using
individual-level data. Red-dotted line: y = x. bAnalytical SE estimates fromHEELS vs
GREML. Red-dotted line: y = x. c Distribution of the h2

SNP estimates from 100 simu-
lations using different methods: GREML and BOLT-REML use individual level data;

HEELS, GRE and LDSC use summary statistics. Red-dotted line: true h2
SNP of 0.25.

The lower andupperhinges correspond to thefirst and thirdquartiles (the 25th and
75th percentiles). The upper (lower) whisker extends from the hinge to the largest
(smallest) value no further than 1.5 × IQR from the hinge (where IQR is the inter-
quartile range). Data beyond the end of the whiskers are called “outlying" points
and are plotted individually. dMSEs of the h2

SNP estimates using different methods.
e Relative efficiency of different methods compared to GREML.

Table 1 | Relative efficiencies of different summary-statistics based h2
SNP estimators (HEELS, GRE, HESS) compared with

individual-level data based estimator (REML) in simulation studies

Polygenicity Sample size Empirical variance of heritability estimates Relative efficiency (to REML)

REML HEELS GRE LDSC HEELS GRE LDSC

1 332k 1.43E-05 1.44E-05 7.24E-05 1.65E-04 99.44% 19.81% 8.68%

1 140k 2.15E-05 2.20E-05 6.53E-05 1.77E-04 97.82% 32.94% 12.17%

1 40k 4.05E-05 4.07E-05 1.32E-04 5.45E-04 99.54% 30.76% 7.43%

1 30k 6.19E-05 6.74E-05 2.55E-04 7.32E-04 91.91% 24.25% 8.46%

0.5 30k 6.80E-05 7.26E-05 2.58E-04 8.71E-04 93.69% 26.38% 7.81%

0.2 30k 9.35E-05 1.00E-04 2.98E-04 8.89E-04 93.16% 31.42% 10.52%

0.1 30k 1.16E-04 1.29E-04 4.39E-04 8.91E-04 90.17% 26.41% 13.02%

Sparsity and sample sizes are varied across settings. REML estimates are computed using GCTA for small sample (30k), and BOLT-LMM for large samples (40k, 140k, 332k). Statistical relative
efficiency: ratio between the variance of REML and the variance of an estimator. Polygenicity: the proportion of genetic markers that are causal.
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We also compared the performance of HEELS with that of
HESS, which is a state-of-the-art method for local heritability
estimation12. We found that the HESS estimator is sensitive to the
degree of LD regularization applied through the truncated SVD
(Supplementary Fig. 2), a phenomenon that has been reported in
the original paper. In contrast, HEELS is unbiased when the full LD
matrix is used, and we explicitly minimize the bias of the herit-
ability estimator when the LD is approximated (see below). It is
worth noting that the analytic form of the HESS estimator closely
resembles that of the GRE estimator, despite their disparate
modeling frameworks. Both GRE and HESS can be viewed as
principal-component regression (PCR)-based estimators (Supple-
mentary Notes). In simulations, we indeed observed that the HESS
estimates are closer to the GRE estimates as the amount of LD
regularization decreases (Supplementary Fig. 2), matching the
theory which implies an alignment of ĥ

2

HESS and ĥ
2

GRE when LD is
estimated in-sample and without regularization.

Next, we considered relaxing the infinitesimal assumption
and altered the sparsity of the causal effects. Although this vio-
lates the LMM assumption, we render it an important scenario to
consider in order to assess the robustness of our estimator. In
simulations, we observed that HEELS remains unbiased and sta-
tistically efficient under these mis-specified model scenarios
(Table 1). We note that sparsity of the causal effects generally
increases the variability of the heritability estimates, but the
statistical efficiency of HEELS remains the highest among
summary-statistics-based methods (Supplementary Fig. 3). Across
settings of various levels of polygenicity and sample sizes, HEELS
leads to an increase in precision that is equivalent to increasing
the GWAS sample size at least 3 times or 7 times, compared to
GRE and LDSC, respectively (Supplementary Fig. 4). These results,
demonstrating the robustness of the HEELS estimator, are con-
sistent with previous work that showed REML’s robustness under
sparse genetic architectures, further illustrating the likeness
between HEELS and REML. Our findings also corroborate the
theoretical findings that suggest REML’s consistency under non-
infinitesimal models28 and its larger asymptotic variance under
sparse architectures29.

Finally, we evaluated the Type I error rates controlled by different
methods. We found that the standard error of HEELS is well-calibrated
regardless of the sample size as long as themodel is correctly specified
(Supplementary Fig. 5). The standard errors reported by BOLT-REML
using individual-level data generally lead to correct coverage but can
be anti-conservative when sample size is small. The standard errors
from GRE can result in under-coverage, as has been reported (see
Supplementary Table 4 of Hou et al.10). When the true effect size does
not follow a normal distribution, we observe under-coverage for all
LMM-based estimators. Nevertheless, the calibration of HEELS is still
better than GRE and LDSC, and is most comparable to REML across
settings (Supplementary Fig. 6).

