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Deep topographic proteomics of a human
brain tumour

Simon Davis 1,2, Connor Scott 3, Janina Oetjen 4, Philip D. Charles 1,5,
Benedikt M. Kessler 1,2, Olaf Ansorge3 & Roman Fischer 1,2

The spatial organisation of cellular protein expression profiles within tissue
determines cellular function and is key tounderstandingdiseasepathology. To
definemolecular phenotypes in the spatial context of tissue, there is a need for
unbiased, quantitative technology capable of mapping proteomes within tis-
sue structures. Here, we present a workflow for spatially-resolved, quantitative
proteomics of tissue that generates maps of protein abundance across tissue
slices derived from a human atypical teratoid-rhabdoid tumour at three spatial
resolutions, the highest being 40 µm, to reveal distinct abundance patterns of
thousands of proteins. We employ spatially-aware algorithms that do not
require prior knowledge of the fine tissue structure to detect proteins and
pathways with spatial abundance patterns and correlate proteins in the con-
text of tissueheterogeneity and cellular features such as extracellularmatrix or
proximity to blood vessels. We identify PYGL, ASPH and CD45 as spatial
markers for tumour boundary and reveal immune response-driven, spatially-
organised protein networks of the extracellular tumour matrix. Overall, we
demonstrate spatially-aware deep proteo-phenotyping of tissue hetero-
geneity, to re-define understanding tissue biology and pathology at the
molecular level.

Tissues are composed of various microscopic features, cell types,
and phenotypically diverse subpopulations, the location of the cells
within a tissue and their spatial neighbourhood is crucial for deter-
mining their identity and function1–6. The cellular composition of
tissue has a substantial influence onmeasured co-expression signals
within the molecular profiles of bulk tissue and their micro-
environment, contributing to the influence of cellular function,
signalling and different disease outcomes7–11. Recent technological
developments in spatially-resolved sequencing technologies have
enabled the characterisation of spatially heterogeneous gene
expression profiles within tissues12,13. However, while genomic and
transcriptomic alterations act as drivers of disease, the proteins they
encode regulate essentially all cellular processes and therefore

also need consideration when investigating tissue spatial
heterogeneity14.

A range of mass spectrometry (MS)-based techniques are avail-
able to map the distribution of proteins throughout tissues and cells.
Mass spectrometry imaging (MSI) enables the determination of pro-
teins or other molecules within a sample by rastering an ion source
over a sample in a grid pattern. MSI techniques to visualise bio-
molecules in situ cannot generate in-depth proteome data and may
require prior knowledge of measurement targets15–18.

Laser capture microdissection (LCM) is well-placed to address
the limitations of the spatially-resolvedmass spectrometry methods
described above19. LCM allows the extraction of regions from a tis-
sue slice ranging from single cells to square millimetres of tissue20,21.
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We and others have previously described several methods that
either couple LCM to MS-based proteomics22–26, use micro-
scaffolds27 or tissue expansion followed by punch biopsies28. These
sampling approaches have been used to investigate a wide range of
tissue biology, but typically follow a ‘feature-driven’ approach,
extracting tissue regions based on visible features29–32. Recently,
Mund et al. developed the concept of Deep Visual Proteomics, which
combines high-resolution imaging and machine learning-based
image analysis to classify, isolate and analyse cells using a sensi-
tive proteomics workflow33.

However, sampling in a systematic manner, like MSI, could reveal
novel tissue fine-structure and give insights into spatial protein
expression patterns. For instance, Petyuk et al. sampled seventy, 1mm
cubes of mouse brain to generate a spatial proteome at a depth of
approximately 1000 proteins34. Piehowski et al. used LCM-proteomics
to sample a feature-rich landscapeofmouseuterine tissue in a rastered
grid at a resolution of 100 µm and used their custom, robotic,
nanolitre-scale nanoPOTS sample preparation platform to quantify
over 2000 proteins across 24 voxels35. Additionally, Ma et al. used a
micro-scaffold to cut 1 mm-thick sections of mouse brain at 400 µm
resolution prior to quantifying 5000 proteins using LC-MS/MS27.
However, these approaches have primarily emphasised visualising
protein abundance, neglecting the potential of utilising spatial rela-
tionships between areas of correlated protein expression and have
been unable to discover novel spatial features, an approach frequently
employed in spatial transcriptomics methodologies.

In this study, we conduct a systematic analysis of the proteome of
a human brain tumour (Supplementary Fig. 1), using laser capture
microdissection on three length scales, ranging from coverage of an
entire tumour tissue section, down to 40 µm spatial resolution
(approximately 10 cells/voxel), allowing for the proteomicmapping of
the tumour microenvironment by spatially-resolved measurements.
The principal aim of the study is to design a workflow for deep pro-
teomics and spatially-aware statistics for tissue feature discovery,
rather than provide an in depth analysis of atypical teratoid/rhabdoid
tumour (AT/RT) biology, which will be the subject of a follow-up
‘multiomics’ study on paediatric brain tumours. The AT/RT is chosen
based on tissue quality, homogeneity and abundance. By applying
spatially-aware statistical methods, we identify proteins and pathways
with differential spatial and clustered expression within the tissue
sections, without prior knowledge of tissue structures, features, or
pathology. Additionally, by clustering protein expression, we discover
spatially-defined proteo-phenotypes within the otherwise homo-
geneous macrostructure of the analysed tumour, revealing spatially-
resolved extracellularmatrix (ECM) biology correlatedwith a focussed
immune response spatially limited to the periphery of the tumour.
Further, we map protein abundances in spatial dependence of the
vascular fine structure in the tumour, giving a glimpse on the nutrient/
oxygendependent spatial proteomewithin cancerous tissue.Ourwork
demonstrates that deep topographic proteomics can be used beyond
confirming thedifferential proteome in observable features and -when
combined with spatially-aware analysis - identify areas of potential
interest regarding disease mechanisms.

Results
In order to establish the required tissue area size to achieve a target
proteome depth of 4000 quantified proteins in low (Orbitrap Fusion
Lumos, 60-minute gradient) and medium throughput proteomics
platforms (TimsTOF Pro, 17-minute gradient) we collected tissue areas
ranging from 316 µm2 to 1,000,000 µm2 from 10 µm-thick sections of
human brain (Supplementary Fig. 2). We observed that areas above
316,000 µm2 result in diminishing returns with protein identifications
scaling between 282 and 3480 on theOrbitrap and 127 and 3318 on the
timsTOF Pro platforms, respectively.

