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Three-dimensional surface motion
capture of multiple freely moving
pigs using MAMMAL

Liang An 1, Jilong Ren2,3, Tao Yu1,4, Tang Hai 2,3 , Yichang Jia 5,6,7 &
Yebin Liu 1,8

Understandings of the three-dimensional social behaviors of freely moving
large-size mammals are valuable for both agriculture and life science, yet
challenging due to occlusions in close interactions. Although existing animal
pose estimation methods captured keypoint trajectories, they ignored
deformable surfaces which contained geometric information essential for
social interaction prediction and for dealing with the occlusions. In this study,
we develop a Multi-Animal Mesh Model Alignment (MAMMAL) system based
on an articulated surfacemeshmodel. Our self-designedMAMMAL algorithms
automatically enable us to alignmulti-view images into ourmeshmodel and to
capture 3D surface motions of multiple animals, which display better perfor-
manceupon severe occlusions compared to traditional triangulation and allow
complex social analysis. By utilizing MAMMAL, we are able to quantitatively
analyze the locomotion, postures, animal-scene interactions, social interac-
tions, as well as detailed tail motions of pigs. Furthermore, experiments on
mouse and Beagle dogs demonstrate the generalizability of MAMMAL across
different environments and mammal species.

Pigs, like other animals, express their general well-being through
their various behaviors, such as locomotion, body postures, inter-
actions with environments, and communications with peers1. For
example, tail motions reflect their emotional states2,3, and limb
dynamics give us clues about their health conditions4–6. Quantita-
tively monitoring pigs’ behaviors is important for both the welfare
of pigs and agriculture, because health condition is indispensable
for pork production5. Moreover, as an animal model, pigs have been
proven to be important for life science research6–11. For some neu-
rological disease modeling cases, pigs demonstrate better perfor-
mance than previously widely-used rodent models6, because of
their closer genetics, brain anatomy, and physiology to humans.
Therefore, behavioral recording is crucial for the understanding of

neurobiological processes12. For example, modeling movement-
related brain disorders (e.g., Huntingtin Disease6,7, Amyotrophic
Lateral Sclerosis13,14, Parkinson Disease10, etc.) requires quantifica-
tion of locomotion and 3D postural dynamics of pigs, while mod-
eling cognition-related brain disorders (e.g., Alzheimer’s Disease15,
Autism16,17, depression17, etc.) requires quantification of animal-
scene interactions or animal-animal social behaviors. Although
studies on pig behavior recognition have been achieved on mono-
cular videos2–5,18–30, a system for accurate three-dimensional (3D)
markerless pig motion reconstruction and quantitative analysis is
currently lacking.

Three-dimensional deformable surfaces provide essential geo-
metric information for individuals to visually sense each other and
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further interact with each other in a social interaction context. How-
ever, the 3D surface information has not been captured by most
existing laboratory animal motion capture methodologies, including
SLEAP31,32 and DeepLabCut33,34, which estimate animal motions by
sparse two-dimensional (2D) keypoints. These approaches gain accu-
rate and efficient localization of visible keypoints but often confuse
individual animals due to the severemotion feature invisibility caused
by mutual occlusions. Currently, multi-view cameras have been
applied to integrate 2D keypoints into 3D representation of a single
animal through triangulation35–39, which minimizes the 2D keypoint
projection error. However, the 2D to 3D conversion is not trivial
especially for multiple animals because of two obstacles: 1) how can
multi-view unordered 2D cues be spatially and temporally associated?
2) how can 3D postures be robustly reconstructed from occluded 2D
poses? The first obstacle has not been addressed by currently available
animal motion capture methodologies. In addition, the second
obstacle is not easy to overcome by direct triangulation because a
keypoint is often invisible in closely interacting conditions. Recently,
regression-based methods such as DANNCE40 and BEV41 were
employed to handle self-occlusions to some degree40,42; however, they
required large-scale 3D datasets for machine training, which is both
time- and money-consuming. Therefore, a toolbox that can econom-
ically track multiple animal 3D geometric information is urgently
required.

In this paper, we developed a Multi-Animal Mesh Model Align-
ment system, referred to as MAMMAL, to reconstruct the 3D surface
motion of freely moving pigs in their natural living environments.
MAMMAL includes three sequential stages: Detection, Detection
Matching, and Mesh Fitting. Built upon an articulated mesh model of
pig (the PIGmodel), MAMMAL overcame the above two obstacles with
self-designed cross-view matching and mesh fitting algorithms. Con-
sequently, MAMMAL endowed us with the ability to perform analysis
on various previously concerned pig behaviors1–5,18–27,30 in 3D space,
including locomotion, postures, animal-scene interactions, and social
behaviors. Besides, MAMMAL works well in different experimental
settings, for example, in different numbers and sizes of pigs.Moreover,
thorough evaluations affirmed the higher accuracy of MAMMAL over
previous methods for animal 3D social pose estimation. For example,
we quantitatively analyzed tail motions for pigs in different social
hierarchies, which have been associated with their emotions3. We also
showed that MAMMAL tracked mouse extremities with a competitive
accuracy compared to DANNCE, and could be generalized to other
large-size mammal species like Beagle dogs.

Results
Surface motion capture of multiple pigs using MAMMAL
Our MAMMAL system enables us to capture the motions of multiple
pigs in their natural living environments (Fig. 1a, Supplementary Fig. 1).
To achieve this goal, we established an articulated surface mesh
model, called the PIG model, which contains 11239 vertices that are
driven by 62 joints (Fig. 1b). These 62 joints can animatemajority of pig
motions we videotaped, including motions of body, tail, jaw, ears, and
toes (Supplementary Fig. 2a, b, Supplementary Movie 1). They repre-
sent the ultimate motion freedom of the PIG model. Each joint is
controlled by a 3 DOF (degrees of freedom) rotation vector, the
changes of which would affect the geometric position of both joints
and vertices of the PIG model. Among these joints, 24 crucial joints
were used for trunk/legmotion control by ignoringmotions on the tail,
ears, or toes to efficiently assess pig locomotion and truck social
contactwithout lossof accuracy (Fig. 1b, Supplementary Fig. 2c). Inour
PIGmodel, we include 19 easily-accessible keypoints, whichare located
on the nose, eyes, ears, tail root, center of mass, and legs, similar to
that described in other 2D toolboxes43,44 (Supplementary Fig. 3). To
correspond our 2D observations to the PIG model, we defined 3D
positions of these 19 keypoints in the PIG model (i.e., 3D keypoints).

These 3D keypoints were mapped from the joints or vertices of the
meshmodel, each of which could be the position of a joint or a vertex,
or the interpolation of several joints/vertices. By aligning the 2D key-
points detected by our multiple cameras to the PIG model, MAMMAL
directly optimizes the rotations of the joints together with pig scales
and 6 DOF (the freedom of movement of a rigid body in 3D space) to
place an individual in 3D space with arbitrary poses (Fig. 1c).