A unified framework to compare LD approximations
It is a well-known challenge in statistical genetics that the LDmatrix is
expensive to store and compute with. While several low-dimensional
representations of the LD have been proposed and used in the litera-
ture (e.g., banding30–32, shrinkage regularization30,33, truncated SVD12,34

and low-rank approximation26,27), the impact of LD approximations on
heritability estimation remains unclear. We aim to construct a low-
dimensional representation of the LD matrix that can help reduce the
computational cost of HEELS heritability estimation without incurring
much loss of accuracy or efficiency in the h2

SNP estimates. To this end,
we propose representing the in-sample LD matrix, R, as the sum of a
banded matrix and a low-rank matrix ("Banded + LR"),

R≈Rb +Rr =Rb +
Xr
k = 1

λkuku
>
k =Rb +UrΛrU

>
r , ð4Þ

where Rb is a banded matrix with a central bandwidth of b; Rr is a low-
rank matrix with rank r; λk and uk (also diagonal entries of Λr and
columns of Ur) are the k-th eigenvalues and eigenvectors of Rr. We
consider six different strategies to decompose or represent the
empirical LD using this “Banded + LR" structure (Table 2), all of which
take the form of the expression in Eq. (4), but differ in terms of (1)
whether the banded component is a diagonalmatrix, in which case the
approximation becomes a spiked covariance matrix35, and (2) whether
the banded and low-rank components are constrained to be positive
semi-definite (PSD).

The “Banded + LR” approximation provides a unified framework
for analyzing and evaluating the performance of various LD approx-
imations, because most of the existing LD approximation strategies
can be viewed as special cases of Eq. (4). For instance, regularizing the
LD via the truncated SVD is equivalent to using “Banded + LR" while
setting b =0; the most common way of approximating the LD is
banding, which corresponds to a “Banded + LR" structure with r =0.
The motivation behind our proposed “Banded + LR" structure
(b >0, r >0) is twofold. On one hand, since correlations between two
genetic markers are typically induced by physical proximity, the vast
majority of the non-zero elements of LDmatrix lie on the central band.
On the other hand, we want to retain the in-sample correlation struc-
ture outside of the central band. We found that oftentimes there are
appreciable non-zero off-central-band elements in finite samples, and
methods such as HEELS utilizes these values to produce accurate
estimates.

To solve for the best representation of the LDmatrix, we adopt an
optimization approach, minimizing jjR � eRjj2F , where eR is the
approximation in the form specified in the third column of Table 2.We
explain the distinctions between the different LD approximations in
Methods and provide further details on their respective estimation
procedures in Supplementary Table 2. Briefly, the “Seq_Band_LR"
strategy first bands the LD matrix and then performs low-rank
decomposition on the residual off-banded matrix; the “PSD_Band_LR"

Table 2 | Summary of the proposed LD approximation methods

Structure Strategy name Form of Decomposition Property of the approximation

Spiked covariance Spike_LR Diagðσ2,:::σ2Þ+UrΛrU
>
r PSD as long as r < <p

Spiked covariance Spike_PSD Diagðσ2,:::σ2Þ+ LrL
>
r PSD guaranteed

Spiked covariance Spike_PSD_hetero Diagðσ2
1 ,:::σ

2
pÞ+LrL

>
r PSD guaranteed

Banded + Low-rank Seq_Band_LR Rb +UrΛrU
>
r PSD not guaranteed

Banded + Low-rank PSD_Band_LR LbL
>
b +UrΛrU

>
r PSD as long as r < <p

Banded + Low-rank Joint_Band_LR LbL
>
b +LrL

>
r PSD guaranteed

Six methods are proposed to approximate the LD matrix using either (1) a the spiked covariance matrix (Spike_LR, Spike_PSD, Spike_PSD_hetero) or (2) the sum of a banded and a low-rank matrix
(Seq_Band_LR, PSD_Band_LR, and Joint_Band_LR). SeeMethods and SupplementaryNotes for further explanations. PSD: positive semi-definite. b: bandwidth of the banded component; r: rank of the
low-rank component. {L,U,Λ}: Cholesky factor, eigenvector and eigenvalue of the target matrix. Subscript of L,U,Λ represents the component, b for banded or r for low-rank.
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strategy first approximates the banded part of the LD matrix using a
PSDmatrix and then performs low-rank decomposition on the residual
matrix; the “Joint_Band_LR" strategy jointly approximates the banded
and the low-rank components using PSDmatrices.Wehavederived the
asymptotic variance of our HEELS estimator, which only depends on
the variant-level statistics, i.e., the additional variance incurred by the
approximation can be quantified without having to access the full LD
matrix (Supplementary Notes).

Efficacy of the banded plus low-rank representation
In simulations, we found that our proposed “Banded + LR" repre-
sentations approximated the original full LD well and led to more
accurate ĥ

2

HEELS than the existing methods (Fig. 2). We attribute the
efficacy of our proposed “Banded + LR" representation to the fact that
it retains the central band of the covariancematrixwhile exploiting the

signals in the residual off-central-band part of the LD matrix. Compu-
tationally, the reduction of runtime pertains to our application of the
Woodbury formula to the low-rank matrices, which helps circumvent
the need of direct matrix inversion in HEELS heritability estimation.

Relative to using the full LD matrix ("Exact_LD"), approximating
the LD using a “Banded + LR" structure markedly improves the com-
putational efficiency of HEELS, reducing the runtime by 29.40%,
73.02% and 73.26% for “Seq_Band_LR", “PSD_Band_LR" and “Join-
t_Band_LR", respectively (Table 3). The greater efficiency gain of the
“PSD_Band_LR" and “Joint_Band_LR" strategies is attributable to
the PSD assumption (Supplementary Notes). The storage cost of the
Banded + LR approximations is also substantially lower (i.e., more
than 70%). For fine-tuned approximation settings (e.g., “PSD_Band_LR"
with b = 400 and r = 800), the bias in the heritability estimates is even
smaller than that when the full LD is used (relative bias of 0.22% vs

Fig. 2 | Comparison of the performance of different LD approximation strate-
gies. Simulated phenotypes using real genotypic data fromUKBiobank, array SNPs
on chromosome 22 with MAF > 0.01 (n = 332, 430, p = 9, 220). Labels of the
approximation strategies are explained in Table 2. b denotes the bandwidth of the
banded component. r denotes the number of factors in the low-rank component.
a Approximation accuracy, measured by jjeRjjF=jjRjjF , where eR is the approximated

LD matrix. Dotted lines are the reference levels: red—85%; blue—95%. b h2
SNP esti-

mates from 100 simulations. Red reference line represents the true heritability
value of 0.25. The upper (lower) whisker extends from the mean to the values
1.96 × SE above (below) the mean. The “LR_only" approximations lead to large bias
in h2 estimation, so are omitted from the comparison.
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1.12%), while runtime and storage decrease by 68.92% and 74.16%
respectively. Overall, we determined that our proposed “Banded + LR"
representations can improve the computational efficiency of HEELS
across hyperparameter settings without incurring large loss of accu-
racy and efficiency.

