
Article https://doi.org/10.1038/s41467-023-43555-x

A minority of final stacks yields superior
amplitude in single-particle cryo-EM

Jianying Zhu1,10, Qi Zhang2,3,4,5,10, Hui Zhang6, Zuoqiang Shi1,7 ,
Mingxu Hu 2,3,4,5,8 & Chenglong Bao 1,7,9

Cryogenic electron microscopy (cryo-EM) is widely used to determine near-
atomic resolution structures of biological macromolecules. Due to the low
signal-to-noise ratio, cryo-EM relies on averaging many images. However, a
crucial question in the field of cryo-EM remains unanswered: how close can we
get to theminimumnumber of particles required to reach a specific resolution
in practice? The absence of an answer to this question has impededprogress in
understanding sample behavior and the performance of sample preparation
methods. To address this issue, we develop an iterative particle sorting and/or
sieving method called CryoSieve. Extensive experiments demonstrate that
CryoSieve outperforms other cryo-EM particle sorting algorithms, revealing
that most particles are unnecessary in final stacks. The minority of particles
remaining in the final stacks yield superior high-resolution amplitude in
reconstructed density maps. For some datasets, the size of the finest subset
approaches the theoretical limit.

The transformative impact of cryo-EM single-particle analysis (SPA) on
the field of structural biology has been widely recognized by the sci-
entific community1. Cryo-EM has advanced significantly due to a series
of technological innovations2–7, enabling the technique to provide
macromolecular structures with up to atomic resolution at an unpre-
cedented rate. This technological progress is commonly referred to as
the resolution revolution8. Cryo-EM involves using electron micro-
scopy images of biomolecules embedded in vitreous, glass-like ice9,
which are then combined to generate three-dimensional densitymaps.
These maps provide valuable insights into the function of macro-
molecules and their role in biological processes.

The stability and electron-optical performance of electron
microscopes do not hinder the use of cryo-EM10. However, biological
samples studied in cryo-EM are radiation-sensitive11,12. Therefore, a
trade-off must be made between improving the signal-to-noise ratio
(SNR) and limiting radiation damage13,14. It was concluded that sta-
tistically well-defined three-dimensional (3D) structures could not be

obtained from individual biological macromolecules at atomic
resolution15,16. Instead, increasing the SNR by averaging image data
from many identical macromolecules is the only way to
progress13,17,18. Over two decades ago, Henderson estimated that
structures could be determined at a resolution of nearly 3 Å by
merging data from approximately 12,000 particles, even for particles
as small as approximately 40 kDa19. Later, Rosenthal and Henderson
argued that the electron microscopy community should adopt the
same threshold criterion for structure factor quality as the X-ray
protein crystallography community, which was set at a figure-of-
merit of 0.5 corresponding to a phase error of 60°16. The theoretical
limit of the minimum number of particle images required to achieve
a specific resolution can be calculated using the theory proposed by
Henderson and Rosenthal16,19, given the B-factor of the instrument
(e.g., electron microscopy and camera)13,14,20. In practice, the final
stacks of cryo-EM still far fall short of the theoretical limit, indicating
a considerable gap between what can be accomplished and the

Received: 19 May 2023

Accepted: 13 November 2023

Check for updates

1Yau Mathematical Sciences Center, Tsinghua University, Beijing, China. 2Key Laboratory of Protein Sciences (Tsinghua University), Ministry of Education,
Beijing, China. 3School of Life Science, TsinghuaUniversity, Beijing, China. 4Beijing Advanced InnovationCenter for Structural Biology, Beijing, China. 5Beijing
Frontier Research Center for Biological Structure, Beijing, China. 6Qiuzhen College, Tsinghua University, Beijing, China. 7Yanqi Lake Beijing Institute of
Mathematical Sciences and Applications, Beijing, China. 8Shenzhen Academy of Research and Translation, Shenzhen, China. 9State Key Laboratory of
Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China. 10These authors contributed equally: Jianying Zhu, Qi Zhang.

e-mail: zqshi@tsinghua.edu.cn; humingxu@smart.org.cn; clbao@tsinghua.edu.cn

Nature Communications |         (2023) 14:7822 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-3603-3966
http://orcid.org/0000-0003-3603-3966
http://orcid.org/0000-0003-3603-3966
http://orcid.org/0000-0003-3603-3966
http://orcid.org/0000-0003-3603-3966
http://orcid.org/0000-0002-1201-1212
http://orcid.org/0000-0002-1201-1212
http://orcid.org/0000-0002-1201-1212
http://orcid.org/0000-0002-1201-1212
http://orcid.org/0000-0002-1201-1212
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43555-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43555-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43555-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43555-x&domain=pdf
mailto:zqshi@tsinghua.edu.cn
mailto:humingxu@smart.org.cn
mailto:clbao@tsinghua.edu.cn


physical limit of what cryo-EM can do21. The initial particle datasets
obtained by particle picking from micrographs undergo multiple
rounds of laborious 2D and 3D classification to generate the final
stack for model determination. The final stacks, which yield atomic
or sub-atomic resolution density maps, typically comprise several
orders of magnitude fewer particles than the original datasets.
Therefore, the cryo-EM field faces the long-standing question of how
close we can approach the theoretical limit in practice. The lack of an
answer to this open question has hindered the quantification of the
performance of various underdeveloped sample preparation meth-
ods and impeded the investigation of trends and the
understanding of the underlying mechanisms of sample behavior. To
answer the question of how close cryo-EM can approach its theore-
tical limit, it is crucial to determine the minimum number of particles
required to achieve a high-resolution 3D reconstruction within a
given dataset.

