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Ultrathin covalent organic overlayers on
metal nanocrystals for highly selective
plasmonic photocatalysis

Anubhab Acharya 1,2, Trimbak Baliram Mete1,2, Nitee Kumari1,2,
Youngkwan Yoon2, Hayoung Jeong3, Taehyung Jang4, Byeongju Song3,
Hee Cheul Choi2, Jeong Woo Han3, Yoonsoo Pang 4, Yongju Yun3,
Amit Kumar 1,2 & In Su Lee 1,2,5

Metal nanoparticle-organic interfaces are common but remain elusive for
controlling reactions due to the complex interactions of randomly formed
ligand-layers. This paper presents an approach for enhancing the selectivity of
catalytic reactions by constructing a skin-like few-nanometre ultrathin crys-
talline porous covalent organic overlayer on a plasmonic nanoparticle surface.
This organic overlayer features a highly ordered layout of pore openings that
facilitates molecule entry without any surface poisoning effects and simulta-
neously endows favourable electronic effects to control molecular
adsorption–desorption. Conformal organic overlayers are synthesised
through the plasmonic oxidative activation and intermolecular covalent
crosslinking of molecular units. We develop a light-operated multicomponent
interfaced plasmonic catalytic platform comprising Pd-modified gold nano-
particles inside hollow silica to achieve the highly efficient and selective
semihydrogenation of alkynes. This approach demonstrates a way to control
molecular adsorptionbehaviours onmetal surfaces, breaking the linear scaling
relationship and simultaneously enhancing activity and selectivity.

Controlling metal nanostructures’ sizes, shapes, crystalline phases,
multi-elemental compositions and metal–metal/support/ligand inter-
faces can endow tunable optoelectronics and high catalytic
performance1–6. However, it is still challenging to regulate the mole-
cular adsorption behaviours on the metal surface, breaking the linear
scaling relationship, and simultaneously enhancing the activity and
selectivity7,8. Unlike homogeneous catalysts and enzymes where the
nature of ligand–metal interaction determines the reaction selectivity,
the predesigned role of organic surface modifiers on heterogeneous
catalyst surfaces has limited applicability9–11. Interfacial steric, elec-
trostatic and electronic effects of capping ligands and self-assembled

monolayers on nanoparticles (NPs) can influence different reaction
selectivities7–10. However, random conformational crowding by the
densely bound ligand chains can also result in catalytic surface poi-
soning and poor conductivity of electrons/holes12–15. Additionally,
loosely bound ligands on the metal surface undergo difficult-to-
control adsorption–desorption behaviours in response to reactants,
under thermal or light-irradiation conditions16–20. Ligand-free NPs are
prone to deform and aggregate, thus losing their nanocharacteristic
optical and catalytic properties. Confining NPs inside the rigid porous
shells of silica or metal/covalent-organic frameworks (MOFs/COFs)
endows selectivity, mainly because of the specific features of shell
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components in controlling substrate orientation, size-basedmolecular
sieving and shell-specific noncovalent interactions21–34. However,
owing to the huge difference in the structural dimensions of NPs, thick
shells and trapped ligands/polymers between them, the nature of the
two-dimensional interface remains difficult to control and poorly uti-
lised. Moreover, thick bulk-sized (usually micron-scale) porous shells
tend to impede molecular diffusion-dependent reaction rates and
render a narrow substrate size scope.

