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Global increase in tropical cyclone ocean
surface waves

Jian Shi 1,2, Xiangbo Feng 3,4, Ralf Toumi 4, Chi Zhang2,5, Kevin I. Hodges3,
Aifeng Tao1,2, Wei Zhang 2,5 & Jinhai Zheng 1,2

The long-term changes of ocean surface waves associated with tropical
cyclones (TCs) are poorly observed and understood. Here, we present the
global trend analysis of TC waves for 1979–2022 based on the ERA5 wave
reanalysis. The maximum height and the area of the TC wave footprint in the
six h reanalysis have increased globally by about 3%/decade and 6%/decade,
respectively. The TC wave energy transferred at the interface from the atmo-
sphere to the ocean has increased globally by about 9%/decade, which is three
times larger than that reported for all waves. The global energy changes are
mostly driven by the growing area of the wave footprint. Our study shows that
the TC-associated wave hazard has increased significantly and these changes
are larger than those of the TC maximum wind speed. This suggests that the
wave hazard should be a concern in the future.

Tropical cyclones (TCs) cause extensive damage through strongwinds
and heavy rainfall. They also generate destructive oceanic extremes,
such as storm surges and surface waves1–3, which pose a significant
threat to infrastructure, navigation, and communities4–10. Even in the
absence of storm surges, coastal and offshorewaves generated by TCs
can still cause dangerous surf conditions, rip currents, and severe
coastal erosion10,11. Surface waves can be an important contributor to
extreme sea levels, which are recognised as a major natural hazard in
the present and future. Compared to atmospheric extremes (e.g.,
heatwaves and heavy rainfall), long-term changes in oceanic extremes
have not been well studied, due to the sparsity and uncertainty in
ocean observations under extreme conditions12–16.

Ocean surface waves are fundamentally forced by winds, but
these two cross-medium fields at the interface do not necessarily have
the same trends17,18, due to the complicated nonlinear wind-wave
interaction and the long persistenceof swells. Satellite altimeters show
a global increase in ocean surface wind speeds over the last four
decades, but no significant trend has been found in global wave height
largely because of the inhomogeneous changes in regional waves19–22.
However, global wave energy has increased by about 4%/decade23. TCs
are an important contributor to the global wave climate, especially for

extreme waves. Unlike the overall ocean surface waves, or the high-
latitude extreme waves driven by extratropical cyclones embedded in
strong westerlies, TC-associated waves only occur in a restricted area
centred at the TC track positions. It is important to develop an analysis
approach that is tailored to capture the synoptic features of TC waves
(TCWs) and also mitigates the uncertainties in extreme wave values.
Then, the next science questions will be: Are global trends in such TC-
associated waves over recent decades detectable? and if so, how
comparable are these trends relative to the overall wave trends and
relative to the TC intensity changes?

Observed trends at both global and basin scales over the last
decades have recently been found for some TC metrics, such as fre-
quency, position, intensity, and translation speed24–29. The signs and
values of these trends depend on the TC metric and can vary greatly
with the basins. Attribution of these changes to anthropogenic forcing
is problematic because of the uncertainties in TC observations and the
effect of interdecadal climate variability30,31. TCWs are affected by
multiple properties of TCs (such as intensity, size, and translation
speed). There have beenmodel studies examining the future impact of
global warming on TCWs32. But, it remains unknown whether the TC
wave conditions have actually changed over the past decades.
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Documenting any long-term trends of TCWs will be a significant
addition to understand the links between climate change and TC-
related hazards.

In this study, we examine the historical global long-term changes
in TCWs by synthesising the latest ocean wave reanalysis with TC
observations (see subsections 1 and 2 in the Methods section for
details). To mitigate uncertainty of extremely high waves in global
ocean wave reanalysis, we focus on relative changes in the TC wave
footprint that are less sensitive to absolute values of extreme waves
(see subsections 3, 5–7 in the Methods section for details). The TC
wave footprint is defined by a threshold of significant wave height (Hs)
that the wave reanalysis can well represent under TC conditions. The
TC wave footprint also boosts the sample size of TC wave data, ben-
efiting detection of robust long-term trends. The climatology of TCWs
is summarised in Supplementary Fig. 1.

We have found in this study that over the last 44 years the annual
mean of maximum Hs within the 6-h TC footprint has increased by
3.2 ± 1.3%/decade globally, relative to the 44-yearmean (± representing
the 95% confidence interval of trend value, with the statistical details in
“Statistical analyses” in the Methods section). This relative increase of
the maximum wave height is about 40% larger than the increase of TC
surface maximum wind speed (2.3 ± 0.8%/decade). All ocean basins
show a significant long-term increase of the maximum wave height,
with the largest increase of 5.0 ± 4.2%/decade in the North Atlantic
(NA). We also find that the area of TC wave footprint has increased by
5.7 ± 3.8%/decade globally. The TC wave energy, which measures the

total accumulated energy of TCs transferred from the atmosphere to
the ocean within the TC wave footprint, has increased by 8.9 ± 7.3%/
decade globally, with the fastest increasing rates (17–32%/decade) in
the NA, eastern Pacific (EP) and North Indian Ocean (NI). The large
upward trend of the global wave energy is mainly caused by the
increase of the area of TCWs. The western North Pacific (WNP) and
South Pacific (SP) show no significant basin-wide trends in the energy
over the last 44 years. This is due to a reductionof annual accumulated
TC duration time that counteracts the upward trends in the height and
the area of TCWs.

Results
Global increase of the height and the area of TC waves
Figure 1a, b, d, e shows the composite height of the 6-h TC wave
footprint around the TC track position for two equal epochs of the
satellite era (1979–2000 and 2001–2022) in the Northern Hemisphere
(NH) and SouthernHemisphere (SH). In the composite analysis, the 6-h
wave fields are collected and averaged around the TC track position
over each epoch. The height of TCWs distributes asymmetrically
around the storm centre, with larger values to the right of the centre in
the NH and to the left in the SH, related to the longer fetch for wave
generation along the storm propagation direction33. Between the two
epochs, the average height of TCWswithin the footprint has increased
by up to 44 cm in the NH and 51 cm in the SH, which are equivalent to
13.1% and 14.9% relative to the values in the first epoch. The spatial
scale and magnitudes of TCWs in the SH are larger than those in the
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Fig. 1 | Compositemean and linear trends of the height of tropical cyclone (TC)
wave footprint. a–b Composite mean of the 6-h wave height (m) around the TC
track position in the Northern Hemisphere (NH), for the two epochs 1979–2000
and 2001–2022. c Relative trend (%/decade) of the annual 6-h wave height around
the TC track position in the NH, over 1979–2022. The relative trend is relative to
the 44-year mean; and dotted areas pass the 95% confidence level. d–f As (a–c)
but for the Southern Hemisphere (SH). In (a, b, d, e), the 6-h wave height centred
at the TC track position is averaged over the two epochs, and only the average

values above 2.5m are plotted. In (c, f) the 6-h wave height centred at the TC track
position is averaged in each year, and then the linear relative trend over the 44
years is computed at each grid point; only relative trends at grid points where the
44-year average above 2.5m are plotted. The wave fields have been rotated in the
TC orientation. Only TC waves for which the TC track points are between 40 oN
and 40 oS are considered. Wave height is represented by significant wave height
(Hs). Source data are provided as a Source Data file.
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NH. In the SH, related to the lack of land, the effective wind fetch is
much longer, resulting in larger waves8. In contrast, in the NH, because
the fetch is shorter, the waves are relatively smaller. Figure 1c, f shows
the linear relative trend in the 6-h height within the TC wave footprint
over the whole period 1979–2022, relative to the long-termmean. The
largest trends of about 6–7%/decade are seen to the right of the centre
in the NH and to the left in the SH.

