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Emergence of the cortical encoding of
phonetic features in the first year of life

Giovanni M. Di Liberto 1,2,3,7 , Adam Attaheri 3,7, Giorgia Cantisani1,4,
Richard B. Reilly 2,5,6, Áine Ní Choisdealbha 3, Sinead Rocha3,
Perrine Brusini3 & Usha Goswami 3

Even prior to producing their first words, infants are developing a sophisti-
cated speech processing system, with robust word recognition present by 4–6
months of age. These emergent linguistic skills, observed with behavioural
investigations, are likely to rely on increasingly sophisticated neural under-
pinnings. The infant brain is known to robustly track the speech envelope,
however previous cortical tracking studies were unable to demonstrate the
presence of phonetic feature encoding. Here we utilise temporal response
functions computed from electrophysiological responses to nursery rhymes
to investigate the cortical encoding of phonetic features in a longitudinal
cohort of infants when aged 4, 7 and 11 months, as well as adults. The analyses
reveal an increasingly detailed and acoustically invariant phonetic encoding
emerging over thefirst year of life, providing neurophysiological evidence that
the pre-verbal human cortex learns phonetic categories. By contrast, we found
no credible evidence for age-related increases in cortical tracking of the
acoustic spectrogram.

The human ability to understand speech relies on a complex neural
system, whose foundations develop over the first few years of life. A
wealth of evidence on the developmental progression of speech pro-
cessing is available from infant behavioural studies, including with
neonates, augmented by studies of speech production from around
the second year of life1–3. Experiments using behavioural measures
enable the assessment of valuable factors such as the familiarity of a
particular speaker, the phonetic features that can be discriminated,
and sensitivity to native versus non-native speech contrasts, and have
been assumed to provide a timeline for ‘cracking the speech code’ in
thefirst year of life1. Yet our understanding of infant speechprocessing
in the first year of life is largely dependent on tasks relying on simple
behaviours (e.g., head turn preference procedures). Ideally, this
understanding should be complemented by studies determining the

neural encoding of phonological information across the first year of
life, using natural listening tasks and continuous speech. Previously,
methodological limitations have forced neural studies with infants to
rely on discrete rather than continuous stimuli, and electrical mea-
surements of neural activity have relied on evoked potentials3,4.

Continuous speech listening has been difficult to study neurally
because the most widely used neural encoding paradigms with infants
havemeasured themismatch negativity (MMN), ormismatch response
(MMR), which requires discrete stimuli. The MMR is a neurophysiolo-
gical signature of automatic change detection3,5,6 typically used to
measure the ability to discriminate phonetic categories, for example
by measuring neural changes to ‘ba’ vs ‘pa’. Further, previous EEG
studies showed that such mismatch responses in infants can some-
times be positive7, causing inconsistencies that can complicate or limit
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their use in infants. Accordingly, measuringMMRs typically constrains
researchers to using simple listening scenarios (e.g., sequences of
isolated syllables) and to focus on only a few selected phonetic con-
trasts. Recently there have been notable advances, such as measuring
the EEG encoding of multiple vowel sounds at the same time8. This
cross-sectional study went from infancy to adulthood and found
compelling evidence regarding the formation of the perceptual vowel
space in early development8. However, even in this case, the stimuli
were far removed fromnatural speech, as they consistedof continuous
sequences of vowels (with no consonants), excluding all other pho-
nological properties of speech, from consonants to prosody. This
leaves us with a key open question regarding the neurophysiology of
early speech processing of phonetic categories: when do infants reli-
ably process phonological units such as /b/ versus /p/ in continuous
natural speech? This study aims to shed light on that question by
measuring if these speech sounds are encoded as categorical units in
the infant brain, and by determining when exactly that acoustically
invariant encoding emerges across the first year of life.

This study investigates acoustic and acoustically invariant
encoding of speech sounds across the first year of life by measuring
the neural tracking of speech. The neural tracking of (or neural
entrainment in the broad sense9) to stimulus features such as the
acoustic envelope10–13 offers a directwindow into theneuralprocessing
of speechduring natural listeningwithout imposing any particular task
other than listening. In recent years, neural tracking measures have
played a growing role in the study of speech comprehension and
auditory processing in general. Previous studies with adults have
assessed the neural tracking of the acoustic envelope10–13, which is an
important property of speech that co-varies with a number of key
properties of interest (e.g., syllable stress patterns, syllables, pho-
nemes). Neural tracking of the speech envelope (or envelope tracking)
was shown to reflect both bottom-up and top-down cortical processes
in adult listeners, encompassing fundamental functions such as
selective attention13–15, working memory processing load16, and
prediction17,18. While robust envelope tracking has also been demon-
strated in infants19–24, the previous envelope measures only revealed
some of the cortical mechanisms underlying speech perception.
Recent work with adults and children has demonstrated that neural
tracking measurements can also be used to isolate the cortical
encoding of targeted speech properties of interest, from phonetic
features25,26 and phonotactics27,28 to semantic dissimilarity29,30 and
surprise28,30,31. Phonetic encoding was measured in neural tracking
studies from different research teams25,28,32–34 and was shown to cor-
relatewith phonemic awareness skills in school-aged children between
6 and 12 years of age35 and with second language proficiency in
adults36. Recent work applying the same methodology to intracranial
electroencephalography recordings was also able to pinpoint the
cortical origins of phonetic feature encoding37.