In comparing the performance of the three “Banded + LR" stra-
tegies, we found that they have varying degrees of sensitivity with
respect to changes in the hyperparameter values b and r (Supple-
mentary Fig. 7). Nevertheless, they converge in their approximating
abilities (Supplementary Fig. 8) and lead to small bias when b and r are
sufficiently large (Supplementary Fig. 9). The bandwidth of the banded
component plays a critical role in determining the magnitude of the
bias in h2

HEELS as well as runtime, whereas the number of the low-rank
factors fine-tunes the estimator (Supplementary Fig. 10). Among the
three “Banded + LR" strategies, we recommend using “PSD_Band_LR"
as the default, as it is least sensitive to changes in hyperparameter
values (b and r) and leads to the smallest accuracy and efficiency loss,
though it tends to produce slightly upwardly biased h2

SNP estimates
(Supplementary Figs. 7–12).

Finally, we developed a data-adaptive procedure to select the
optimal hyperparameter values of b and r using cross-validation (“CV”).
We refer to this procedure as “pseudo-validation”, as it does not require
actual held-out samples but only relies on simulated summary statistics
(Methods). We validated the effectiveness of this procedure, by verify-
ing that the optimal hyperparameter values obtained from this algo-
rithm indeed yield accurate ĥ

2

HEELS estimates (Supplementary Fig. 13).
To improve the computational efficiency of our tuning procedure, we
implemented our own version of the incremental SVD algorithm36, and
adopted several computational techniques to speed up the approx-
imation and the tuning procedure (Supplementary Notes).

Precise estimates of local heritability in the UK Biobank
We applied HEELS to estimate the local SNP-heritability of 30 anthro-
pometric, medical and behavioral traits in the UK Biobank (Methods),
using the LDblocks estimatedbyBerisa andPickrell37, whichhave been
widely used to proxy approximately independent loci on the human
genome38–40. We used Z-statistics for all phenotypes and interpret
heritability on the liability scale for binary traits8,41,42. In line with our
expectation based on the theoretical and simulation results, there is an
exceptionally high concordance rate between the local heritability
estimates from HEELS and those from REML (r2 = 0.98 on average

across the traits), which is the gold standard or the most efficient
estimator but requires individual-level data (Fig. 3). In contrast, the
correlations between the GRE or HESS estimates and the REML esti-
mates are weaker (r2 = 0.88).

HEELS yields standard errors that are most comparable to those
from REML, which is based on individual-level data, and its relative
efficiency is higher than all the other summary-statistics based meth-
ods (Supplementary Table 3). We applied our hyperparameter tuning
algorithm to obtain the optimal representations of the LD blocks, and
found that these LD approximations perform well, yielding local h2

estimates that are concordant with those which are based on the full
LD (Supplementary Fig. 15). The “Joint_Band_LR" strategy leads to less
accuracy loss compared to the other two strategies ("Seq_Band_LR"
and “PSD_Band_LR"), plausibly due to its greater capacity of approx-
imating the LD (Supplementary Fig. 17).

Applications of HEELS: Contrasting polygenicity of complex
traits anddiseases; Identifying risk lociwithputative pleiotropic
effects
Studies have shown that complex traits and diseases have different
degrees of polygenicity43. Local heritability estimation provides a
useful tool for comparing the polygenic architecture of complex traits,
as its distribution pattern across the genome can reflect the degree of
which heritability is spread among loci12,44. Using local heritability
estimatedwith greater precision fromHEELS, we found varying degree
of polygenicity across a wide range of traits (Supplementary Fig. 18).
For instance, the heritability of behavioral traits and anthropometric
traits aremore evenly spread out across the genome, whereas those of
autoimmune diseases and allergic conditions, lipid traits are more
localized and disproportionately dispersed on the genome. Alter-
natively, we evaluated the polygenicity of complex traits by examining
the Pearson correlation coefficients between local heritability and the
size of the genomic regions. Indeed, we observed a near-perfect linear
relationship between chromosome length and the fraction of h2

SNP
explained by the chromosome for highly polygenic traits, such as BMI
(r2 = 0.988), WHR (r2 = 0.919), educational attainment (r2 = 0.991) and
neuroticism (r2 = 0.990). In contrast, the correlations are much lower
for less polygenic traits, such as HDL (r2 = 0.295), LDL (r2 = 0.537) and
autoimmune diseases (r2 = 0.757) (Supplementary Fig. 19).

