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Evaluation of circulating plasma proteins in
breast cancer using Mendelian
randomisation

Anders Mälarstig 1,2 , Felix Grassmann1,3, Leo Dahl 4, Marios Dimitriou 1,2,
Dianna McLeod1, Marike Gabrielson1, Karl Smith-Byrne5, Cecilia E. Thomas 4,
Tzu-Hsuan Huang 6, Simon K. G. Forsberg 7, Per Eriksson 7, Mikael Ulfstedt7,
Mattias Johansson8, Aleksandr V. Sokolov9, Helgi B. Schiöth9, Per Hall1,10,
Jochen M. Schwenk 4, Kamila Czene1 & Åsa K. Hedman 1,2

Biomarkers for early detection of breast cancer may complement population
screening approaches to enable earlier andmore precise treatment. The blood
proteome is an important source for biomarker discovery but so far, few
proteins have been identified with breast cancer risk. Here, we measure 2929
unique proteins in plasma from 598 women selected from the Karolinska
Mammography Project to explore the association between protein levels,
clinical characteristics, and gene variants, and to identify proteinswith a causal
role in breast cancer. We present 812 cis-acting protein quantitative trait loci
for 737 proteins which are used as instruments in Mendelian randomisation
analyses of breast cancer risk. Of those, we present five proteins (CD160,
DNPH1, LAYN, LRRC37A2 and TLR1) that show a potential causal role in breast
cancer risk with confirmatory results in independent cohorts. Our study sug-
gests that these proteins should be further explored as biomarkers and
potential drug targets in breast cancer.

Breast cancer is globally the most common cancer in women and is
associatedwith significantmorbidity andmortality1. Genome-wide and
exome-wide genetic association studies have successfully identified
over 300 breast cancer susceptibility loci2–4 but the mechanisms
underpinning most loci and specific gene variants remain unchar-
acterised, which limits the translation of genetic susceptibility loci to
new therapies and precision medicine tools4.

Mendelian randomisation (MR) offers an alternative approach
to the mapping and understanding of aetiologically important
pathways in cancer risk and development. MR aims to elucidate
causal relationships between modifiable risk factors and disease

based on the analysis of genetic variants in observational data5. In
comparison to genome-wide association studies (GWAS), MR
exploits a more confined test space, which increases statistical
power, and inherently supports causal gene identification. MR can
be further supported by genetic colocalization analysis of exposure
and outcome6. The relevance of MR has been evaluated and sup-
ported by retrospective analyses of drug targets with a proven
aetiological or causal role in disease from randomised controlled
trials (RCT)7,8.

Circulating proteins possess many of the characteristics suitable
for the discovery of breast cancer biology using MR. First, the plasma
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proteome has been shown to reflect both normal physiology and
pathogenic biological processes in cancer9. Second, circulating pro-
teins can be measured with high throughput and precision using a
variety of advancedmethods10,11. Third, recent studies have shown that
amajority of circulating proteins are associated with cis-acting protein
quantitative trait loci (pQTL) i.e., located within 1 Mbp from the
protein-encoding gene12,13. Fourth, individual cis-pQTL explains rela-
tively large proportions of variance in the protein, making them sta-
tistically powerful instrumental variables for causal inference using
MR12,14. Hundreds of pQTL for plasma proteins have been identified,
but so far, no studies have reported pQTL in an entirely female
population7,12,13,15–19.

Here, we measured a total of 2929 unique proteins (2949 assays)
using the Olink PEA Explore assay in plasma samples taken from 598
women who were free of a breast cancer diagnosis at the time of
sampling. We (1) performed a genetic association analysis of protein
levels to identify cis-pQTL and (2) used the cis-pQTL as instrumental
variables in MR analysis of breast cancer in the Breast Cancer Asso-
ciationConsortium (BCAC) case-controlmeta-analysis of breast cancer
risk, and (3), replicated MR findings in a second breast cancer case-
control meta-analysis of FinnGen20 and the UK Biobank21. Lastly, we
followed up on significant proteins identified in the MR analysis by
visualising and evaluating colocalization of the protein and breast
cancer genetic associations and evaluated potential causal relation-
ships with established and emerging breast cancer risk factors, also
using MR (Fig. 1).

Out of 730 plasma proteins evaluated using MR, genetically ele-
vated levels of five proteins were associated with breast cancer risk,
namely CD160, 2’-deoxynucleoside 5’-phosphate N-hydrolase 1
(DNPH1), layilin (LAYN), Leucine rich repeat containing 37 member A2
(LRRC37A2) and toll-like receptor 1 (TLR1), whichwere confirmed in an
independent set of data. Our results suggest that these five proteins
are aetiologically relevant for breast cancer development. Pending
further validation, these findings may point to drug target opportu-
nities or stratification biomarkers in breast cancer.