We aimed to maximise the interfacial synergy between the metal
surface and the organic modifiers by constructing a few-nanometre
ultrathin orderly porous covalent organic overlayer (pCOL) directly on
the ligand-free plasmonic nanocube (NC) surface. In the desired
favourable features of pCOL, (i) a highly ordered layout of well-defined
pore openings would facilitate consistent molecular transport without
any complicated surface poisoning effect and (ii) conformationally
restricted crosslinked organic units would intimately align with the
surface metal atoms to optimise the steric and electronic effects. We
utilised an isolated ligand-free plasmonic (Ag/Au) NC inside porous
hollow silica (h-SiO2) for on-surface light-induced oxidative activation
and successive covalent crosslinking assembly to form a conformal
few-molecule-thick overlayer (<5 nm), while avoiding the formation of
a typical microsized thick shell. Previously, we modified ligand-free
plasmonicNC surfaceswith a conformal catalyticmetal atomic layer by
light-induced metal-growth chemistry35. Plasmonic-catalytic hybrids
possessing localised surface plasmon resonance (LSPR) can induce
various challenging reactions through sustainable and energy-efficient
utilisation of charge carriers, but achieving control over reaction
selectivities is difficult17,36–38. In a distinct advancement, the present
study addresses the challenge of controlling the reaction selectivity in
plasmon-induced catalysis. By utilising pCOL interfaced Pd/AuNC
inside h-SiO2, we performed light-induced semihydrogenation of var-
ious substituted alkynes to Z-alkenes (up to >99% yield) with high
selectivity (up to >99%). The selective semihydrogenation of alkynes to

alkenes is a fundamentally challenging and industrially significant
synthetic transformation39–42. Our strategy overcame the commonly
observed overhydrogenation at extended reaction times while
achieving complete conversions and exhibited nearly consistent per-
formance with various mono and disubstituted alkynes. In-depth stu-
dies based on a series of control experiments, in situ surface-enhanced
Raman scattering (SERS) and density functional theory (DFT)-based
calculations revealed the mechanistic details of the favourable opti-
mum electronic and steric microenvironment of pCOL in controlling
the reaction selectivity.

Results and discussion
Synthesis of pCOL on plasmonic-catalytic NP surface
For the intended metal NP surface modification, we selected COF
layers that can be easily synthesised through aldehyde-amine ‘con-
densation-crosslinking-assembly’ [Fig. 1, details in Supplementary
Information (SI)]. Our preliminary attempts to use the as-synthesised
surfactant-capped silver NCs (AgNCs) directly resulted in uncon-
trollably thick and poorly aligned COF shells (Supplementary Fig. 1).
This is in agreement with the previously studied interference of
embedded capping ligands in COF/MOF shells30,31. An alternative
attempt involving COF shell formation on AgNCs resulted in severe
aggregation, shape deformation and loss of LSPR properties (Supple-
mentary Fig. 2). This led us to consider our previously developed
method to access individual surfactant-free NCs inside the h-SiO2,
which are easily employable in the reactions without aggregation and
lead to the selective deposition of the photochemical metal atomic
layer on the NC surfaces35. We envisioned that a suitable parallel
strategy involving photoinduced COF crosslinking can be initiated at
the plasmonic NC surface, while ensuring that the precursors do not
react off-surface, and the thickness of the COF layer can be controlled
to a fewnanometres by the limited availability of theplasmonic surface
(Fig. 2a). Accordingly, we obtained ligand-free single isolated AgNCs
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comparison, the present design of intimately interfaced ultrathin pCOL endows
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(edge size 50 ± 2 nm) inside h-SiO2 (designated as AgNC@h-SiO2),
which were ca. 100 nm in size (Supplementary Fig. 3). A porous, thin
and hollow silica shell (ca. 100 nm size, 7 nm thickness) ensured the
colloidal stability of the AgNCs to avoid any aggregation-induced
changes in the LSPR properties, as confirmed by NP tracking analysis
(NTA), transmission electronmicroscopy (TEM) and ultraviolet–visible
(UV–vis) spectrophotometry (Supplementary Fig. 4). In a typical pro-
cedure for modifying pCOL on AgNCs, we immersed AgNC@h-SiO2 in
a solution (dioxane: mesitylene = 4:1) containing diol (DAL, 1,4-benze-
nedimethanol) and triamine [TAE, 1,3,5-tris(4-aminophenyl)benzene]
and exposed it to a blue laser (405 nm, 0.3W/cm2) for 1 h. After reac-
tion, the UV–vis spectrum exhibited broadening and a redshift
(Δλ = 40nm), indicating the change in the dielectric environment on