Proteomic topography of a human brain tumour
After characterising the upper and lower limits of our workflow (Fig. 1),
we sampled a 10 µm thick section of an atypical teratoid-rhabdoid
tumour (AT/RT) block (~20 × 15mm), retrieved at postmortem and
frozen in liquid nitrogen vapour. The tumour was fully characterised
in vivo, corresponding to a supratentorial AT/RT with nuclear loss of
SMARCB1 protein and corresponding tomethylation class AT/RT-SHH
(Supplementary Fig. 1). Balancing proteome depth with throughput
and feasibility, we decided to approach deep topographic proteomics
first with a coarse resolution to cover the total tumour and peripheral
tissue. The tissuewas subdivided into 384 (24 × 16) square ‘voxels’with
an area of ~694,000 µm2 (side length of 833 µm and thickness of
10 µm); each voxel was isolated by LCM and processed with our LCM-
SP3 protocol24 (Fig. 1, Supplementary Data 1) and analysed on the
medium throughput timsTOF Pro setup. In total, 5321 proteins were
identified, with 32–4741 proteins identified per sample (Supplemen-
tary Fig. 3a). This range of proteins identified per sample includes
empty voxels where no tissue was located within a voxel, demon-
strating a low level of contamination throughout the workflow. These
empty voxels are included in the dataset identification overview in
Supplementary Fig. 3b.

Quantified proteins can be mapped back to their original posi-
tions within the tissue grid. Figure 2a shows proteomic maps for four
example proteins, haemoglobin (HBB), histone H4 (HIST1H4A), per-
ipherin (PRPH) and liver glycogen phosphorylase (PYGL). The selected
proteins were chosen as examples showing: positive autocorrelation
and increased abundance in tumour (PYGL) or periphery (PRPH); no
autocorrelation (HIST1H4A, indicating similar DNA abundance/cell
numbers); and a protein which should correlate with the large region
of haemorrhage visible in the upper-right region of the section (HBB).
Glycogen phosphorylase releases glucose fromglycogen for entry into
glycolysis, and its expression in cancer is associated with malignant
phenotypes, hypoxia resistance and cancer cell survival36. Peripherin is
an intermediate filament protein without a clear function and is highly
expressed during development and after nerve injury; its expression
pattern is consistent with the tumour growth into surrounding normal
brain tissue37–39.

We tested 4306 proteins quantified in at least 9 voxels for spatial
autocorrelation40 using the unsupervised Moran’s I test. Moran’s I
returns values between −1 for complete dispersion and+1 for complete
correlation, with 0 indicating random distribution. Removing empty
voxels and areas of haemorrhage from the analysis, we found that 3212
proteins demonstrated correlated spatial expression profiles,
(q ≤0.05) indicating a low level of spatial noise in protein distribution
across a tissue. To determine whether the observed spatial variability
could have been caused by systematic impacts derived from tissue
sampling and processing, the summed and mean intensity per voxel
were inspected and are shown to be visibly consistent across the tissue
section (Supplementary Fig. 4a, b). This demonstrates that no sam-
pling bias was introduced and protein abundance differences are
mostly compositional.

To increase spatial resolution, particularly in the ‘brain/tumour’
interface as identified by H&E staining, we sampled 96 voxels with
350 µm x 350 µm voxel side-length and 10 µm thickness (Fig. 2b, Sup-
plementary Data 2). This region of tissue contains predominantly
normal and neoplastic cells alongwith a large, prominent blood vessel.
In total, 3994 proteins were quantified in at least one voxel. Detailed
identification and quantification information is shown in Supplemen-
tary Fig. 3c for proteins identified and quantified per voxel, and in
Supplementary Fig. 3d for the distributions of how many voxels each
protein was identified and quantified in. The increased resolution
proteomic maps for haemoglobin, histone H4, PRPH and PYGL are
shown in Fig. 2b. Their expression is consistent with the large field-of-
view data, with PYGL and PRPH showing opposite expression patterns
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across the margin between solid tumour (high PYGL, low PRPH) and
brain/tumour interface (low PYGL, high PRPH) and haemoglobin co-
localising with the visible blood vessels. Histone H4 shows even
expression across the two annotated areas, with a region of lower
expression corresponding with a visibly diffuse patch of tissue. Of the
3050 proteins quantified in at least 9 voxels, 1375 show evidence for
significant spatial autocorrelation (Moran’s I test, q ≤0.05).

Three proteins showing significant spatial variation were selected
for follow-up immunohistochemistry (IHC) staining and are presented
side-by-side with their proteomic maps: glycogen phosphorylase
(Supplementary Fig. 5a, b), aspartate beta-hydroxylase (ASPH) (Sup-
plementary Fig. 5c, d) and CD45 (PTPRC) (Supplementary Fig. 5e, f) to
validate the spatially-resolved protein expression data generated
above. The location within the proteomic maps of the presented IHC
images aremarked by the black boxes. The IHC staining images closely
resemble the protein intensity distributions (Supplementary Fig. 5a, c,
e) within the proteomic maps for these three proteins. Both PYGL and
ASPH show intense IHC staining in the solid tumour (Supplementary
Fig. 5b, d), and CD45 shows intense staining in the region of tissue
corresponding to the upper-left voxels in the proteomic map (Sup-
plementary Fig. 5f).

Spatial proteomic mapping highlights molecular pathways
underlying tissue heterogeneity
As Moran’s I measures global autocorrelation, it does not indicate
where the locations that drive the autocorrelation occur. To investigate
which regions of the sampled tissue show similar expression, the data
were clustered and the cluster labelling of voxels weremapped back to
their spatial location (Fig. 3a, b). The clusters generally formcontiguous
regions in space,with some long-range co-clustering in smaller clusters.

The margin between solid tumour and brain/tumour interface is well-
represented by the border between cluster 1 (solid tumour) and cluster
3 (brain/tumour interface). In addition to the cluster map, the assigned
clusters were plotted onto a uniform manifold approximation and
projection (UMAP) visualisation (Fig. 3c). The clusters visible in the
UMAP plot correspond well to the spatial clusters in Fig. 3b.

This clustering approach generates spatially well-defined distinct
areas, allowing for a feature-driven approach without prior knowledge
of the histopathological details as the clustering is performed only on
the protein quantitation data, without information on the spatial
relationship between samples. The functional differences between
these clusters were investigated by first determining ‘marker proteins’
for each cluster by testing for differential abundance of a protein in
one cluster versus all other clusters, iteratively for each protein-cluster
pair. Protein markers for each cluster were then tested for functional
enrichment against theMSigDBHallmark gene sets (Fig. 3d)41. Clusters
1 & 2, the largest clusterswithin the solid tumour, show enrichment for
proliferative hallmarks. Clusters 6 & 13, two neighbouring clusters in
the upper-left region, show enrichment for immune-related hallmarks.
Cluster 9, a cluster on the boundary of the tumour, shows enrichment
of hallmarks related to angiogenesis and epithelial-mesenchymal
transition, possibly indicating this cluster to be an area of active
tumour infiltration.