As the first stage of Detection, MAMMAL leveraged two deep
neural networks PointRend45 and HRNet46 to produce the 2D cues.
Different from DeepLabCut or SLEAP, MAMMAL first generated the
bounding box and silhouette of each pig instance, then normalized
each pig image region to a fixed 384 × 384 resolution before detecting
visible keypoints (Supplementary Fig. 4a). The resolution normal-
ization ensured equally good performance on different view angles,
including side views from which the pigs occupied extremely larger
areas than that from corner views. To train the deep neural networks,
we manually annotated a BamaPig2D dataset, which contained 3340
images and 11504 pig instances with thoroughly-labeled bounding
boxes, silhouettes, and keypoints of each individual (Supplementary
Fig. 4b, c). After MAMMAL Detection, the unordered multi-view 2D
cues were applied for surface alignment based on our PIG model
(Supplementary Movie 2). The second stage was Detection Matching,
which associated unordered temporal and spatial 2D cues with their
corresponding objects (Supplementary Fig. 5a). At the initial timepoint
(T =0), we designed an innovative cross-view graph matching algo-
rithm to effectively match spatially unordered 2D cues. At successive
timepoints (T > 0), the PIG model enabled the identification of both
visible and invisible keypoints to ensure the success of tracking. The
third stage was Mesh Fitting, in which the PIG model provided
important surface information to deal with severe occlusions (Sup-
plementary Fig. 5b). To this end, the matched 2D cues were aligned to
the PIG model to produce the 3D keypoints and surface geometric
information of each individual,which allows the surface information to
be simultaneously rendered into each view to determine the occlusion
relationship (Supplementary Fig. 5b). The occlusion relationship and
surface information guided the filtering of broken silhouettes and
wrong keypoints when animals were overlapped to ensure good fitting
quality (Supplementary Fig. 5c, d). Taking advantage of the surface
representation power of the PIG model, MAMMAL estimates multiple
animal mesh with invisible keypoints (Fig. 1d) and yields fine-grained
3D surface motion of multiple pigs in a social interaction context
(Fig. 1e, Supplementary Fig. 6).

MAMMAL enables various pig behavioral analyses
MAMMAL provides us the ability to analyze various pig behaviors. (i)
Animal-Scene interaction measurement. MAMMAL enables 3D scene-
aware behavior recognition, which automatically determines the
drinking, feeding, and other desired states of a pig by using 3Dmotion
capture results and scene priors (Fig. 2a–c, Supplementary Movie 3).
(ii) Posture discovery, an important topic in brain research32,33,38. To
address it, we curated 44 short motion clips from 4 individual pigs,
which included 20819 poses, and clustered them using t-SNE (Fig. 2d).
By manually checking the poses at the local density peaks, we identi-
fied 8 distinct postures (Fig. 2e, SupplementaryMovie 4). The postures
characterized by MAMMAL covered most of the previously identified
individual behaviors of pigs21. (iii) Social behavior recognition, which is
another attractive topic in the brain science field16,31,34. We focused on
rule-based social behavior analysis that has been well-established in
mice16. Due to the power of 3D surface distance computation enabled
by PIGmodel reconstruction,MAMMAL could not only recognize both
static and dynamic social behaviors (Fig. 2f, Supplementary Movie 5)
but also distinguish part-level social contacts such as “Head-Head”,
“Head-Body” or “Head-Limb” (Fig. 2g, Supplementary Fig. 7). All the
above analyses achieved by MAMMAL were benefited from not only
our PIG model but also our well-designed motion capture algorithms.
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MAMMAL accurately tracks both visible and invisible keypoints
To verify the reliability ofMAMMAL, a 3D evaluation dataset (so-called
BamaPig3D) was collected from a 70-second video, which was manu-
ally labeled with 280 ground-truth (GT) pig instances containing 5320
3D keypoints, 2437 2D keypoints, and 2437 2D silhouettes (Supple-
mentary Fig. 8). By evaluating on the BamaPig3D dataset, MAMMAL
tracked all 19 pig keypoints accuratelywith an average error lower than
5.2 cm (Fig. 3a). The average error of all keypoints was 3.44 cm, which
was lower than 5% pig body length. Specifically, MAMMAL not only
precisely estimated body parts with sharp features and infrequent
occlusions (such as eyes, ears, knees, elbows, mean error less than
3 cm) but also performed comparably well for terminal points with
ambiguous features or frequent occlusions (such as nose, tail root,

paws, and feet, mean error less than 5 cm) (Fig. 3a). In fact, the detailed
terminal point features are substantial for the understanding of
abundant social signals for all animals including humans47. Moreover,
MAMMAL performed equally well (mean error <7 cm, approximately
10% pig body length) in the estimation of invisible keypoints, which
were keypoints visible to no more than one view, as in that of visible
ones for most keypoints, except keypoints far from the body center
such as nose, paws, and feet (Fig. 3b). To quantify the surface esti-
mation accuracy, the pig meshes were rendered on each view and
compared with manually labeled silhouettes, using the average of
Intersection over Union (IoU).MAMMAL achieved an IoU of 0.77 using
only predicted 2D keypoints for mesh fitting, and the predicted sil-
houettes further facilitated MAMMAL to achieve a higher IoU of 0.80
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Fig. 1 | MAMMAL presents a method for 3D surfacemotion capture ofmultiple
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comparison with DeepLabCut/SLEAP (PMID: 35414125 [https://doi.org/10.1038/
s41592-022-01443-0], 35379947 [https://doi.org/10.1038/s41592-022-01426-1]) or
traditional triangulation-basedmethods like Anipose (PMID: 34592148 [https://doi.
org/10.1016/j.celrep.2021.109730]). With the same 10-view input, our mesh fitting
can predict the invisible 3D keypoints. e Qualitative results of MAMMAL for com-
plex social behavior reconstruction.
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(Fig. 3c). Although only middle-sized pigs were labeled for training,
MAMMAL was robust to different shapes of pigs and achieved similar
error rates for new pig identities with different body sizes (Fig. 3d).
Specifically, MAMMAL achieved an error rate of 2.3 ± 1.89 cm
(mean± SD) for one of the pigs in BamaPig2D dataset, 3.28 ± 2.15 cm
for a moderate-sized pig, 4.27 ± 3.43 cm for a very fat pig with a large
belly, and 3.78 ± 2.71 cm for a juvenile pigwith small body size (Fig. 3e).
The qualitative results further demonstrated the generalizability of
MAMMAL to capture pigs with different ages, sizes, numbers or

identities (Supplementary Movie 6), benefiting from the richness of
BamaPig2D dataset and the flexible MAMMAL system.

MAMMAL was more robust to camera numbers compared with
triangulation
To show the superiority of MAMMAL over previous methods, we first
comparedMAMMAL Detection with SLEAP31, which was trained on the
BamaPig2D dataset as well. Our MAMMAL Detection outperformed
both thebottom-up and top-downvariants of SLEAPespecially on side-
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Fig. 2 | MAMMAL enables quantitative analysis of rich pig behaviors.
aMAMMAL can automatically identify drinking behavior during a feeding process.
b, c Drinking (b) and eating (c) recognition byMAMMAL on two 40-second videos.
Right, the 20th second for the pose estimation. d The density map of t-SNE space
overlappedwith isolated posture blocks obtained from thewatershed transformof
the densitymap. e An illustration of 8 distinct poses. For each case: left, raw image;
middle, reconstructed mesh overlay; right, rendering of normalized pose by