the AgNC surface through pCOLmodification (Fig. 2). High-resolution
TEM (HRTEM) and high-angle annular dark-field scanning TEM
(HAADF-STEM) visualised the smooth and conformal organic poly-
meric layer (thickness 2.4 ± 0.5 nm) perfectly aligning with the AgNC
surface (Fig. 2). Additionally, X-ray photoelectron spectroscopy (XPS)
and electron energy loss spectroscopy (EELS)-based elemental map-
ping confirmed the presence of a nitrogen-containing organic over-
layer on the surface (Fig. 2 and Supplementary Fig. 5). The presence of
characteristic C =Npeaks in theRaman and Fourier-transform infrared
(FTIR) spectra at 1570 and 1647 cm−1, respectively, verified the amine-
aldehyde condensation (Supplementary Fig. 6). The difference in the
Raman and FTIR frequencies may be due to complex parameters,
including charge transfer on the metal surface. In a separate reaction,
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Fig. 2 | Light-assisted pCOLmodification on plasmonic NP surface. a Schematic
for the synthetic strategy. b–d TEM and HRTEM images of AgNC@h-SiO2 before
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images showing well-aligned AgNC-pCOL interface. e EELS elemental mapping of

pCOL-modified AgNCs (SiO2-free). fHRTEM images and g EELS elementalmapping
of AuNCs after pCOL and Pdmodification, high-magHRTEM image showing curved
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1H NMR confirmed the AgNC-mediated oxidation of DAL to dialdehyde
(DAE, 1,4-benzenedicarboxyaldehyde) upon laser irradiation (Supple-
mentary Fig. 7). Direct condensation of DAE and TAE resulted in the
formation of a bulk COF aroundAgNC@h-SiO2 (Supplementary Fig. 8).
Additionally, replacing light by heat (100 °C) in themixture of DAL and
TAE resulted in isolation of polymeric particulates (ca. 10 nm) from the
AgNCs (Supplementary Fig. 9). The use of a near-infra-red laser
(808 nm) or deoxygenated solutions containing DAL and TAE did not
result in any reaction with AgNC@h-SiO2 (Supplementary Fig. 10).
Based on these results, we propose the following mechanism of pCOL
formation: in response to blue laser irradiation, Ag-induced oxidation
of DAL to DAE follows an on-surface covalent crosslinking with TAE to
formextendedporous aromatic rings containing flat sheets assembled
to form few-nanometre ultrathin covalent organic layers; successive
accumulation of organic layers on the NC surface slowed the rate of
DAL oxidation and self-limited the thickness of pCOL without any
excess growth at extended times (Supplementary Fig. 11). In a separate
experiment, we confirmed the photochemical oxidative role of the Ag
surface in the polymerisation ofmethylmethacrylate (MMA), resulting
in a poly-MMA shell around the AgNC (Supplementary Fig. 12). The use
of plasmonic NCs of different shapes (spherical, pyramidal and
dodecahedral), metals (Ag, Au), ormolecular compositions of the COF
had minimal influence on the conformal COF overlayering process
(Supplementary Fig. 13). We propose that pCOL formation follows a
photochemical pathway instead of a thermal pathway. In our experi-
ments, we used a 405 nm laser to induce the formation of pCOL,which
is applicable for both AgNC (LSPR resonant) and AuNC (interband
transition); however, a 532nm laser (LSPR resonant) could also be
applied in the case of AuNC, achieving similar results (Supplemen-
tary Fig. 14).