We investigated the expression of other immune cell-marker
proteins because of the above differences in immune processes within
clusters 6 and 13, and highly localised CD45 abundance and staining
(Supplementary Fig. 5f). Two neutrophil markers, neutrophil cytosolic
factor 2 & 4 (NCF2 & NCF4), show colocalization with CD45 in the
upper left of the sampled region along with two marker proteins for
pro-tumour M2 macrophages, CD163 & mannose receptor C-type 1
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Fig. 1 | Overview of the spatially-resolved proteomics workflow. Tissue is
mounted onto a slide compatible with laser capture microdissection (LCM). A
general overview is depicted in panel a. Tissue is segmented into a regular grid
shape (Annotate), and each element of the grid is isolated by LCM into a well of a
96-well plate (Cut). Proteins from each sample are lysed in RIPA buffer (Lyse) and
digested into peptides (Digest) before analysis by LC-MS/MS. The quantitative
information for each protein can bemapped back to its location within the gridded
tissue and visualised in a topographic protein map, with one map per protein
quantified (Proteomic Maps). This workflow was applied to an Atypical Teratoid-
Rhabdoid Tumour (AT/RT). b A H&E-stained section was segmented into a 24×16
grid and analysed with the workflow to generate a Protein Topography Stack

containing over 5,000 proteomic maps at 833 µm resolution, allowing for the
resolution of several features within the tissuewhilemaintaining good throughput.
c We then proceeded to apply this workflow at smaller length scales. In total, we
applied this workflow over three length scales within serial sections of the AT/RT
tumour tissue: 833 µm resolution, covering an entire tumour section; 350 µm
resolution, covering part of the boundary between two visibly distinct regions; and
40 µmresolution, covering several blood vessels and their surrounding cells. These
data relating to these three length scales are shown in Figs. 2, 3, 4 and 5, respec-
tively. Scale bar represents 833 µm in the bottom, 350 µm in the middle image, and
40 µm in the top image.
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Fig. 2 | Spatial proteomic maps of AT/RT tumour tissue reveal regional
boundaries. aNormalised protein intensity of four example proteinsmapped back
to the original spatial positions within the atypical teratoid-rhabdoid tumour (AT/
RT) tumour tissue at a resolution of 833 µm (n = 1) (a) and 350 µm (representative

from three independent experiments) (b) with their corresponding Moran’s Index
of spatial autocorrelation (I). Box in a represents the area analysed in an adjacent
tissue section (b). Scale bar = 1mm. Normalised protein intensities are scaled
separately for each protein. Grey = not detected.
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(CD163 & MRC1)42,43. These proteins’ peak expression locations corre-
spond with clusters 13 and 6 for the neutrophil and macrophage
markers, respectively (Supplementary Fig. 6) and shows increased
abundance for many proteins involved in neutrophil function and
other immune-related processes such as B-cell differentiation and the
JNK cascade within cluster 13 (Supplementary Fig. 7). Within cluster 6,
proteins involved in cell death, the cell cycle, morphogenesis, hedge-
hog signalling, collagen, and cytoskeletal organisation show increased
abundance (Supplementary Fig. 7).

To discover spatial relationships between phenotypically similar
and distinct areas, we performed unbiased spatial clustering by inte-
grating a proteomic similaritymatrix (rank correlationof top 25%most
variable proteins) with a complementary spatial similarity network
(based on Euclidean distances) using Affinity Network Fusion (ANF)44.
This spatially-aware clustering method resulted in six clusters (Cluster
A–F) covering the regions of solid tumour, brain/tumour interface,

immune infiltration, and haemorrhage (Fig. 3e). Overlaying this clus-
tering result onto theUMAPdimensionality reduction again shows that
these clusters are generally found near each other in the UMAP
plot (Fig. 3f).

As above, the clusters were tested for significant enrichment of
MSigDB hallmark gene sets (Fig. 3g). Cluster A shows enrichment for
blood-related hallmarks, consistent with this cluster comprising pre-
dominantly haemorrhage. Clusters B,D and F show enrichment for cell
cycle and growth-related hallmarks, consistent with the ‘solid tumour’
histology evaluation. Cluster C shows enrichment of immune-related
hallmarks and the Epithelial-Mesenchymal Transition hallmark, con-
sistent with the presence of immune cell-marker proteins above.
Cluster E shows enrichment for the “KRAS Signalling Dn” and “Epi-
thelial-Mesenchymal Transition” hallmarks.

Clustering in high- and low-resolution maps was broadly con-
sistent (Fig. 4a, b)with generally contiguous clusters that represent the
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Fig. 3 | Clustering and functional analysis displays regional AT/RT proteomic
maps in the tumour microenvironment at 833 µm spatial resolution. a H&E
Image of AT/RT tissue (n = 1). b Map of cluster assignment based on hierarchical
clustering and the dynamic tree cut algorithm (spatially-unaware). c UMAP
embedding of data coloured by cluster assignment in b. d Enriched MSigDB Hall-
mark gene sets within marker proteins of clusters shown in the cluster map. Enri-
ched MSigDB Hallmark gene sets within marker proteins (two-sided Wilcox test,
Benjamini-Hochbergmultiple testing correction threshold of 1%) of clusters shown
in the cluster map. Significantly enriched hallmarks (one-sided hypergeometric
test, Benjamini-Hochberg multiple testing correction threshold of 5%) for each

cluster are indicated by the presence of circles. The size and colour of the circles
represent the number of proteins contributing to that term and the adjusted p
value of the enrichment, respectively. e Cluster-map of AT/RT tissue generated by
Affinity Network Fusion. This clustering is spatially-aware, meaning the relative
spatial locations of samples and protein abundance values are used to generate the
clusters. f UMAP embedding of data coloured by ANF cluster assignment in e.
g EnrichedMSigDBHallmark gene sets withinmarker proteins of clusters shown in
the cluster map generated by ANF, as in d. Source data are provided as a Source
Data file.
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solid tumour (cluster 1), the brain/tumour interface (cluster 3), the
margin between (clusters 2, 4, 5, and 7), and blood vessels (cluster 8).
After UMAP dimensionality reduction, these clusters are again found
near each other within the UMAP visualisation (Fig. 4c). A volcano plot
between cluster 3 and cluster 1 reflects the previously observed dif-
ferential abundance of PYGL, ASPH and PRPH and other marker can-
didates (Fig. 4d). Functional analysis of clusters 1 & 3 indicates that
proteins involved in extracellular matrix, cell adhesion & motility,
angiogenesis, immune processes, epidermis function, and neuronal
development are differentially abundant between solid tumour and
brain/tumour interface (Fig. 4e).