removing global transformation. f MAMMAL automatically identifies several
defined social behaviors, and 2 dynamic behaviors and 2 static behaviors are shown
here. g Social behaviors from one pig to another on a video clip. Representative 3D
distance fields of three different social behaviors at three different timepoints are
shown in subfigures. The surface model and distance fields help MAMMAL to dis-
tinguish “Head-Body”, “Head-Head”, and “Head-Limb” behaviors.
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view images, demonstrating the effectiveness of resolution normal-
ization to ensure equally good performance for different views (Sup-
plementary Fig. 9). We then compared MAMMAL Mesh Fitting with
traditional triangulation (‘Tri’ for short)35–38 on the BamaPig3D dataset
using different numbers of input views. Not surprisingly, MAMMAL
stably reconstructed the 3D motions of pigs even with sparse view
settings (3 views), while Tri barely functioned in fast motion and with
occlusions (SupplementaryMovie 7). Quantitatively, we compared the
mean per-joint position error (MPJPE) and found that MAMMAL

achieved a much lower error than Tri with 10 views as input (Fig. 3f,
MAMMAL 3.44 ± 3.99 cm, Tri 14.17 ± 32.02 cm, mean± SD). Moreover,
MAMMAL maintained a low error rate with sparse view settings
(4.08 ± 4.45 cm for 5 views, 5.19 ± 6.10 cm for 3 views),while Tri yielded
significantly larger mean error and greater variance (24.19 ± 39.73 cm
for 5 views, 41.81 ± 43.23 cm for 3 views) due to incomplete or erro-
neous 3D pose estimation (Fig. 3g, Supplementary Movie 7). In addi-
tion, the number of keypoints accurately tracked by MAMMAL was
significantly greater than that by Tri within a specific error threshold
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(7 cm) (Fig. 3g). Surprisingly, MAMMAL based on only 3 views was able
to produce better performance than that of Tri based on 10 views,
showing its view efficiency for pose estimation (Fig. 3g, h). Different
from Tri, MAMMAL tracked the occluded points without missing or
highlynoisypredictions (Fig. 3i, j), demonstratingMAMMAL’s ability to
capture closer social interactions.

Using MAMMAL to quantify the tail motion for pigs in different
social hierarchies
To reconstruct the tail motions and quantify the motions in pigs in
different social hierarchies1,18,19, we recorded videos of dominant pigs
(n = 4, with bigger body size) and subordinate pigs (n = 4, with smaller
body size) during their feeding (Fig. 4a). Our quantitative analysis
revealed that the dominant pigs monopolized the trough (Fig. 4b, c).
We also found that the subordinate pigs usually touched the dominant
pigs more frequently, while the dominant pigs focused on feeding
instead of social interacting (Fig. 4d). To quantify tail movements, we
added two keypoints on the pig tail (TailMid and TailTip) for 2D pose
estimation and fit the tailmotionwith the full joint freedoms of the PIG
model (Fig. 4e). The average error rate of pig tail was 6.05 cm, and the
most flexible keypoint (TailTip) had the largest error rate due to the
most severe motion blur (Fig. 4f). According to previous ethological
study3, passive hanging is more frequently observed in pigs that are
exposed to an aversion situation,while looselywagging ismore related
to positive emotions. In agreement with the previous report, we
observed more loosely wagging but less passive hanging shown in the
dominant pigs than in the subordinate pigs (Fig. 4g–j). The frequency
of tail angle oscillations varies over time, which was similar to the limb
movements of mouse grooming; therefore, we adopted a previously-
reported parameter PSD (power spectral density)40 that was employed
to reflect limb movements of mouse grooming to measure the pig tail
angle oscillations (Fig. 4g, h). Within a 10-second time window
(Fig. 4h), the PSD value (10.24 V2 � Hz�1) of the loosely wagging
behavior peaked at 1.625Hz, which was much higher than that of the
passive hanging behavior (PSD=0.45 V 2 � Hz�1 peaked at 0.125Hz),
indicating the effectiveness of using PSD to classify tail behaviors
(Fig. 4i). By automatically determining loosely wagging behavior
whose PSD is higher than 1.5 V2 � Hz�1 across all the time windows, we
found that the dominant pigs’ tails oscillated significantly more than
that of the subordinate pigs, which usually kept stationary (Fig. 4j,
SupplementaryMovie 8). Therefore, the detailed behavior recognition
by MAMMAL is proven to be valid at least in the tail movements in
different social hierarchies.

MAMMAL is competitive with DANNCE-T for tracking single
mouse extremities
Previously, DANNCE40 achieved high accuracy for tracking 22 3D key-
points of single markerless mouse by pre-training on the million-scale
Rat7M dataset and subsequently finetuning on 172 manually labeled
frames. We compared MAMMAL with the temporal version of

DANNCE, named DANNCE-T48, on the ‘markerless_mouse_1’ sequence
presented by DANNCE which was captured using 6 cameras sur-
rounding an open field (Fig. 5a). We spent one daymodifying themesh
model of apreviously presented virtualmouse49 formeshfitting,which
consisted of 140 driven joints and 14522 vertices, and we further
defined 22 keypoints on it (Fig. 5b). For fair comparison, we trained
HRNet using the same 172-frame training data to DANNCE-T by pro-
jecting original 3D keypoint labels to 2D. Consequently, MAMMAL
successfully tracked the surface of the mouse and performed com-
petitively to DANNCE-T for limb tracking (Fig. 5c, Supplementary
Movie 9). For quantitative evaluation, we manually labeled 8 extre-
mities (four paws, nose, two ear tips, tail tip) on another evenly dis-
tributed 50 frames on the ‘markerless_mouse_1’ sequence (Fig. 5d).
When using total 6 views, MAMMAL achieved a lower error rate of
2.43 ± 1.69mm (mean± SD) than that of DANNCE-T (4.78 ± 7.15mm,
Fig. 5e). Except ‘tail’ point on which DANNCE-T had bad performance,
the average error rate of MAMMAL (2.20 ± 1.25mm) was still lower
than that of DANNCE-T (2.71 ± 3.59mm). Moreover, because DANNCE-
T was directly trained in 3D volume space, its performance was sen-
sitive to the camera setting (e.g., camera number) during inference. By
testing on only 3 cameras, the performance of DANNCE-T degraded
much faster than that of MAMMAL (Fig. 5e, f). Therefore, both quali-
tative and quantitative comparisons proved that MAMMAL is not only
competitive with DANNCE-T for tracking mouse extremities but also
more robust to different camera settings during inference.