Furthermore, for catalytic applications, we synthesised a ternary
hybrid interfacial system, including a catalytic metal (Pd)-modified
plasmonic surface (AuNC) covered with pCOL inside h-SiO2 (Fig. 2). In
this designed catalytic nanoreactor (pCOL-Pd/AuNC@h-SiO2), the
effect of pCOL on reaction selectivity can be reliably studied: plas-
monic AuNC will function as a nanoantennae, supplying highly loca-
lised energy flow to induce the reaction specifically at the interfacial
[Pd]-sites and h-SiO2 will ensure aggregation-free homogeneous dis-
persion of the catalyst17,35–38. For this, we extended our previously
developed metal lamination strategy on pCOL-modified AuNC inside
h-SiO2 (designated as pCOL-AuNC@h-SiO2) by immersion in ethylene
glycol (EG) containingNa2PdCl4 under laser irradiation (532 nm,0.3W/
cm2)35. Highly localised plasmonic photochemical reduction of Pd(II)
to Pd(0) by EG selectivelymodifiedonly limited amounts of Pd as a thin
layer (<2 nm) directly on the AuNC surface under pCOL as confirmed
by HRTEM, HAADF-STEM, EELS and EDS elemental mapping (Fig. 2,
Supplementary Figs. 15 and 16). Notably, the pCOL layer simply rear-
ranged its location on the Pd-modified AuNC top surface similar to a
flexible tight jacket and remained undisturbed because of the exten-
ded crosslinked organic network (Fig. 2). Despite the crystalline nature
of the ultrathin pCOL being clearly characterised by the HRTEM ima-
ges, the corresponding X-ray diffraction (XRD) peaks were below the
detection limit. However, we verified the characteristic XRD signals
and Brunauer–Emmett–Teller (BET) surface area analysis data for
thicker pCOL synthesised on an exposed AuNP surface (Supplemen-
tary Figs. 17–19).

Catalytic reactions studies for selectivity control
Next, in a typical catalytic hydrogenation reaction, we addedpCOL-Pd/
AuNC@h-SiO2 to a solution (methanol) of diphenylacetylene (1a) and
NH3·BH3 as the hydrogen source and exposed the reaction to a laser
(405 nm, 0.3W/cm2). 1H NMR and GC–MS based reaction kinetics
studies monitored >99% conversion of alkyne 1a to Z-alkene (1b) (ca.
99% yield, TOF = 63min−1) within 60min (Fig. 3a, b and Supplementary
Figs. 20–23). Interestingly, after complete conversion, extending the

reaction time (up to 100min) resulted in only a small amount of alkane
(1c) (<1%). In comparison, Pd NCs (without Au) modified with pCOL
(Supplementary Figs. 24 and 25) and commercial Pd-on-carbon (Pd/C)
at 60 °C exhibited early stage (at 100% 1a conversion) over-
hydrogenation of 1b to 1c up to >50% and >99%, respectively, and
eventually converted to over-reduced alkane 1c (>99%) (Fig. 3c, d and
Supplementary Fig. 25). To study the role of each component in pCOL-
Pd/AuNC@h-SiO2, we performed test reactions with different control
catalysts: Pd-AuNCs without pCOL inside h-SiO2 (Pd/AuNC@h-SiO2),
AuNCs inside h-SiO2 (AuNC@h-SiO2), pCOL-modified AuNCs inside h-
SiO2 (pCOL-AuNC@h-SiO2) and TAE-modified Pd/AuNCs inside h-SiO2

(TAE-Pd/AuNC@h-SiO2) (Fig. 3c and Supplementary Fig. 15). The
absenceofpCOL in Pd/AuNC@h-SiO2 resulted in a similar reaction rate
(TOF 60min−1) as pCOL-Pd/AuNC@h-SiO2; however, partial over-
hydrogenation (1b: 1c = 60: 40), indicated the crucial role of pCOL in
stopping overhydrogenation as a side reaction (Fig. 3c, d and Sup-
plementary Fig. 26). AuNC@h-SiO2 and pCOL-AuNC@h-SiO2 did not
result in any measurable reactions, verifying the indispensable role of
Pd in catalytic hydrogenation and the nonreactivity of Au and pCOL.
Upon replacing laser irradiation with dark thermal conditions at dif-
ferent temperatures, pCOL-Pd/AuNC@h-SiO2 exhibited variable reac-
tion rates and 1b selectivities (Supplementary Fig. 27). For instance,
increasing the temperature to60 °C affordedhigh conversions (>99%),
similar to the laser-induced reaction, but resulted in the loss of 1b
selectivity (<70%). In addition, continuing the low-temperature reac-
tion for longer periods (>24 h) resulted in poor 1b selectivity (Sup-
plementary Fig. 28). In a separate study under laser irradiation,
increasing the laser flux had a much lower adverse effect on 1b selec-
tivity, whereas high conversions were observed even at low laser fluxes
(Supplementary Fig. 29). However, raising the bulk solution tempera-
ture under light irradiation caused a significant loss of 1b selectivity
(Supplementary Fig. 30).