High resolution proteomic maps visualise proteomic patterns
around blood vessels
We further focussed on an area containing four blood vessels, repre-
sented in a single voxel in the previous analysis (350 µm spatial reso-
lution), allowing us to map protein abundance patterns to potential
nutrient/oxygen gradients within the tumour tissue by proxy of dis-
tance of individual cells to blood vessels.

This region was subdivided into a 9-by-9 grid, resulting in 40 µm
spatial resolution (Fig. 5a). Each 40 µm x 40 µm x 10 µm voxel

contained between 5 and 10 visible nuclei. In total, 1550 proteins were
quantified using data-independent analysis (DIA-PASEF45) on a Bruker
timsTOF SCP at a throughput of 40 samples per day (Supplemen-
tary Data 3).

We then measured the distance of each cell to the nearest blood
vessel (Fig. 5b) to use this distance as a proxy for nutrient and oxygen
availability. As expected, we observed positive correlation of blood
proteins with closeness to blood vessels (haemoglobin, Fig. 5c)). After
spatial clustering as above, the tissue is segmented into four main
clusters (Fig. 5d), representing voxels further from blood vessels
(cluster 1), and voxels immediately next to or containing blood vessels
(clusters 2, 3 & 4). UMAP dimensionality reduction shows general
separation between voxels within cluster 1 and other voxels (Supple-
mentary Fig. 8a–c). Testing for enrichment of MSigDB hallmark gene
sets within the clusters shows an enrichment of the “Oxidative Phos-
phorylation” term within cluster 1, and terms related to blood within
clusters 2 & 4 (Supplementary Fig. 8d).

GAPDH shows consistent intensity across the tissue (Fig. 5e). Two
main patterns are visible in the generated proteomic maps in Fig. 5e:
proteins correlated to voxel:blood vessel distance and proteins antic-
orrelated to voxel:blood vessel distance. Alpha-2-Macroglobulin, a
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Fig. 4 | Proteomic map clustering defines functional layers at the tumour
periphery at 350 µm spatial resolution. a H&E image of AT/RT tissue (repre-
sentative from three independent experiments).bMapof cluster assignment based
on hierarchical clustering and the dynamic tree cut algorithm (spatially-unaware).
Cluster 3 corresponds to brain/tumour interface. Cluster 1 corresponds to solid
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highly abundant blood protein forms an intensity gradient around
blood vessels, correlating with haemoglobin. Aspartate beta-
hydroxylase (ASPH) shows highest intensity in those voxels furthest
away from blood vessels, consistent with observations that ASPH can
be regulated by hypoxia46,47. Peroxiredoxin 3, suggested to protect
cells against apoptosis caused by oxidative stress in hypoxia48, Protein
disulfide isomerase familyAmembers4 and6, suggested to contribute
to avoidance of cell death pathways in some tumours and activation of
Wnt signalling49,50, also show increased intensity in voxels further away
from vessels, indicating the presence of a cancer proteo-phenotype

within the tumour tissue and in dependency of oxygen/nutrient
availability in otherwise homogeneous tissue. In addition, three ery-
throcyte markers show specific, high intensity within voxels contain-
ing, or that are very close to blood vessels: Solute carrier family 4
member 1, Spectrin Beta, and Ankyrin 151–53.

Spatial network clustering reveals extracellular matrix and
integrin receptor heterogeneity
Throughout the spatial analysis and manual inspection of the data we
noticed the common presence of many extracellular matrix-related
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proteins in the resulting enriched pathways and highly spatially-
correlated proteins. Because of the relevance of the ECM for tumour
development and infiltration into healthy brain, we performed ANF
clustering based on the proteins annotated as ‘Core Matrisome’ pro-
teins within MatrisomeDB54. This resulted in nine clusters (A-I) which
are generally spatially contiguous across the tissue (Fig. 6a). ECM-
defined clusters were used for functional enrichment of proteins
within each cluster, (Fig. 6b) and are generally consistent with the
functional enrichments in Fig. 4e without ECM focus, linking overall
spatial proteome distribution with ECM architecture in the tumour
structure. To determine whether differential ECM abundance or
composition was driving this clustering, we plotted the summed
(Supplementary Fig. 9a) andmean (Supplementary Fig. 9b) abundance
of the core matrisome proteins. These aggregate ECM spatial abun-
dances show that both total ECM abundance (in the haemorrhage and
immune infiltration area; clusters A and C in Fig. 6a) and ECM com-
position (in the remaining clusters) are contributing to these cluster
definitions.

Plotting the spatial distributions of detected collagens reveals
broad heterogeneity in abundance of collagen proteins across the
different collagen subfamilies (Fig. 6c). The fibrillar collagens COL2A1,
COL11A1, and COL11A2 show higher expression in the solid tumour
region and other fibrillar collagens, COL1A2 and COL3A1, show higher
abundance in the brain/tumour interface region. Other collagen sub-
family members also show differential spatial abundance: COL6A1,
COL6A2, COL26A1 (filament forming collagens); COL12A1, COL14A1
(fibril associated collagens). Collagens 4A1, 4A2 (network forming
collagens), 15A1 and 18A1 (multiplexins) show spatially homogeneous
expression. These spatial distributions broadly map to the ANF clus-
ters. In addition, several integrin proteins also show spatial hetero-
geneity within the tissue (Fig. 6c). Integrin α5, α7, α10, αV, αM and
β2 show spatial heterogeneity whereas integrin β1 shows relatively
homogeneous expression. Other proteins associated with the ECM
also show spatial heterogeneity such as CD44, Lysyl oxidase (LOX),
Lumican (LUM) (lower in solid tumour region), Versican (VCAN), and
Cathepsin D & G (higher in immune cell-enriched region). In general
ECM and ECM-associated proteins as defined in MatrisomeDB show a
higher mean Moran’s I value than non-ECM proteins (ECM: I = 0.334,
ECM-associated: I = 0.320, non-ECM: I = 0.219) (Supplementary
Fig. 10)47.