Using MAMMAL for social dog motion capture
To further demonstrate the generalizability of MAMMAL on social
motion capture of other large-size mammals, we captured two male
Beagle dogs in a laboratory environment using 10 GoPro cameras
(Fig. 5g). Similar to the PIG model, we created a Beagle dog mesh
model which consisted of 39 driven joints, 4653 vertices, and 29 key-
points (Fig. 5h). Following the pipeline of using MAMMAL for multiple
animals and other animal species (Supplementary Fig. 10), we first
labeled the 3D keypoints of 90 frames and then projected 3D key-
points to each view, resulting in900 imageswith 2Dkeypoints labeling
for training HRNet. We further labeled the segmentations using
SimpleClick50 for training PointRend. Themesh creation together with
labeling took up 2 days. Finally, we reconstructed the dynamic social
interaction of Beagle dogs using MAMMAL (Fig. 5i, Supplementary
Movie 10). As a comparison, we trained VoxelPose51, a strong volume-
based baseline for multiple human 3D pose estimation, on the same
90-frame 3D labels. For a fair comparison, we labeled another 23
frames as test set and utilized the same HRNet results as inputs of
VoxelPose during testing. By using 10-view inputs, MAMMAL achieved
an average 3D keypoint error of 5.02 ± 3.22 cm (mean± SD), which is
lower than that of VoxelPose (5.93 ± 7.82 cm, Fig. 5j, k). By reducing the
camera number from 10 to 6 and 4, MAMMAL achieved a slightly
higher error rate of 5.44 ± 3.67 cm and 5.84 ± 4.06 cm (Fig. 5j, k).
However, the error rates of VoxelPose increased more drastically to

Fig. 3 | MAMMAL provides a robust solution for pose estimation compared to
previous methods. a Average 3D pose error of each keypoint (cm). Red indicates
errors larger than 4.0 cm. Prefixes ‘l_’ and ‘r_’ indicate ‘left’ and ‘right’, respectively.
b Box plot of MAMMAL reconstruction errors on both visible and invisible key-
points using 10 views (n = 4 animals, n = 70 timepoints). The dashed green line
indicates an error of 7 cm (10% of the pig body length in BamaPig3D dataset). The
‘center’ part has no invisible keypoints. c Intersection over Union (IoU) versus
timepoints on BamaPig3D dataset for surface estimation accuracy. 70 timepoints
were used. At each timepoint, IoUs were averaged over all the labeled 2D instances
of 10 views. ‘MAMMAL w/o Sil’means without silhouette information during mesh
fitting. Shadows, standard errormean (SEM).dAn illustration of pigs with different
weights and sizes for evaluation. Train Data, one of the pigs in BamaPig2D dataset.
Other pigs are new identities, including 1) Moderate, a pig with similar body size to
Train Data; 2) Very Fat, a pig with large belly; 3) Juvenile, a pig with very small body

size. e Box plot of MAMMAL reconstruction errors on different pigs shown in d.
n = 188, 188, 211 and 178 landmarks for ‘Train Data’, ‘Very Fat’, ‘Moderate’ and
‘Juvenile’ respectively. f–h, Boxplot of 3Dpose error ofMAMMALand triangulation
(Tri) at different view configurations on the BamaPig3D dataset (n = 4 animals,
n = 70 timepoints, n = 5320 landmarks) (f). Fraction of instances versus the number
of correctly reconstructed keypoints of an instance. The error threshold used for
determining a correct keypoint is 7 cm (g). Percentage of correctly tracked key-
points versus different thresholds (h). i A qualitative comparison between MAM-
MAL and Tri using 10 views. Tri produced missing parts and false poses especially
for legs. j Coordinate curves of ‘r_shoulder’ keypoint of one pig on BamaPig3D
dataset. Tri often yielded missing predictions or highly noisy predictions due to
frequent occlusions. In b, e and f, black bar, median; box shoulders, interquartile
range (IQR); whiskers, 1.5 times the IQR; black square dots, mean.
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7.17 ± 7.02 cm and 14.58± 19.79 cm (Fig. 5j, k), indicating that MAM-
MAL is more stable in a very sparse view setting for social dog motion
capture without the need for training on the specific camera numbers.
Taken together, we demonstrate that MAMMAL can be applied for
tracking socialmotions in other large-sizemammals in an efficient and
accurate manner.

Discussion
Overall, MAMMAL is the first described method that enables surface
motion captures of multiple freely moving animals in a noninvasive
manner in their living environments. The substantial advantages of
MAMMAL over previous methods are in dealing with invisible key
points and severe occlusions, especially for large-size animals.
Although MAMMAL could not run in real-time currently, it enables
various quantitative behavioral analyses, which may inspire studies in
disease modeling, drug evaluation, brain circuit function character-
ization, etc. In addition, monitoring health condition of large-size
mammals, such as pigs, will be valuable for the improvement of
domestic animal red meat production and the prosperity of the

industries. For generalizing the usages, MAMMAL is also proven to be
effective in trackingmouse and Beagle dogs without amillion-scale 3D
dataset for training.

Recently, as the articulated mesh models have achieved great
success in human behavior modeling52,53 and clinical research54, their
applications in animal behavior capture are in the ascendant55–63.
Although keypoints can be used for several behavioral analyses, they
are sparse and lack the ability to measure dense surface contact
between animals/agents. In contrast, articulated meshes are very
valuable to encapsulating anatomical priors of animals49,58, simplifying
themodelingof surface-to-surfacecontact, and serving as amediumto
fuse multi-modal data like point clouds55. These advantages encour-
agedus to handle the challenges of social animalmotion trackingusing
articulated mesh models.

At the current stage, our paper is not only a proof-of-principle
paper but also a toolbox with basic requirements. For others to easily
use MAMMAL as a toolbox, we made all our codes open-sourced,
included instructions in Readme files of every code, summarized how
to apply MAMMAL to multiple animals and other animal species in

Dominant Pig
36kg

Subordinate Pig
30kg

a b

d

Feeding Area T=0 15 20 min

Subordinate Pig Dominant Pig

c

g h i
swing left swing right

fe

j

Sub      Dom

Time of Touch by Head
(seconds in 20 minutes)

0

Dom      Sub
1

Fig. 4 | MAMMAL quantifies the behavioral differences of two pigs in different
social hierarchies. a An illustration of a dominant pig (the bigger one) and a
subordinate pig (the smaller one) at the timepoint of feeding. b Locomotion tra-
jectories of the dominant and subordinate pigs during the 20-minute course of
feeding. c Histogram of the feeding time for the dominant (Dom) and subordinate
(Sub) pigs. Dominant pigs showed significantly longer feeding time than sub-
ordinate pigs (p =0.0004, n = 4, two-sided independent samples t-test).
dHeatmaps of the touch frequency by another pig’s head. The leftfigure shows the
frequency of the subordinate pig touched by the dominant pig’s head, while the
right figure shows the opposite. The heatmaps were averaged over four pairs. e An
illustration of pig tail reconstruction. Given the original image (left), three tail
keypoints were detected (middle), and the tail mesh of the PIGmodel were aligned
(right). f Box plot of the MAMMAL reconstruction error on the three tail keypoints

(n = 2 animals, n = 20 timepoints for each keypoint). Black bar, median; box
shoulders, interquartile range (IQR); whiskers, 1.5 times the IQR; black square dots,
mean. g An illustration of the tail angle computation. For tails swinging left, the tail
angle θtail is positive, while the other side is negative. h Tail angle traces of two
different tail behaviors in a 10-second time window. Blue, the passive hanging
behavior. Red, the loosely wagging behavior. i Power spectral density (PSD) of tail
angle traces in h. We used a PSD threshold of 1.5 V 2 � Hz�1 to determine whether a
tail was wagging or hanging in a 10-second time window. j Histogram of the time
ratio that a pig performed loosely wagging tail behavior during the 20-min feeding
process. The loosely wagging ratio of dominant pigs were significantly larger than
that of subordinate pigs (p =0.0367, n = 4, two-sided independent samples t-test).
In c and j, mean ± SD. Data were considered significant at p <0.05 (*), with p <0.01
(**), p <0.001 (***).
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Supplementary Fig. 10, and ensure that the computational processing
of MAMMAL can be handled by an undergraduate student with C + +/
Python coding experiences. Several aspects could be considered for
improving MAMMAL. For example, merging widely used 2D pose
estimation31,34, segmentation, identification, and behavior
classification64 into MAMMAL as an end-to-end system could make it

more user-friendly. Acceleration techniques65,66 could be further
applied to make MAMMAL faster for real-time applications. In the
future, we expect to build a linearblend shapemodel for pigs similar to
SMPL52 for humans or SMAL63 for quadrupeds.