Results
Sample characteristics
The KARMA study consented and recruited a total of 70,877 women
during mammography screening from two Swedish regions (Stock-
holm and Skåne). The aim of the project is the identification of risk
factors for breast cancer22. The sample for the present substudy was
selected for the purpose of evaluating plasma protein biomarkers in
relation to incident breast cancer within 2 years from blood sampling.
The selection included samples from 299 women in the Southern
Sweden (Skåne) regionwho received a breast cancer diagnosis within 2
years after a blood draw and 299 random controls from the same
region, who, as of 2021, had remained breast cancer-free. Nodifference
between cases and controls was seen for median age, bodymass index
or percent women receiving hormone replacement therapy at the time
of blood draw. The proportion of smokers and women with a family
history of breast cancer was more common among cases (Table 1).

Protein analysis, detectability, and quality control
We chose to analyse the plasma samples using an affinity proteomics
approach. While targeted methods, such as the Olink PEA approach,
are inherently biased towards the subset of proteins that are mea-
sured, we attempted to maximise the possibility for discovery by
measuring as many proteins as possible. Hence, we used the recently
launched versionofOlink’s Explore I and II panels, which includes 2949
proteins (Supplementary Data 1). Out of this set, 2213 (75%) could be
detected in >50% of the samples when judging their normalised pro-
tein expression levels (NPX) above the limit of detection (LOD) (Sup-
plementary Fig. 1, Supplementary Data 1). The ranges per protein

variedbetween0.17NPXand9.27NPX (Supplementary Fig. 2). For data
analyses, proteins >25%detectability were included. The proportion of
proteins above LOD was lower for the most recent addition to the
panels (Explore II). However, it is worth noting that the set of proteins
in Explore II are, on average, less abundant than those of the Explore I
panel, as shown in a comparison of average levels across proteins
overlapping with a mass spectrometry peptide-based analysis gener-
ated by the Human Protein Atlas effort (Supplementary Data 2,
Supplementary Fig. 3)23.

2,929 unique proteins measured using Olink Explore in 
n=598 samples from women in the KARMA study

Iden�fica�on of 812 cis-pQTL for 737 proteins 

Wald-ra�o or Inverse-variance weighted Mendelian 
randomiza�on (MR) analysis of 730 protein exposures 

with breast cancer (BC) as outcome, using BCAC

Replica�on of 5 proteins reaching sta�s�cal 
significance in BCAC using BC case-control gene�c 

data from FinnGen R9 and the UK-biobank

Correla�on analysis between proteins and 7 clinical 
characteris�cs collected at �me of blood draw

MR analysis for significant 5 proteins using a) ER- and 
ER+ BC as outcome data and b) BC risk factors

Assessment of colocalisa�on using mirror plots of 
exposure and outcome traits

Fig. 1 | Flowchart of studydesign, data analyses andmain results.A total of 2929
unique proteins (2949 assays) were measured using the Olink PEA Explore assay in
plasma samples taken from 598 women. Protein levels were correlated with base-
line clinical characteristics using linear regression. Genetic association analysis of
protein levelswas performedwhich led to the identification of 812 cis-pQTL for 737
proteins, which were used in Mendelian randomisation analysis of breast cancer in
the Breast Cancer Association Consortium (BCAC) case-control meta-analysis of
breast cancer risk, followed by replication in independent studies of breast cancer
risk. To follow up on significant proteins, the genetic signals for protein levels and
breast cancer risk were visualised and evaluated using Mirror plots and were also
tested for causal relationships with established and emerging breast cancer risk
factors, also using Mendelian randomisation.

Table 1 | Baseline characteristics of women in KARMA who
remained free of breast cancer and nested cases who
developed breast cancer within 2 years of sampling

Variable Controls (BC
negative)

Cases (inci-
dent BC)

Number of individuals 299 299

Age at baseline (S.D) [years] 58.83 (9.26) 58.11 (9.49)

Body mass index at interview
(S.D) [kg/m2]

25.20 (4.16) 25.73 (4.14)

Hormone replacement therapy
ever [%]

35.66 37.76

Current smoker at interview [%] 11.23 16.32

Family history of BC [%] 11.27 20.92

Number of births (S.D) [%] 2.2 (1.0) 1.9 (1.0)

Alcohol (S.D) [gram/week] 46 (59) 49 (54)
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Association between plasma protein levels and incident
breast cancer
To evaluate the association of proteins with breast cancer risk, a
regression model adjusting for age at blood draw, body mass index
and sample storage time was fitted for each of the Olink proteins
surpassing QC. A 5% false-discovery rate was used to determine sta-
tistical significance. None of the proteins surpassed the threshold for
statistical significance and therefore, the protein levels from incident
cases and controls were analysed jointly (Supplementary Fig. 4).