Discussion
Spatial proteomics is a rapidly developing research area that aims to
provide insights into health and disease within the spatial context of
biological macrostructures such as organs, tissues, or tumours. The
use of spatial technologies in disease research can help to understand
drug action and delivery, the activities of the immune system, all while
preserving critical location information55. Spatial transcriptomics stu-
dies such as Zheng et al. have started usingmachine learning to derive
diagnostic and prognostic value in several oncology contexts, indi-
cating that spatial ‘omics data can aid pathological assessment of
tumour tissue at the point of care56–60. Integration of this approach
with other ‘omics modalities such as proteomics, lipidomics and
metabolomics has the potential to further refine the acquisition of
mechanistic information about an individual’s pathology. To date,
spatial proteomics has largely been used to visualise and overlay
proteome information on existing, discernible features after staining
or targeted detection of markers22–26, or to compare features through
their proteome such as tumour and peripheral tissue21. However, such
approaches can introduce confirmation bias, preventing the detection
of novel spatial features that may not be readily apparent by a feature-
driven detection. The spatial proteomics workflow presented here
addresses the need for highly multiplexed, quantitative, spatially-
resolved, systematic measurements of proteins within tissue to

understand the spatial organisation of molecular pathways in health
and disease.

Our methods involve the systematic sampling of tissue sub-
sections using laser capture microdissection (LCM), sample prepara-
tion, liquid chromatography-mass spectrometry and advanced statis-
tical analysis of topographic data, using widely available equipment.
We have demonstrated that these optimised methods can detect
proteins and pathways with spatially variable abundance within both
tumour and tumour-infiltrated normal tissue without introduction of
sampling bias. Critically, our spatially-aware data analysis enables the
identification of processes with deep molecular resolution without
prior knowledge of the tissue composition, thus creating an objective,
unbiased approach to deep phenotyping pathological tissue in its
biological context and discovering features, such as areas of heigh-
tened immune response.

Currently, an increasingnumber of studies are focusedon feature-
driven LCM-coupled proteomics. In contrast, we propose a systematic
approach that allows for the unbiased generation of comprehensive
proteomic maps at the individual protein and pathway level, driven
exclusively by the acquired proteome data. These maps can fulfil the
requirements for feature-driven analysis by reconstituting features
from systematic sampling and allow the discovery of new proteo-
phenotypes without the need for visually identifiable parameters.

Through our generation of over 5000 proteomic maps, we have
demonstrated the presence of molecular heterogeneity at multiple
scales within AT/RT tumour tissue sections, revealing proteomic dif-
ferences between areas of tissue that appear visually homogeneous
with good agreement with immunohistochemical orthogonal con-
firmation of protein expression. Our approach provides information
on immune cell infiltration and state within the tissue by detecting
neutrophil and pro-tumour M2 macrophage markers at different dis-
tances from the solid tumour; it will be interesting to correlate these
proteome-derived features with those of spatial or single-cell tran-
scriptomics. AT/RTs have a lowmutational burden and showa range of
programmed death-ligand 1 (PD-L1) expression, mainly low-medium
expression, and the SHH subtype generally shows a low level of
immune infiltration61–63. Our data is largely consistent with this. How-
ever, we observed a focussed immune response in a small spatially
defined area in the tumour periphery, giving insights into the pathol-
ogy of AT/RT. The identification of this area was likely possible by our
selection of a large tumour block (most AT/RTs of the brain are sam-
pled only as small needle biopsies). An ongoing immune response at
the edge of the neoplasm even in later stages of the disease support
the idea that future immunotherapy may be a valuable adjunct to
current, largely untargeted therapies61,64,65.

Interestingly, a recent publication by Paassen et al. has demon-
strated that a subset of the SHHAT/RT-subtype are sensitive toNOTCH
inhibition when cultured as tumouroids66. We show that the region of
solid tumour has a high intensity of aspartate beta-hydroxylase
(ASPH), which is an activator of the NOTCH signalling pathway67.

We also have demonstrated that our unbiased spatially-resolved
proteomics approachprovides data on the tumourmicroenvironment.
The increased level of fibrillar collagens within the solid tumour is
consistent with observations of increased fibrillar collagen deposition
in glioblastomas and the measurement of increased tissue stiffness of
tumours, including brain tumours68,69. Additionally, the spatial abun-
dance of integrin subunits αM and β2 correlates with neutrophil
marker abundance, strongly suggesting localised neutrophil
accumulation70. Furthermore, integrin α10 abundance correlates well
with the abundance of COL2A1 and COL11A1, consistent with the
observation that the α10β1 integrin receptor binds to type 2 and type
11 collagens71. Although functional interaction between these proteins
cannot be determined from the methods used here, further investi-
gation into integrin receptor signalling inAT/RT could be aworthwhile

Article https://doi.org/10.1038/s41467-023-43520-8

Nature Communications |         (2023) 14:7710 8



avenue of investigation as integrin α10/β1 has shown potential as a
therapeutic target in other malignant primary brain tumours72.

Further, we demonstrate that our unbiased tumour proteome can
identify molecular gradients associated with nutrient availability rela-
tive to the distance of tumour cells from a (medium-sized) blood

vessel. This can be detected in otherwise morphologically homo-
geneous tissue and, as far as diffusible or extracellularly deposited
molecules are concerned, would be difficult to infer from tran-
scriptomic studies, as transcription site and eventual localisation of a
protein product are usually not congruent. This sets the scene for

a b
C

B

A

D

D

D

B D
EE

EE

E
A

F

G

I

H

A B C D E F G H I
Cluster

Count
25
50
75

100
125

-log10(adj.p)

5
10
15
20

 Coagulation
Complement

Heme Metabolism
KRAS Signaling Up

MYC Targets V1
E2F Targets

G2M Checkpoint

Interferon Gamma Response
Epithelial Mesenchymal Transition

Oxidative Phosphorylation

Reactive Oxygen Species

Unfolded Protein Response
Mitotic Spindle

Cholesterol Homeostasis

Oxidative Fatty Acid Metabolism

N
or

m
al

is
ed

 p
ro

te
in

 in
te

ns
ity

c

Fig. 6 | Spatial heterogeneity of extracellularmatrix proteins across the AT/RT
tumour at 833 µmspatial resolution. aCluster-map of AT/RT tissue generated by
affinity network fusion (ANF) of core matrisome proteins as defined in Matri-
someDB. This clustering is spatially-aware,meaning the relative spatial locations of
samples and protein abundance values are used to generate these clusters. The
grey voxel represents one sample where no core matrisome proteins were detec-
ted. b Enriched MSigDB Hallmark gene sets within marker proteins (two-sided
Wilcox test, Benjamini-Hochberg multiple testing correction threshold of 1%) of

clusters shown in the cluster map. Significantly enriched hallmarks (one-sided
hypergeometric test, Benjamini-Hochberg multiple testing correction threshold of
5%) for each cluster are indicated by the presence of circles. The size and colour of
the circles represent the number of proteins contributing to that term and the
adjusted p value of the enrichment, respectively. c Proteomic maps of selected
extracellular matrix proteins and integrin receptors at 833 µm resolution. Nor-
malised protein intensities are scaled separately for each protein. Grey = not
detected.