Overall, MAMMAL provides a tool for analyzing the surface
motions of single or socially interacting mammals such as pigs, mice,

a b
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and Beagle dogs with the help of an articulated mesh model. The
concept and algorithms of MAMMAL we described here may apply to
other animal detailed behavior analysis and health condition mon-
itoring both in agriculture (e.g., cattle, sheep) and in life science (e.g.,
rats, macaques).

Methods
Data collection and animals
We set 10 HIKVISION network cameras (DS-2DE2204IW-DE3/W series)
around a 2.0m× 1.8m cage to achieve 1920 × 1080 @ 25FPS multi-
view videos (256 GB SD card/camera for data storage). Three-day
videos of four male Bama pigs (17 weeks of age) were referred to as
Seq1. We sampled 3340 images from Seq1 to create the BamaPig2D
dataset, and a 1750-frame video clip from Seq1 to create the Bama-
Pig3D dataset. The annotations of BamaPig2D dataset followed the
instruction of COCO43, which is a commonly used annotation protocol
in computer vision community. The BamaPig3D dataset was manually
labeled with the Python package LabelMe v4.5.7. For fair evaluation,
the BamaPig3DandBamaPig2Ddatasets hadno timepoint overlap. For
qualitative behavior analysis, we further captured seven-day videos of
the same four pigs at 30weeks of age (referred to as Seq2, 5 views) and
one-day video of four different pigs (referred to as Seq3, 8 views).

Camera calibration
To make the camera calibration more accessible, a calibration
pipeline was employed to align manually labeled scene points with
actual captured images (Supplementary Fig. 1). The intrinsic cali-
bration was performed only once for all cameras, and the extrinsic
calibration was performed without the structure frommotion (SfM)
that was utilized by traditional methods37,38. To make intrinsic cali-
bration easier, all the cameras were set to the same maximum focal
length (Seq1, Seq2 with the slightest distortion, recommended) or
the same minimum focal length (Seq3 with the most severe distor-
tion, for a larger field of view). We calibrated both types of distor-
tion parameters in advance using the chessboard and OpenCV
calibration toolbox67 and chose suitable distortion parameters case
by case. For extrinsic calibration, we manually labeled easily
recognized scene points according to the geometric features of the
captive cage and calibrated the videotaped images to the points.
Afterwards, the projective n-points (PnP) algorithm was applied to
compute the R and t of each view using OpenCV.

PIG model formulation
PIG is an articulatedmeshmodel withNV = 11239 vertices and NJ = 62
embedded joints. The model contains template surface points �T 2
RNV × 3 and template joint locations �J 2 RNJ × 3 in the rest pose,
together with sparse skinning weights W. The i-th joint is attached
with 3 degrees of freedom (DOF) rotation ϕi 2 so 3ð Þ in Axis-Angle
format. Among the 62 joints, 24 critical ones were employed for pig
locomotion and social interaction prediction with the rest of joints
were fixed. The posed surface points V are determined by linear
blend skinning (LBS) process as

V =MðΘÞ=Mðθ,s,r,tÞ= s � RðrÞ � LBSðθ; �T ,�J,W Þ+ t ð1Þ

where Θ represents the full parameter set, θ 2 RNO × 3 is the stack of
ϕiði 2 f1,2, . . . ,NOgÞ, s is the global scale, r= ½rz ,ry,rx �T is the global
rotation represented as Euler angles, R rð Þ is the rotation matrix
yielded by r, and t= ½tx ,ty,tz �T is the global translation. A sparse
skeleton regressor J 2 RNK ×NV

is additionally designed to regress 3D
keypoint positions X 2 RNK × 3 from mesh vertices V as X= JV, where
NK = 19 is the number of keypoints. Note that, the PIG model was
built manually by an artist in one day. For an animal species that
does not have the 3Dmesh, we recommend to follow the process as
previously described49 to create a customized 3Dmeshmodel. If the
mesh model does not fit the shape of the animal species well, we
recommend to tune the mesh model according to the captured
images using MAYA software or automatically deform the mesh
vertices using non-rigid deform algorithms according to the
captured silhouettes.

Training 2D detection networks
MAMMAL employed PointRend45 for pig silhouette detection and
HRNet46 for pig pose estimation. Both networks were trained on the
BamaPig2D dataset, with 90% images (3008 images, 10356 instan-
ces) for training and 10% (332 images, 1148 instances) for testing.
PointRend was trained for 270k iterations with 8 images per batch,
and the whole training procedure took 5 days. Finally, PointRend
achieved an average precision (AP) of 0.869 for bounding box
detection and 0.868 for silhouette segmentation. HRNet was
trained for 120 epochs with batch size 16 and the training procedure
took 32 hours, resulting in an AP of 0.633. Both networks were
trained and tested on Ubuntu LTS 18.04 systemwith a single NVIDIA
RTX 2080Ti GPU.

MAMMAL Stage 1: Detection
Given that NC synchronized multi-view images I = fIcgc2f1,2,...,NC g, MAM-

MAL first performed 2D detection in a top-down manner. For view c,

PointRend was adopted to generate bounding boxes Bc
q ð1≤q≤NBc Þ

and silhouettes Scq of all visible individuals.Here,N
Bc was thenumberof

detected pigs on view c, Scq was 1920 × 1080 binary mask image where

‘1’ means foreground part and ‘0’ means background part. Without

ambiguity, we could refer to a pig by its bounding box Bc
q. In fact, NBc

may be different across views because the occlusion relationships of
pigs were different by observing from different views. Afterwards, we
cropped out each pig image Icq according to the bounding box Bc

q for q-

th pig on view c and normalized its resolution to 384 × 384. Then the
normalized pig image was fed to HRNet to obtain the prediction of NK

keypoints. The keypoints for q-th pig on view c was

Yc
q = fycq,m 2 R2,σc

q,mgm2f1,2,...,NK g. Here, y
c
q,m was the 2D coordinate of the

m-th keypoint, σc
m was the visibility of the ycq,m (σ =0 meant invisible,

0 < σ ≤ 1 meant visible confidence). Before Detection Matching of
MAMMAL, the 2D cues Yc

q and Scq were unordered, which meant that

for any pig on view c1, we did not know which pig on view c2 corre-

sponded to it ðc1,c2 2 f1,2, . . . ,NCg,c1≠c2Þ. Therefore, we must match
the 2D cues both spatially and temporally before predicting the 3D pig
postures.