We find that the maximum height of TCWs has significantly
increased both globally and in individual basins. The maximum
height is defined as the maximum value of Hs within the 6-h foot-
print. The TCWs are further partitioned to swell and wind sea waves
depending on the relationship between the local wind forcing and
wave direction. Details on the wave metrics are provided in “ERA5
wave reanalysis” in the Methods section. The global average of the
maximumheight of the 6-h TCwave footprint for each year is shown
in Fig. 2a. Relative to the 44-year mean, the maximum height has
significantly increased by 3.2 ± 1.3%/decade, with 2.8 ± 1.2 and
3.5 ± 1.4%/decade for swell and wind sea waves, respectively (Sup-
plementary Table 1). Themaximumheight has a larger trend value in
the SH (4.4 ± 1.9%/decade) than in the NH (2.9 ± 1.6%/decade)
(Fig. 2b, c, Supplementary Table 1). We note that the trends of the
maximum height are much larger than the growth rates of TC
intensity, which are only 2.3 ± 0.8, 2.3 ± 0.9 and 2.5 ± 1.2%/decade for
the globe, NH and SH, respectively (Supplementary Table 1). This
discrepancy suggests that the change of storm intensity cannot fully
explain the large increase of the maximum height of TCWs and that
other factors may also play a role. These factors include changes of
TC translation speed and the nonlinear wind-wave interaction (this
will be discussed later). To test the first factor, we calculated the
linear trends of TC translation speed at global and hemispheric
scales (Supplementary Fig. 2). The decreasing trends of the trans-
lation speed are noted but not significant. The decreasing trend of
TC translation speed has been reported in several previous
studies28,29, but the trend has low confidence related to the analysed
period and sources of track data34,35, and this is consistent with our
analysis. We also calculated the interannual (detrended) correlation
between the maximum height of TCWs and the TC translation
speed. The correlation is weak and not significant at global and

hemispheric scales (r = −0.18, −0.25 and −0.10, p > 0.05, for the
global, NH and SH averages, respectively), thus only hinting at a
small contribution from the reduced translation speed to the large
increase of TC wave height.

The basin-wide trends in the maximum height of TCWs and TC
intensity are provided in Supplementary Fig. 3 and Supplementary
Table 1. The upward trend of the maximum height is significant in all
ocean basins, in the range 3.2–5.0%/decade, with the largest values in
the NA, WNP and South Indian Ocean (SI). We notice that the WNP
basin has the largest change of TC intensity, while the NA basin has the
largest change of TC wave height, confirming that other factors affect
the trends of the maximum height (this will be discussed in the dis-
cussion section).

We highlight that the area of TCWs has significantly increased in
the satellite era (Fig. 1). We further quantify the global increase of the
area for different thresholds of TC wave heights (Fig. 3a). The area
trends in individual basins are provided in Supplementary Table 2. For
the TCWswithHs ≥ 2.5m, the area increases by 5.7 ± 3.8%/decade, with
respect to the 44-yearmean. When raising the threshold from 2.5m to
4.5m, the relative trends of the area become slightly smaller, e.g., with
5.5 ± 5.7%/decade for the threshold of 4.5m. However, the larger
interannual variabilitywith the larger height threshold tends toweaken
the robustness of the trend (this is shown by the larger error bars, or
lower confidence levels, of the trend values in Supplementary Table 2).
We notice that these relative trends in TC wave area are 2–3 times
larger than the relative trends of TC intensity (surface maximum wind
speed, at 2.3 ± 0.8%/decade). The area trends are bigger in the SH than
in the NH, especially for larger thresholds (Fig. 3b, c). The SI is an
important contributor to the SH signal and there the relative trends of
the area are very sensitive to the height threshold (i.e., the trend values
are larger when using larger height thresholds), while in the NA and
WNP the relative trends of the area are only weakly dependent on the
threshold (Supplementary Table 2). This basin difference may be due
to the smaller areas and the strong TC intensity in the NA and WNP
compared to other basins (Supplementary Discussion and Supple-
mentary Fig. 1) so that the proportion of high waves in the footprint in
these two basins is more likely to be saturated with increased storm
intensity.

Fig. 2 | Time series and linear trends of themaximumheight of tropical cyclone
(TC) wave footprint, and surfacemaximumwind speed. a Global trend (straight
line) and time series (solid line) of the annual 6-h maximum height for mixed
(black), swell (red) and wind (blue) sea waves over 1979–2022. Annual 6-h surface
maximum wind speed of TCs (orange) is also provided. b, c As (a), but for the

NorthernHemisphere (NH) and SouthernHemisphere (SH). Shading shows the 95%
confidence interval for the significant trend. Wave height is represented by sig-
nificant wave height (Hs). Maximum height is defined by the maximum value of Hs
within the 6-h TC wave footprint; the annual 6-h maximum height is the maximum
height averaged over each year. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43532-4

Nature Communications |          (2024) 15:174 3



Varying increase of TC wave energy
TCsplay an important role inmaintaining the energy balance at the air-
sea interface36,37. TCs take heat energy from the ocean surface to fuel
their development, and on the other hand, they also dissipate kinetic
energy into the ocean bywaves. TheTCwave energy, defined as the TC
energy accumulated annually in the ocean surfacewaves, indicates the
amount of kinetic energy transferred from the atmosphere to the
ocean by TCs. Precisely, the TC wave energy integrates the height and
the area of the 6-h TC wave footprint over the annual accumulated TC
duration (seeMethods). In the following, the height, area and duration
are denoted as three contributing components of the TCwave energy.

Figure 4a shows the trend of the globally integrated TC wave
energy. Over the last 44 years, the energy has significantly increasedby
8.9 ± 7.3%/decade, relative to the long-term mean. Unlike the max-
imum height of TCWs, the upward trend in the global TC wave energy
is dominated by swells, which account for 67% of the trend in the
overall waves, while wind sea waves contribute only 33% (Supple-
mentary Table 2).We decompose the energy into three linear terms of
the three contributing components (the height, area and duration) by
holding two components constant with time and by allowing the other
one component to vary with time, and into four nonlinear terms by
retaining two or three components varying with time simultaneously
(see “Decompose the annual TCwave energy” in theMethods section).
Here, we only report the results of the linear terms because the non-
linear terms have very little impact on the energy trends. We find that
for the linear terms, the global increases of the area, duration (Fig. 4a),
andwave height contribute to 72%, 35%, and −2.0%of the energy trend,
respectively, and for the nonlinear terms, they overall contribute to 5%
of the energy trend.However, the upward trendsof the global duration
and wave height are not significant at the 95% confidence level. Thus,
the global energy trend is largely driven by the significant trend in
the area.