Next, we used the local heritability estimated from HEELS to
identify risk loci that are enriched for related traits and thus potentially

Table 3 | Summary of the performance of different Banded + LR approximation strategies

Strategy Average across hyperparameter settings

LD approximation accuracy Heritability estimates Runtime

Bias MSE In seconds % saved

Exact_LD 100% 0.00112 1.35E-05 234.60 -

Seq_Band_LR 92.62% 0.02185 3.43E-03 165.63 29.40%

PSD_Band_LR 92.50% 0.00392 3.74E-05 63.29 73.02%

Joint_Band_LR 94.45% 0.01154 1.55E-04 62.74 73.26%

Strategy Fine-tuned hyperparameter settings

LD approximation accuracy Heritability estimates Runtime

Bias MSE In seconds % saved

Seq_Band_LR 93.67% 0.00001 1.74E-05 121.44 48.24%

PSD_Band_LR 93.57% 0.00022 1.39E-05 44.04 81.23%

Joint_Band_LR 95.70% 0.00795 7.88E-05 44.13 81.19%

Simulated phenotypes using real genotypic data from UK Biobank, array SNPs on chromosome 22 with MAF > 0.01 (n = 332, 430,p = 9, 220). The top panel shows the average performance across
hyperparameter settings, with b varying from 300 to 600 in increments of 100, and r varying from 300 to 800 in increments of 50. The bottom panel shows the performance of the fine-tuned
hyperparameter settings: (b, r) = (500, 500) for “Seq_Band_LR", (b, r) = (400, 800) for “PSD_Band_LR", and (b, r) = (500, 800) for “Joint_Band_LR". The second column shows the LD approximation
accuracy, measured in Frobenius norm, as jjeRjjF=jjRjjF , where eR is the LD approximation. The operating characteristics of the heritability estimates are based on 100 simulated phenotypes. The
runtime reported is for theHEELSheritability estimation (i.e., not including theoptimization to solve for the optimal representation). The computational cost of the existing LD approximationmethods
and newly proposed Banded + LR methods is reported in Supplementary Tables 4 and 5 respectively.
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host pleiotropic effects (Fig. 3). Our results recapitulate known disease-
associated loci from previous findings. For example, we found that the
Major Histocompatibility Complex (MHC) (Chr6:31-34Mb) shows
strong pleiotropic signals for immunologically relevant diseases and
leukocytes involved in innate immunity and inflammatory response.
This region, also referred as the human leukocyte antigen (HLA), is
known to be highly polygenic45 and plays a key role in the induction and
regulation of immune responses46–48. We also identified Chr19:45-46Mb
as a heritability hotspot, which is highly enriched for multiple lipid and
cardiometabolic traits while being moderately enriched for leukocytes.
This locus harbors the gene cluster—APOE, APOC1, APOC4, APOC2—
which code for apolipoproteins that are known to be responsible for
controlling plasma lipid levels, with subsequent implications in cardi-
ovascular pathology49. Our results highlight the probable presence of
pleiotropic effects regulating lipid metabolism50,51.

We identified two loci that may provide novel insights into the
shared genetic basis between related traits and diseases. First, we
found that the Chr19:16-18Mb locus is not only enriched for leukocytes
suchasplatelet, lymphocyte andeosinophil, but also enriched for peak
expiratoryflow. Recent studies have associatedplatelet-to-lymphocyte
ratio (PLR) with the severity of COVID-19, as the PLR of patients can
indicate the degree of cytokine storm52,53. Our results suggest a puta-
tive link between the inflammatory markers and lung functions on a
genetic level, and point to a specific region with putative pleiotropic
effects. Further study of this locus may help illustrate its prognostic
value for impaired pulmonary functions due to systemic inflammation.

Another region of particular interest is Chr4:143–146Mb, which is
highly enriched for all three of the lung function traits in our analysis
(Supplementary Fig. 16). Although no evidence has directly implicated
this region for lung functions, the 4q31 locus—which contains this

Fig. 3 | Analysis results from application of HEELS to UKB. a Comparison of
heritability estimates and standard errors between BOLT-REML and summary-
statistics-based methods (HEELS, GRE, HESS) (n = 332, 340). Each dot represents a
local estimate at one locus for a given trait. Red dashed line: y = x. b Heritability

enrichment of multiple diseases and traits at putative pleiotropic risk loci. Loci
locations on the Y-axis are denoted by the start and end positions (in Mbp). The
shade of eachbox represents the enrichment of heritability for the given regionand
trait, with log transformation.

Article https://doi.org/10.1038/s41467-023-43565-9

Nature Communications |         (2023) 14:7954 7



block—has been prioritized in three previous GWAS studies54–56 and
one meta-analysis57. One plausible explanation for the pleiotropic
effects of this region is that it hosts the Hedgehog (Hh)-interacting
protein (HHIP) gene, which is associated with multiple pulmonery
traits, such as FEV1/FVC ratio, chronic obstructive pulmonary disease
(COPD) and lung cancer58–61. As a regulator of the Hh signaling path-
way,HHIP is vital for embryonic lung development and is also involved
in mature airway epithelial repair62. We hypothesize that the observed
pleiotropic effects at this locus may be attributable to the HHIP gene
and its broad influence on lung functionality63,64.

Discussion
To summarize, we have introduced HEELS, a likelihood-based
approach to obtain highly efficient heritability estimators in linear
mixedmodels, using variant-level statistics that canbe publicly shared.
HEELS requires marginal GWAS summary statistics and the in-sample
LD matrix, but yields highly precise estimates that are comparable to
REML-based estimators which typically require individual-level data.
HEELS outperforms the existing summary statistics-based heritability
methods such as LDSC, GRE andHESS, in terms of statistical efficiency.

Another important contribution of our work is that we showcase
the benefits of approximating the LD matrix using a banded matrix
plus a low-rank matrix. We demonstrate in simulations that this low-
dimensional representation can improve the computational efficiency
of HEELS heritability estimation but incurs minimal loss of accuracy or
efficiency. The pseudo-validation procedure we propose provides a
principled way to select hyperparameters for the Banded + LR
approximation, in contrast to existing approaches which make some-
what arbitrary assumptions about the structure of the LD. Our pro-
posed low-dimensional approximations of the LD can be employed
more generally to facilitate the storage and sharing of large LD
matrices.