In thiswork, we introduceCryoSieve22, an iterative particle sorting
and/or sieving algorithm that identifies the smallest subset of particles
necessary to generate high-resolution density maps, which we call the
finest subset. CryoSieve compares the high-frequency components of
synthetic and observed particle images. A higher CryoSieve score
indicates superior quality rather than typical cryo-EM damage or arti-
facts. Extensive experiments show that CryoSieve outperforms other
particle sorting algorithms in various metrics and reveal that most
particles in final stacks are futile. The finest subsets generate 3D den-
sity maps with better high-resolution amplitude, using much fewer
particles than the final stacks. We propose that CryoSieve removes
radiation-damaged particles within cryo-EM datasets, supported by
experiments on the dataset consisting of particles exposed to various
levels of electron dose. Finally, we compare the minimum particles
required in theory with the size of the finest subsets obtained by
CryoSieve, finding that some datasets come close to the theoretical
limit after being sieved by CryoSieve. From our experiments, we sug-
gest that advancements during the sample preparation process, aimed
at increasing the proportion of thefinest subset in thefinal stack, could
potentially facilitate the development of cryo-EM.

Results
Design of CryoSieve
We have developed a particle sorting and/or sieving model called
CryoSieve that iteratively performs 3D reconstruction and particle
selection, eliminating futile particles during each iteration. Aflowchart
scheme is provided in Supplementary Fig. 3. In CryoSieve, the
relion_reconstruct module of RELION is used to reconstruct a new
densitymapwith the retainedparticle images,which is thenused in the
subsequent iteration. The retained particle images in each iteration
form a subset of those from the previous iteration, as shown in the
following formula:
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where n(k−1) represents the number of retained particles. At each
iteration, let bj be the j-th particle image, Aj be its forward operator
defined by the estimated parameters and x(k−1) be the reconstructed
density map from the retained particle images in the previous itera-
tion, particles are sieved out based on their CryoSieve score, which is
defined as follows:
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Here, H(k) is the highpass operator at the k-th iteration, and its
threshold frequency increases linearly as the iteration progresses
(SupplementaryTable4). Given that gj relies on the accurate amplitude
of the reconstructed density map x(k), CryoSPARC is not the optimal
choice for reconstruction in theparticle selection step (Supplementary
Fig. 2). It tends to deviate significantly from the true amplitude (Sup-
plementary Fig. 2c). Furthermore, the amplitude information within
the CryoSieve score proves vital, and the phase residual is ineffective
as a metric for particle selection (Supplementary Fig. 4).

The CryoSieve score estimates the similarity between a particle
and a reference projection above a given frequency. A higher Cryo-
Sieve score indicates that the particle and the reference projection
share a higher proportion of signal energy, indicating better particle
quality. As radiation damage mainly affects the high-frequency range,
the CryoSieve score includes a highpass operator to extract the high-
frequency part. We have demonstrated that the CryoSieve score can
identify particleswith incorrect pose parameters or components in the
high-frequency range through theoretical analysis and simulation
verification (Supplementary Material I and III). Specifically, assuming
that noise in particles follows a Gaussian distribution, we have shown
that, with high probability, the CryoSieve score is an ideal indicator of
particle image quality, distinguishing it from typical cryo-EM damage
or artifacts (Supplementary Material I). Furthermore, the CryoSieve
score exhibits remarkable accuracy in removing particles with incor-
rect pose and CTFparameter estimations, achieving a high accuracy of
over 90% (Supplementary Material III).

Majority of the particles are futile in final stacks
We demonstrate the versatility of our method by applying it to eight
experimental datasets (Table 1). The first dataset is derived from the
human TRPA1 ion channel (EMPIAR-10024)23. The second dataset is
from influenza hemagglutinin trimer (EMPIAR-10097)24, of which the
preferred orientation necessitated 40° tilts during data acquisition.
The third dataset involves LAT1-CD98hc bound to MEM-108 Fab
(EMPIAR-10264)25, while the fourth features membrane-bound pfCRT
complexed with Fab (EMPIAR-10330)26. Both of these datasets utilized
signal subtraction during data processing. The fifth dataset is fromCS-
17 Fab-bound TSHR-Gs (EMPIAR-11120)27. The sixth is from TRPM8
bound to calcium (EMPIAR-11233)28. The seventh dataset is derived
from human apoferritin (EMPIAR-10200)29, achievable to a resolution