Here, we use neural tracking measurements to assess the neural
encoding of the full phonetic feature inventory of continuous speech,
applyingnon-invasive electroencephalography (EEG) in anecologically
valid paradigm of singing to an infant. EEG signals were recorded as
infants listened to 18 nursery rhymes (vocals only with no instruments
involved) presented via video recordings of a native English speaker.
EEG recordings were carried out at 4, 7 and 11 months of age. We then
measured how the infant brain encodes acoustic and phonetic infor-
mation by means of the multivariate Temporal Response Function
analysis (TRF), a neurophysiology framework enabling the measure-
ment of neural tracking by relating neural signals with multiple fea-
tures of a continuous sensory stimulus38,39. TRF analyses were also
carried out on recordings fromadult participants listening to the same
audio-visual nursery rhyme stimuli. We targeted one key aspect for
speechprocessing: the neural encodingof phonetic feature categories.
We do not assume here that encoding phonetic features equates to
encoding phonemes, as there is a large psychoacoustic and

developmental literature showing that phonemes areonly represented
by literate brains40,41. Our core hypothesis was that phonetic feature
encoding (invariant to acoustic changes) would emerge in the neural
responses to nursery rhymes during the first year of life.

We expected EEG signals to show an increasingly stronger
encoding of phonetic feature categories across the first year of life.
Previous behavioural data indicate that infant perception becomes
more selective towards native than non-native speech contrasts
around 9–12 months of age (this should not be interpreted as a hard
boundary, as this is likely a gradual phenomenon that changes over
large time windows, with differences between easy and more difficult
speech contrasts)42, with perceptual “magnet” effects helping to iso-
late native from non-native phonetic contrasts already by 6 months43.
We hypothesised that these phenomena may be underpinned by a
progressively more precise and acoustically invariant neural encoding
of the phonetic features of their native language. This encoding would
be expected to emerge as a neural response to speech that reflects a
growing invariance towards phonetic categories, where the limit case
would be to have neural responses to phonetic categories that are fully
invariant to acoustic changes. This longitudinal investigation enables
us to track the emergenceof phonetic featureencoding in thefirst year
of life while accounting for the full complexity of nursery rhyme lis-
tening environments. Our analysis indicated a progressive increase in
encoding over the first year of life, demonstrating that statistically
significant invariant encoding emerges from 7 months of age.

Results
The neural tracking of phonetic features increases across the
first year of life
Amultivariate TRF analysiswas carried out to assess the low-frequency
(0.1–8Hz) neural encoding of speech across the first year of life. The
8-band acoustic spectrogram of the sound (S) and phonetic feature
vectors (F) were extracted from the stimulus. Fourteen phonetic fea-
tures were included to mark the categorical occurrence of speech
sounds, according to articulatory features describing voicing as well as
manner and place of articulation (see “Methods”). Single-participant
TRFs were derived for each experimental session to assess the cortical
encoding of acoustic and phonetic features by fitting a multivariate
lagged regression model for the S and F features separately (Fig. 1A).

EEG prediction correlations were calculated against ground-truth
EEG signals (average EEG across all participants and channels within a
group; see “Methods”) with leave-one-out cross-validation and aver-
aged across all EEG channels. Prediction correlationswere greater than
zero for all age groups, models (S and F), and frequency bands (one-
sample two-tailed Wilcoxon rank sum test, FDR-corrected for multiple
comparisons, p < 0.005). As cortical acoustic-phonetic EEG responses
were previously shown to not exceed latencies of 400ms, this analysis
was carried out by considering a slightly larger speech-EEG lag window
from −100 to 500ms to account for possibly longer responses in
infants. Negative lags were included for absorbing the mTRF side
artefacts, allowing for interpretation of the positive lags. As hypothe-
sised, the EEG tracking of phonetic features (but not of sound acous-
tics) increased with age (Fig. 1B). The TRF analysis indicated that the
EEG prediction correlations for TRFF increases with age (4mo< 7
mo< 11mo) in the Δ-band (repeated measures ANOVA: F(2,92) = 4.6,
p =0.013, ηp² = 0.091) and Θ-band (repeated measures ANOVA:
F(2,92) = 5.8, p =0.004, ηp² = 0.112), while there was no statistically
significant effect in the lowΔ-band (repeated measures ANOVA:
F(1.95,89.7) = 0.9, p =0.427, ηp² = 0.018; the assumptions of sphericity
was not met; hence, a Greenhouse-Geisser’s correction was applied).
By contrast, age impacted acoustic tracking in a different way, with
4mo showing the strongest tracking in the lowΔ-band (repeated
measures ANOVA: F(1.55,71.2) = 6.9, p = 0.002, ηp² = 0.131; the
assumptions of sphericity were not met; hence, a Greenhouse-Geis-
ser’s correction was applied) and Δ-band (repeated measures ANOVA:
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F(1.74,80.2) = 6.8, p =0.002, ηp² = 0.129; the assumptions of sphericity
was not met; hence, a Greenhouse-Geisser’s correction was applied),
while there was no statistically significant effect in the Θ-band (repe-
ated measures ANOVA: F(2,92) = 0.5, p =0.580, ηp² = 0.011). Detailed
post hoc statistical results are reported in Supplementary Table 1 and
Fig. 1C shows individual infant trajectories for TRFF in the Δ-band
(where the encoding of phonetic features shows large r values).