The linear trend of the energy over the last 44 years varies
greatly with the basin (Supplementary Figs. 3b, 4a and Supplemen-
tary Table 2). Significant upward trends are found in the NA
(29.3 ± 14.4%/decade), EP (28.0 ± 21.7%/decade), NI (16.9 ± 18.2%/
decade, significant in 90% confidence) and SI (11.9 ± 9.7%/decade).
Small and insignificant upward trends are seen in the other two
basins (WNP and SP). As shown in the global trend, swells dominate
the basin-wide trends of the energy. Supplementary Fig. 4b shows
relative contributions of the linear effects of the three contributing
components to the basin-wide trends of the energy. Corresponding
to the large variations in the basin-wide trends of the energy, the
contributing components play very different roles in different basins.
In the SP and WNP, the trends of TC wave energy are insignificant,
but the causes are different. In the SP, related to the large interannual
variability, none of the three components shows a significant trend,
yielding no significant trend in the energy. In the WNP, however, the
decrease of the annual duration, which is related to a reduction of TC
frequency associated with the strengthening of the Pacific Walker
Circulation24, counteracts the effect of the increase of the area rela-
ted to the strengthening of storm intensity. Consequently, in the
WNP, the energy has no trend. In the NI, the energy trend is solely
caused by the increase of the annual duration of storms, with small
and insignificant changes in other two contributing components. In
contrast, in the SI, the energy change is due to a significant increase
in both the height and the area of TCWs. In the EP and NA, about 90%
of the energy trend is due to the significant increase in the area and
the duration, which agrees with previous studies on TC intensity38

and frequency39,40. Figure 4b, c demonstrates the mixed picture in
the energy trend in the WNP and NA due to different changes in the
storm duration. Therefore, over the last 44 years, significant growth
of the area is commonly seen in all basins, but the increase or
decrease of other two contributing terms can superimpose or

Fig. 3 | Time series and linear trends of the area of tropical cyclone (TC) wave
footprint. a Global relative trend (straight line) and time series (solid line) of the
annual mean of the wave area over 1979–2022. The area is specified for three
different thresholds of TC waves (wave height above 2.5, 3.5 and 4.5m). Relative
values are relative to the 44-yearmean.b, cAs (a), but for theNorthernHemisphere

(NH) and Southern Hemisphere (SH). Shading shows the 95% confidence interval
for the significant trend; in (b) (top), the straight line with no shading indicates that
the trend is not significant at the 95% confidence level, but significant at the 90%
confidence level. Wave height is represented by significant wave height (Hs).
Source data are provided as a Source Data file.
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counteract this effect from the area, largely altering the final trend in
the energy.

Discussion
Here, we have quantified the global long-termhistorical changes in TC-
associated surface ocean waves by analysing the TC wave footprints.
This is based on a dataset that synthesises the latest ocean wave rea-
nalysis and TC observations. We find that over the past 44 years, in the
global average, the maximum height and the area of TCWs have
increased by 3.2 ± 1.3%/decade and 5.7 ± 3.8%/decade (relative to the
44-year mean), respectively. Upward trends of the height and the area
of TCWs are seen in all ocean basins, with the largest trends in the NA
(5.0 ± 4.2 and 18.3 ± 10.2 %/decade for the height and the area,
respectively), although the trends in the NI and SP are not significant.
The surface area exceeding a thresholdofwaveheight is of importance
when considering the risk of offshore and coastal structures encoun-
tering a damaging wave.

We also show that the global TC wave energy, indicating the TC
energy transferred at the interface from the atmosphere to the ocean,
has increased even faster by 8.9 ± 7.3%/decade. This global trend in the
TC wave energy is about two times larger than that estimated for the
global all-year wave energy23, pointing to the important role of TCs in
the global wave climate. The trend of the TC wave energy is mainly
driven by changes in the area but varies greatly with basin, with the
largest trends of about 30%/decade in the EP and NA. The compound
effects of multiple TC properties, which contribute to the energy, can
largely enhance or reduce the trends of the wave energy at the basin
scale. We confirm that the above trends in TCWs are not dependent on
the track source of ERA5 and the ENSO effect (subsection “Due to the
ENSOeffect” the inMethods section). Butwenotice that there is strong
interannual variability in the wave metrics, and this can reduce the
detectability of long-term trends over the period, especially at regional
scales. Longer periods of wave data and climate simulations would
help to reduce such uncertainty.

We emphasise that the upward trends of the TC wave metrics are
much larger than the trend in the TC surface maximum winds
(2.3 ± 0.8%/decade globally) that drive the waves. An idealised
atmosphere-wave coupled model study with ocean surface warming
showed that TC wave height increases more rapidly than the surface
winds41. The model also showed that the surface area of the TC wave
footprint increases more rapidly than both the maximum wave height

and the surface winds. These nonlinear relationships are caused by the
drag coefficient increasing with moderate wind speed. These predic-
tions are supported by the trends of the height and the area of TCWs
presented here. Furthermore, related to this point, we find that the
maximum trends of the 6-h height within the footprint (6–7%/decade,
Fig. 1c, f) are larger than the trends of 6-hmaxima (3%/decade, Fig. 2b,
c, Supplementary Table 1). Note that the wave fields in Fig. 1 have been
rotated in the TC orientation. The maxima of the composite field
average, based on fixed locations relative to storm centre, is smaller
than the average of 6-h spatial maxima because the former may
include smaller waves compared to the latter. This means that the 6-h
spatial maxima is less sensitive to the surface winds than the storm
wave maxima with fixed location.

Here, we also calculated the trends in the maximum height of
TCWs during the storm lifetime, named the lifetime-maximum wave
height (Supplementary Fig. 5 and Supplementary Table 1). We found
that the relative trends of the lifetime-maximum wave height are
smaller and less detectable than the relative trends of 6-h maximum
height. The relative trends of the lifetime-maximum wave height are
only significant in the globe, SH and SI, with rates of 1.7 ± 1.4%,
4.2 ± 2.1% and 5.4 ± 2.6%, respectively. This contrasts with the sig-
nificant trends in 6-h maximum height in all basins. The weak and
small trends in lifetime-maximum wave height resemble the less
robust trends in the lifetime-maximum intensity. This may be also
related to the saturation of the drag coefficient at the highest wind
speed found in the modelling41. In short, our study sheds light on the
rapid increase of overall ocean waves associated with TCs as a major
hazard in the past 44 years. The relative changes in ocean waves
presented here are much larger than the relative changes in TC
surface maximum wind speed. This finding is consistent with pre-
vious observation-based studies in which the natural impacts of TC
(such as total TC rainfall) over the satellite era have more robust
trends than TC intensity likely related to uncertainty in observing
storm intensity42–44.