We discuss several limitations of our current work and outline
some future directions. First of all, our estimator is derived based on
the LMM, which assumes a normal distribution of the causal effect
sizes. This assumption greatly simplifies our comparison between
HEELS and REML, and helps illustrate themain conceptual advance we
aim to make relating to statistical efficiency. However, these assump-
tionsmay be relaxed in twomain ways. One is to allow zero effects and
incorporate sparse components in modeling the distribution of effect
sizes. This direction has been explored in the literature under the
framework of Bayesian variable selection, leading to the development
of methods, such as BSVR65, BSLMM66 and the Bayesian-alphabet
models67. However, studies have shown that these methods provide
less statistically efficient heritability estimators than REML (even when
the LMM assumption is met)68. Future research is needed to develop
heritability estimators that are more efficient than REML under a
sparse genetic architecture. Another direction is to adopt a more
flexible heritability model, where SNP-specific contributions to the
genetic variance varies depending on the allele frequency and the level
of LD. This alternative scheme was put forward by authors of the
LDAK9 model and have been examined carefully in their subsequent
works. In simulations, we observed that indeed, HEELS can be biased
under mis-specified models, and that the amount of bias varies with
the strength of MAF/LD dependency (Supplementary Fig. 20). This is
not surprising, given the existing evidence in the literature, showing
that GREML is biased when SNP-specific genetic variance is not evenly
distributed10,15. However,wenote thatHEELS incurs less bias than LDSC
and has the lowest MSE across different settings of model mis-
specification (Supplementary Fig. 21). Further studies are warranted to
extend HEELS and to explicitly accommodate both the sparse effects
and the marker-specific weights.

Second, we emphasize that HEELS depends on the in-sample LD.
This requirement is related to the fact that we define heritability in the
LMM conditional on the genotypes X. In simulations, we observe that

replacing the empirical LDwith the out-of-sample LD inHEELS can lead
tobiasedheritability estimates. Further researchonhowout-of-sample
LD can influence the statistical properties of the HEELS estimator is
needed. Currently, we caution against applying HEELS to mismatched
LD and GWAS summary statistics. Furthremore, HEELS can potentially
be applied to summary statistics from meta-analyses, but the key
challenge is how to appropriately integrate the LD from multiple
cohorts or sources. One fruitful direction for future research is to
explore ways to combine the low-dimensional representations of the
LD matrices from different studies18. In rare variant association tests,
researchers routinely release both the vector of score statistics and the
LD matrices when publishing association studies69–72. While this is not
yet standard practice for common variant analyses, we advocate
including the in-sample LD matrix, in potentially approximated
form, as part of the summary-level statistics when publishing GWAS
results. This will enable researchers to more precisely characterize the
genetic architecture of a disease (e.g., through HEELS or GRE), facil-
itate privacy-preserving benchmarking efforts73, and alleviate pro-
blems related to mismatched ancestry when using external reference
panels for meta-analyses74.

Lastly, we note that the HEELS estimator is best suited for
studying and contrasting local heritabilities. Applying HEELS to a
larger set of markers (e.g., genome-wide estimation) can be difficult
for twomain reasons. First, the computational cost of running HEELS
scales with the number of markers (rather than the sample size), so
the estimation will require additional computational resources when
applied to larger regions on the genome. Second, we determined in
simulations that aggregating local heritability estimates can lead to
biased global heritability estimates, a phenomenon that has been
observed previously10, and may be attributable to LD leakage, i.e.,
non-zero correlations between SNPs on different blocks12,34. It is of
future research interest to develop scalable algorithms to optimally
approximate the LD for larger regions on the genome using our
proposed Banded + LR representations. This advance will make
HEELS applicable to estimate the total genetic variance of hundreds
of thousands of markers.

Methods
Statistical model
Let y be a length-n vector that denotes the phenotypes of n samples.
Denote by X 2 Rn ×p the genotype matrix of n individuals based on p
markers or SNPs. We standardize X and y such that the variance of the
phenotype is 1 and the variance of each marker-specific genotype
vector is 1/p, or diag(X⊤X/n) = 1/p. Let S and R denote the the marginal
association statistics and the in-sample LD matrix, i.e., S =X⊤y and
R =X⊤X. (For the sake of simplicity of exposition, we omit scaling by
1=

ffiffiffi
n

p
for S or 1/n for R, as the scaling does not affect the derivation of

the HEELS estimator.) Our goal is to develop a heritability estimator
using the two statistics (S,R), which attains comparable statistical
efficiency as the REML estimator based on individual-level data (X, y).
We start by considering the likelihood function, assuming individual-
level data can be accessed.

We use the standard genetic association model with additive
effects, y =Xβ + ϵ, where β is a p × 1 vector assumed to follow
Nð0,σ2

gIpÞ, and ϵ is a length-n vector distributed as ϵ∼Nð0,σ2
eInÞ.