Association between plasma protein levels and clinical
characteristics
To examine observational relationships between protein levels and
clinical characteristics of the KARMA women, we regressed each
measured protein against seven factors (age, alcohol consumption,
number of births, body mass index (BMI), hormone replacement
therapy (HRT), peri- and post-menopause and current smoking). All
associations are shown in Supplementary Data 3. A total of 684 pro-
teins were associated with BMI and 459 proteins were associated with
age (Fig. 2). Several of the observed associations have previously been
described such as higher plasma levels of leptin and fatty-acid binding
protein 4 (FABP4) with increasing BMI24, higher Follicle stimulating
hormone (FSHB) in post-menopausal women and higher placental
alkaline phosphatase (PLAP) levels in smokers25. Some less described
correlations included lower plasma levels of glycodelin (PAEP) and
chordin like 2 (CHRDL2) and higher levels of glycoprotein hormone
alpha polypeptide (CGA) in post- and peri-menopausal women, and
lower levels of osteomodulin (OMD) in women using (HRT).

The replication of known trait-to-protein associations suggests
that the data quality was satisfactory and that additional trait-to-

protein associations are enabled by the expansion of the number of
detectable proteins.

Identification of cis-pQTL
To identify genetic instruments for the downstream causality testing
using MR, gene variants within a range of 1 Mbp up and downstream
of genes encoding each of the 2929 unique proteins were tested for
association with levels of the corresponding protein. Significant
associations (Bonferroni corrected for the number of independent
variants tested atp < 2.77 × 10−4, Supplementary Fig. 5) wereobserved
for a total of 812 independent variants (R2 < 0.1) across 737 proteins,
henceforth referred to as cis-pQTL (Supplementary Data 4). Most of
the pQTL were observed for proteins on Olink Explore I panel
(n = 523) but several pQTL were also observed for Explore II proteins
(n = 289). Some of the cis-pQTL showed effect sizes well above 1
standard deviation, including the nucleotidase NT5C (missense,
Pro68Leu, MAF 3%), acylphosphatase (ACYP1) (~7 kbp upstream of
gene, MAF 1.5%) and carboxypeptidase Q (CPQ) (intron, MAF 1.7%).
We conclude that pQTL are readily detected for proteins on both
Explore I and II panels, providing potential MR instruments for 737
proteins.

Replication analysis
To investigate the validity of the cis-pQTL identified in KARMA, effect
sizes were comparedwith cis-pQTL previously reported for a subset of
90 proteins measured using Olink PEA in the SCALLOP CVD-I study7.
Measurements for all 90 proteins were available in the KARMA study.
Of those 90, cis-pQTL for 33 of the proteins reported by the SCALLOP
CVD-I study were associated in KARMA at p <0.05. The beta estimates
were strongly consistent across all overlapping proteins. The Pearson
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Fig. 2 | Volcano plots showing estimated effect sizes (x-axis) and the corre-
sponding non-adjusted –log10(p-value) (y-axis) for each of the 2476 proteins
analysed in relation to KARMA baseline characteristics. The plots show esti-
mated effect sizes (x-axis) and the corresponding non-adjusted 2-sided −log10(p-
value) (y-axis) with the dashed line marking p = 1 × 10−5 for visual support. Effect
sizes are given by a linear regression model per protein, including all 7 baseline
characteristics. Each panel shows one of the investigated baseline characteristics,

corresponding to one term in the regression model. The names of up to ten sig-
nificant proteins per clinical parameter are indicated in each panel according to
FDR <0.05 corrected statistical significance (unadjusted p <0.0037). The number
of proteins reaching FDR-adjusted significance were for age: 459, Alcohol con-
sumption: 172, Birth times: 7, BMI: 684, HRT: 93, Menopause pre vs. peri: 18,
Menopause pre vs post: 127, Current smoking: 213.
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correlation coefficient between effect sizes for the 33 overlapping
variants was 0.91 (Supplementary Fig. 6).