For future projections, a recent global study reported future
decreases in the extreme wave heights driven by their modelled
decrease in TC frequency5, despite a strengthening of TC intensity.
Another study also projected a future decrease in the extreme wave
heights in the WNP associated with a decrease in TC frequency45.
However, these studies should not be interpreted that the threat of
the TC-associated waves will decrease in the future. Instead, we

Fig. 4 | Time series and linear trends of tropical cyclone (TC) wave energy, TC
wave area, and TC wave duration. a Global trend (straight line) and time series
(solid line) of the TC wave energy (black; annually accumulated), the TC wave area
(blue; annually averaged), and the TC wave duration (red; annually accumulated)

over 1979–2022. b, c As (a), but for the western North Pacific (WNP) and the North
Atlantic (NA). Shading shows the 95% confidence interval for the significant trend;
in (a,b), straight lineswithout shading indicate that the trends are not significant at
the 95% confidence level. Source data are provided as a Source Data file.
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anticipate that the risk of TCWs defined by the overall height and the
areal footprint, which are independent of TC frequency, is likely to
increase substantially in the future. Any total damage caused by
TCWs is sensitive to the areal footprint. For future projections, the
research community has more confidence in the effect of climate
change on the TC intensity than on the other TC metrics (e.g., fre-
quency and translation speed)46,47. More attention needs to be paid
to the multiple drivers of future changes in the TC wave climate as a
major peril.

Methods
TC tracks
TCs used in our study are firstly identified in the ECMWF fifth gen-
eration climate reanalysis (ERA548) from 6‐h atmospheric data, during
1979–2022, using the method described in refs. 49,50. The method
tracks maximum vorticity centres in the spectrally filtered vorticity
fields andmatches the TC features based on observed tracks. First, the
vertical average of the relative vorticity between 850 and 600hPa is
obtained. This is then spatially filtered using spherical harmonics to
T63 resolution; the large‐scale background with total wavenumbers
n ≤ 5 is removed. Vorticity maxima in the NH and vorticity minima in
the SH are determined on the T63 grid and then used as starting points
to obtain the off‐grid locations using B‐spline interpolation and max-
imisation methods49. In the first instance, all vorticity centres that
exceed 0.5 × 10−5 s−1 in the NH and that are below −0.5 × 10−5 s−1 in the
SH are identified through the data time series. The tracking is per-
formed by first initialising a set of tracks using a nearest neighbour
method and then refining thembyminimising a cost function for track
smoothness subject to adaptive constraints on track smoothness and
displacement distance in a time step. The detailed processes in
tracking can be seen in refs. 48–50. After the tracking process, the
maximum surface wind speed and its locations, in the unfiltered data
are added to the ERA5 tracks. This is done by searching for the max-
imum winds at 10m height within a 6° geodesic radius around the TC
track point using the B-splines and minimisation method51.

Because the identification of TCs in ERA5 is different from the TC
identification in observations52, a mismatch may occur between these
two datasets, e.g., some observed TCs are not identified in ERA5 tracks
or some ERA5 tracks are not in observations. To avoid the incon-
sistency, a matching procedure is applied to match the ERA5 tracks to
the verification tracks from the International Best Track Archive for
Climate Stewardship (IBTrACS)52,53. Details in thematching process can
be seen in ref. 54,55. Briefly, an ERA5 track is matched to a verification
track if the mean spatial separation is ≤5° over the corresponding
paired track points and it is the track with the smallest separation. In
the matching, we only include the tropical storms in IBTrACS with
lifetimemaximum intensity ≥17.5m/s (i.e. several tropical storms). The
matching process ensures that the ERA5 tracks are those TCs that are
also observed in IBTrACS.

The following truncating process is finally applied. Each of the
matched full TC tracks fromERA5 is truncated to the time length of the
same track from IBTrACS, to ensure that the two datasets have the
same lifetime for the same storms. We further restrict the 6-h track
pointswithin 40 °N and 40oS. This criterion applied here is tominimise
the uncertainty in analysing the TCWs. First, IBTrACS has the uncer-
tainty in including extratropical cyclones and post-tropical cyclones
(this then translates into the truncated ERA5 tracks)55,56. Second, swell
waves in the middle-to-high latitudes driven by extratropical cyclones
and strong westlies are usually in a large area and persist for a long
time. This can largely contaminate the TC wave signal57,58.

We use the ERA5 truncated tracks as themainTCdataset in the TC
wave identification (see section “TC wave metrics” below). This is
because the ERA5 tracks are dynamically associated with the ERA5
wave data through the data assimilation system and the wavemodel in
ERA5. IBTrACS is not assimilated in ERA5. Although the ERA5 tracks are

matched with IBTrACS, the storm locations in the two datasets could
slightly differ (difference is up to a 5° distance as described above).
Thus, using ERA5 truncated tracks has less uncertainty in TC wave
identification.

Despite the ERA5 data being extended back to 1940, in this study
we focus on the post-satellite period (1979–2022). This is because of
low confidence of IBTrACS data prior to 1979 that could be used in the
matching and truncating processes.

ERA5 wave reanalysis
Weuse the6-hwavedata (including the significantwaveheigt ofmixed
(overall) waves, swell or wind sea waves) archived from ERA5, at an
output resolution of 0.5 deg × 0.5 deg, from 1979 to 2022. The ocean
wave model used in ERA5 is the WAve Modelling (WAM) model59. The
horizontal grid size inWAM is 28 km. Thewave spectrum is discretized
in 36 directions and 36 frequencies. In ERA5, the ocean wave data
assimilation is based on the optimal interpolation (OI) with a window
length of 12 h. The wave height data from space-borne altimeters are
assimilated in the wave fields from WAM. In the data assimilation, the
two-dimensional spectra of significant wave heights are corrected by
observations via the OI scheme, and the analysed field is used as the
initial condition for the next step of model integration.

Here, we briefly describe wave spectra in the ERA5 wave data
because they are in the centre of defining the TC wave energy in the
subsection 3. In the ERA5 wave reanalysis, the spectral components of
wind sea and swells are separated using the spectral partitioning
techniques which account for the relationship between the local winds
and wave direction60. In the partitioning, the spectral components are
wind sea components when

1:2× 28
u*

c
cosðθ� ϕÞ> 1 ð1Þ

where u* is the friction velocity induced by winds (in the units of m/s),
ϕ is the wind direction, and c and θ are the phase speed (in the units of
m/s) and the direction (in the units of degree) of wave components.
For those components which do not match the above criterion, they
are defined as swell components.

The significant wave heights (Hs, in the units ofm) of eithermixed
(overall) waves, swell or wind sea waves are defined as four times the
square root of the zeroth-order moment of wave spectrum energy, as
follows

Hs = 4
ffiffiffiffiffiffiffi
m0

p ð2Þ

where m0 is the zeroth-order moment (in the units of m2), which is
calculated from the integral of the two-dimensional wave spectral
energy density function F(f, θ):

mo =
Z 1

f =0

Z 2π

θ=0
Fðf ,θÞdf dθ ð3Þ

where f is the frequency (in the units of Hz) and θ represents the wave
direction, for each spectrum component.