Under these assumptions, we have y ~N(0,V), where
V � varðyÞ= σ2

gXX
> + σ2

eIn. We define SNP-heritability as the following,

h2
SNP :=

VarðXβjXÞ
VarðyjXÞ =

VarðXβjXÞ
VarðXβjXÞ+σ2

e
=

trðσ2
gIpX

>XÞ=n
trðσ2

gIpX
>XÞ=n+ σ2

e

=
σ2
g

σ2
g + σ2

e
:

The log-likelihood function for ðσ2
g ,σ

2
e Þ is,

‘ðy;σ2
g ,σ

2
e Þ= � 1

2 lnjVj � 1
2y

>V�1y: ð5Þ
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Henderson developed a set of equations16,22, known as the mixed
model equations (MME), which maximize the joint density of the
outcomes and the random effects,

‘ðy,β; σ2
g ,σ

2
e Þ= � 1

2σ2
e
ðy� XβÞ>ðy� XβÞ � 1

2σ2
g
β>β

� n
2
logðσ2

e Þ �
p
2
logðσ2

g Þ:
ð6Þ

TheBest LinearUnbiased Predictor (BLUP), which are estimates for the
random effects from these MMEs, can be plugged into the score
equations for the likelihood in (5), which generates an iterative pro-
cedure for estimating the variance components.17,21 We exploit the
“dual" form of this algorithm, which gives rise to the HEELS estimator.
For simplicity, we have assumed that all of the observable environ-
mental factors have been projected out, but the covariates (i.e. fixed
effects) can be easily incorporated back into the model by adopting
the restricted maximum likelihood approach using the projection
matrix75,76.

The HEELS procedure
HEELS uses the marginal association statistics S =X⊤y and the empiri-
cal LD matrix R =X⊤X to solve for the variance component estimates
that maximize the likelihood in Eq. (5), alternating between updating
the BLUP estimates β̂ and updating the variance component estimates
ðbσ2

g ,bσ2
e Þ until convergence. The marginal likelihood in Eq. (5) can be

expressed using the joint likelihood Eq. (6) and the probability of the
causal effects, using the partition theorem (Supplementary Notes),

‘HEELSðS,R;σ2
g ,σ

2
e Þ= � 1

2
log σ2

eIn
�� ��� 1

2
log Ip +

σ2
g

σ2
e
R

�����
�����

� 1
2σ2

e
y>y� S> σ2

e

σ2
g
Ip +R

 !�1

S

0@ 1A:

ð7Þ

It can be shown that the score equations of (σ2
g ,σ

2
e) derived from the

likelihood in Eq. (5) are identical to the score equations based on Eq.
(7), giving rise to our HEELS updating Eqs. (2) and (3) (Supplementary
Notes). The BLUP estimates can be viewed as ridge estimators of the
joint effect sizes, where the penalty coefficient is set to the current
value of σ2

e=σ
2
g at each iteration.

We emphasize that the HEELS algorithm does not entail any
standalone individual-level data X or y, but only depend on the sum-
mary statistics S,R. The involvement of the variance term for pheno-
types y⊤y in Eq. (3) does not necessarily imply a requirement to access
y, especially if the phenotypes and genotypes are standardized (see
similar discussions in Zou et al.20). In practice, when only the
Z-statistics are available, we scale the estimates of σ2

g ,σ
2
e at each

iteration as: ½σ2
g �

ðt + 1Þ
= ½σ2

g �
ðtÞ
=ð½σ2

g �
ðtÞ
+ ½σ2

e �
ðtÞÞ,½σ2

e �
ðtÞ
= ½σ2

e �
ðtÞ
=ð½σ2

g �
ðtÞ
+

½σ2
e �

ðtÞÞ, which is equivalent to approximating y⊤y/n by 1. We conducted
extensive simulations to validate that the HEELS estimator remains
unbiased when such an approximation is applied, although the effi-
ciencyof the estimator can be slightly affected.Wenote that theHEELS
procedure can be viewed as equivalent to an EM algorithm (Supple-
mentary Notes), where the resulting estimates are stable numerically
and belong to the parameter space77. This is an important feature that
is not universally shared with other REML estimation algorithms such
as theAnderson’s algorithm21,78 and theNewton-Raphson’s algorithm79.

Standard error of the HEELS estimator
Wederive the analytic varianceof theHEELS estimator using the Fisher
information matrix. For true values of the variance components σ2

e ,σ
2
g

and a positive definite variance-covariance matrix V, the Fisher

Information Matrix is (Supplementary Notes):

Iðσ2
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2
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1
2
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:

Using properties of trace and the identity of W := σ2
e

σ2
g
Ip +X

>X, we can
rewrite the Fisher information using the summary statistics and the LD
matrix as the following77:
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whereW is defined in the same way as in Eq. (1). To obtain a variance
estimator for h2

SNP � σ2
g

σ2
g + σ

2
e
:= f ðσ2

g ,σ
2
e Þ, we apply the multivariate Delta

method, and use the plug-in estimator:

dVarðĥ2
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2
e Þ

2Þ: Importantly, Eq. (9) only

involves S,R, so we can compute the asymptotic variance of h2
HEELS

without individual-level data.

Low dimensional representations of the LD matrix
We adopt an optimization approach to solve for the best representa-
tion of LDwith a “Banded + LR" structure,minimizing jjR � eRjj2F , whereeR is the working approximating matrix in the form specified in the
third column of Table 2. For example, the “Joint_Band_LR" approach
simultaneously solves for the banded and the low-rank components of
the approximation using PSD matrices,

eLb
,eUr

= arg min
Lb ,Ur2LpðRÞ

jjR � LbLb> � UrUr>jj2F ð10Þ

where LpðRÞ denotes the set of p × p lower triangularmatriceswith real
entries. The “PSD_Band_LR" strategy involves a two-step procedure,

eLb
= arg min

Lb ,2LpðRÞ
jjR � 1b � LbLb>jj2F ð11Þ

eUr
= arg min

Ur2LpðRÞ
jjR � eLbeLb> � UrUr>jj2F ð12Þ

where 1b denotes a squarematrix with only the b central band equal to
1 and the rest set to 0, and ⊙ is the Hadamard product. In both cases,
we approximate R as eLbeLb>

+ eUr eUr>
.