To also investigate the generalisability of the identified cis-pQTL,
the variants, or those in high linkage disequilibrium (LD) (>0.8), were
looked up inpreviously published studies reporting cis-pQTLbased on
the Somascan proteomics platform26,27. The overlap of Olink proteins
available after quality control in the KARMA study and proteins mea-
sured in previously published work based on the Somascan platform
was 569 proteins (Supplementary Data 4). Of the 603 significant cis-
pQTL observed in KARMA for the subset of overlapping proteins, we
observed evidence of replication for 374 proteins at Bonferroni-
corrected p < 6.1 × 10−5 whereas a total of 229 cis-pQTL did not show
evidence of replication at the aforementioned p-value threshold.

Mendelian randomisation analysis
We performed two-sample inverse-variance weighted or Wald-scores
MR analysis using protein exposures from the KARMA cis-pQTL to
investigate potential causal effects on breast cancer risk using out-
come data from BCAC and from the FinnGen R8-UK-biobank meta-
analysis5. We did not identify genetic proxies for seven of the proteins
with cis-pQTL in KARMA, resulting in the testing of 730 protein
exposures. Of those, seven proteins surpassed the statistical threshold
for significance (p < 7.5 × 10−5) in the discovery study (Fig. 3) of which
five replicated in the independent breast cancer case/control study
from FinnGen20 and UK Biobank21 with consistent effect sizes and
directions (Table 2). The replicated proteins, shown here by the names
of their encoding genes, were CD160, DNPH1, LAYN, LRRC37A2, and
TLR1. The full summary of MR results is provided in Supplemen-
tary Data 5.

We further investigated whether the five proteins with replicated
MR evidence for all breast cancers were equally associated with
estrogen receptor (ER)-positive compared to ER-negative breast can-
cer (Table 3).However, the effect sizeswere similar across ER+ and ER−

breast cancer risk, suggesting thesefiveproteins are associated equally
with ER+ and ER− breast cancer risk.

It was also hypothesised that proteins with MR evidence for an
aetiologically important role in breast cancer might influence breast
cancer risk via a breast cancer risk factor. To test this, further MR
analysis was performed using GWAS of potential breast cancer risk
factors as outcomes, including age at menarche, age at menopause,
waist-hip ratio,mammographic density, sex hormone binding globulin
and insulin growth factor 1 levels (IGF-1)28. LRRC37A2 showed MR
evidence for later age atmenarche and earlier age atmenopause in two
independent outcome datasets, and also for higher IGF-1 levels (Sup-
plementary Data 2). CD160 showed nominal MR evidence for an
aetiological role lower age at menarche.

To summarise, the MR analysis showed that genetic elevation of
CD160, DNPH1, LAYN, LRRC37A2 and TLR1 associated with breast
cancer risk, and with similar effects on ER+ and ER− cancers.

Colocalisation analysis
All imputed variants in proximity to the cis-pQTL for proteins with
significant MR evidence were visually inspected with the correspond-
ing genomic region for breast cancer risk using mirror plots. The cis-
regions around DNPH1 and LRRC37A2 showed the strongest con-
cordance between lead variants for protein levels and breast cancer
risk (Supplementary Figs. 8 and 10). Lead pQTL in cis-regions for
CD160, LAYN and TLR1 were not the variants with the lowest p-values
for breast cancer risk but were localised in the same, size-limited,
genomic region. We considered the cis-pQTL to be colocalised with
breast cancer risk (Supplementary Figs. 7, 9 and 11).

Systematic search for drugs targeting CD160, DNPH1, LAYN,
LRRC37A2 and TLR1
To investigate if any of the five proteins identified in the present
investigation had been previously explored as drug targets, we
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Fig. 3 | Volcano plot of effect sizes (X-axis) and −log10p (Y-axis) for the 730
proteins tested for breast cancer risk in theMendelian randomisation analysis.
Mendelian randomisation analysis on breast cancer risk in the BCAC study was
performed by modelling exposure to genetically higher plasma levels of 730

proteins with at least one cis-pQTL. The Y-axis shows the −log10 p-value of the
Wald-scoreor IVWand theX-axis shows thebeta-estimatesof theMR result for each
protein that was tested.
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performed a systematic search across several databases, includingNIH
Pharos Consortium, IUPHAR/BPS Guide to Pharmacology, DrugBank
and ClinicalTrials.gov. With the exception of LAYN, targeted by Hya-
luronic acid, none of the proteins were registered as known drug
targets29.