TC wave metrics
The TC-associated surface ocean waves are identified by associating
the TC tracks with wave data in ERA5. For each 6-h track point, a circle
centred at the TC position with a geodesic radius of 15-degree is first
drawn from the field of significant wave height (Hs) (Supplementary
Fig. 6a), i.e., the first guess of TCWs. Within the 15-degree geodesic
circle, the waves at the contiguous grid points where Hs ≥ 2.5m are
defined as the TCW footprint. The threshold of Hs = 2.5m is chosen
basedona recent evaluationof the size of ERA5TCs61. This study found
that compared to othermeasures of TC size, the outer size of TCs with
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a surface wind speed of 9m/s is best represented in ERA561. This wind
speed (9m/s) produces waves with Hs = 2–3m according to a wind-
wave relationship62 and a parametric wave model63 under various TC
conditions. The average value of Hs = 2.5m is thus selected as the
threshold in defining the TCW footprint. The 6-h TC wave footprint is
further used to determine the statistical metrics for the area and the
height of TCWs, and the TCW energy. Please note that we tested the
sensitivity of the TCW footprint to the geodesic radius used in the first
guess of TCWs. Supplementary Fig. 6b shows the distribution of the
area of the 6-h TCW (i.g., where Hs ≥ 2.5m) as a function of geodesic
radius in the first guess. For small radius (i.e., 5 degree), the identified
TCW footprint has a small area around the TC centre, and none of the
footprint exceeds 106km2. When the radius in the first guess becomes
bigger, the sample size of small footprints reduces and sample size of
large footprints increases. The distribution of the footprint area
becomes stable when the radius is larger than 15-degree. Thus, we
conclude that 15-degree of radius in the first guess is appropriate for
the TCW footprint defined by Hs ≥ 2.5m.

The 6-h areawithin the closed contour of theHs value threshold is
named as the TCW area (A, km2), which can be expressed as follows:

A=
XNg
i = 1

SðiÞwith Hs≥Hs* ð4Þ

where Ng is the number of the contiguous grid points within the con-
tour of the Hs threshold (Hs* = 2.5m), and i is the index of the grid cell.
S(i) is the area (km2) associated with grid point i.

The maximum value of Hs within the 6-h TCW area is defined as
themaximumheight of TCWs. Themaximumvalue ofHs among all the
6-h TCW areas during the TC lifetime is defined as the lifetime-
maximum height of TCWs.

The TCW energy (e, J/m2) for mixed waves (wind sea and swell
waves), per unit of horizontal area, is calculated by integrating two-
dimensional wave spectral energy in Eq. (3), expressed as:

e=ρg
Z 1

f =0

Z 2π

θ=0
Fðf , θÞdf dθ=ρgm0 ð5Þ

where ρ and g are the density of seawater (1025 kg/m3) and the grav-
itational acceleration (9.81m/s2). FromEqs. (2) and (3), e is rewritten as:

e=
ρg
16

Hs2 ð6Þ

The energies of swell and wind sea waves can be separated fol-
lowing ref. 57. This is defined as:

eswell =
Hsswell
Hs

� �2

e ð7Þ

ewindsea = e� eswell ð8Þ

where Hsswell is defined in Eq. (2) using the partitioned spectral com-
ponents of swells. The wind sea component is calculated as the dif-
ference between the mixed wave energy and swell energy.

The annual accumulated TCWenergy (E) formixedwaves isfinally
calculated by integrating the 6-h energy (e) of TCWswithin the area (A)
throughout the accumulated TCW duration in a year (i.e., combining
Eq. (4) and Eq. (6) in a yearly base):

EðyÞ= ρg
16

XDðyÞ
j = 1

XNgðj, yÞ
i = 1

Hs2ði, jÞSði, jÞ ð9Þ

where i is the index of the grid point in each 6-h TCW area (A), and j is
the index of the TCW duration in a given year y. D(y) is the TCW
duration (in the units of days), which is denoted by the duration of the
6-h TCW footprint in a given year. The TCW duration can be equally

expressed as DðyÞ= PTCNðyÞ
k = 1 dðkÞ, where TCN is the annual TC

frequency, d(k) is the length of individual TC lifetime. S(i, j) represents
the grid area (km2) at grid index i and duration index j.

For simplicity, in the TCW energy definition, the mean square of
TCWheight averaged over the area (A) is termed as the height term (h)
of the energy, which can be expressed as:

h=

PNg
i = 1 HsðiÞ2 SðiÞ

A
ð10Þ

Substituting Eq. (10) into Eq. (9), the TCW energy E(y) accumu-
lated from the 6-h wave fields can be simply written as:

EðyÞ = ρg
16

XDðyÞ
j = 1

hðjÞAðjÞ ð11Þ

Decompose the annual TC wave energy
The annual TCW energy in Eq. (11) can be expressed by the yearly
averaged height, area and duration:

EðyÞ= ρg
16

HðyÞAðyÞDðyÞ ð12Þ

where H(y) is the annual average of the height term (h), obtained by
averaging h over the storm duration (D), as follows:

HðyÞ=

PDðyÞ
j = 1

hðjÞAðjÞ

AðyÞDðyÞ
ð13Þ

Similarly, A(y) is the annual average of TCW area:

AðyÞ=

PDðyÞ
j = 1

AðjÞ

DðyÞ
ð14Þ

In each year y, H(y), A(y) and D(y) can be denoted as the combi-
nation of their interannual departures (H′(y), A′(y) and D′(y)) and long-
term means (H, A and D):

HðyÞ=H’ðyÞ+H
AðyÞ=A’ðyÞ+A
DðyÞ=D’ðyÞ+D

ð15Þ

We then decompose the annual values of E(y) into long-term time
means and anomaly terms departing from the time means in a given
year y, using the three contributing components ofH(y), A(y) andD(y) in
Eq. (15). E(y) in Eq. (12) is expressed as:

EðyÞ= ρg
16

�
H +H’ðyÞ��A+A’ðyÞ��D +D’ðyÞ�

=
ρg
16

X8
k = 1

δk

ð16Þ
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δ1 =H’ðyÞ � A � D

δ2 =H � A’ðyÞ � D

δ3 =H � A � D’ðyÞ
δ4 =H � A’ðyÞ � D ’ðyÞ
δ5 =H’ðyÞ � A � D’ðyÞ
δ6 =H’ðyÞ � A’ðyÞ � D

δ7 =H’ðyÞ � A’ðyÞ � D ’ðyÞ
δ8 =H � A � D

ð17Þ

Now, annual E(y) consists of long-term time means and anomaly
terms. The long-term climatic average (δ8) is δ8 =H � A � D, which
represents the wave energy produced by the long-term means of
height (H), area (A) and duration (D). This term is constant. The
anomaly terms include first-order, second-order and third-order
effects of the three contributing terms (H, A, D) on the annual wave
energy. There are three first-order (linear) terms, denoted as δ1, δ2 and
δ3, which explicitly quantify the deviation of energy solely due to
interannual anomalies of height (H), area (A), and duration (D),
respectively. There are three second-order terms δ4-δ6 and one third-
order term δ7 in Eq. (17), which represent the nonlinear effect (cov-
ariability) of interannual anomalies of height (H), area (A), andduration
(D). These high-order terms have small values and make neglectable
contributions to the final energy trends, and they thus are excluded in
our trend analysis.