Topographic differences were expected both across participants
and by age groupdue tomajor anatomical changes during infancy44. In
the Δ-band, larger EEG prediction correlations were measured in
centro-frontal electrodes for all age groups (Fig. 1D), with topo-
graphies becoming progressively more similar to those for adults with
age (bootstrapwith group-size =Nadults = 17 and 100 iterations; average
correlation with adults: r =0.44, 0.58, 0.60 for 4mo, 7mo, and 11mo
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respectively; since a Shapiro-Wilk test indicated that one of the sam-
ples was not normally distributed, a Friedman test was run in place of a
repeated measures ANOVA, on infant data with age as the repeated
factor: χ2(2,198) = 73.2, p <0.001, Kendall’s W=0.366).

An additional control analysis was run to determine whether the
effect on TRFF could have been determined by differences in the
signal-to-noise ratio (SNR) between groups. The SNR was calculated as
the ratio between post- and pre-stim power for the event-related
potential calculated on the first word in each trial. There was no sta-
tistically significant effect of SNR (since one of the samples was not
normally distributed, a Friedman testwas run: χ2(2, 92) = 0.2, p =0.917,
Kendall’s W=0.002).

Emergence of the encoding of phonetic feature categories
The results in the previous section indicate that neural encoding of
phonetic feature information in the Δ- and Θ-bands becomes pro-
gressively stronger with age in the first year of life. However, it is
unclear how much of that effect reflects the emergence of catego-
rical encoding of phonetic features, as TRFF alone could capture both
acoustically variant and invariant neural signals. Accordingly, we
carry out further analyses that aim to isolate EEG responses to pho-
netic feature categories that are acoustically invariant. In line with
previous behavioural work43,45–49 and current developmental
theories1,42, we expected categorical phonetic feature encoding to
emerge from 6 months on (i.e., from the 7mo recording session, in
the present study), with progressively stronger encoding across the
first year of life visible by 11 months of age. To test this hypothesis
(see Hp2 in Fig. 2B-left), acoustically invariant phonetic feature
encodingwas assessed based on amultivariate TRFmodel that was fit
on acoustic-phonetic features simultaneously (acoustic-phonetic
TRF). The feature set consisted of S, F, and two nuisance regressors:
the half-way rectified envelope derivative (D) and a signal capturing
the overall frame-to-frame visual motion (V). A second model was fit
after excluding all phonetic features (acoustic-only TRF; Fig. 2A).
Neural activity linearly reflecting phonetic feature categories but not
sound acoustics was accounted for by subtracting EEG prediction
correlations corresponding to acoustic-only TRFs from those corre-
sponding to acoustic-phonetic TRFs. The resulting EEG prediction
gain, which was previously referred to as FS-S25,27,33,35,36,50,51, was
expected to be most prominent in the Δ-band, in line with previous
research on the cortical tracking of speech in adults25,51 as well as
considering that the amplitude modulations of infant-directed
speech are maximised in that same frequency-band52. Note that the
analyses that follow have been carried out only on the EEG frequency
bands where TRFF showed significant effects of age (Δ- and Θ-bands
only, while lowΔ-band was excluded).

As hypothesised (Hp1-3), the EEG prediction gain increased with
age in the Δ-band (average across all EEG channels; repeatedmeasures
ANOVA: F(2,92) = 6.0, p =0.003, ηp² = 0.115; Fig. 2B-right). Statistically
significant effects also emerged in the Θ-band (repeated measures
ANOVA: F(2,92) = 5.0, p = 0.009, ηp² = 0.098; Fig. 2B-right). In the Δ-
band, consistent with hypothesis 2 (Hp2; Fig. 2B-left), EEG prediction
gains greater than zero emerged from 7 months of age (one-sample
two-tailed Wilcoxon rank sum test, FDR-corrected; 4mo: p = 0.554;