Below we briefly explain the differences between the low-
dimensional representation strategies listed in Table 2. When the
banded component is a diagonalmatrix, the representation is a special
case of the “Banded + LR" structure, with b = 1, which corresponds to a
spiked covariancemodel35,80.We estimate the diagonal elements of the
covariance matrix either by taking the smallest eigenvalue of a sub-
sample of the LD matrix81 ("Spike_LR"), or via joint optimization which
solves for the diagonal and the low-rank matrices simultaneously. In
the latter case, we allow elements of the diagonal matrix to be either
identical ("Spike_PSD") or different ("Spike_PSD_hetero").

The “Seq_Band_LR" strategy first bands the LD matrix and then
performs low-rankdecompositionon the residualoff-bandedmatrix. It
does notmake any PSD assumption on the constituents of its solution.
The main advantage of this strategy is that it most accurately repre-
sents the banded structure of the LD matrix, i.e., the banded compo-
nent matches exactly the central band of the original LD matrix. A
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drawback of this approach is its lack of flexibility in approximating the
off-central-band structure.

In contrast, the “Joint_Band_LR" strategy jointly approximates the
banded and low-rank components using PSD matrices. It provides
greaterflexibility of approximation for all elements indiscriminately, as
the elements of the banded matrix and the low-rank matrix are jointly
optimized to minimize the Frobenius norm of the error matrix. A
benefit of “Joint_Band_LR" over “Seq_Band_LR" is that due to its explicit
minimization of the approximation error, its solution is, by definition,
closer to the original LD matrix. A potential shortcoming of the
“Joint_Band_LR" strategy, however, is that by imposing a PSD
assumption on both the banded and the low-rank components of the
LD representation, we constrain the solution to a PSD matrix and it is
more computationally intensive to solve.

To strike a balance between accurately representing the central
band of the LD matrix and ensuring the computational efficiency of
our algorithm, we developed a hybrid strategy, “PSD_Band_LR", which
first approximates the banded component of the LD matrix using a
PSD matrix followed by a low-rank decomposition of the residual
matrix. On one hand, it differs from “Seq_Band_LR" in that the banded
component of the approximation is guaranteed to be PSD. On the
other hand, “PSD_Band_LR" differs from “Joint_Band _LR" in that it
sequentially solves for the banded and the low-rank constituents of the
representation, as opposed to simultaneously. As a result,
“PSD_Band_LR" preserves the original structure of the LDmatrix better
than “Joint_Band_LR" does, leading to a more accurate representation
of the central band. Finally, compared to “Seq_Band_LR",
“PSD_Band_LR"produces LD approximations that allow formore stable
HEELS estimation (Supplementary Notes).

Comparison of different LD approximation strategies
We introduce a unified framework for contrasting the different LD
approximation approaches in the context of heritability estimation.
For a given LD representation—characterized by its structure ("Strat-
egy") and the values of its hyper-parameters: the band size b and the
rank of the low rank component r. We considered two measures to
evaluate its performance: (1) the LD approximation accuracy, mea-
sured by the ratio of the Frobenius-norms between the approximation
matrix and the targetmatrix, jjRb +Rr jjF

jjRjjF , and (2) cross-validation (CV) bias
in ĥ

2

HEELS, estimated using synthetic phenotypes generated from real
in-sample genotypes. The first measure assesses the goodness of the
approximation in general, irrespective of the genetic architecture of a
trait, whereas the second measure evaluates the approximation per-
formance of the LD representation in the context of heritability
estimation.

For low-dimensional representations with smaller b and r, the
performance of the HEELS estimator can be greatly influenced by the
assumed structure of the approximation strategy and the hyperpara-
meter values. For example, for each of the “Banded + LR" strategies, we
identified an approximate range of an underlying transition point
(bmin) that marks the minimum optimal value of b, i.e., widening the

bandwidth up to this value can substantially reduce the bias in ĥ
2

HEELS,
but further increasing b beyond this threshold value has a diminishing

“de-biasing" effect on h2
HEELS (Supplementary Fig. 10).

Comparing across the three “Banded + LR" strategies, we we
found that banding the full LD first and then approximating the resi-
dual using a low-rankmatrix ("Seq_Band_LR") yields themost unbiased
heritability estimates when b and r are sufficiently large, but can pro-
duce estimates with large bias if b and r are not appropriately chosen;
approximating the LDmatrix by simultaneously solving for the banded
and low-rank components ("Joint_Band_LR") leads to less-biased esti-
mates even when b and r are sub-optimal, although solving for the
approximation is more computationally expensive than “Seq_-
Band_LR"; the hybrid strategy which approximates the banded

component using a PSD matrix first and finds the low-rank decom-
position of the residual ("PSD_Band_LR") is least sensitive to changes in
hyperparameter values and produces heritability estimates that are
most stable across LD approximation settings.

Algorithms for hyperparameter tuning
An important aspect of our LD approximation algorithm is hyperpara-
meter tuning. While heuristics or prior knowledge about the structure
of the LDmay be used to determine the optimal values of (b, r), we used
a more principled way to evaluate the performance of low-dimensional
LD representations. We propose using a data-adaptive procedure to
identify thebest low-dimensional representationof theLDmatrix, using
simulatedphenotypicdata andcross-validation (SupplementaryNotes).
To facilitate searching of the optimal number of low-rank factors, r*, we
implemented our own version of the incremental SVD algorithm, where
the number of low-rank factors increases step by step and the perfor-
mance of the HEELS estimator is evaluated dynamically. To speed up
the low-rank decomposition, we replaced the exact solutions based on
direct eigen-decomposition with the approximate solutions, and com-
pared two approaches. One is the optimization approach ("optim"),

where we solve argminUr2Kp×p jjRresid � Ur>Ur jj2F . Rresid is the residual
off-banded component to be decomposed or approximated, andKp×p

is the collection of lower triangular matrices. The other approach is
basedon randomizationor sketching ("random"), wherewe applied fast
PCA to decompose Rresid via SVD81. The simulation results indicate that
using the optimization approach leads to better approximation of the

LD and less variable h2
SNP estimates (Supplementary Fig. 14), though the

random SVD approach may become advantageous in applications with
larger LD size.