Discussion
Wemeasured 2929 circulating proteins in plasma from 598 women to
identify 812 independent cis-pQTL which were applied in MR to
investigate associations between genetically predicted protein levels
and breast cancer risk.We found that genetically lower levels of CD160
and LRRC37A2 and genetically higher levels of DNPH1, LAYN and TLR1
were associated with increased risk of breast cancer. In addition,
genetically higher levels of LRRC37A2 are associated with age at
menarche, which adds to previous knowledge of its modest MR evi-
dence for breast cancer risk28. MR using cis-pQTL instruments models
life-long genetic exposure to higher or lower protein levels, which
implies an aetiologically important role of associated proteins in dis-
ease. However, similar to someother breast cancer risk factors, plasma
levels of the circulating proteins implicated by the MR analysis did not
associate with the 2-year risk of breast cancer at the observational
level. We cannot exclude that future studies that are larger or that
include longitudinal pre-diagnostic samples may uncover such
associations.

Among the five proteins identified in our study, DNPH1, also
described as Rcl, encodes the enzyme 2’-deoxynucleoside 5’-phos-
phateN-hydrolase,whichplays a role innucleotidemetabolismand is a
target of ETV1 -a transcription factor expressed in breast tumours30.
Two independent CRISPR screens for modulators of BRCA-associated
breast tumour sensitivity to PARP inhibitors, an established treatment
in BRCA-deficient breast cancer, have shown that genomic inhibition
DNPH1 sensitises BRCA-deficient cells to treatment with PARP
inhibitors31,32. The lead pQTL identified in KARMA, rs75591122, is
located ~18.2 kbp upstream from the DNPH1 gene on chromosome 6
and is one of several variants proximal to the DNPH1 gene associated
with DNPH1 gene expression levels across multiple tissues33. Geneti-
cally increased circulating protein levels of DNPH1 were in our study
associated with increased breast cancer risk, which is concordant with
experimental studies suggesting that DNPH1 inhibition in breast can-
cer may be a promising avenue for drug development.

Another of the five proteins was CD160, a receptor expressed in
immune cells that has beendescribed to play important roles inNK cell
biology, predominantly functioning as an activatingNK-cell receptor34.
CD160 is predominantly expressed by healthy NK cells and is one of
the driver genes for a specific NK subset related to higher cytokine
production35. Reduction in CD160 expression led to impaired NK cells
and poor outcomes in Hepatocellular carcinoma patients36. Since
dysfunctional NK cells also correlate with breast cancer progression37,
it can be hypothesised that CD160 could have a similar protective role
in breast cancer. Indeed, in our study, genetically elevated circulating
protein levels ofCD160 are associatedwith a protective effect in breast
cancer, suggesting that a drug activatingCD160 specifically onNKcells
may enhance anti-tumour immune responses in breast cancer.

Our search for drug targets highlighted the connection between
LAYN and Hyaluronic Acid. LAYN encodes Layilin, which is a talin-
binding transmembrane and integral membrane protein functioning
as a receptor for Hyaluronic acid (HA), with a role in cell adhesion and
motility38,39. HA is an extracellular matrix component that impacts the
tumour microenvironment where elevated HA levels have been
reported in multiple cancer types, including breast cancer40. Interest-
ingly, targeted depletion of HA controlled the breast cancer tumour
growth in xenotransplant mouse models of immunocompetent mice
but not of immunodeficient mice, which indicates a potential tumour-
immunity role for its receptors, i.e., Layilin41. Accordingly, high LAYN
expression belongs to transcriptomic signatures specific for reg-
ulatory T cells (Tregs) and exhausted CD8+ T cells for several cancer
types including breast cancer42,43. In our study, the genetic elevation of
LAYN protein levels is associated with increased breast cancer risk,
suggesting a LAYN inhibitor would be desired for the treatment of
breast cancer. However, mechanistic studies will be required to

Table 3 | Mendelian randomisation analysis for estrogen-receptor-positive and negative breast cancer risk