Table 1 | Microscopic imaging parameters of eight experimental datasets along with their associated metadata

Dataset TEM Electron detector Number of particles Spherical aberration (mm) Symmetry Molecular weight (kDa)

TRPA1 TF30 Polara Gatan K2 Summit 43,585 2.0 C4 688

hemagglutinin Titan Krios Gatan K2 Summit 130,000 2.7 C3 150

LAT1 Titan Krios FEI FALCON III 250,712 2.7 C1 172

pfCRT Titan Krios Gatan K2 Qutuamn 16,905 0.001 C1 102

TSHR-Gs Titan Krios Gatan K3 Qutuamn 41,054 2.7 C1 125

TRPM8 Titan Krios Gatan K2 Summit 42,040 2.6 C4 513

apoferritin Titan Krios Gatan K2 Summit 382,391 2.7 O 440

streptavidin Titan Krios Gatan K2 Summit 23,991 0.01 D2 52
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above 2Å. The eighth dataset originates from streptavidin (EMPIAR-
10269)30, with a molecular weight of only 52 kDa. All datasets were
obtained using a voltage of 300 kV and an amplitude contrast of 0.07
or 0.1. The TEM systems and electron detectors used in the experi-
ments are listed in Table 1, along with additional metadata such as the
number of particles in the final stacks, spherical aberration, symmetry
and molecular weight.

All of the datasets are deposited in the ElectronMicroscopy Public
Image Archive (EMPIAR) 31 as final stacks. These final stacks, which also
contain the corresponding refined Euler angles, were used to generate
the final published reconstructions. The final stacks are generated by
manually selecting significantly smaller subsets through multiple
rounds of 2D/3D classification, resulting in a substantially reduced
number of particles compared to the original particle stacks.

We employed CryoSieve to process the eight experimental data-
sets. CryoSieve removed 20% of the particles in each iteration,
resulting in a retaining ratio of 80.0%, 64.0%, 51.2%, and so on. The
highpass cutoff frequency of CryoSieve increases linearly across
iterations. The retained particles in different iterations were then used
for ab initio reconstruction to determine the finest subset of particles.
The finest subset only contained 21.0% to 32.8% of the particles in the
final stack. However, the quality of the reconstructed map from the
finest subset was consistent with that obtained from all particles in the
final stack, as demonstrated in Fig. 1. For some datasets, the density
maps showed a certain degree of improvement, which was visualized
by the restoration of some previously blurred ormissing side chains in
the density map (Supplementary Fig. 8). The results demonstrate that
CryoSieve is proficient in discarding more than half of the particles,
utilizing the CryoSieve score—a metric reflecting the discrepancy
between the particle image and its reference projection. Crucially, this
process does not compromise the quality of the final reconstruction.
Moreover, theposedistributionof the removedparticleswas similar to
those of all particles in the final stacks (Supplementary Fig. 6). There-
fore, CryoSieve is highly effective in selecting the most informative
particles.

We performed a comparative analysis of CryoSieve with other
cryo-EMparticle sorting criteria or software currently used in the field,
including the normalized cross-correlation (NCC) method32, the
angular graph consistency (AGC) approach33 and the non-alignment
classification6. The parameter settings for CryoSieve and the other
comparative algorithms were listed in Supplementary Material VI. In
our experiments, we used final stacks composed of relatively high-
quality particles. NCC retains an equal number of particles compared
to CryoSieve at each iteration, while AGC’s retaining ratio is self-
determined. However, AGC’s retaining ratio was mainly over 90%,
resulting in only a small fraction of particles being removed. Thus, the
quality of the reconstructed map using the retained particles did not
improve or worsen (Supplementary Table 2), as these tested final
stacks are composed of relatively high-quality particles. For the non-
alignment classification applied to hemagglutinin, LAT1, and apo-
ferritin, less than half of the particles were removed, resulting in some
enhancement (Supplementary Material V). However, this enhance-
ment still falls notably short of the results achieved by CryoSieve
(Supplementary Material V). For the other five datasets, the retaining
ratios using non-alignment classification exceeded 90%, resulting in
the quality of maps reconstructed from the retained particles either
remaining unchanged or deteriorated (Supplementary Material V).
Additionally, we randomly selected the same number of particles from
the tested final stacks at each iteration to observe the baseline effect of
particle number reduction.

For all the aforementioned methods (CryoSieve, NCC, AGC, non-
alignment classification, and random), we discarded the refined Euler
angles published and deposited on EMPIAR to prevent the inadvertent
transfer of information from the removed particles to the retained
particles. Thus, the retained particles were used for ab initio

reconstruction by CryoSPARC to obtain refreshed sets of Euler angles
and density maps. Several metrics, including FSC-based resolution16,
Q-score34 and Rosenthal-Henderson B-factor16 were used to measure
the quality of the refreshed density maps. Based on these metrics, our
analyses reveal that CryoSieve effectively sieves out 67.2% to 79.0%
(varying based on datasets) of particles from the final stacks without
deteriorating the yielded density maps (Fig. 2). In contrast, subsets of
equal size retained by the other methods failed to reconstruct density
maps of the same quality as the original (Fig. 2). Therefore, CryoSieve
significantly outperforms other particle sorting algorithms, demon-
strating that themajority of particles are dispensable in thefinal stacks.
A key factor in CryoSieve’s superiority over both NCC, AGC and non-
alignment classification is the integration of the highpass operator
when computing the CryoSieve score. Without the truncation of high
frequencies, scores may be predominantly influenced by low-
frequency components, making it challenging to differentiate non-
contributory particles in cryo-EM.