Distinctly, under laser irradiation conditions, high conversions in
conjunction with high alkene product selectivity strongly suggest a
favourable contribution of nonthermal effects have a major con-
tribution. Through Raman thermometry analysis (details in SI), we
estimated the exact temperature on the plasmonic catalyst’s surface
not to rise more than 50 °C under moderate continuous wave laser
fluxes (details in SI, Supplementary Fig. 31). These data again indicated
that plasmonic nonthermal effects played a dominant role in catalytic
induction, instead of the contribution from the photothermal path-
way. The presence of pCOL protected 1b from overhydrogenation
effectively only in the case of plasmonically induced reactions,
whereas thermal conditions promoted overhydrogenation regardless
of the presence of pCOL. Adverse effects of temperature on semihy-
drogenation are already known, and they seem to dominate in the case
of dark conditions43. As previously studied, LSPR-induced highly
localised energy flow can selectively activate interfacial catalytic sites
through the coupling of s electrons in the plasmonic metal to d elec-
trons in the transition metal, resulting in the direct localisation/exci-
tation of charge carriers in the transition metal shell without raising
reaction temperatures17,35–38,44,45. Switching ‘on’ and ‘off’ the laser
repeatedly during a reaction resulted in significantly higher rates only
when the light was ‘on’, which validated the continuous participation
of LSPR excitation in driving the reaction (Fig. 3e). Transient absorp-
tion (TA) measurements were performed to verify the excited charge
carrier dynamics, where the hot charge carrier generation efficiencies
of AuNC, Pd/AuNC, AgNC and Pd/AgNC were sufficiently high to be
extracted during the catalytic reactions, and the lifetime constants of
all themetal NCs wereminimally affected by the pCOLmodification of
the plasmonic NC surface (Supplementary Figs. 32 and 33). A recycl-
ability test using the same pCOL-Pd/AuNC@hSiO2 catalyst multiple
times (five cycles) exhibited a negligible loss in activity and selectivity,
validating the highly robust nature of the hybrid catalyst, which was
also confirmed by the minimal change in catalyst morphology and
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elemental composition after the reactions. (Fig. 3f and Supplementary
Fig. 34). Previously, Camargo et al. demonstrated that LSPR excitation
can also increase the selectivity of the semihydrogenation reaction by
a charge delocalisation mechanism; however, the selectivity was
reduced near reaction completion38. Remarkably, in our case, similar
nonthermal plasmonic participation in selectivity enhancement can
also be expected to some extent, along with the additional favourable
contribution by the pCOL maintaining high selectivity until reaction
completion. Moreover, the relatively short duration (<1 h) of plasmo-
nically induced reactions reduces the risk of overhydrogenation at
ambient bulk temperature. Externally raising the temperature during
the laser-induced reaction also reduced the 1b selectivity up to 65%,
further validating the importance of nonthermal conditions (Supple-
mentary Fig. 35).

The ultrathin porous pCOL facilitated the easy entry of the alkyne
substrate and the postreaction exit of the alkene product to and from
the catalytic sites,maintaining fast diffusion-limited reaction rates. In a
control experiment, Pd/AuNC encapsulated inside the bulk-COF shell
exhibited extremely slow conversion of disubstituted alkyne 1a (Sup-
plementary Figs. 15 and 36). This was consistent with the results of
previous studies on thick COF/MOF shells. Considering the negligible
size differences between alkynes, alkenes and alkanes, a purely mole-
cular size-dependent steric effect at the pCOL-Pd/AuNC interface,
which determines the reaction selectivity, is unlikely. Alternatively,
owing to the presence of Lewis basic nitrogen atoms and aromatic
rings, pCOL could play an electronic role in modifying the molecular
adsorption behaviours. Notably, TAE-Pd/AuNC@h-SiO2 with non
crosslinked aminated TAE ligands exhibited only a slight improvement
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(<10%) in 1b selectivity compared to ligand-free Pd/AuNC@h-SiO2