7mo: p =0.044; 11mo: p =0.002; adults: p =0.038). Furthermore, post
hoc comparisons indicated a significant increase between 4 and 7mo
and 4 and 11mo (p =0.041 and p = 0.004 respectively, pairedWilcoxon
rank sum test, FDR-corrected), while there was no statistically sig-
nificant difference between 7 and 11mo (p =0.220). In theΘ-band, EEG
prediction gains greater than zero also emerged from 7months of age
(one-sample two-tailed Wilcoxon rank sum test, FDR-corrected; 4mo:
p =0.7223; 7mo: p = 0.006; 11mo: p =0.007; adults: p =0.723). Fur-
thermore, post hoc comparisons indicated a significant increase
between 4 and 7mo and 4 and 11mo (p =0.033 and p = 0.022 respec-
tively, pairedWilcoxon rank sum test, FDR-corrected), while there was
no statistically significant difference between 7 and 11mo (p = 0.849).
The regression weights for the acoustic-phonetic TRF model are
reported in Fig. 2C (all weights including the nuisance regressors are
reported in Supplementary Fig. 1). For ease of visualisation, only the
weights for amodel fit in themost relevant frequency bands (Δ- andΘ-
bands) are reported.

Discussion
The present investigation offers neurophysiological and longitudinal
evidence that the human cortex displays a progressive increase in
phonetic encoding during nursery rhyme listening across the first year
of life. The results demonstrate significant progress with age (Fig. 1B)
as hypothesised a priori, with invariant encoding emerging from
7 months of age (Fig. 2B). Interestingly, phonetic category encoding
emerged in both the EEGΔ- andΘ-bands, which is in line with previous
work with adults25. The largest prediction gains were found in the EEG
Δ-band, the frequency range that captures the exaggerated metrical
and stress patterns characterising nursery rhymes52,53. A fine-grained
and longitudinal understanding of the development of phonetic fea-
ture encoding by the same infants listening to continuous speech was
previously absent from the literature. The behavioural andMMR infant
speech processing literature instead relied on targeted experimental
contrasts, focused largely on phonetic category formation, but
including other manipulations based on syllable stress templates and
speech rhythm17,42–49. As rhythm and stress patterns aid in identifying
word boundaries, and phonetic categories aid in comprehension (e.g.,
distinguishing ‘doggy’ from ‘daddy’), this prior work has been impor-
tant, showing that infants are sensitive to differences in speech rhythm
from birth54,55, and are also sensitive to some phonetic information as
neonates56. Nevertheless, no prior study has used nursery rhymes, nor
other continuous speech stimuli with a rich phonological inventory, as
a basis for studying the neurophysiology of phonetic encoding in
infants. Consequently, our findings have several implications for
developmental research.

The current study demonstrates that we can now use ecologically
valid neural data from typical pre-verbal scenarios such as nursery
rhyme listening to study different aspects of speech processing by
infants. Our continuous speech analyses indicated that phonetic
categories are encoded in an acoustically invariant manner from
7 months, thereby also documenting at what stage of development
encoding becomes robust. This longitudinal question previously
remained open largely because of methodological constraints. The
present study offers neurophysiological evidence regarding the

Fig. 1 | Increasing low-frequency EEG tracking of phonetic features but not
sound spectrogram in the first year of life. A Schematic diagram of the analysis
paradigm. Multivariate Temporal Response Function (TRF) models were fit to
describe the forward relationship between stimulus features and the low-frequency
EEG signal recorded from infants (4, 7, and 11 mo) and adults. TRF models were fit
for acoustic spectrogram (S; green) and phonetic feature categories (F; orange)
separately. EEG prediction correlations (Pearson’s correlation) were calculated for
the TRFS and TRFF models with cross-validation. B EEG prediction correlations of
the TRFS and TRFF models (average across all channels) for the lowΔ-band
(0.1–1 Hz), Δ-band (1–4Hz), and Θ-band (4–8Hz; violin plots with mean value

across participants). Stars indicate significant effects of age in infants (one-way
repeated measures ANOVA; *p ≤0.05; **p ≤0.01). Statistically significant effects
were measured for S in lowΔ-band (p =0.002) and Δ-band (p =0.002), but not Θ-
band (p =0.580). Statistically significant effects were measured for F in Δ-band
(p =0.013)and Θ-band (p =0.004), but not lowΔ-band (p =0.427). The violin plots
show the result distributions and the mean value. C Topographical patterns of the
EEG prediction correlations in infants and adults for the F and S models.
D Individual-participant trajectories of the EEG prediction correlations for the
longitudinal infant cohort. Colours indicate increasing vs. decreasing patterns with
age (red and blue respectively). The figure was built using MATLAB software.
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precise progression of invariant phonetic category learning. There is a
consensus in the literature that discriminating phonetic categories is a
key processing step regarding speech comprehension by adults57,
although see Feldman et al. 58, for recent caveats regarding infants.
While adult studies used direct invasive recordings to measure the
cortical encoding of phonetic categories37,59, here we demonstrated
that recent methodological developments (i.e., the TRF
framework25,38,39) can be used to circumvent some of the major

challenges encountered by previous infant studies, thereby providing
developmental insights that complement behavioural research.