Article https://doi.org/10.1038/s41467-023-43520-8

Nature Communications |         (2023) 14:7710 9



future integrated spatially-resolved transcriptomic and proteomic
studies, which will provide a more complete understanding of disease
processes by using advanced bioinformatics tools73,74. Interpretation
of such data will benefit from further development of analytical and
statistical methods that are aware of spatial relationships between
samples. This could include using missing value imputation and
machine learning approaches75,76.

A limitation of our study is that there is the requirement to strike a
balance between the need for spatial resolution and the need for
meaningful depth to cover pathways of interest. These limiting factors
are driven by technical considerations such as sensitivity and
throughput of the LC-MS systems used. Increasing the spatial resolu-
tion demonstrated here, towards the single-cell level and covering
comparable areas, poses a formidable analytical challenge, which fur-
ther escalates when analysing tissue in three dimensions. Several
recent studies have developed methods towards increased sensitivity
and throughput of low-abundance samples. Kreimer et al. demonstrate
an efficient dual trap-column liquid chromatography configuration for
the analysis of single cells, and Derks et al. and Thielert et al. have both
demonstrated lowmultiplexedmethods of data independent analysis,
with both frameworks offering the potential for future increases in
multiplexing77–79. The similar analytical demands of systematic spatial
proteomics analysis and single cell proteomics will allow both fields to
develop in lock-step. Furthermore, the current trend in commercial
mass spectrometry for proteomics towards faster, more sensitive
instruments will also likely provide benefits80,81. Despite these devel-
opments and those of novel high-throughput LC-MS platforms, that
can now robustly analyse 1000 s of samples relatively quickly82–84,
future approaches are likely to use systematic spatial proteomic ana-
lysis, possibly compromising spatial resolution but incorporating ele-
ments of machine learning, as can be done on spatial transcriptomics
data56,58,85–87.Webelieve that the highdepth of our detectedproteomes
in spatially sampled LCM-derived tissue will be highly complementary
to current tissue imaging technologies such as MALDI-MS where spa-
tial resolution may be higher but proteome depth much shallower. A
combination of these approaches has great potential to increase our
understanding of spatially-resolved biological and pathological pro-
cesses in human tissue at the molecular level24,33,88.

Methods
Tissue retrieval and processing
Post-mortem brain tissue was retrieved by the Oxford Brain Bank; a
research ethics committee (REC) approved and Human Tissue
Authority (HTA) -regulated research tissue bank (REC reference 15/SC/
0639, issued by the NHS Health Research Authority ‘South-Central –
Oxford C’). Tissue was donated and analysed after full written consent
was obtained from the next of kin of the tissue donor. The Oxford
Brain Bank is hosted by the Nuffield Department of Clinical Neu-
rosciences, University of Oxford. Sex and gender were not considered
in the study design due to the case study nature. The retrieved brain
was sectioned into 1 cm thick coronal sections starting at the level of
the mammillary bodies. Whole hemisphere slabs were snap-frozen in
liquid nitrogen vapour (to minimise freezing artefacts) and stored at
−80 °C until further dissection on dry ice. Due to its large size, tumour
tissue was present within multiple of these coronal slices. The tumour
tissue was dissected from the first coronal and second posterior cor-
onal slices (P1 and P2). The tumour from the P2 slice was split into
quadrants. Cryosections were taken from all pieces to determine the
tissue block with the best morphological and cellular preservation.
Cryosections were stained with H&E (see below) and examined by a
Neuropathologist (OA). The upper-right quadrant from the P2 coronal
slicewas selected for use in further experiments. Details of the tumour
phenotype and genotype are provided in Supplementary Fig. 1.

Relevant tissue blocks of the AT/RT tumour were acclimatised to
−20 °C andmounted onto a cryostat block usingOCTCompound (Cell

Path, ARG1180). Careful considerationwas taken to ensure cut sections
were not contaminated with OCT. Sections were cut at 10 µm and
mounted onto UV irradiated (254 nm, 30minutes) 1.0 PEN membrane
slides (Zeiss) at −18 °C for LCM or Superfrost glass slides for histology.
Sections were then air-dried for several minutes and placed onto a
Shandon Linistain for automated H&E staining. Sections were fixed in
70% denatured alcohol, hydrated, stained with Harris’ Haematoxylin,
incubated in 0.4% acid alcohol, placed in Scot’s tap water, and stained
with Eosin containing 0.25% acetic acid with regular washing steps in
between. Stained sections were then dehydrated in increasing con-
centrations of denatured alcohol and air-dried without coverslips and
stored at −80 °C until processing by laser-capture microdissection.

Laser capture microdissection
Areas of tissue analysed were annotated and isolated from the pre-
pared slides using a laser-capture microscope equipped with laser
pressure catapulting (PALMMicrobeam, Zeiss). Cutting and capturing
the annotated tissue areaswere performed automatically and used the
10xobjective lens. The settings in the control software for cuttingwere
Energy: 43, Focus: 55; and for capturing were Energy 20, Focus −15.
Samples were collected into 20 µL RIPA buffer (Pierce #89900) in the
capof 200 µL PCR tubes or PCR-cap strips of 8. Collected sampleswere
immediately placed in dry ice. Samples were stored at −80 °C until
further use.

For the 40 µm resolution data, tissue areas were microdissected
using a Leica LMD7 laser capture microscope. The region of interest
was imaged using a 20xObjective lens with a 10% tile overlap using the
LASX software (Leica). Image tiles were stitched, then imported into
QuPath version 0.4.389. Voxel annotations were created manually in a
9-by-9 grid with each voxel having a side-length of 40 µm, and three
referencepoints for image to stage location registrationwere selected.
Microdissection coordinates were then exported from QuPath via a
custom plug-in and imported into the LMD7 software90. The following
settings were used: Power 50, aperture 2, speed 10,middle pulse count
1, head current 90%, pulse frequency 500. Tissue areas were cut into
wells of a 96-well PCR plate. To ensure the collected tissue was located
at the bottom of the wells, 100 µL of acetonitrile was added to each
well, the plate was then sealed, centrifuged at 1000 x g for 5minutes,
then dried in a vacuum centrifuge at 40 °C until dryness. The plate was
then stored at −20 °C until further processing.