Fig. 5 | Using MAMMAL for mouse and dog motion capture. a An illustration of
the video data used for reconstruction. Six views were used. b The mouse mesh
model used by MAMMAL. It contains 140 driven joints (left), 14522 vertices (mid-
dle), and 22 keypoints (right). c Visualized comparison between DANNCE-T and
MAMMAL. d The position of 8 extremities of mouse labeled for quantitative
comparison. e, f Box plot of reconstruction errors of different methods on the 8
extremities. Total 50 evenly distributed frames were manually labeled for evalua-
tion (e). Percentage of correctly tracked keypoints versus different thresholds (f).
g An illustration of the laboratory environment of Beagle dog social motion

capture. Ten GoPro cameras were mounted round the experiment area where two
beagle dogs freelymoved.hThe dogmeshmodel used byMAMMAL. It contains 39
driven joints (left), 4653 vertices (middle), and 29 keypoints (right). i A 3D ren-
dering of reconstructed dog poses. j, k Box plot of reconstruction errors of
MAMMAL andVoxelPose on different viewnumbers (n = 2 animals,n = 91, 366, 368,
351 and 138 landmarks for Body, FrontLeg, HindLeg, Head and Tail respectively) (j).
Percentage of correctly tracked keypoints versus different thresholds (k). In e
and j, black bar, median; box shoulders, interquartile range (IQR); whiskers, 1.5
times the IQR; black square dots, mean.
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MAMMAL Stage 2: Detection Matching
At the first frameof a sequence (T = 0), therewas no available temporal
information, therefore we must match unordered 2D cues from dif-
ferent views using only spatial information. To this end, MAMMAL first
built a 3D association graph by viewing all the detected instances as
graph nodes. Graph edges were only defined to connect nodes
belonging to different views, resulting in a sparse multipartite graph.
The average epipolar distance of visible keypoints across views were
calculated as edge weights. We partitioned this graph by modifying a
maximal clique enumeration (MCE) method68 to cluster all unordered
2D cues into NP + 1 groups, with NP groups corresponding to NP pig
identities and one more group containing useless wrong 2D cues. The

time complexity of our graph partitioning algorithm was OððNC ÞN
P

Þ,
which meant that if the pig number NP was fixed, the running time
was polynomial to the view number NC. At the subsequent frames
(T > 1), we projected the 3D keypoints regressed from the PIGmodel at
T-1 (0.04 s prior to T) on each view and solved the per-view tracking
problem using Kuhn-Munkres algorithm according to the average
Euclidean distance of keypoints. Consequently, all the 2D cues at T > 0
were divided into NP + 1 groups too. Thus, for each subject, the mat-

ched 2D cues on view c were Y = fycm 2 R2,σc
mgm2f1,2,...,NK g and Sc, where

ycm was the 2D coordinate of the m-th keypoint, σc
m was the visibility of

the m-th keypoint, and Sc was the silhouette.

MAMMAL Stage 3: Mesh Fitting
At T = 0, MAMMAL first retrieved a pose hypothesis referred to as
‘anchor pose’ from a pose library containing NL predefined poses.

Specifically, for the p-th (p 2 f1,2, . . . ,NLg) pose in the library, we divi-

ded the full poseparameters into a constant partΘl
p and a variablepart

Θg
p. In detail, Θl

p = fθ,tz ,rx ,rygp encodes pose information fixed during

pose retrieval andΘg
p = ftx ,ty,rz ,sgp encodes global transformation that

varies among different subjects. Note that ftz ,rx ,rygp in Θl
p carries

important prior information on how pigs naturally interact with the
scene, preventing impossible initial pig postures such as ‘flying’ or
‘underground’. The retrieval score for the p-th pose was defined as the
energy function EðΘg

pÞ=w2DE2DðΘg
pÞ+wsilEsilðΘg

pÞ. E2DðΘg
pÞ is the 2D

energy term penalizing the accumulated Euclidean distance error
between the multi-view 2D keypoints and the projections of p-th
subject’s 3D keypoints. EsilðΘg

pÞ is the silhouette energy term measur-

ing the Chamfer distance between the projected mesh silhouette

vertices ŜcðΘg
pÞ and the distance transform of the detected silhouette

Sc. For time efficiency, we first minimized E2DðΘg
pÞ and then searched

the optimal p* that minimizes EðΘg
pÞ. In our implementation,

w2D = 1,wmask =20, and tail verticeswere ignored. The retrieved anchor
poses acted as initial poses for T =0. At T >0, we simply inherited pig
poses from T-1 as initial poses. After obtaining initial pig poses at each
time T, we defined the full minimization objective function EðΘT Þ as
the weighted sum of several independent energy terms. Without
ambiguity, subscript T is here omitted except for the temporal term.
EðΘÞ is defined as

EðΘÞ=w2DE2D +wsilEsil +wtempEtemp +wregEreg

+wanchorEanchor +wf loorEf loor

Among all the energy terms, E2D fits pose parameter spaceΘ to match
2D keypoints on each view, which is the same as E2D for anchor pose
retrieval. Concretely,

E2DðΘÞ= PNc,NK

c = 1,m= 1
vcmjπcðXmðΘÞÞ � ycmj22 ð2Þ

πc �ð Þ is the camera projection function for view c, which projects a 3D
point in the global coordinate system to the local image plane, and
Xm Θð Þ is the m-th 3D keypoint position regressed from the PIG model
driven by Θ. The construction of the silhouette term Esil Θð Þ is a
differentiable rendering process, where all NP pigs are rendered
simultaneously to each view, and the parameters of different
individuals are optimized together. For a specific pig, we first
determined the visibility of all its vertices by comparing its own
rendered depth map to the depth map with all pigs. Then for visible
vertices, we construct Esil as

EsilðΘÞ= P

q2B
½SDFPðπcðVqðΘÞÞÞ � SDFDðπcðVqðΘÞÞÞ�2 ð3Þ

where B is the set of visible vertex indices, Vq is the q-th vertex, SDFD is
the signed distance function (SDF) calculated from the 2D silhouette
generated by PointRend, and SDFP is SDF calculated from the rendered
silhouette. Here, SDF is an extension to distance transform where all
pixels range in �1,1½ � with 0 corresponding to the silhouette. The
temporal term Etemp regularizes current subject keypoints Xm Θð Þ with
keypoints at T � 1 by

EtempðΘT Þ=
PNK

m= 1
jXmðΘT Þ � XmðΘT�1Þj22 ð4Þ

The regularization term Ereg ðΘÞ= jθj22 constrains the joint rota-
tions to be small. At T = 0, term Eanchor uses the anchor pose as a strong
prior on invisible keypoints. Eanchor is written as

Eanchor = jΘl �Θl
p* j22 + λh

PNK

m= 1
jX ðzÞ

m � X ðzÞ
m,p* j

2

2
ð5Þ

where the first part constrains each pose parameter to be close to
anchor poseΘl

p* , X zð Þ
m is the z coordinate of keypoint Xm, and λh = 25 in

our implementation. The floor term Efloor is used to force all keypoints
to be above the floor and is written as Ef loor =

PNK
m= 1ðRampð�X zð Þ

m ÞÞ2,
whereRamp is the ramp functionwith a slope equal to 1. A typical set of
term weights was w2D = 1, wsil = 5× 10

�5, wreg =0:01, and wf loor = 100.
At T =0,wtemp =0 andwanchor =0:01; at T >0,wtemp = 1 andwanchor =0:
The optimization exploits the Levenberg-Marquardt algorithm with
less than 60 iterations for initialization and less than 15 iterations for
tracking. In practice, we set wsil =0 during the first 5 iterations.