The assessment of phonetic encoding as operationalised here has
three key properties. First, we studied the cortical encoding of pho-
netic categories in infants with continuous neurophysiological mea-
surements (TRFs) based on EEG and as part of an unprecedented
targeted longitudinal investigation. Second, theuse of the forwardTRF
framework allowed us to assess phonetic category encoding, rather
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than relying on the typical sound discrimination metrics used in prior
behavioural43,45–49 and neurophysiology studies (e.g., MMR)5,60–64.
Third, the TRF framework allowed us to study neural encoding in an
ecologically natural paradigm of singing nursery rhymes to infants,
instead of focusing on selected phonetic, syllabic or word contrasts or
using synthesised speech stimuli, as in the past literature. This is a step
forward, as the discriminatory skills that infants were shown to exhibit
with isolated syllables may not enable the detection of phonetic
categories in continuous speech.

The present study indicates that phonetic category encoding
during natural speech listening progressively increased during the first
year of life. This provides the literature with detailed insights into the
development of speech processing in neurotypical infants. The
enhanced phonetic encoding with age observed here could not simply
be due to stronger acoustic encoding, as acoustic encoding showed a
different pattern in the Δ-band (Fig. 1B). Interestingly, 4mo infants
showed the strongest acoustic encoding and the weakest phonetic
encoding,with statistically significantphonetic encodingemergingonly
from7months of age.Wedid notfind credible evidence for acoustically
invariant phonetic encoding at 4mo, which is in contrast with the sig-
nificant evidence for phonetic encoding in neural studies with 3-month-
olds based on single syllables like “bif” and “bof”64, which have claimed
that very young infants are equipped with the fundamental combina-
torial code for speech analysis. While prior demonstrations of beha-
vioural and neural discrimination between syllables in infants younger
than 4mo may reflect categorical phonetic encoding, it is also possible
that successful discrimination in these simplified tasks may have an
acoustic basis. In otherwords, the ability todistinguish two soundsdoes
not necessarily mean that those sounds are encoded as separate cate-
gories during natural speech listening. Another developmental possi-
bility is that categorical encoding does occur during simplified tasks,
but this does not generalise to more complex tasks like nursery rhyme
listening, which requires greater cognitive resources. By probing the
neural encoding of phonetic categories directly, our study provides the
field with a valuable platform for addressing these unanswered ques-
tions and for better understanding the cognitive processes underlying
speech perception in infants.

One challenge with longitudinal neurophysiology studies in
infants is the substantial anatomical change that occurs with age,
meaning that while macroscopic patterns are likely to remain con-
sistent (e.g., temporal vs. occipital), there cannot be a channel-by-
channel correspondence between age groups, even when considering
the sameparticipants. For this reason, themajority of this investigation
focused on measures combining multiple EEG channels simulta-
neously (e.g., Fig. 1B was an average of all EEG channels). These con-
siderations strengthen the results, as averaging all the EEG channels
would not perform as well as selecting the best electrode for each
participant. As such, our statistical analyses were conservative in that
they were penalised by the inclusion of all EEG channels, even the ones
that were not responsive to speech.

Our phonetic encoding results showed topographical patterns for
adults that are broadly consistent with the prior adult EEG literature on
natural speech listening TRFs (Fig. 1D)25,33. Indeed, some differences
with prior adult work could be expected, as this TRF investigation of
phonetic processing relied on anursery rhyme listening task rather than

natural speech. Nursery rhymes are indeed a form of natural speech
which ismore suited to infants, andwould naturally be delivered audio-
visually. The rhythmic cues and exaggerated stress patterns character-
ising nursery rhymes have been demonstrated to be important ele-
ments supporting speech perception and language learning52,65,
accordingly, they were ideal stimuli for the Cambridge UK BabyRhythm
study. In prior TRF work, we have demonstrated similar envelope
entrainment to these nursery rhymes by adults and infants24. Never-
theless, it is important to note that the regular rhythms and melodic
properties of nursery rhymes make them different from the typical
speech TRF stimuli usedwith adults, such as audio-books and podcasts,
and that encodingof phonetic categories for auditory-alone continuous
speech to infants remains to be investigated. Another difference from
previous work on phonological TRFs is the use of audio-visual stimuli.
Note that the visual stimulus could not explain the finding (as removing
the visual motion regressor did not change the results).

The results of this study add to the growing literature on cor-
tical speech tracking19,25,27–30,36,53. While the literature typically focu-
ses on the cortical tracking of the speech envelope14,22,66–69 (including
previous analyses of this dataset19,24), the present investigation
enriches our understanding of phonetic feature TRFs. Prior TRF
studies of phonetic encoding in adults and children have revealed
that phonetic processing is affected by speech clarity51, selective
attention33, and proficiency in a second language36, and shows cor-
relations with psychometricmeasures of phonemic awareness35. The
present study demonstrates that emergent phonetic TRFs can also
be measured in pre-verbal infants, providing a window into the
neural encoding of nursery rhymes in infants. Whilst recent devel-
opments have started to use neural tracking to predict language
development in infants70,71, further research will also determine
whether a robust relationship exists between speech TRFs and other
related aspects of cognition (e.g., selective attention, prediction) in
infants, and when such related aspects come online. Further
researchwith infants at family risk for disorders of language learning
may also reveal when and how developmental trajectories are
impacted by developmental disorders that are carried genetically,
such as developmental dyslexia and developmental language dis-
order. Such work could be very valuable regarding early detection
and improved mechanistic understanding of these disorders.