Validation of ERA5 TC waves
Here, we evaluate how well the ERA5 wave reanalysis represents the
TC-associated ocean waves. We validated the ERA5 wave data against
wave observations from in-situ buoys and satellite altimeters under TC
conditions, and also compared against another wave reanalysis pro-
vided by the WAVe ReanalYSis (WAVERYS)64.

Wave buoys from the National Data Buoy Centre are first used to
validate the ERA5 wave reanalysis. These wave buoy data are inde-
pendent of ERA5 because they are not assimilated in ERA5. Observa-
tions from 22 buoys during 1979–2018 are used in our validation
(Supplementary Fig. 7a). These buoys are in the North Pacific and NA
basins. Detailed information about location, valid period, and the
number of validated TCs for each buoy is provided in Supplementary
Table 3.

The validation process is as follows. First, at the time of a 6-h
interval of ERA5 TC track, if the buoy is within the 15-degree geodesic
circle of the track point, the Hs values from both the buoy and ERA5
wave data at the buoy location are extracted. For each validated TC,
two time series of Hs, with one frombuoy and the other fromERA5, are
obtained (Supplementary Fig. 7b). Then, a TCW duration is calculated
as the duration when the 6-h Hs exceeds 2.5m. In principle, this pro-
cess estimates the time when both the buoy data and ERA5 wave data
are above the Hs threshold (2.5m) at the same location during the
same TC passage. Because the buoy data and ERA5 wave data are
independent, the pair of TCW durations are calculated separately.
During the observational period 1979–2018, there are 582 TCs satis-
fying the above criteria. Finally, we compare the TCW duration in the
two wave datasets.

The comparison of the TCW duration between observations and
ERA5 for the same TCs is shown in Supplementary Fig. 8. The
observed TCW duration is well captured by the ERA5 wave data, with
r = 0.79 for all buoys. The correlation is higher in the NA (r = 0.84),
and slightly lower in the North Pacific basins where the sample sizes
are small (less than 30% of total samples, Supplementary Table 3).
The ERA5 wave data tend to underestimate the duration mean, with
mean relative error (MRE, relative to the observations) = −8.3%. The
Quantile-Quantile plots of TCW duration between observations and

ERA5, as another measure of validation, are shown in Supplementary
Fig. 9. The ERA5 wave data well capture the TCW duration at most of
percentiles although it tends to underestimate the values at highest
percentiles in theWNP and EPwhere the sample sizes are small. Thus,
ERA5 well represents the duration of the above defined TCW in
observations.

The TCW duration is related to both the maximum Hs values and
the storm translation speed. The scatter plots of the maximum Hs
during the identified duration for the 582 TC cases from observations
and ERA5 wave data are shown in Supplementary Fig. 10. The ERA5
wave data tend to slightly underestimate the observed maximum
height of TCWs, but they agree well in general including the extreme
values of Hs (>8m). The correlation between observation and ERA5
data is r = 0.77, 0.68, 0.67 and 0.83 for the globe, the WNP, EP and NA,
respectively. The mean relative error (MRE) is −10.7% and the RMSE is
1.0m for the total 582 TCs. This result aligns with other conclusions
that ERA5 has skill in capturing extreme wave heights observed by
buoys and satellite altimeter65,66.

For the 582 TCs which are seen in both wave buoy observations
and ERA5 wave data, their TC translation speeds calculated from
IBTrACS and ERA5 TC data are compared in Supplementary Fig. 11. For
each TC, the translation speed is calculated by using the great-circle
distance between two consecutive 6-h locations and averaged over the
storm lifetime. The observed TC and ERA5 TC have a good agreement
in the storm translation speed, with r = 0.98. The correlation does not
vary with ocean basins. The MRE is about 1% and RMSE is less than
1.5 km/h. Thus, we conclude that the ERA5 well reproduces the
observed TCW durations due to a good estimate in both the Hs values
(≥2.5m) and the TC translation speed.

Satellite remote sensing provides wave estimates at global scale,
and it hasbeen regardedasuseful observationaldata in studyingocean
waves17,19,22. Here, Hs observations from the Jason-2 satellite by a Ku-
band altimeter67 are also used to validate the TCwave data from ERA5.
The validation period is from July 2008 to December 2018 when Jason-
2 data are available. We use the satellite observations in the TCW first
guess circle (15-degree geodesic circle) when ERA5 TCs are at their
lifetime maximum intensity (Supplementary Fig. 12a). We take Jason-2
along-track Hs (about 3–4 km wide) within the TCW first guess area,
and then bin them into the ERA5 grid (0.5 × 0.5 deg). A total of 1373
gridded values for 51 TCs are finally found over the validation period.
Here, we only used the satellite data at the time of TC lifetime max-
imum intensity becausewaves aremostly largest when a stormreaches
lifetime maximum intensity, and thus the proportion of TCWs (Hs ≥
2.5m) along the satellite track is larger than any other time. This
reduces the proportions of smallwaves in the validation andmakes the
validation more desirable for TCWs.

The scatter plots of matched Hs values from Jason-2 and ERA5
are shown in Supplementary Fig. 12b–j for global and basin scales.
Satellite altimetry can rarely observe the maximum value of Hs > 8m
(Supplementary Fig. 12b–j). This is related to limited satellite data
recorded at fixed locations, compared to in-situ data, leading to large
uncertainty of satellite altimetry in representing extremewaves68. We
find that the ERA5 wave data can well capture the observed height of
TCWs in Jason-2, including large Hs ≥ 6m. The correlation between
Jason-2 and ERA5 data is r = 0.86, 0.82 and 0.92 for the globe, the NH
and SH, respectively. TheMRE is −3.1% and the RMSE is 0.38m, for the
globe. The smallest errors are in the SI and SP basins. Jason-2 satellite
altimetry is assimilated in ERA5 through its data assimilation system.
However, our validation is still useful to prove the good quality of
ERA5 for TCWs.

We also include WAVERYS64 as an additional source of wave
dataset to verify ERA5 wave data for TCWs. WAVERYS is a global wave
reanalysis covering the period from 1993 onwards. The wave model
used is the version 4 of the model Meteo France WAve Model. The
altimeterwave data and directional wave spectra provided by Sentinel-
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1 satellite are assimilated using the OI method with an assimilation
window of 3 h. Compared to ERA5, WAVERYS produces the global
wave data at a finer model resolution of about 0.2o. The wave-current
interaction is considered in WAVERYS, but it is not included in ERA5.
Source terms of white capping in the wave models of the two reana-
lyses are also different.