CisTEM5 can report a score for each single-particle image after 3D
refinement. During the 3D refinement process of cisTEM, the pose
parameters of particles are re-estimated or refined. Therefore, due to
differences in alignment and other image processing workflows
between cisTEM and CryoSPARC, cisTEM cannot be strictly compared
with CryoSieve. We compared CryoSieve and cisTEM by sorting par-
ticles using the cisTEM score and retaining equal particle counts for ab
initio reconstruction in CryoSPARC (details in Supplementary Mate-
rial II). CryoSieve outperformed cisTEM in all eight experimental
datasets (Fig. 2).

We analyzed the differences between the particle images retained
and removed using CryoSieve by performing 2D classification of the
particles into 50 classes using CryoSPARC. To ensure a comparable
number of particles for both retained and removed groups, we ran
CryoSieve and terminated at the third iteration, yielding a retention
ratio of 51.2% and a removal ratioof48.8%. CryoSPARC reported the 2D
resolution of each class, along with the number of particle images
belonging to it. The particles retained by CryoSieve (Fig. 3, steel blue)
were distributed at a higher resolution compared to those removed by
it (Fig. 3, crimson). In six out of the eight datasets, particle images with
the highest resolution, i.e., 7.4–7.1 Å in TRPA1, 8.5–9.6 Å in hemagglu-
tinin, 6.6–8.2 Å in LAT1, 7.2–11.6Å in pfCRT, 7.2–8.5Å in TSGH-Gs, and
11.6–7.5 Å in TRPM8, were entirely retained by CryoSieve. For apo-
ferritin, the majority of particles within the highest resolution range
(5.5–5.3 Å) were constituted by the particles retained by CryoSieve.
However, for streptavidin, possibly due to the adoption of a phase
plate during data collection, unusually high resolutions were reported
in the 2D classification step, rendering such a comparison between
retained and removed particles ineffective. In conclusion, our analysis
suggests that CryoSieve selectively retained the higher-quality particle
images in the final stack while discarding lower-quality ones. It is noted
that some information remains in these discarded particles, but it does
not enhance the information present in the finest subset (Supple-
mentary Material VII).

Better high-resolution amplitude with much fewer particles
B-factors, also known as Debye-Waller factors or temperature factors,
reflect the rate at which the amplitude of high-resolution information
decreases16. Lower B-factors indicate that the high-resolution signal
has been better preserved during sample preparation, imaging, and
image processing, implying that the particle images are of higher
quality. B-factors are widely used to measure image quality in cryo-EM
quantitatively35–39. In our eight experimental datasets, thefinest subset,
consisting of only 21.0% to 32.8% of particles in the final stack, gen-
erates 3D density maps with the Rosenthal and Henderson’s B-factors
reduced by 21.1 Å2 to 169.0 Å2, in comparison to those produced by the
original final stacks (Table 2, column D and E). The process of fitting
and solving for Rosenthal and Henderson’s B-factors is visualized in
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Supplementary Fig. 5. Moreover, the B-factors determined by CryoS-
PARC are presented in Table 2, columns B and C. In other words, the
density maps reconstructed from the finest subset have a better high-
resolution amplitude, meaning they contain a greater high-resolution

intensity, despite the fact that the finest subsets only contain a small
fraction of particles in the final stack. This indicates that CryoSieve
significantly reduced the temperature factor and alleviated the
amplitude contrast decay, suggesting that high-quality particles
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Fig. 1 | CryoSieve is capable of maintaining resolutions after removing the
majority of particles in the final stacks. For all eight experimental datasets,
density maps of the CryoSieve-retained particles (steel blue) and all particles in the
final stack (medium purple) were compared, obtained from CryoSPARC’s ab initio
reconstruction after discarding the published refined Euler angles deposited on
EMPIAR to avoid the bias in the final stack. The density maps were first FSC-
weighted (based on FSCs given by CryoSPARC), and then B-factor sharpened using

equivalent B-factors for the same protein: −90Å2 for TRPA1, −180 Å2 for hemag-
glutinin, −100Å2 for LAT1,−60Å2 forpfCRT,−70Å2 forTSHR-Gs, −80Å2 for TRPM8,
−65 Å2 for apoferritin, and −110 Å2 for streptavidin. The central bars indicate the
proportions of the retained and removed particles. The equivalent contour level
was applied for each protein respectively, as indicated at the base of each ratio bar.
The raw densitymaps corresponding to these results, unsharpened by B-factor, are
given in Supplementary Fig. 1.
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contribute to the density map and can be effectively selected by
CryoSieve.