In summary, the data provide evidence of the emergence of pho-
netic categories that contribute to the current debate regarding their
role in thedevelopmentof speechprocessing58.Ourdemonstration that
phonetic encoding can be assessed with nursery rhyme stimuli in eco-
logically valid conditions opens the door to cross-language work using
TRFs that investigates the interaction between characteristics of natural
language such as phonological complexity and the development of
phonetic encoding. It also provides opportunities for novelmechanistic
investigations of the development of bilingual andmultilingual lexicons
during language acquisition.

Methods
Participants and experimental procedure
The present study carried out a re-analysis of an EEG dataset involving
a speech listening task in a longitudinal cohort of fifty infants (first part
of a larger cohort of 122 participants19). The first 50 participants of that

Fig. 2 | Low-frequency (Δ-band) cortical encoding of categorical phonetic fea-
tures in the first year of life. A Schematic diagram of the analysis paradigm.
Forward TRF models were fit to describe the relationship between speech features
(including nuisance regressors) and low-frequency EEG signals. Speech features
included the acoustic spectrogram (S), half-way rectified envelope derivative (D),
visual motion (V), and phonetic features (F). B (Left) Hypotheses: The cortical
encoding of phonetic feature categories was expected to progressively increase
across the first year of life. Hp1-3: phonetic encoding emerging from 11, 7, and
4 months of age respectively. (Right) Phonetic feature encoding measured as the

EEG prediction correlation gain when including phonetic features in the TRF (violin
plots with mean value across participants). Only the frequency bands showing
significant effects of age for TRFF were studied. Stars indicate significant effects of
age in infants (one-way repeated measures ANOVA; *p ≤0.05; **p ≤0.01,
***p ≤0.001). Statistically significant effects were measured in the Δ-band
(p =0.003) and in the Θ-bands (p =0.009). C TRF weights corresponding to pho-
netic features for the TRF in Δ- and Θ-bands (1–8Hz). The figure was built using
MATLAB software.
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longitudinal cohortwhowere able toprovide data for all three sessions
were included. Participants were infants born full term (37–42 gesta-
tionalweeks) andhadnodiagnoseddevelopmental disorder, recruited
from a medium-sized city in the United Kingdom and surrounding
areas via multiple means (e.g., flyers in hospitals, schools, and
antenatal classes, research presentations at maternity classes, online
advertising). The study, including experiments on adults and infants,
was approved by the Psychology Research Ethics Committee of the
University of Cambridge. Parents gave written informed consent after
a detailed explanation of the study and families were repeatedly
reminded that they could withdraw from the study at any point during
the repeated appointment. The experiment involved three EEG
recording sessions when the infants (24 male and 26 female) were
4 months old (4mo; 115.6 ± 5.3 days), 7 months old (7mo;
212.5 ± 7.2 days) and 11 months old (11mo; 333.0 ± 5.5 days) [mean ±
standard deviation (SD)]. A bilingualism questionnaire (collected from
45 out of the 50 infants) ascertained that 38 of the infants were
exposed to a monolingual environment and 12 were exposed multi-
lingual environment, of these 93.5% (43 infants) reported English as the
primary language exposed to the infant. Note that this was a long-
itudinal investigation, meaning that the same 50 infants were tested at
4, 7, and 11months of age. In addition to the 150 EEG sessions from the
infant dataset, this study also analysed EEG data from twenty-two
monolingual, English-speaking adult participants performing the same
listening task (11 male, aged 18–30, mean age: 21), who gave written
informed consent. Data fromfive adult participants were excluded due
to inconsistencies with the synchronisation triggers, leaving 17 parti-
cipants’ data for the analysis. We did not expect an effect of sex on
phonetic-feature TRFs in the first year of life.

Infant participants were seated in a highchair (onemetre in front of
their primary caregiver) in a sound-proof acoustic chamber, while adult
participants were seated in a normal chair. All participants were seated
650mmaway fromthepresentation screen. EEGdatawere recorded at a
sampling rateof 1 kHzusing aGES300amplifierusing aGeodesic Sensor
Net (Electrical Geodesics Inc., Eugene, OR, United States). 64 and 128
channels were used for infants and adults respectively. Sounds were
presented at 60dB from speakers placed on either side of the screen (Q
Acoustics 2020i driven by a Cambridge Audio Topaz AM5 Stereo
amplifier). Participants were presented with eighteen nursery rhyme
videos played sequentially, each repeated 3 times (54 videos with a
presentation time of 20’ 33” in total). Adult participants were asked to
attend to the audio-visual stimulus while minimising their motor
movements. All adult participants completed the full experiment.
Infants listened to at least two repetitions of each nursery rhyme
(minimum of 36 nursery rhymes lasting 13’ 42”). The experiment inclu-
ded other elements that were not relevant to the present study (e.g.,
resting state EEG; please refer to the previous papers on this dataset for
further information19,24). To measure the time each infant looked at the
screen, eye tracking data were collected using a Tobii TX300 eye
tracking camera (sampling rate 300Hz) located and fixed at the base of
the presentation screen (23” TFT monitor).