Using the same definitions of wave metrics (section 3 above), we
compared the maximum height of 6-h TCWs between WAVERYS and
ERA5 over the common period 1993–2018. The long-term means
fromWAVERYS are slightly larger than those from ERA5 both globally
and in most basins (Supplementary Fig. 13), likely related to a finer
model resolution of WAVERYS. At global and basin scales, the linear
trends over 1993–2018 are very close between the two datasets
(Supplementary Table 1). For example, the global trend of the max-
imum height of TCWs is 4.2 ± 2.5%/decade and 4.6 ± 2.5%/decade for
ERA5 and WAVERYS, respectively. Upward trends of the maximum
height of TCWs are found in all the basins when using WAVERYS,
consistent with the results using ERA5. The small discrepancies in the
TCW trends between the two datasets might be related to different
model physics and resolutions. Nevertheless, we conclude that the
two datasets produce consistent trends in TCWs over the period
1993–2018.

Lastly, we compare the ERA5 TCW footprint against a parametric
wave model63 that has been developed for TC conditions, for the area
and maximum Hs. In the statistical wave model, the JONSWAP fetch-
limited wind-wave growth relationship is used:

gHs

U2
10

=0:0016
gFL

U2
10

 !0:5

ð18Þ

WhereU10 is the 10mwind speed, FL is the fetch length and g is the
gravity acceleration. Within the first guess area (15-degree geodesic
circle), Hs is solved conditional on the wind speedU10 and fetch length
FL at each grid point.U10 is obtained from the ERA5, and FL is a function
of maximumwind speed (Vmax) and TC translation speed (Vfm). Young
(1988) defined an equivalent fetch FL for TC conditions:

FL

R’
=ψ
�
a1V

2
max +a2VmaxVfm +a3V

2
fm +a4Vmax +a5Vfm +a6

�
ð19Þ

where a1-a6 are coefficients pre-defined in ref. 69. The term ψ is a
scaling factor70, which is defined by

ψ= �0:015Vmax +0:0431Vfm + 1:30 ð20Þ

The term R′ is defined by

R’=22:5 × 103log10R� 70:8× 103 ð21Þ

whereR is the radius of themaximumwind speed, which is obtained in
the ERA5 TC track (see subsection “TC tracks” in this section). An
instantaneous wave field produced by Eq. (18) is demonstrated in
Supplementary Fig. 14a. Over the period 1979–2022, there are 809 TCs
based on the selecting criteria in ref. 69(i.e. 30m/s <Vmax < 70m/s,
Vfm < 15m/s and 10 km <R < 100 km).

We validate the lifetime average area, and the lifetime average
maximum Hs within the footprint. By average, the TCW area is
1.79 × 106 and 1.72 × 106 km2 for the ERA5 and the parametric model63,
respectively. The scatter plot of the TCW area averaged in the lifetime
of individual TCs is shown in Supplementary Fig. 14b. ERA5 slightly
overestimates the area with MRE of only 4% and the RMSE of 9 × 105

km2. The scatter plot of the 6-h maximum height averaged over the
strom lifetime in Eq. (18) and ERA5 is shown in Supplementary Fig. 14c.
Compared with the parametric model, ERA5 tends to underestimate

the low-to-medium values of Hs (Hs < 6m), and tends to overestimate
the medium-to-high values of Hs (Hs > 6m). But the overall error is
small withMRE of 3% and RMSE of 0.9m. This result is consistent with
other findings that ERA5 tends to underestimate the extreme wave
height65,66.

Finally, we compared the composite of the TCW footprint in the
two epochs (1979–2000 and 2001–2022) in the two datasets (Sup-
plementary Figs. 15, 16). Only the common time when both datasets
have valid values is considered. We find that the asymmetric dis-
tribution and the values of Hs within the footprint in ERA5 well
resemble those in Eq. (18). An increase of Hs values and area between
the two epochs is seen in both datasets. These agreements are better
in the NH than in the SH, related to more samples of footprint in the
NH. Compared to Eq. (18), the ERA5wave data have less clear features
in the storm centre, likely related to less representation of the eye-
wall contrast in the ERA5 wave model due to the low resolution. We
note the difference of the composite values in Supplementary
Figs. 15, 16 and Fig. 1. This is due to the different TCW sample
selections when calculating Eq. (18), which is valid only for the time
when TC is strong, i.e., 30m/s < Vmax < 70m/s. Thus, the TCW foot-
prints produced by Eq. (18) are only used in validating the ERA5 wave
data, and they are not ideal for trend analysis due to lower repre-
sentability of TC conditions.

In all, we conclude that the ERA5 wave data are able to reproduce
the duration, the area and the maximum Hs of TCW, including the Hs
valueswithin the footprint, compared towave buoy, satellite altimetry,
WAVERYS, and an independent parametric wave model. However,
there is still a large uncertainty in the extremely high values of TCW
(Hs > 8m) due to very limited observations.

Advantages and caveats of ERA5 wave data in representing
TC waves
In this section, we summarise the advantages and caveats of the ERA5
wave data in analysing the long-term trends in TCWs. Advantages of
ERA5 wave data include:

• Dynamical consistency between TC tracks and wave data.
Because TC tracks and TCWs are consistently and objectively
identified from the atmosphere-wave coupled reanalysis (see
subsections 1 and 2 in the Methods section), they are well
matched in terms of the timing and location. This is important
for extreme analysis, including attributing wave trends to
atmospheric forcing.

• Wave data assimilation. In ERA5, wave height data (Hs) from
space-borne altimeters are assimilated in the wave fields from
WAM twice a day with a 12-hour window (see subsection 2
above). Thewavedata assimilation corrects the initial wavefields
used for the next step ofmodel integration, and the atmosphere
data assimilation corrects the atmospheric fields. This
atmosphere-wave coupled analysis procedure improves both
the quality of wave data and the coupling level of waves with the
atmosphere.

• Good quality of TC wave metrics in the trend analysis. We
defined the wave metrics based on the TC footprint which is
tailored for ERA5 wave data. We further showed that ERA5 is
adequate in systematically representing these TC wave metrics
when compared to observations and other sources of wave data
(see subsection 5).

Caveats of the ERA5 wave data, including how to minimise the
impact, are:

• Uncertainty in extremely large waves. Global wave models
have uncertainty in simulating extreme waves under TC
conditions partially because the wavemodel resolution is not
fine enough. This is also related to inaccurate wind forcing.
Another source of uncertainty is the lack of extreme waves in
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observations. Satellite altimetry can rarely observe Hs > 8m
(see “Comparison to satellite altimetry” in subsection 5 of the
Methods section). Although the ERA5 wave data can capture
some extreme events (Hs > 8m) observed by wave buoys, the
sample size is still limited (see “Comparison to wave buoy” in
subsection 5 of the Methods section). Because validation for
extremely large waves is challenging, it is still uncertain how
well the ERA5wave data can capture themost extreme events.
To mitigate these uncertainties in the ERA5 TC wave data, we
focus on themetrics of TCwave footprint that are designed to
be less sensitive to extremely high values (see subsection 3).
Briefly, the TC wave footprint is defined by moderate size of
waves (Hs ≥ 2.5 m). Through a systematic validation, we show
that ERA5 wave data well represent these metrics of TC wave
footprint (i.e., the area and duration). Furthermore, we also
analyse the relative changes in these TC wave metrics
(including the maximum Hs). We anticipate that any identi-
fied relative trends in TCWs are more trustworthy than the
absolute trends as the relative trends are less dependent on
the mean values of extremely high waves.