CryoSieve can effectively detect radiation-damaged particles
Wehypothesize that someparticle images in the final stacks have been
subject to some degree of radiation damage and cannot be screened

out by conventional methods. These particles do not contribute
positively to the reconstructed densitymap. To verify the possibility of
this conjecture, we acquired micrograph movie stacks of the protea-
some using a Titan Krios 300 keV cryo-EM equipped with a K3 direct
electron detection camera. The defocus range was set between 0.5μm
and 1.5μm. Each stack comprised 32 frames with a total electron dose
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of 50 e−Å−2. The electron dose was uniformly distributed across all
frames. Particles were picked from identical positions using averages
from frames 5–14, 10–19, 15–24, and 20–29. Consequently, we con-
structed a dataset consisting of 183,464 particles that represented four
different levels of absorbed electron doses (Fig. 4a).

We assessed the retention behavior of CryoSieve, NCC, cisTEM,
AGC, and non-alignment classification in particles subjected to varying
radiation damage levels, using random retention as a comparative
baseline. As the number of iterations increased, the retention rate
diminished.Notably, CryoSieve demonstrated enhancedproficiency in
identifying particles with elevated radiation damage levels relative to
NCC and cisTEM (Fig. 4b). The retention ratio for cisTEM was equated
to each iteration of CryoSieve (Supplementary Material II). For AGC
and non-alignment classification, the retention ratio was autono-
mously determined. We simultaneously compared the distribution of
particles across the four radiation damage levels, selecting the sixth
iteration (with a retention ratio of 26.2%) of CryoSieve, NCC, and cis-
TEM for this analysis. The analysis also incorporated particles retained
by the AGC and non-alignment classification methods, with retention
ratios auto-determined for these methods (Fig. 4c). Model-to-map
FSCs (Fig. 4d) and a thorough comparison of density maps (Fig. 4e)
affirmed CryoSieve’s superiority over the other methods. Retained
particles, utilizing the cisTEM score as a selection criterion, exhibited a
preferred orientation, resulting in diminished quality (Supplemen-
tary Fig. 7).

While the approach of grouping frames from micrograph movie
stacks cannot remove other potential complications that particles
might endure, such as erroneous poses, CTF parameters, and dena-
turation, we sought additional validation. To this end, we employed
InSilicoTEM to generate synthesized particles exhibiting varying
simulated radiation damage. With these simulated radiation-damage
datasets, CryoSieve consistently outperformed all other methods.
Notably, in the final iterations, CryoSieve exclusively retained particles
unaffected by radiation damage (Supplementary Material VIII).

It is worth noting that CryoSieve can efficiently remove particles
with incorrect pose and CTF parameter estimations, achieving a high
accuracy of over 90% (Supplementary Material III). However, these
particles are also removed by the non-alignment classification
approach (Supplementary Material III), making them unlikely to be
present in the final stacks.

The finest subsets may be close to the theoretical number of
particles limit
The theoretical number limit of particle images, given by Rosenthal
and Henderson16, is

Nparticles =
1

Nasym

S2

N2 30π

Neσed
exp

B

2d2

� �
, ð3Þ

where Nasym, S
N, Ne, σe, d, B stand for the number of asymmetric units,

the signal-to-noise threshold criteria of the resolution, the electron
dose, the elastic cross-section for carbon, the resolution, and the
overall temperature factor, respectively. In the above formula, S

N = 1ffiffi
3

p ,
which is equivalent to a phase error of 60° or 0.143-threshold of half-
maps FSC16.Meanwhile,Ne = 5 e−Å−2, which is believed to be the limiting

dose due to radiation damage for features near-atomic
resolution16,19,40,41. The electron dose used in practice is typically a fold
higher than the limiting dose. Although the additional dose does not
contribute to the structure factor amplitudes at near-atomic resolu-
tion, it may have increased the signal up to the resolution limit of the
final map, thus making the determination of particle parameters
easier16. This conjecture agrees with the observation in the study of
micrograph movie stack dose weighting, which found that only the
initial few frames, not the subsequent frames, contribute to near-
atomic features42–44. Finally,σe =0.004Å2 is the elastic cross-section for
carbon at 300 kV45.

The overall temperature factor, or Rosenthal and Henderson’s B-
factor, is the dominant factor in estimating the theoretical limit. Here,
we proposed a simplified assumption that limits only exist on instru-
ments (TEM and electron detector) and that no other resolution-
limiting factors exist. In other words, we assumed that all other pro-
cedures or techniques were ideal. For example, vitrified non-
amorphous ice is perfectly flat and of ideal thickness, there is no
beam-induced motion, and orientations of particles follow a uniform
distribution, and there is no electron-charging effect. Therefore,
B-factor represents a summary of all resolution-limiting factors of a
given electron microscope and describes the overall quality of the
instrumental setup. Holger Stark and his colleagues have summarized
the current knowledge on existing state-of-the-art commercial EM
hardware and their B-factors46. For the standard Titan Krios, they
concluded that its B-factor is 50 Å2, which was determined by re-
evaluating data from EMPIAR-10216 as described by47, with modifica-
tions to account for off-axial aberrations by splitting the micrographs
into nine subsets48. Therefore, we computed the theoretical number of
particle limits at B = 50Å2 (Table 2, column D). The sizes of the finest
subsets obtained by CryoSieve were compared with such theoretical
limits (Table 2, column E).