Stimuli
A selection of eighteen typical English language nursery rhymes was
chosen as the stimuli. Audio-visual stimuli of a singing person (upper-
body only) were recorded using a Canon XA20 video camera at 1080p,
50fps and with audio at 4800Hz. A native female speaker of British
English used infant-directed speech to melodically sing (for example
“Mary Quite Contrary”) or rhythmically chant (for nursery rhymes like
“Therewas anoldwomanwho lived ina shoe”) thenursery rhymeswhilst
listening to a 120 bpm metronome through an intra-auricular head-
phone (e.g., allowing for 1Hz and 2Hz beat rates; see Supplementary
Figs. S2 and S4 from Attaheri et al.19). The metronome’s beat was not
present on the stimulus audios and videos, but it ensured that a con-
sistent rhythmic production was maintained throughout the 18 nursery

rhymes. To ensure natural vocalisations, the nursery rhyme videos were
recorded sung or rhythmically chanted, live to an alert infant.

Data preprocessing
Analyses were conducted with MATLAB 2021a by using custom scripts
developed starting from publicly available scripts shared by the CNSP
initiative (Cognition and Natural Sensory Processing; https://
cnspworkshop.net; see section Data and Code Availability for further
details)72. In order to carry out the same preprocessing and analysis
pipeline on infants and adult EEG data, the adult 128-channel EEG data
was transformed into a 64-channel dataset via spline interpolation, with
the relative channel locations corresponding to those of the infant par-
ticipants. All subsequent analyses on infants and adults were identical.

The four facial electrodes (channels 61–64) were excluded from
all analyses, as they are not part of the specific infant-sized EGI
Geodesic sensor net. The EEG data from the remaining 60 channels
were low-pass filtered at 8 Hz by means of zero-phase shift Butter-
worth filters with order 2 (by using the filtering functions in the CNSP
resources) to include the Δ- and Θ-bands, which were shown to
strongly encode cortical auditory responses to natural speech19,25.
EEG data were also high-pass filtered at 0.1 Hz to reduce noise and
downsampled to 50Hz. Next, Artifact Subspace Reconstruction
(ASR; clean_asr function from EEGLAB73) was used to clean noise
artefacts from the EEG signals. Channels with excessive noise (which
could not be corrected with ASR) were identified via probability and
kurtosis and were interpolated via spherical interpolation if they
were three standard deviations away from the mean. EEG signals
were then re-referenced to the average of the two mastoid channels,
which were then removed from the data, producing a preprocessed
EEG dataset with 58 channels. Data from repeated trials was then
averaged. Three infant participants were removed because of
excessive noise in at least one of their three recording sessions.
Average EEG signals were obtained by averaging data from all EEG
channels and participants, within each group, leading to a single EEG
trace per age group, which we refer to as ground-truth EEG. Note that
this was possible due to the mastoid referencing (i.e., averaging
across electrodes would not work when using global average refer-
encing). Ground-truth EEG traces were obtained for three frequency
bands of interest: the lowΔ- (0.1–1 Hz), Δ- (1–4Hz) and Θ- (4–8Hz)
bands and used in the TRF evaluation.

Sung speech representations
The present study involved themeasurement of the coupling between
EEG data and various properties of the sung speech stimuli. These
properties were extracted from the stimulus data based on meth-
odologies developed in previous research. First, we defined a set of
descriptors summarising low-level acoustic properties of the speech
stimuli. Acoustic features consisted of an8-band acoustic spectrogram
(S) and a half-way rectified broadband envelope derivative (D)36,53. S
was obtained by filtering the sound waveform into eight frequency
bands between 250 and 8 kHz that were logarithmically spaced
according to the Greenwood equation74. The broadband envelope was
calculated as the sum across the eight frequency bands of S. The D
signal was then derived by calculating the derivative of the broadband
envelope, and by half-way rectifying the resulting signal. Second,
fourteen phonetic features were selected to mark the categorical
occurrence of speech sounds, according to articulatory features
describing voicing, manner, and place of articulation75,76: voiced con-
sonant, unvoiced consonant, plosive, fricative, nasal, strident, labial,
coronal, dorsal, anterior, front, back, high, low, leading to a 14-
dimensional phonetic feature categoriesmatrix (F). The precise timing
of the phonetic units was identified in three steps. First, syllable and
phoneme sequences were obtained from the transcripts of the nursery
rhymes. Second, an initial alignment was derived by identifying the
syllabic rate and syllable onsets for each piece and then assigning the
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phonemes in a syllable starting from the corresponding onset time.
This automatic alignment was stored according to the TextGrid
format77. Third, the phoneme alignments were manually adjusted
using Praat software77. Phonetic feature vectors were produced in
MATLAB software to categorically mark the occurrence of phonetic
units from start to finish with unit rectangular pulses25. Next, phonetic
units were mapped to the corresponding 14-dimensional phonetic
feature vectors, leading to a stimulus matric with a reduced dimen-
sionality (14 features instead of 27 phonemes). Finally, a nuisance
regressor was also included to capture EEG variance related to visual
motion (V), which was derived as the frame-to-frame luminance
change, averaged across all pixels.