ER+ breast cancer ER− breast cancer

Exposures BCAC FinnGen BCAC FinnGen

Protein beta pval beta pval beta pval beta pval

CD160 −0.08 5.10E-04 −0.14 6.90E-03 −0.06 9.30E-02 −0.07 2.80E-01

DNPH1 0.08 6.20E-06 0.07 8.80E-02 0.09 6.00E-04 0.05 3.40E-01

LAYN 0.12 5.50E-04 0.13 1.20E-01 0.12 2.60E-02 0.17 1.00E-01

LRRC37A2 −0.04 1.80E-06 −0.06 3.50E-02 −0.04 7.90E-03 −0.01 8.30E-01

TLR1 0.07 1.60E-04 0.11 4.10E-02 0.09 2.30E-03 0.11 9.40E-02

Exposures indicate theprotein thatwas tested. The nsnp indicates the number of instrumental variables (variant associatedwith protein level) used in theMendelian randomisation analysis. Thebeta
value is the Mendelian randomisation causal estimate. The causal estimates shown are Wald ratios, which were calculated for each instrumental variable as the beta-value for breast cancer risk
divided by the beta-value for the protein level. To estimate two-sided p-values, theWald ratio standard error was first calculated as the standard error for breast cancer risk divided by the beta-value
for the protein level whereupon the z-score was calculated, and the p-value computed from standardised normal distribution at each tail. BCAC stands for data from the Breast Cancer Association
Consortium2.

Table 2 | Results of the Mendelian randomisation analysis for
breast cancer risk

Exposures BCAC, all breast cancer FinnGen and UK-Biobank

Protein nsnp beta pval nsnp beta pval

CD160 1 −0.09 1.70E-06 1 −0.07 1.50E-02

DNPH1 1 0.08 3.80E-07 1 0.05 3.50E-02

LAYN 1 0.13 1.40E-05 1 0.12 8.40E-03

LRRC37A2 1 −0.05 5.70E-10 1 −0.05 6.80E-05

MST1 1 0.03 7.20E-05 1 0.02 6.60E-02

TLR1 1 0.07 6.40E-06 1 0.11 7.40E-05

TXK 1 0.07 3.10E-06 1 0.03 3.40E-01

Exposures indicate the protein that was tested. The nsnp indicates the number of instrumental
variables (variant associated with protein level) used in the Mendelian randomisation analysis.
The beta value is theMendelian randomisation causal estimate. The causal estimates shown are
Wald ratios, which were calculated for each instrumental variable as the beta-value for breast
cancer risk divided by the beta-value for the protein level. To estimate two-sided p-values, the
Wald ratio standard error was first calculated as the standard error for breast cancer risk divided
by the beta-value for the protein level whereupon the z-score was calculated, and the p-value
computed from standardised normal distribution at each tail. BCAC stands for data from Breast
Cancer Association Consortium2.

Article https://doi.org/10.1038/s41467-023-43485-8

Nature Communications |         (2023) 14:7680 5



confirm the direction of effect proposed by the MR evidence and to
validate LAYN as a drug target in breast cancer.

Several other studies have investigated the genetic elevation of
circulating proteins to identify potential aetiological or causal factors
for breast cancer risk. Murphy et al. reported that genetically elevated
circulating insulin growth factor levels (IGF-1) were associated with a
weak but significantly increased risk of breast cancer, whereas IGF-
binding protein-3 was unassociated44. Zhu et al. demonstrated an
absenceof associationwithbreast cancer for genetically elevated levels
of C-reactive protein45 and Shu et al. reported a wider MR analysis,
instrumenting 1469 proteins using Somascan-based pQTL in the
INTERVAL cohort, of which genetic instruments for 26 proteins were
found to be associated45,46. Bouras et al. instrumented 47 inflammatory
cytokines and reported that genetically increased levels of CXCL1 and
decreased levels of MIF associated with breast cancer47. Of the 28
proteins previously reported in breast cancer MR studies, our study
included post-QC data on 22 proteins and a cis-pQTL was identified in
our study for five of them (RELT, ENG, TFPI, ISLR2, SCG3). We repli-
cated cis-pQTL reported for RELT, ENG and SCG3 in ref. 26, which were
based on the Somascan protein assay, but were unable to replicate
pQTL reported for TFPI, ISLR2 (SupplementaryData4). Noneof thefive
proteins surpassed statistical significance for breast cancer risk in our
MR study, although SCG3 and TFPI showed nominal significance at the
discovery stage (Supplementary Data 5). The lack of replication for
RELT andENGmaybe explainedbydifferences in instrumental variable
selection and statistical thresholds used.

Our study has both strengths and limitations. Oneof the strengths
is the large number of proteins tested for cis-pQTL and that the cis-
pQTLused to instrument genetic elevation usingMRwere identified in
women only, which should provide better estimates in MR for female
breast cancer. Another strength is that the protein exposures meeting
statistical significance in our discovery MR, using data from the BCAC
consortium as outcome, were replicated in the independent case-
control analysis that combined breast cancer cases and controls in
FinnGen and the UK-Biobank.