Out of the eight datasets examined, three (pfCRT, TSHR-Gs and
apoferritin) were found to be close to their theoretical limits (Table 2,
column E, emphasized by bold font). However, the TRPA1 dataset fell
short of the theoretical limit by approximately 22-fold. This could be
due to the lower resolution capabilities of the TF30 Polara TEM used
in the study compared tomore advancedmodels like the Titan Krios.
It is possible that the assumed B-factor of 50 Å2 for the TF30 Polara is
relatively low and does not accurately reflect the properties of the
TEM. Moreover, the sample preparation techniques employed dur-
ing the TRPA1 study in 2015 might not have been fully optimized to
attain the highest possible resolution. Hemagglutinin also fell short
of the theoretical limit by roughly a factor of 36 due to using a tilt-
collection strategy to compensate for the preferred orientation,
which resulted in a larger effective ice thickness and a degradation in
the quality of particle images. Lastly, LAT1 and TRPM8 exceeded the
theoretical limit by factors of 9.8 and 6.3, respectively, suggesting
that improvements in sample preparation could be made for these
datasets.

Discussion
In this study, we introduced the CryoSieve algorithm, which has the
ability to estimate the minimum number of particles in a dataset,
referred to as the finest subset. CryoSieve demonstrated that most

Fig. 2 | CryoSieve outperformed other algorithms in terms of FSC-based reso-
lutions, Q-scores andRosenthal-HendersonB-factors.We compared the density
maps reconstructed from retained particles obtained by CryoSieve (indigo), NCC
(green) and cisTEM (light blue), along with random (orange) as the baseline, at
different retention ratios. Densitymapswere ab initio reconstructedbyCryoSPARC
after discarding the published refined Euler angles deposited on EMPIAR. Five
metrics evaluated density map quality. The first column presents FSC-based reso-
lutions: model-to-map (solid lines with squares) and two-half-maps (solid lines with

diamonds). The second column shows Q-scores for raw (dashed lines with circles)
and sharpened maps (solid lines with circles), with sharpening B-factors deter-
mined by CryoSPARC. The third column depicts Rosenthal-Henderson B-factors.
The iterations where CryoSieve obtained the finest subset, determined by com-
prehending thesemetrics, are labeledwith hatched bars. Due to the involvement of
the phase plate in the streptavidin dataset, cisTEM failed to refine the poses, and
thus the corresponding analysis was omitted.
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Fig. 3 | The two-dimensional resolution distribution between retained and
removed particles was compared. The third iteration of CryoSieve achieved a
retention ratio of 51.2% and a removal ratio of 48.8%, resulting in a similar number
of particles for retention and removal. These two categories underwentCryoSPARC
2Dclustering and averaging, i.e., 2Dclassification,with the number of 2D classes set
to 50. All eight experimental datasets were tested. CryoSPARC reported the 2D
resolution of each 2D class, along with the number of particle images belonging to

it.We statistically analyzed the number of particles belonging to each 2D resolution
and plotted histograms, demonstrating the difference between retained (steel
blue) and removed (crimson) particles in terms of 2D resolution distribution. For
TRPA1 and apoferritin, the bar with the highest resolution range was further finely
dividedand then plotted in a histogram,which is displayed to the right of the global
histogram.
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particles in the final stacks are superfluous and do not contribute to
reconstructing density maps. On the other hand, the minority of par-
ticles that remain in the final stacks yields superior high-resolution
amplitude. We also discovered that for some datasets, the size of the

finest subset comes close to the theoretical limit. Therefore, CryoSieve
can, to some degree, provide insight into a long-standing question in
the cryo-EM field: How close can we approach the theoretical limit in
practice?

CryoSieve NCC

b)a)

cisTEM

c)

e)

14.8e- -2

22.7e- -2

30.5e- -2

38.3e- -2

AGC na-c

d)

Fig. 4 | CryoSieve prioritizes the removal of radiation-damaged particles.
a Particles were selected from micrograph movie stacks of the proteasome, with
each stack containing 32 frames and a total electron dose of 50 e−Å−2. This electron
dose was uniformly distributed across all frames. Particles were extracted from
consistent positions, using averages from frames 5–14, 10–19, 15–24, and 20–29.
The average electron doses absorbed are denoted at the bottom, and four repre-
sentative particles are displayed for each radiation damage level. b The graph
depicts the proportions of particles with varying levels of radiation damage (dif-
ferentiated by colors) in the retained particles across various retention ratios
(indicated on the left). A comparison was made between the particles retained by
cisTEM (left horizontal bars), CryoSieve (middle horizontal bars), and NCC (right
horizontal bars). CryoSieve consistently sieved out particles in a sequence from