Animal-Scene interaction measurement
Two scene-related behaviors were defined for automatic recognition:
drinking and feeding. MAMMAL recognized these behaviors by com-
paring the 3D coordinates of subject noses to scene features. Specifi-
cally, drinking was identified using the Euclidean distance between the
reconstructed pig nose and the water tap position. The threshold in
our case is 0.12m. Eatingwas identifiedbymeasuringwhether the nose
is in a 0:62m×0:7m×0:2m x × y× zð Þ cube space corresponding to the
feeding area. Video clips from Seq1 and Seq2 were utilized for
demonstrating eating and drinking recognition, respectively (see also
Supplementary Movie 3).

Posture discovery
To discover distinct individual postures, we collected 44 small motion
clips of 4 individual pigs, with each clip lasting for 1 to 10 s, resulting in
20819 postures in total. All these poses were first normalized by
removing Θg . Then, key parameters representing a pig posture were
stacked into a 178 dims data vector, including the keypoint positions
(3 × 19 = 57 dims), the keypoint velocities (3 × 17 = 51 dims without
ears), the height of tail and center (2 dims), the angles of body pitch
and roll (2 dims), and the Axis-Angle rotations of some joints
(3 × 22 = 66 dims). Next, the 178 dims data vector was reduced to a 16-
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dim feature vector using principal component analysis (PCA),where 16
dims explain 97.3% of the data variance. t-SNE was then applied to
create a 2-dim embedding of all the feature vectors, where the per-
plexity of t-SNE is 80. Before density estimation, both dimensions of
the embedding vectors were normalized to the range [0.05,0.95]. The
density map was obtained using Gaussian kernel density estimation
with bandwidth 0.03 and further normalized to [0,1]. Finally, the
watershed algorithm was used on the reverse of the density map to
obtain clustered posture blocks (Fig. 2d). By manually checking the
poses at the local density peaks of each block, we identified 8 distinct
postures (Supplementary Movie 4). Individual behavior clustering
algorithms were implemented using Python 3.7.9, numpy 1.17.5, scipy
1.6.0, sklearn 0.24.1 for t-SNE and density estimation, and skimage
0.18.1 for the watershed algorithm.

Social behavior recognition
We defined seven dyadic social behaviors including two dynamic
behaviors (approach and leave) and five static behaviors (head-head,
head-body, head-limb, head-tail andmount) (Fig. 2f, g, Supplementary
Movie 5). For twopigsA andB engaged in a social behavior inwhich the
pig A was the active one, we first found a vertex v*B on pig B whose
distance to pig A’s head was minimum. Here the minimum distance
was recorded as dh A,Bð Þ and the body part of v*B was denoted as P v*B

� �

(Supplementary Fig. 7). To reduce the computational burden, we
evenly down-sampled 546 vertices V0 from the original 11239 vertices V
and used V0 for distance calculation. In addition, the top view overlay
o A,Bð Þ was computed by first projecting V0

A and V0
B to the xOy plane as

V0 xyð Þ
A and V0 xyð Þ

B and then computing the Intersection over Union (IoU)
of the convex hulls of V0 xyð Þ

A and V0 xyð Þ
B . The body pitch angle of pigAwas

denoted as ry Að Þ. With the above prepared data, the dyadic social
behaviors at time T were identified in time window T �W ,T +W½ �
using the following equations:

Approach : dh A,Bð ÞT�W>0:2,dh A,Bð ÞT +W<0:05,

Leave : dh A,Bð ÞT�W<0:05,dh A,Bð ÞT +W>0:2,

Head-Head : dh A,Bð ÞT<0:05,P v*B
� �

=head,

Head-Body : dh A,Bð ÞT<0:05,P v*B
� �

= body,

Head-Limb : dh A,Bð ÞT<0:05,P v*B
� �

= limb,

Head-Tail : dh A,Bð ÞT<0:05,P v*B
� �

= tail,

Mount : ry Að Þ>20 ° ,o A,Bð Þ>0:15,

ð6Þ

where W = 12 typically. We tested the algorithm qualitatively on a 40-
second video extracted from Seq3 and achieved accurate and robust
dyadic social behavior recognition (see Supplementary Movie 5).

Triangulation
Typically, there are two types of triangulation: direct linear transfor-
mation (DLT)36,39,40,67 and maximum likelihood estimation (MLE)
method35–38,69. Although these two methods often result in similar
results, MLE is usually more robust because it minimizes the per-view
projection error (geometric errors) in an iterative way and its results
have clear geometric meaning. Therefore, we implemented MLE in all
our experiments.

SLEAP training and inference
We trained SLEAP v1.2.6 on BamaPig2D dataset. For the top-down
variant of SLEAP, we set ‘Sigma for Centroids’ to 8.00 and ‘Sigma for
Nodes’ to 4.00. We used Unet with ‘max-stride’ set to 64 as centroid
model, andUnetwith ‘max-stride’ set to 32 as centered instancemodel.
Other parameters were set to default ones. The training process took
half a day onWindows 10 with single NVIDIA RTX 3090Ti GPU (24GB).
During inference on the videos of BamaPig3D dataset, ‘flow’ tracker
was applied with ‘similarity method’ set to ‘instance’ and ‘matching

method’ set to ‘greedy’. For bottom-up variant of SLEAP, we utilized
Unet with ‘max-stride’ set to 64 as model. We also applied scale and
uniform noise augmentation during training. During inference, we set
the tracker setting same to the top-down variant of SLEAP.

Experiments on different views
To fairly perform experiments between MAMMAL and triangulation
for pose estimation, we utilized the same 2D cue matching results
obtainedbyMAMMAL running on 10 views. For 5 viewexperiments, we
utilized the topfive cameraviews. For 3 viewexperiments,weutilized 3
top corner cameras to ensure good view distribution. All quantitative
experiments were performed without temporal smoothing.

Experiments on pig sizes
We first chose one of the four pigs in BamaPig2D dataset as the
baseline pig size, whose weight was 29 kg (‘Train Data’ in Fig. 3d). We
additionally captured two groups of pigs. One group consisted of
moderate-sizedpigs and another one consistedof very fatpigs, bothof
which was labeled with 12 frames of 19 3D keypoints; the other group
consisted of four juvenile pigs, one ofwhichwas labeledwith 12 frames
of 19 3D keypoints for evaluation (Fig. 3d).

Pig tail reconstruction and analysis
To capture the motion of pig tails, we additionally defined two key-
points on the pig tail. One is ‘TailMid’, which lies on the middle of pig
tail. The other is ‘TailTip’, which lies on the tip of pig tail.We labeled 48
images with tail keypoints in BamaPig2D, and another 675 images with
tail keypoints from newly captured sequences used for social rank
analysis. We merged newly labeled data to BamaPig2D, resulting in an
extended dataset BamaPig2D_Ext, and trained HRNet on it from
scratch for 240epochs. Duringmesh fitting,weused the full degrees of
freedom of 62 joints, and added an energy term E3D to penalize the
distance between regressed keypoints and triangulated keypoints. For
faster inference, we set wsil =0 to disable silhouette loss and set opti-
mization iterations to 3 during tracking. To compute tail angles, we
named the 8 tail joints of the PIGmodel as tail_1 to tail_8 (from tail root
to tail tip).We first defined vector~a as the 3Dunit vector pointing from
tail_1 to tail_2, and vector~b as the 3D unit vector pointing from tail_7 to
tail_8. We then calculated the tail angle as θtail = j arccosð~a �~bÞj sgn,
where sgn is the sign of tail angle. Todetermine sgn,wedefined aplane
in 3D space determinedby tail_1, tail_2 andpig body center, and judged
whether tail_8 was on the left side of the plane (sgn >0) or the right
side (sgn < 0). The power spectral density (PSD) was calculated using
the welch function in scipy 1.6.0 with sampling frequency as 25 and
length of segment (nperseg parameter) as 200. We reported PSD in
linear units.