Multivariate temporal response function (mTRF)
A single input event at time t0 affects the neural signals for a certain
time window [t1, t1+twin], with t1 ≥ t0 and twin> 0. Temporal response
functions (TRFs) describe this relationship at the level of the individual
participant and EEG channel. In this study, TRFs were estimated by
means of a multivariate lagged regression, which determines the
optimal linear transformation from stimulus features to EEG (forward
model)11,78. A multivariate TRF model (mTRF) was fit for each partici-
pant by considering all features simultaneously (S,D, F, and V; Fig. 1A)
with the mTRF-Toolbox38,39. While previous work used a time-lag win-
dow of 0–400ms, which was considered sufficient to largely capture
the acoustic-phonetic/EEG relationship with a single-speaker listening
task in adults25, the relevant latencies in infants were unknown before
this study. To account for possible slower or delayed response in
infants, a larger time-latencywindowof−100 to 500mswasused in the
analysis for all groups. The reliability of the TRF models was assessed
using a leave-one-out cross-validation procedure (across trials i.e.,
nursery rhymes), which quantified the EEG prediction correlation
(Pearson’s r) on unseen data while controlling for overfitting. The TRF
model calculation included a Tikhonov regularisation, which involves
the tuning of a regularisation parameter (λ) that was conducted by
means of an exhaustive search of a logarithmic parameter space from
0.01 to 106 on the training fold of each cross-validation iteration38,39.
Note that the correlation values are typically calculated between EEG
signals and their predictions by considering single-participant EEG
signals, which have a high level of noise. As such, EEG prediction cor-
relations are variable between participants largely due to the variable
SNR of the EEG signal across participants (as every prediction is cor-
related with a different EEG signal). One solution to this issue is,
instead, to correlate the EEG predictions for each participant with the
same ground-truth EEG trace calculated as described in the “Data
preprocessing” section.

Statistical analysis
All statistical analyses directly comparing the groups were per-
formed using repeated measures ANOVA, with F-values reported as
F(dftime, dferror) when the assumptions of normality and sphericity
were met. Those assumptions were tested with Shapiro-Wilk’s test
and Mauspher’s test respectively. Assumptions of normality for
statistical tests were met unless otherwise stated. When the
assumption of sphericity was not met, a Greenhouse-Geisser’s cor-
rection was applied.When the assumption of normality was notmet,
a Friedman test was applied. Two-tailed one-sample Wilcoxon
signed-rank tests were used for post hoc tests. Correction for mul-
tiple comparisons was applied where necessary via the false dis-
covery rate (FDR) approach. When post hoc comparisons were
carried out formultiple models and frequency bands, the correction
took into account all the comparisons simultaneously. The FDR-
adjusted p-value was reported. Descriptive statistics for the neuro-
physiology results are reported as a combination of mean and
standard error (SE).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The present study carried out a re-analysis of an existing EEG dataset
recorded from infants and adults19. All EEG data was converted to the
CND data structure (Continuous-event Neural Data https://
cnspworkshop.net, version 2023.0)72, allowing to carry out the ana-
lyses with the CNSP analysis scripts, which provided a platform for
bringing together all the necessary libraries. The final data included in
the manuscript figures and statistics have been deposited in the OSF
repository https://osf.io/mdnwg79. The raw data are not downloadable
as they must be considered in conjunction with the data collection
videos. As theparticipants are infants, thesevideodata are confidential
data that we do not have ethical permission to make available. Study
data were collected and managed using REDCap (Research Electronic
Data Capture) electronic data capture tools hosted at Cambridge
university80,81. The raw EEG data, without the video data, are available
upon request (please contact the corresponding author).

Code availability
Analyses were conducted by using the publicly available analysis
scripts shared by the CNSP initiative (Cognition and Natural Sensory
Processing)72 during the CNSP workshop 2021 (https://cnspworkshop.
net). The scripts weremodified to fit this particular study. The specific
analysis scripts have been deposited in the OSF repository https://osf.
io/mdnwg79. The exactfigures in thismanuscript can be replicatedwith
the code and data provided. Note that the code utilises external pub-
licly available libraries: the mTRF-Toolbox (https://github.com/
mickcrosse/mTRF-Toolbox, version 2.0)39, EEGLAB (version 2021.0)73;
and the NoiseTools library (http://audition.ens.fr/adc/NoiseTools)82.
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