high to low radiation damage, demonstrating superior performance over both
cisTEM andNCC. c Particle distribution across the four radiation damage levelswas
analyzed using iteration 6 (featuring a retention ratio of 26.2%) from CryoSieve,
NCC, and cisTEM. The analysis also incorporated particles retained by the AGC and
non-alignment classification methods, with retention ratios auto-determined for
these methods. d, e The side chains of the density maps reconstructed by CryoS-
PARC, using retained particles, were compared alongside the corresponding
model-to-map FSCs. This comparison utilized a retention ratio of 26.2% (from
iteration 6) for CryoSieve, NCC, cisTEM, and randommethods. The retention ratios
for AGC and non-alignment classification were auto-determined. The intersection
between the FSC threshold (FSC =0.5) and the FSC curve is represented as a vertical
dashed line.

Table 2 | The finest subsets alleviate high-resolution amplitude decay, along with a comparison to their theoretical number of
particle limit

Dataset A B C D E F G H

TRPA1 3.90 141.9 78.1 (63.8−) 198.5 147.3 (51.2−) 521 11,426 (21.9×) 43,585 (83.7×)

hemagglutinin 3.62 232.0 160.8 (71.2−) 226.9 146.4 (80.5−) 975 34,078 (35.6×) 130,000 (133.3×)

LAT1 3.11 132.6 96.0 (36.6−) 147.3 94.9 (52.4−) 6697 65,687 (9.8×) 250,712 (37.4×)

pfCRT 3.37 85.1 49.5 (35.6−) 235.8 66.8 (169.0−) 4212 4429 (1.01×) 16,905 (4.0×)

TSHR-Gs 2.96 92.9 61.7 (31.2−) 96.9 62.4 (34.5−) 9205 13,465 (1.46×) 41,054 (4.5×)

TRPM8 2.98 94.7 76.7 (18.0−) 110.1 82.2 (27.9−) 2200 13,789 (6.3×) 42,040 (19.1×)

apoferritin 1.81 70.5 58.0 (12.5−) 81.6 49.2 (32.4−) 74,530 80194 (1.08×) 382,391 (5.1×)

streptavidin 2.99 125.6 101.8 (23.8−) 90.4 69.3 (21.1−) 2152 7772 (3.6×) 23,991 (11.1×)

A Half-maps resolution of the CryoSieve-retained particles (Å); B B-factor reported by CryoSPARC auto-postprocessing obtained from all particles in the final stacks (Å2); C B-factor reported by
CryoSPARC auto-postprocessing obtained from the CryoSieve-retained particles with temperature decrease (compared with all particles) in brackets (Å2); D Rosenthal’s B-factor obtained from all
particles in thefinal stacks (Å2);ERosenthal’s B-factor from theCryoSieve-retainedparticleswith temperature decrease (comparedwith all particles) in brackets (Å2);F theoretical number of particles
limit at B = 50Å2;G number of theCryoSieve-retainedparticleswith folds of theoretical limit in brackets.;H number of particles infinal stacks with folds of theoretical limit in brackets. Three datasets
(pfCRT, TSHR-Gs and apoferritin) were emphasized by bold font as the number of particle images in the finest subset approaches the theoretical limit.
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CryoSieve can potentially establish a metric for the quantitative
evaluation of various sample preparation techniques by measuring
image quality based on the gaps between the theoretical limits and the
size of the finest subsets. One of the possible future directions is to
address the variables encountered during sample and grid preparation
and establish cause-and-effect relationships. Resolving these issues,
among others, cryo-EM could become a more versatile and influential
technology in structural biology, potentially addressing research
questions and aiding the growth of methodologies as the field
advances49.

Methods
Details of comparing the performance of particle sorting
algorithms
Since cryo-EM single-particle image processing software has experi-
enced rapid development in the past few years, someof the final stacks
deposited in EMPIAR can be better processed by state-of-the-art
algorithms. To eliminate effects from different refinement software
and their versions, ensuring fair comparisons between various particle
sorting algorithms, the final stacks deposited on EMPIAR were repro-
cessed under a standardworkflow using CryoSPARC v4.1.0 following a
standardworkflow. For hemagglutinin, the initialmodelwas generated
by low-pass filtering its atomic model to 30Å, while for the other
proteins, initial models were generated by arbitrary random initi-
alization using CryoSPARC. Then, uniform refinement was applied for
TRPA1, TRPM8, hemagglutinin, LAT1, and apoferritin, while non-
uniform refinement was applied for pfCRT and TSHR-Gs. For strepta-
vidin, we employed local refinement. This was potentially due to the
use of a phase plate in the streptavidin dataset, as ab initio recon-
struction failed to produce a density map for streptavidin.