However, our study had a limited sample size for discovering cis-
pQTL with smaller effect sizes. Therefore, we cannot exclude that
additional proteins on the Olink Explore II panels harbour significant
cis-pQTL but remained undetected in the KARMA sample. In addition,
several of the cis-pQTLwith very large effect sizes such as ENTPD6 and
NT5C, have a minor allele frequency of less than 3% and their effect
sizes may well be inflated because of the so-called “winner’s curse. To
decrease the false-negative error rate we only included variants in cis
to decrease the multiple-test burden and corrected the p-value
threshold for significance for the number of independent variants in
each cis-region. Effect sizes observed in KARMA were highly con-
cordant with an overlapping set of 33 cis-pQTL for proteins measured
with Olink PEA that were previously reported in a study several times
larger than the present study. To evaluate the robustness of cis-pQTL
identified in KARMA, we sought replication for an overlapping set of
569 proteins measured with Somascan. Of those, 2/3 (374/569) were
replicated, which is on par with the expected replication rate given
differences in protein analysis methods16.

In conclusion, by applying an MR approach to a broad range of
circulating proteins we found that genetically elevated CD160, DNPH1,
LAYN, LRRC37A2 and TLR1 were associated with breast cancer. This
suggests that these five proteins play an aetiological or causal role in
breast cancer, providing a basis for further functional evaluation of
their potential as drug targets.

Methods
KARMA study collection
The KARMA cohort consists of 70,877 women performing a screening
or clinical mammogram at four hospitals in Sweden during the period
October 2010–March 2013. Women consented to both risk and

prognosis of breast cancer including collection and storage of ques-
tionnaire data, mammograms, matched health care register data, and
biological samples. The study was approved by the Stockholm Ethical
Review Board, https://etikprovningsmyndigheten.se/en/22. From
KARMAwe identified 299 women diagnosed with breast cancer, which
occurred within 2 years of blood draw, and who were residents in
Southern Sweden. We used the matchit function from the MatchIt
library implemented inR tomatch 299 controls from theKARMAstudy
to the incident cases by randomly drawing women without incident
breast cancer so that the median age at blood draw in cases and con-
trols were similar (medianmatching). Blood samples were collected at
baseline. All blood samples were handled in accordance with a strict
30-h cold-chain protocol, which required that all blood samples were
transported on ice andwere processed and aliquotedwithin 30 h from
the draw. The sample collection included 16 plasma aliquots, one ali-
quot of extracted DNA and two aliquots of whole blood for backup. In
total, EDTA blood samples from69,440 (98%of the total cohort) study
participants were collected.

Plasma protein measurements on Olink Explore
Plasma proteomics was performed in samples from the 299 BC cases
and 299 BC free controls from KARMA, using the Olink Explore I and II
panels (Olink Proteomics AB, Uppsala, Sweden) according to the
manufacturer’s protocol. Explore combines the Proximity Extension
Assay (PEA) technology with Next-generation sequencing (NGS).

In brief, the PEA technology uses matching pairs of
oligonucleotide-labelled antibody probes. The PEA probes bind to
target antigens producing a binding complex where the complimen-
tary oligonucleotides exist in close proximity to each other, enabling
the formation of a target sequence. The dual targeting of probes has
beenproven to produceoutstanding specificity enabling a highdegree
of multiplexing while maintaining sensitivity and a broad dynamic
range. In theOlink Exploreprotocol, the target sequence is amplified in
a double PCR reaction and purified before the NGS. The sequence data
is processed and normalised to produce Olinks relative quantification
unit Normalised Protein eXpression (NPX). The produced DNA signal
functionally works as a proxy for the protein levels present in the
sample. Further details on the Olink Explore protocol and internal
quality control are available in the Supplementary Methods 1
document.

Olink analysis quality control
The Olink QC-system includes negative controls, used to monitor the
background noise and to set the limit of detection (LOD). Supple-
mentary Fig. 1 and Supplementary Data 1 show the percentage of
samples with NPX above LOD.

A principal component analysis of all data was performed to
detect outliers and to inform potential sample exclusions. Of the
598 samples that were included in the analysis, one sample was
excluded entirely, two samples were excluded from the analysis of
ExploreONC-II and two sampleswereexcluded from theanalysis of the
Explore INF-II panel data (Supplementary Methods 1).