Proteomic sample processing
Samples were thawed, incubated at room temperature for 30minutes
and briefly centrifuged. Caps were rinsed with 20 µL of RIPA buffer
(#89900, Pierce) containing 25 units of Benzonase (E1014, Merck) to
collect any remaining tissue and briefly centrifuged, followed by
incubation at room temperature for 30minutes to degrade DNA and
RNA. Proteins were reduced by adding DTT to 5mM and incubated at
room temperature for 30minutes, followed by the addition of iodoa-
cetamide to 20mM and incubation at room temperature for
30minutes.

Paramagnetic SP3 beads (GE45152105050250 &
GE65152105050250, Cytiva) were prepared as described by Hughes
et al. and processed by a modified SP3 protocol24,91,92. Three µL of SP3
beads were mixed with the samples, and acetonitrile added to a final
concentration of 70% (v/v). Samplesweremixedwith 1000 rpmorbital
shaking for 18minutes, followed by bead immobilisation on a magnet
for 2minutes. The supernatant was discarded, and beads werewashed
twice with 70% (v/v) ethanol in water and once with 100% acetonitrile
without removal from the magnet. Beads were resuspended in 50mM
ammonium bicarbonate containing 25 ng of Trypsin (V5111, Promega)
and digested overnight at 37 °C. After digestion, the beads were
resuspended by bath sonication. Acetonitrile was added to the sam-
ples to 95% (v/v) and shaken at 1000 rpm for 18minutes. Beads were
immobilised on a magnet for 2minutes, and the supernatant
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discarded. Beadswere resuspended in 2% acetonitrile and immobilised
on a magnet for 5minutes. Peptides were transferred to glass LC-MS
vials or 96-well PCR plates containing formic acid in water, resulting in
a final formic acid concentration of 0.1%.

For the 40 µm resolution data, a single step digestion was per-
formed. To the dried samples, 4 µL of digestion buffer was added, the
plate sealed and incubated at 50 °C for 90minutes in a thermocycler93.
The digestion buffer contained: 0.2% n-dodecyl-β-D-maltoside (DDM),
1 ng/µL Trypsin/LysC Mix (Promega), 100mM triethylammonium
bicarbonate. After incubation, the plate was cooled to 20 °C then
removed from the thermocycler. The resulting peptides were loaded
onto Evotip Pure C18 tips (EvoSep) following the manufacturer’s pro-
tocol for analysis by LC-MS/MS.

LC-MS/MS
Peptides from 833 µm resolution samples were analysed by LC-MS/MS
using a Dionex Ultimate 3000 (Thermo Scientific) coupled to a tim-
sTOF Pro (Bruker) using a 75 μm x 150mm C18 column with 1.6 μm
particles (IonOpticks) at a flow rate of 400 nL/min. A 17-minute linear
gradient from 2%buffer B to 30% buffer B (A: 0.1% formic acid inwater.
B: 0.1% formic acid in acetonitrile) was used94. The TimsTOF Pro was
operated in PASEFmode. TheTIMSaccumulation and ramp timeswere
set to 100ms, and mass spectra were recorded from 100–1700 m/z,
with a 0.85–1.30 Vs/cm2 ion mobility range. Precursors were selected
for fragmentation from an area of the full TIMS-MS scan that excludes
most ions with a charge state of 1 + . Those selected precursors were
isolated with an ion mobility dependent collision energy, increasing
linearly from 27–45 eV over the ion mobility range. Three PASEF MS/
MS scans were collected per full TIMS-MS scan, giving a duty cycle of
0.53 s. Ions were included in the PASEF MS/MS scan if they met the
target intensity threshold of 2000 and were sampled multiple times
until a summed target intensity of 10000 was reached. A dynamic
exclusionwindowof 0.015m/z by 0.015 Vs/cm2 was used, and sampled
ions were excluded from reanalysis for 24 seconds.

Peptides from 350 µm resolution samples were analysed by nano-
UPLC-MS/MS using a Dionex Ultimate 3000 coupled to an Orbitrap
Fusion Lumos (Thermo Scientific) using a 75 µm x 500mm C18 EASY-
Spray Columns with 2 µmparticles (Thermo Scientific) at a flow rate of
250nL/min. A 60-minute linear gradient from2%buffer B to 35%buffer
B (A: 5%DMSO,0.1% formic acid inwater. B: 5%DMSO, 0.1% formic acid
in acetonitrile). MS1 scans were acquired in the Orbitrap between 400
and 1500m/zwith a resolutionof 120,000 andanAGC target of4 × 105.
Precursor ions between charge state 2+ and 7+ and above the intensity
threshold of 5 × 103 were selected for HCD fragmentation at a nor-
malised collision energy of 28%, an AGC target of 4 × 103, a maximum
injection time of 80ms and a dynamic exclusion window of 30 s. MS/
MS spectra were acquired in the ion trap using the rapid scan mode.

Peptides from 40 µm resolution samples were analysed using an
Evosep One LC system (EvoSep) coupled to a timsTOF SCP mass
spectrometer (Bruker) using the Whisper 40 samples per day method
and a 75 µm x 150mm C18 column with 1.7 µm particles and an inte-
grated Captive Spray Emitter (IonOpticks). Buffer A was 0.1% formic
acid in water, Buffer B was 0.1% formic acid in acetonitrile. Data was
collected using diaPASEF45 with 1 MS frame and 9 diaPASEF frames per
cycle with an accumulation and ramp time of 100ms, for a total cycle
time of 1.07 seconds. The diaPASEF frames were separated into 3 ion
mobility windows, in total covering the 400 – 1000m/z mass range
with 25m/z-wide windows between an ion mobility range of 0.64–1.4
Vs/cm2. The collision energy was ramped linearly over the ionmobility
range, with 20 eV applied at 0.6 Vs/cm2 to 59 eV at 1.6 Vs/cm2.