(Supplementary Fig. 37). This signifies the distinctly advantageous role
of pCOL over loosely bound molecular ligands. In comparison, the
ligand-free commercial Pd/C catalyst at 60 °C exhibited >99% drop in
the alkene 1b selectivity within 1 h (Supplementary Fig. 25). The con-
sistently high TOF at ambient temperature and pressure, along with
the minimal loss in product selectivity, is an outcome of the present
catalyst design compared to previously reported methods (Supple-
mentary Table 1).

Mechanistic studies for catalytic reactions
To monitor the real-time molecular adsorption/desorption phenom-
ena during plasmonic catalysis, we conducted an in situ SERS-based
study (details in SI and Fig. 4), as SERS signal intensities are highly
sensitive to the proximity of probe molecules to the plasmonic
surface46–48. We performed time-dependent SERS signal acquisition
from a solution of alkyne 1a, NH3·BH3 and pCOL-Pd/AuNC (Fig. 4).
Originally, the signature Raman peaks at 1595 and 2140 cm−1, corre-
sponding to alkyne 1a, gradually decreased as the hydrogenation of 1a
to alkene 1b progressed [the presence of 1b in the reaction super-
natant was confirmed by 1H-NMR (Supplementary Fig 38)]. This indi-
cated the frequent regular adsorption of alkynes on Pd/AuNC.
However, the Raman peak at 1630 cm−1 corresponding to alkene 1b
exhibited only transiently weak presence, indicating the fast deso-
rption from the Pd/AuNC surface in pCOL-Pd/AuNC (Fig. 4a). With the
control catalyst devoid of pCOL, alkene 1b exhibited relatively longer
presence (Fig. 4b). In another SERS experiment, we directly attached a
thiolated alkyne to the surface of the Pd/AuNC in pCOL-Pd/AuNC
(details in SI and Fig. 4c). During the reaction, the SERS signals of the
surface-attached alkyne at 1595 and 2140 cm−1 quickly vanished (within
5min), with the appearance of a peak at 1630 cm−1 corresponding to
the double bond for a short time (up to 5min) owing to the transient
stability of the alkene under hydrogenation conditions. In this case,
intentionally restricted desorption of the alkyne caused over hydro-
genation despite the presence of pCOL. In a separate Raman experi-
ment, we studied the fate of a metal hydride produced from the
reaction of NH3.BH3 with the catalyst surface, which is a crucial

element in the hydrogenation reaction mechanism. In the case of Pd/
AuNC (without pCOL), the Pd–H vibrational frequency at 778 cm−1 was
clearly observed from the early stage of the reaction and it decreased
slowly with time. In contrast, in the case of pCOL-Pd/AuNC, the Pd–H
peak intensity at 778 cm−1 was weak and almost faintly visible from the
early stage of the reaction, and thereafter quickly vanished, indicating
a more facile hydrogen desorption phenomenon in the case of pCOL-
Pd/AuNC compared to Pd/AuNC (Supplementary Fig. 39).