• Interference of remote waves caused by other weather systems.
The ERA5 wave data are driven by wind forcing from multiple
types of weather, such as TCs, extratropical cyclones and large-
scale persistent winds. It becomes challenging to distinguish
TCWs from the waves drived by other weather systems at the
middle-to-high latitudes. This becomes more difficult for swells
as they can propagate in a long distance. To mitigate this
challenge, we focus on the TCWs between 40 oN and 40 oS (see
subsection 1) and leverage this with the TC wave footprint
around the TC centre (see subsection 3).

• Potential underestimation of TCWs in coastal regions. A latest
study71 compared ERA5 and WAVERYS with in-situ measure-
ments globally. They find that both wave reanalyses consistently
underestimate extreme wave heights in most coastal locations.
Cautionmust be taken for the feasibility of ERA5wavedata being
used for coastal regions. However,we re-calculated the trends of
the TCW area and maximum wave height after excluding TCW
values in water depths less than 100m, and the trend value
remains essentially almost unchanged (Supplementary Tables 1,
2). For example, the global relative trend in maximum wave
height changes from 3.2 ± 1.3%/decade to 3.3 ± 1.3%/decade, and
the global relative trend in the area changes from 5.7 ± 3.8%/
decade to 5.7 ± 3.9%/decade. Relatedly, recent studies showed
that increasing horizontal resolution of wave models has little
impact on TCWs in the open sea72. Thus, we anticipate that the
large-scale (global and basin-wide) trends in this paper are
dominated by waves in the deep ocean, and that the inaccuracy
of ERA5 in representing coastal extreme waves has little impact
on our conclusions.

All these suggest that the ERA5 wave data are validated in the
trend analysis of TCWs.

Uncertainty in the trend analysis
To consider the impact of the uncertainty of TC track identification on
our results, we estimated the trends in the height of TCWs using dif-
ferent TC data. Supplementary Table 1 shows the trends of the TCWs
identified using the full tracks of ERA5 TCs (i.e., matched to observed
tracks but with the full lifetimes). The relative trends of the maximum
height with the full tracks (2.1 ± 1.2, 2.3 ± 1.7 and 2.0 ± 1.8%/decade for
the globe, NH and SH) are smaller than those with the observed tracks
(3.2 ± 1.3%/decade), but the signs and significance levels for the global
and hemispherical scales remain unchanged. Thus, the trends of the
maximum height of TCWs are not strongly dependent on the TC
track data.

The basin-wide trends in energy and their decompositions based
on the full trackof TCswere alsoestimated (Supplementary Fig. 4c and
Table 2 (T2)). Although the absolute trends in energy become larger
due to the longer lifetime of storms, the relative trends in energy are
close to the above results. Relative contributions of the contributing
components to the energy trends alsomostly retain the same signs and
significance levels when using the full track of TCs.

We evaluated the effect of ENSO on the trend detection of
TCWs. To do so, the effect of ENSO is removed from the timeseries of
TC and TCW metrics, as suggested in refs. 24,73. A multiple linear
regression on the yearly ENSO index with a linear least-squares
method is first estimated for the timeseries. Yearly ENSO index is the
average of the monthly Niño 3.4 indices over a year. The Niño 3.4
index is defined by the standardised sea surface temperature
anomalies in the Niño 3.4 region (5° S–5° N, 170° W–120° W)74. The
regression values determined by ENSO index are then removed from
the timeseries of TC and TCW metrics to obtain the timeseries resi-
duals. These residuals are then used in the trend and correlation
analyses. These processes are done for the timeseries of yearly values
of TC and TCW metrics.

After removing the ENSO effect, we found slight changes in
the trends, with the global trend value changing from 3.2 ± 1.3%/
decade to 3.7 ± 1.0%/decade for the maximum height of TCWs,
from 5.7 ± 3.8% to 6.9 ± 3.2%%/decade for the TCW area, from
8.9 ± 7.3%/decade to 10.6 ± 6.6%/decade for the TC wave energy,
from 2.3 ± 0.8%/decade to 2.5 ± 0.6%/decade for the TC intensity,
and from 2.1 ± 4.8%/decade to 2.9 ± 4.6%/decade for the TC wave
duration (Supplementary Table 4). This means the ENSO only
slightly impacts the trend detection in the TC metrics by altering
the year-to-year variability, and it does not significantly change the
trend values and significance level of the trends, either in global or
basin scales.

Statistical analyses
For the trend analysis, we estimate the trend (denoted as b) using a
linear least-squares regression, and we also estimate the error bars
(denoted as err) of the trend by a two-tailed 95% confidence interval
under the assumption that the residuals of the regression follow a
normal distribution. b ± err represents the 95% confidence estimate of
the trend value. The trend is tested for statistical significance for a null
hypothesis that the trend is zero (i.e., a significant trendmeans that the
interval of trend (b ± err) does not include zero). The Pearson corre-
lation coefficient (denoted as r) is used to measure the correlation
between the timeseries of two variables. A two-tailed t-test with a p
value of 0.05 is used to test significance, with a null hypothesis of a
zero correlation. In our paper, for simplicity, we only provide the b or r
values if they pass the significance test. In other words, the statistically
significant values (b or r) are at the 95% confidence level, unless stated
otherwise.

Data availability
The ERA5 climate reanalysis was generated and distributed by the
European Centre for Medium-Range Weather Forecasts (ECMWF;
https://www.ecmwf.int/en/forecasts/datasets/ reanalysis-datasets/
era5). The WAVERYS wave reanalysis was distributed by the Coperni-
cus Marine Service (https://www.copernicus.eu/en/access-data/
copernicus-services-catalogue/ global ocean-aves-reanalysis-
waverys). The best track data were taken from the International Best
Track Archive for Climate Stewardship (IBTrACS; https://www.ncdc.
noaa.gov/ibtracs/). Monthly ENSO indices are retrieved from the
NOAA’s National Centres for Environmental Information (www.ncdc.
noaa.gov/teleconnections/). The ocean wave buoy locations and
observations were obtained from the National Data Buoy Centre
(NDBC; https://www.ndbc.noaa.gov/). The ocean wave height obser-
vations from Jason-2 satellite were taken from National Centres for
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Environmental Information (NCEI; https://www.ncei.noaa.gov/ data/
oceans/jason2/). Source data are provided with this paper.

Code availability
The code for tropical cyclone identification is available from https://
gitlab.act.reading.ac.uk/track. The main scripts for data processing
and plotting are available at zenodo (https://zenodo.org/records/
10024056). Other source codes are available from Jian Shi (jian-
shi@hhu.edu.cn) upon request.
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