Simulation framework
Weobtained 332, 340unrelatedWhite British individuals by extracting
samples with self-reported British ancestry who are more than third-
degree relatives and excluding subjectswith putative sex chromosome
aneuploidy.We used genotyped array SNPs only to ensure high quality
ofmeasurement, and filtered out variants with genotypemissingness >
0.01 or haveminor allele frequency (MAF) <0.01. For experiments that
involve subsets of the UKB individuals, we recalculated MAF and re-
applied the filters above to the subsample. The environmental effects
are drawn independently from the genetic effects for each individual.
This ensures that population structure or cryptic relatedness among
individuals have minimal impact on our estimates in the simulations.

We simulated phenotypes with different genetic architectures
using real genotypes from the UK Biobank, varying sample size (n), the
ratio of n to the number of markers (p) and the degree of polygenicity
(pcausal/p). Given the raw genotype matrix G, we first standardized the
genotype matrix: for each SNP j and individual i, we generated
Xij = ðGij � 2f jÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f jð1� f jÞ

q
, whereGij∈ {0, 1, 2} and fj is the in-sample

MAFof SNP j. For a givendegree of polygenicity, we randomly sampled
pcausal markers. Denote the set of causal markers by C. We drew stan-
dardized effect sizes from the distribution, βj ∼Nð0,σ2

g=pcausalÞ,8j 2 C,
and simulated the phenotype of the i-th individual using
yi =∑j∈CXijβj + ϵi, where ϵ∼Nð0,ð1� σ2

g ÞInÞ. For each genetic archi-
tecture, we generated 100 phenotype replicates and obtained 100
estimates using each of the methods we included in the benchmark.
Given phenotypes y= ðy1,:::,ynÞ> and genotypes X = (X⋅1, . . . ,X⋅p), we
computed the marginal association statistics using OLS: β̂j =X

>
�j y=n.

Unless otherwise specified, we used the exact in-sample LD without
approximation in the HEELS estimation.

We applied two software to compute the REML estimates. We
used GCTA when sample size is small and used BOLT-REML when n
exceeds 30,000. Our primary metric of interest is relative efficiency,
which is defined as the ratio of the variance of the REML estimator and
the variance of a given heritability estimator. We also compared the
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bias and the mean squared error of the estimators across different
simulation settings.

UKB empirical analysis
We applied HEELS to analyze the local heritability of various traits
using the variant-level statistics from association studies of unrelated
white British individuals in the UK Biobank, using common variants
with MAF >1% on the UK Biobank Axiom array (n = 332,430, p =
533,169). We estimated the local SNP-heritability of 30 phenotypes
from different trait domains, including anthropometric traits (e.g.,
height, BMI), hematological traits (e.g., mean corpuscular volume, red
blood cell count, white blood cell count, platelet count), lipid or
metabolic traits (e.g., LDL, HDL), lung function traits (e.g., forced
expiratory volume, forced vital capacity, peak expiratory flow rate),
behavioral traits (e.g., smoking behavior, educational attainment,
neuroticism) and immunologically relevant traits (e.g., autoimmune
conditions, asthma, eczema and dermatologic diseases).

We used PLINK to exclude SNPs with MAF <1%, genotype miss-
ingness >1%, genotyping rates <90%, and Hardy-Weinberg dis-
equilibrium p-value <1e-6. We generated the genome-wide association
statistics using the linear association analyses in PLINK, controlling for
age, sex, and the top 40 genetic principal components provided by the
UKB82. We used BOLT-REML to compute the REML estimates in the UK
Biobank, and used the HESS software to compute both the HESS
estimates (default setting) and the GRE estimates (i.e., no regulariza-
tion of the in-sample LDmatrix), after verifying that the estimates from
the two methods indeed coincide when the number of eigenvectors
used in TSVD equals to the rank of the genotype matrix. We used the
1,703 approximately independent loci estimated by Berisa and
Pickrell37 to define the regions as units of analysis (1.6Mbon average or
300-400markers per block using the genotype arraydata), since these
non-overlapping LD blocks been been widely used in previous
studies38–40 and have been demonstrated to capture the true correla-
tion structures among genotypes reasonably well83.

URLs
The following software packages were used in simulation studies and
real data analyses: GCTA (https://yanglab.westlake.edu.cn/software/
gcta/#Download); LD Score regression (https://github.com/bulik/
ldsc); GRE (https://github.com/bogdanlab/h2-GRE); HESS (https://
github.com/huwenboshi/hess); BOLT-REML v2.3.4 (https://data.
broadinstitute.org/alkesgroup/BOLT-LMM/). We also used Python
(3.6.3) to perform statistical analyses and used R (3.6.3) for data
visualization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The individual-level genotypic and phenotypic data from the UK Bio-
bank are available under restricted access (https://www.ukbiobank.ac.
uk). Our access to the individual-level data was approved under
application number 52008. All data supporting the findings in our
manuscript are described in the articl and the supplementary infor-
mation files, or from the corresponding author upon request. The
testing data which consists of the empirical LD matrices of chromo-
some 22 derived from the genotype array data of the UK biobank and
the simulated phenotypes have been deposited on Zenodo under the
link: https://zenodo.org/records/7618667.

Code availability
Our method (HEELS) has been implemented as an open-source Python
package, availableonGithubathttps://github.com/huilisabrina/HEELS84.
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