Proteomic data analysis
For the 833 µm and 350 µm resolution data, raw data files were sear-
ched against the UniProtKB human database (Retrieved 17/01/2017,

92527 sequences) usingMaxQuant version 1.6.14.0, allowing for tryptic
specificity with up to 2 missed cleavages. Cysteine carbamidomethy-
lation was set as a fixed modification. Methionine oxidation and pro-
tein N-terminal acetylation were set as variable modifications and the
“match between runs (MBR)” option was used (MBR was not used for
tissue titration data). All other settings were left as default. Label-free
quantification was performed using the MaxLFQ algorithm within
MaxQuant95,96. Protein and peptide false discovery rate (FDR) levels
were set to 1%.

For the 40 µm resolution data, raw files were analysed in DIA-NN97

version 1.8.1 using an in-silico spectral library generated by DIA-NN
with default settings (1 missed cleavage, N-terminal methionine exci-
sion was allowed) using a Uniprot human FASTA file containing 20383
reviewed sequences. MS1 and MS2 accuracies were set to 15 ppm, all
other settings were left as default.

The MaxQuant and DIA-NN output files containing the protein-
level information are included as supplementary data files 1, 2, and 3
for the 833, 350 and 40 µm resolution data, respectively.

Spatial data analysis
Themapping of themass spectrometry rawfiles to their relative spatial
locations is shown in Supplementary Data 4. The spatial analysis uses
functions within the spdep and raster R packages98–100. MaxQuant’s
protein level output files (‘proteingroups.txt’) were filtered to remove
reverse hits, ‘Only identified by site’ hits and potential contaminants.
The ‘LFQ intensity’ columns were log2 transformed and then normal-
ised bymedian subtraction. Protein groups that did not meet a cut-off
of having at least 9 voxels with normalised LFQ values are not taken
forward for further analysis. The following steps occur independently
for each protein group. Normalised LFQ intensities were then coerced
into amatrix reflecting the rastered pattern of sample acquisition. The
quantification matrix was converted into a raster object and then to a
polygon object using the raster R package. From this polygon object, a
neighbour list was built for each voxel of the raster using the ‘Queen’s
Case’ where cells are considered neighbours if they share an edge or a
vertex. The neighbour list was then supplemented with a spatial
weights matrix using a binary coding scheme where neighbours are
given a weighting of ‘1’ and non-neighbours a weighting of ‘0’ in the
spatial weights matrix. The raster object and the weighted neighbour
list were then used as inputs to a permutation test for the Moran’s I
statistic, calculated using 999 random spatial permutations of the
raster object to calculate pseudo-p-values. Moran’s I statistics and the
associated p-values are collected for every protein group. The p-values
were then corrected for multiple testing using the Benjamini-
Hochberg FDR method.

Immunohistochemistry
Sections were cut as above and were mounted to Superfrost glass
slides for IHC and air-dried. Slides were fixed in ice-cold acetone for
10minutes, washed twice with TBS/T (20mM Tris, 150mM NaCl,
0.05% Tween 20) and blocked with 10% goat serum in TBS/T for
60minutes at room temperature. Primary antibodies were diluted in
5% goat serum in TBS/T and incubated at RT for 60minutes or 4 °C
overnight. Sections were washed three times with TBS/T. Staining
visualisation was performed by incubating with a cocktail of anti-
mouse and anti-rabbit secondary antibodies conjugated to horse-
radish peroxidase (Envision Kit, Agilent) for 60minutes at room tem-
perature. Sections were then washed with TBS/T three times and
incubated with 2% 3,3’-diaminobenzidine for 5minutes, immersed in
water and then counterstained with Harris’Haematoxylin for 1minute.
Primary antibodies used and dilutions: rabbit anti-PYGL, 1:100, 4 °C
overnight, HPA000962 (Atlas Antibodies); rabbit anti-ASPH, 1:1000,
RT 60minutes, NBP2-34125 (Novus Biologicals); mouse anti-CD45
(PD7/26 + 2B11), 1:200, RT 60minutes, ab781 (Abcam).
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Clustering
Empty voxels and voxels covering the large region of haemorrhage
were not included. A distance matrix was built containing the Eucli-
dean distance between each voxel’s set of protein LFQ values. Hier-
archical clustering of the distancematrix was performed in R using the
“average” agglomeration method. Dendrograms were cut using the
Dynamic Tree Cut method at a height setting of 100101.

A complete input matrix is required for UMAP visualisation102, so
proteins with fewer than 70% valid values across the experiment were
removed. The remaining missing values were imputed in on a per-
sample basis by random draws from a normal distribution using a
width of 0.3 and a downshift of 1.8. UMAP dimensionality reduction
was performed on this imputed data with default settings, and the first
two embedding components plotted, and samples coloured according
to their cluster assigned by Dynamic Tree Cut at a height of 100.

Pathway analysis
A two-sample Wilcoxon Rank Sum Test was performed in R for each
cluster versus all other clusters to determine marker proteins for each
cluster, the p-values were then corrected for multiple testing using the
Benjamini-Hochberg FDRmethod at a 1% threshold. The resulting lists
of marker proteins per cluster were used as input to ClusterProfiler’s
‘compareCluster’ function to test for overrepresentation of terms
using the MSigDB Hallmark Gene Sets. The entire set of proteins
detected in the experiment was used as the background set103.

Affinity network fusion
For the network fusion approach, we used a minimally processed
expressionmatrix, log2 transformed andmedian centred, removing all
empty voxels. We selected the top 25% of proteins by variance across
all voxels and used this to calculate a proteomic similarity matrix of
Spearman’s rank correlation coefficients. For the focussed extra-
cellular matrix protein analysis, all detected proteins annotated as
“Core Matrisome” in MatrisomeDB were used to calculate the protein
similaritymatrix.We converted this to a proteomicdistancematrix (by
taking 1-similarity). Separately, we created a complementary spatial
distance matrix representing the Euclidean distance from each voxel
location to eachother voxel location (where horizontally and vertically
adjacent neighbours are distance 1, diagonal neighbours are distance
√2 and so on). We converted both matrices into affinity matrices and
fused them using Affinity Network Fusion41. We then performed
spectral clustering on the fused affinity matrix, where the number of
clusters (6) was selected using the maximal eigengap heuristic.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processedmass spectrometry proteomics data have been
deposited to ProteomeXchange Consortium via the PRIDE partner
repository. The 833 µm resolution data can be found at PXD039159.
The 350 µm resolution data can be found at PXD039398. The 40 µm
resolution data can be found at PXD044714. Source data are provided
with this paper Source data are provided with this paper.

Code availability
The R code used for analysis can be downloaded from https://zenodo.
org/record/8341909104. Code for the affinity network fusion analysis can
be accessed at https://github.com/pdcharles/spatial-proteomics-anf.
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