These results directly verified the favourable adsorption of
alkynes and fast desorption of the produced alkenes, while maintain-
ing a low effective metal hydride concentration on the surface, as the
major events responsible for semihydrogenation selectivity. We pro-
pose that the distinct adsorption of alkynes, alkenes and hydrogens on
the Pd/AuNC surface is controlled by competitive electronic interac-
tions between perfectly aligned pCOL’s crosslinked molecular units.
To study the interfacial electronic effect in detail, DFT calculations
were performed on a simplified Pd-pCOL interface model using the
Vienna ab initio simulation package (VASP) (details in SI and Supple-
mentary Fig. 40). DFT calculations estimated the adsorption energy of
the alkene and desorption energy of hydrogen to be −1.45 and 1.56 eV
on the Pd-surfacemodified with pCOL subunit, respectively, which are
different than those on the bare Pd surface (Supplementary Figs. 40
and 41). Consistent, extensive coverage of the Pd/AuNC surface by
pCOL electronically affects the adsorption energy of C═C double
bonds, causing fast desorption. Strong metal–organic electronic
interactions between pCOL and Pd/AuNC make the surface electron-
rich (confirmed by XPS and Raman spectroscopy) (Supplementary
Figs. 42 and 43). DFT-based Bader charge analysis revealed that the Pd
surface atoms were more electronically rich (each Pd atom earns 0.38
electrons) after interfacing with the pCOL subunit (Supplementary
Fig. 44). These factors favour the adsorption of relatively electrophilic
alkynes, but disfavour the adsorption of electron-rich alkenes. Fur-
thermore, we conducted hydrogen/deuterium (H/D)-exchange studies
by NMR and concluded that both hydrogens were transferred by BH3

without any participation from the protic solvent. Additionally, we
confirmed a moderate kinetic isotope effect, kH/kD = 1.67, using
NH3·BD3 (Supplementary Figs. 45 and 46). Based on this mechanistic

Fig. 4 | Real-time SERS-based monitoring of diphenylacetylene semihy-
drogenation using different catalysts. a Using pCOL-Pd/AuNC@h-
SiO2, the Raman peak corresponding to the product alkene emerges only slightly
due to the fast desorption from the plasmonic catalytic surface. b Using Pd/
AuNC@h-SiO2 (without pCOL), the Raman peak corresponding to the product

alkene emerges significantly and afterwards vanishes due to the over-reduction.
c Using pCOL-Pd/AuNC@h-SiO2 (with surface-tethered thiolated diphenylacety-
lene), the Ramanpeak corresponding to the product alkene does not appear due to
the forced over-reduction of surface-bound alkyne. In molecular models: green =
phenyl group, red =H, grey =C.
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evidence, we illustrate a plausible mechanism in Supplementary
Fig. 47. In a substrate-scope study, pCOL-Pd/AuNC demonstrated high
conversion yields and consistently high semihydrogenation selectiv-
ities for various terminal and internally substituted alkyne substrates
(Supplementary Figs. 48–68).

In conclusion, we created and utilised a metal–organic interface
to effectively control molecular adsorption–desorption behaviour
during heterogeneous catalysis. Skin-like ultrathin pCOL formed a
microenvironment on the metal surface, endowing favourable
steric and electronic effects, allowing facile molecular diffusion and
consistently remaining on the NC surface to dictate the reaction
selectivity. As a crucial advancement over common organic ligands
and thick rigid shells, in a middle-ground approach, our strategy
optimally harnesses the exotic features of organic modifiers on the
metal NP surface49–51. Beyond the rich literature on the effect of
metal–metal/metal oxide interfaces, our study opens the avenues
for controlling and exploitingmetal–organic interfaces for sustainable
catalytic synthesis. However, organic modifiers on NC surfaces
are commonly borrowed from bottom-up colloidal synthesis
routes. The direct synthesis of different metal nanostructures with
suitable designer COLs must be explored for wide adoption and
diversification.

Methods
Synthesis of pCOL/AgNC@h-SiO2

In a 8mL glass vial, 1,3,5-tris(4-aminophenyl)benzene (TAE) (8.8mg,
0.025mmol) and 1,4-benzenedimethanol (DAL) (7mg, 0.05mmol)
were mixed with a 5mL solution of 1,4-dioxane:mesitylene (4:1, v/v)
using ultrasonication. In another glass vial, AgNC@h-SiO2 (5mg) was
thoroughlydispersed in 1mL solution of 1,4-dioxane:mesitylene (4:1, v/
v) using sonication. This dispersion was quickly injected into the first
vial containing the TAE and DAL solution, all while under vigorous
stirring with a small (10 × 3mm) magnetic stirring bar. Next, the entire
solution was exposed under a blue laser (405 nm; 0.3W/cm2) for 1 h
with constant stirring at 500 rpm, with details of the instrumental
setup as shown in SI, Experimental setup-1. After the reaction was
completed, the product was centrifuged and subsequently washed
twice with a mixture of 1,4-dioxane:mesitylene (4:1, v/v) followed by
anhydrous ethanol (99.9%). The final product, pCOL/AgNC@h-SiO2,
was dispersed in anhydrous ethanol (99.9%) and stored at 4 °C.