Association with clinical characteristics
For each of the 2949 measured protein levels, the following linear
regressionmodel was fitted: NPX ~ age + bmi +menopause_preVSperi
+ menopause_preVSpost + birth_times + hrt_status + alcohol_-
gram_week + smoking_status where menopause_preVSperi contrasts
pre- versus peri-menopausal patients, menopause_pre VS post con-
trasts pre- versus post-menopausal patients, hrt_status contrasts
current users of hormone replacement therapy versus patients who
have never used it or who have used it in the past, and smoking status
contrasts current smokers versus those who have never smoked or
smoked in the past. All p-values were FDR corrected for the 2949 × 7
performed tests.
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Protein QTL mapping
Genome-wide genotyping in the KARMA study was performed using
the Illumina iSelect or Oncoarray arrays, followed by imputation using
theWellcomeTrust Sanger Institute imputation service using the 1000
genomes phase 3 as reference. Standard quality control was applied as
previously described. Variants with a minor allele frequency <0.01
were filtered out prior to analysis. The final dataset included 9087
million variants.

Proteins >75% of NPX values below LOD were filtered out
before the pQTL analysis, yielding a total of 2476 proteins in the
analysis. Values below LOD were included. The pQTL discovery
analysis was performed using an additive model with adjustments
for age, BMI and 10 genetic PCs in PLINK 2.0. To preserve statistical
power for pQTL identification, only variants within a 1 mega-base
pair window of the protein-coding gene were tested for association
with respective circulating protein levels. To manage multiple test
correction, while limiting false negatives, the total number of var-
iants per cis-region were calculated as well as the number of
independent variants (R2 < 0.1). The average number of variants per
cis-region was 6249 (Supplementary Fig. 6) and 180 independent
variants (min,max 12-511). Statistical significance was therefore
defined as an alpha of 0.05 divided by 180 to account for the
average number of independent variants tested per cis-region
(p = 2.77E-04). A false-discovery rate (FDR) at 5% provided a similar
estimate (p < 5.54E-04).

Mendelian randomisation analysis
WeperformedTwo-sampleMRusing theRpackageTwoSampleMR48,49

(https://mrcieu.github.io/TwoSampleMR/) to test for proteins with a
potential causal role in breast cancer. Independent cis-pQTL
(r2 < 0.001) were used as instrumental variables (IV), and GWAS of
breast cancer risk from the BCAC consortium were used as outcome,
which included data from 122,977 breast cancer cases and 105,974
controls. In the case of a single independent IVWaldRatio was applied,
otherwise, inverse‐variance weighted estimates were reported. The
threshold for statistical significance was defined as (7.5 × 10−5) to
account formultiple testing. The replication analysis was performed in
a meta-analysis of FinnGen R9 and the UK-biobank, which included
25,807 cases and 355,307 controls. Only the seven proteins that met
statistical significance in the BCAC discovery analysis were included in
the replication analysis, and hence a nominal p-value of 0.05 was
considered statistically significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The cis-pQTL GWAS summary-level data generated in this study have
been deposited in the Zenodo data repository under accession code
https://doi.org/10.5281/zenodo.8387905,with theURLhttps://zenodo.
org/record/8387905. The individual-level phenotypes, genotypes, and
biospecimen from the KARMA study are available under restricted
access, as personal data are protected by the European Union General
Data Protection Regulation legislation and the Swedish Ethical Review
Authority, but can be requested according to the process described at
URL https://karmastudy.org/contact/data-access/. For previously
published GWAS studies on breast cancer risk and risk factors, the
summary-level data are available at https://bcac.ccge.medschl.cam.ac.
uk/bcacdata/ or at the MRC IEU OpenGWAS database [https://gwas.
mrcieu.ac.uk/]. Access to FinnGen data is available at https://www.
finngen.fi/en/access_results whereas access to UK-biobank data can be
accessed at https://www.ukbiobank.ac.uk/.

Code availability
We used publicly available software for most of the analyses in the
manuscript (as described in the “Methods” section). Access to other
scripts and pipelines is provided through GitHub. Protein QTL map-
ping was performed in PLINK2.0 (https://www.cog-genomics.org/
plink/2.0/). Statistical analyses and figures, listed below, were con-
ducted in R version 4.1.0. Mendelian randomisation analyses were
conducted using the R package TwoSampleMR version 0.5.6 (https://
mrcieu.github.io/TwoSampleMR/), regional plots were constructed
using R package RACER version 1.0.0 (https://github.com/oliviasabik/
RACER). Figures were constructed using standard R or ggplot2 version
3.4.0 (https://ggplot2.tidyverse.org/index.html). The scripts and
pipelines for quality control, association analyses and Mendelian ran-
domisation are available at https://github.com/Schwenk-Lab/KARMA_
pQTL_MR and https://github.com/Olink-Proteomics/publications/
tree/main/KARMA_MR_NC.
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