To enable unbiased comparisons of densitymaps before and after
particle sorting, the retained particles obtained from each particle
sorting algorithm underwent identical refinement procedures, as
previously described using CryoSPARC v4.1.0 in the standard work-
flow. The reconstructed density maps were used for subsequent
measurements. To ensure that there’s no undue influence of infor-
mation from the discarded particles via their contribution to pose
estimation, the former Euler angles were discarded (except streptavi-
din), and new sets of Euler angles were determined through the
refinement of the retained particles. Moreover, in order to maintain
independence between the two half sets and ensure that the Fourier
Shell Correlation (FSC) served as the golden standard, half-set splits
were preserved throughout the subsequent procedure by turning off
the option “Force re-do GS split”.

The reconstructed density maps were evaluated by several
metrics, including FSC-based resolution, Q-score and Rosenthal-
Henderson B-factor. CryoSPARC produced two raw half maps and an
auto-postprocessed density map (FSC-weighted, B-factor sharpened,
two half sets averaged), accompanied by reporting half-maps FSC.

FSC-based metric includes half-maps FSC (directly reported by
CryoSPARC) andmodel-to-mapFSC.Map-to-model FSC resolutionwas
calculated using the followingprocedure, with the auto-postprocessed
density map as input. The corresponding atomic model of the dataset
was converted to the ground-truth density map by the molmap func-
tion of Chimera at Nyquist resolution. The mask was generated from
the ground-truth densitymap (after low-pass filtering to 8Å, extending
by 4 pixels and applying a cosine-edge of 4 pixels) using RELION.
Model-to-map FSC curves were determined between the input density
map (obscured by the mask) and the ground-truth density map. The
resolution threshold of the map-to-model FSC was set to 0.5.

As Q-score is sensitive to B-factor sharpening, the Q-scores of
both the raw maps and the auto-postprocessed maps were measured.
The auto-postprocessed maps were directly provided by CryoSPARC,
while the raw maps were obtained by first averaging the two raw half
maps provided by CryoSPARC, then low-pass filtering them to an

appropriate resolution, in order to eliminate the impact of varying
noise intensities on the density maps. The low-pass filtering threshold
frequency ranged from 0.3 Å to 0.5Å higher than the CryoSPARC
reported half-maps FSC resolution, thus ensuring the retention of
useful signals. Specifically, the threshold frequency for TRPA1 was
3.5 Å, for TRPM8 and TSHR-Gs it was 2.7 Å, for hemagglutinin it was
3.4 Å, for pfCRT itwas 3.0 Å, for apoferritin it was 1.6 Å, for streptavidin
it was 2.8Å, and for LAT it was 2.8 Å. Q-score was calculated using the
MAPQplugin forUCSFChimera, with all parameters set to their default
values.

Rosenthal-Henderson B-factors were determined by fitting the
formula that describes the relationship between resolution and the
number of particles used for reconstruction. Five half-splitting repe-
titions were adopted for each dataset. After each repetition, the Euler
angles were re-estimated by CryoSPARC, and the reported resolution
was used for data fitting.

All conversions between CryoSPARC andRELIONwere performed
using the pyem script.

CryoSieve’s parameters
CryoSieve iteratively performs 3D reconstruction and particle siev-
ing, while maintaining independence between two half sets by
independently sieving each set of particles. 3D reconstructions of
each subset were performed using RELION v4.0-beta-2, with the
option “–-subset” to preserve the half-set splitting. A mask, gener-
ated from the atomic model using RELION (low-pass filtered to 8 Å),
was applied to the reconstructed raw density map to obtain x(k−1) in
Eq. 2 of the CryoSieve score. The same mask was applied to other
particle sorting algorithms such as NCC and AGC, to ensure fair
comparisons. Subsequently, particles were sieved out based on the
ascending order of the CryoSieve score. In total, nine iterations were
carried out, with each iteration retaining 80% of the particles from
the previous iteration. The cutoff frequency of the highpass operator
H(k) increased linearly as the iteration progressed. For all datasets,
except for LAT1 and apoferritin, the initial cutoff frequency was set at
40Å, and the final cutoff frequency was 3 Å. For LAT1, the initial
cutoff frequency was 50Å, and the final cutoff frequency was also
3 Å. For apoferritin, the initial cutoff frequencywas 40Å, and the final
cutoff frequency was also 2 Å.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw final stack datasets analyzed in this study were downloaded
from the EMPIAR repository using accession codes EMPIAR-10024,
EMPIAR-11233, EMPIAR-10097, EMPIAR-11120, EMPIAR-10264, EMPIAR-
10330, EMPIAR-10269, EMPIAR-10200. Atomic coordinates from Pro-
tein Data Bank 6PCQ were used for the generation of simulated par-
ticles using InSilicoTEM v2.1.0. Source data are provided with
this paper.

Code availability
CryoSieve22 is now open-sourced and available on GitHub [https://
github.com/mxhulab/cryosieve]. A detailed tutorial can also be found
on its homepage. Moreover, datasets used in this manuscript, along
with the expected outputs after running CryoSieve, have been
deposited on GitHub and can be accessed via CryoSieve’s homepage.
Code has been uploaded to Zenodo and can be accessed via [https://
doi.org/10.5281/zenodo.10040463].
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