Mouse data preparation
As there was no availablemouse articulatedmeshmodel, we extracted
andmodified ameshmodel from a previously proposed virtualmouse
model49. Specifically, we exported the vertices, skinning weights and
embedded joints from the original Blender file, andmanually removed
the whiskers using Blender and Meshlab. Finally, we obtained an
articulatedmeshmodelwith 140driven joints and 14522 vertices. Then
we manually defined 22 keypoints on it, which corresponded to the
body parts similar to what DANNCE40 tracked. In total, the mesh pre-
paration took 1 day. DANNCE proposed two sequences “markerless_-
mouse_1” and “markerless_mouse_2”, each of which captured a freely
moving mouse in an open field using 6 cameras for 18,000 frames in
1152 × 1024 @ 100 FPS. DANNCE annotated 172 frames in total on the
two sequences for training. We projected the labeled 3D keypoints of
these 172 frames to each view and obtained 1032 images with ground
truth 2D keypoints to train HRNet. To reduce the burden of silhouette
labeling, we applied the off-the-shelf segmentation toolbox
SimpleClick50 to automatically segment mouse using predicted 2D
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keypoints as guidance. We only tested MAMMAL on “markerless_-
mouse_1”, and manually labeled the 3D positions of 8 extremities on
evenly distributed 50 frames of the sequence for quantitative
evaluation.

Mouse mesh fitting with volume preserving bones
Because the surface of mouse could stretch and deform larger than
pigs in different poses, we made two adaptations of the mesh fitting
pipeline. First, we added bone length parameters to account for body
stretch. Second, we added volume preserving constraints49 to account
for belly deformations. These two adaptations made the results
aligned to mouse silhouettes better (Supplementary Movie 9). Cur-
rently, the mouse mesh fitting was implemented in Python based on
the same pipeline to C + + version of MAMMAL.

DANNCE-T for less cameras
Weused the officially releasedmodel trained on “markerless_mouse_1”
and “markerless_mouse_2” for all the testing. Because such volume-
basedmethod requires the input camera number to be the same to the
training one during inference, we copied the first three views twice as
inputs to obtain the results on 3 views. We used the same three views
for MAMMAL reconstruction for a fair comparison.

Experiments on Beagle dogs
We recorded multiple-view videos of two socially interacting
Beagle dogs in laboratory environment using 10 GoPro HERO11
Black cameras in 1920 × 1080 @ 120 FPS. Then, we purchased a
Beagle model online (https://sketchfab.com/) as the basic articu-
lated mesh model, and made some modifications (e.g., removed
whiskers and useless bones) to fit our requirements. Then we
defined 29 keypoints on it. The mesh preparation took us 1 day in
total. To minimize the workload in data annotation, we directly
annotated 3D keypoints of each dog for 90 frames, and projected
them to each view to obtain ground truth 2D keypoints. The key-
point labeling took up 7 hours. Afterwards, with the assistance of
SimpleClick50, the silhouette labeling of 900 images took up 10 h.
Then, the training process was similar to that of pigs, which took
up 1.5 days. The dog matching and mesh fitting procedures were
the same to pigs. We configured VoxelPose51 with [2400, 2400,
2000] space size and [300, 0, -200] space center according to the
coordinate system of our Beagle dog data. The initial cube size was
[48, 48, 12]. We trained VoxelPose on the same 90-frame training
data for 190 epochs with batchsize set to 4. The optimizer was
Adam with learning rate 1e-4. The training and testing procedures
of VoxelPose employed the 2D outputs of the same pretrained
HRNet to that of MAMMAL. The whole training took 18 hours on
Ubuntu 20.04 system equipped with single NVIDIA Geforce RTX
3090 GPU. To test VoxelPose on 6 views, we used camera
[1,3,4,5,8,9] (0-indexed). To test VoxelPose on 4 views, we used
camera [1,3,8,9] (0-indexed). We used the same cameras for
MAMMAL during the comparison.

Implementation details and inference speed
MAMMAL was developed with C + + 17 using Visual Studio Com-
munity 2017 on Windows 10 operating system. CUDA was utilized
for accelerating silhouette energy term construction. Accuracy
evaluation and behavior analysis were implemented with Python
3.7.9. Figures were plotted using the Matplotlib package of Python.
On the BamaPig3D dataset, MAMMAL Detection stage took 50ms
per frame on single NVIDIA RTX 2080Ti GPU (11GB), MAMMAL
Detection Matching stage took 0.15 ms per frame on CPU only,
MAMMAL Mesh Fitting stage took 1200ms per frame with GPU
acceleration and 2000 ms without GPU support. In practice, 60
iterations were enough for T = 0, while 5 iterations per frame yiel-
ded fairly good results for T > 0.

Statistics and Reproducibility
Suitable statistical method was used to predetermine the sample
size. No data were excluded from the analyses. The experiments
were randomized. The Investigators were blinded to allocation
during experiments and outcome assessment. All values reported
as mean ± SD unless otherwise stated. In box plots, boxes show
median with IQR, with whiskers extending to 1.5 times the IQR, and
with the arithmetic mean shown as a black square. Two group
comparisons were analyzed using two-sided independent samples
t-test (ttest_ind function in scipy). Data was considered significant
at p < 0.05 (*), with p < 0.01 (**), p < 0.001 (***). Plot and analyses
were performed in Visual Studio Community 2017 (with the aid of
Std. C + + 17, Eigen3, OpenGL 4.5, OpenCV 4.5.0, Ceres 1.14) or
Python 3.7.9 (with the aid of numpy 1.17.5, scipy 1.6.0, sklearn
0.24.1, skimage 0.18.1 and matplotlib 3.1.3). The mouse version of
MAMMAL was developed in Python 3.9.12 and powered by
PyTorch 1.12.1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for PIG model is provided at https://github.com/anl13/PIG_
model. The BamaPig2D and BamaPig3D datasets are available at
https://github.com/anl13/MAMMAL_datasets. Data for evaluation and
behavior analysis are releasedwith the code. Data forfiguregeneration
are provided in the Source Data file. All the code can also be accessed
at https://doi.org/10.17605/OSF.IO/F6JC5 (ref. 70). Source data are
provided with this paper.

Code availability
The key code ofMAMMALwritten in C + + is released at https://github.
com/anl13/MAMMAL_core. Codes forMAMMALdetection are released
at https://github.com/anl13/pig_silhouette_det and https://github.
com/anl13/pig_pose_det. Code and data related to evaluation and
behavior analysis can be linked through https://github.com/anl13/
MAMMAL_core. Code for mouse version of MAMMAL can be found at
https://github.com/anl13/MAMMAL_mouse. All the code can also be
accessed at https://doi.org/10.17605/OSF.IO/F6JC5 (ref. 70). Software
for generating Figs. 1a, b, e, 2a, e, f, g, 3j, 4g, 5b–h, i, Supplementary
Fig. 2c, 5b, d is our self-developed renderer https://github.com/anl13/
pig_renderer.
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