Synthesis of pCOL/AuNC@h-SiO2

In the beginning, the mixture of TAE (8.8mg, 0.025mmol) and DAL
(7mg, 0.05mmol) was prepared in 5ml of 1,4-dioxane:mesitylene (4:1,
v/v) solution. A separately prepared solution of AuNC@h-SiO2 (5mg)
in 1mL of 1,4-dioxane:mesitylene (4:1, v/v) was quickly transferred into
the vial containing the TAE and DAL mixture and stirred with a mag-
netic stirring bar (10 × 3mm). Next, the solution was irradiated with
blue laser (405 nm; 0.3W/cm2) for an hour with constant stirring at
500 rpm. The product was subjected to centrifugation and underwent
a washing process (twice) using a mixture of 1,4-dioxane:mesitylene
(4:1, v/v) and anhydrous ethanol (99.9%). The final product, pCOL/
AuNC@h-SiO2, was dispersed in anhydrous ethanol (99.9%) and stored
at a temperature of 4 °C for further use.

Synthesis of pCOL-Pd/AuNC@h-SiO2

Initially, 4mg of pCOL/AuNC@h-SiO2 was dispersed in 5mL of EG and
exposed under a 532 nm laser (0.3W/cm2), followed by rapid injection
of 20 µL Na2PdCl4 (5mM in EG). Then, the entire solution was con-
tinuously stirred at 500 rpm for 30min under laser irradiation using a
magnetic stirring bar (10 × 3mm). Finally, the product was centrifuged
and washed twice with 2mL of anhydrous ethanol (99.9%). The final
product, pCOL-Pd/AuNC@h-SiO2, was dispersed in anhydrous ethanol
(99.9%) and stored at a temperature of 4 °C for further use.

Semihydrogenation of diphenylacetylene
To initiate a semihydrogenation reaction, diphenylacetylene (10mg,
0.056mmol, 1 equiv.) was dissolved in 1mL of methanol in a glass vial.
Subsequently, the synthesised pCOL-Pd/AuNC@h-SiO2 (1mg, Pd
0.05mol%) catalyst was transferred into that solution and fully dis-
persed under continuous stirring for 5min. Following this, NH3.BH3;
(8.6mg, 0.280mmol, 5 equiv.) was added to the reactionmixture. The
entire solution was irradiated under a 405 nm laser (0.3W/cm2) with
constant stirring at 500 rpm using a small (10 × 3mm) magnetic stir-
ring bar for the next 1 h. Upon the completion of the reaction, the
catalyst was removed by centrifugation (10,000 rpm) and the metha-
nolwasevaporatedunder reducedpressure. Following that, 1mLofDI-
water was added and the product was extracted in 1mL of ethyl
acetate. The ethyl acetate layers were combined, dried over sodium
sulphate, and concentrated under reduced pressure, and the 1H NMR
was recorded (conversion 100%; selectivity of alkene ~99%, mass yield
of alkene ~9.9mg). The conversion and selectivity were calculated
using the relative peak integration values.

Real-time SERS study for semihydrogenation
In the beginning, diphenylacetylene (10mg, 0.056mmol, 1 equiv.) and
pCOL-Pd/AuNC@h-SiO2 catalyst (1mg, Pd 0.05mol%) were thor-
oughly mixed in 1ml methanol and continuously stirred using a mag-
netic stirring bar for 5min. Subsequently, NH3.BH3 (8.6mg,
0.280mmol, 5 equiv.) was quickly added into the solution and thor-
oughly mixed. Immediately, a small portion (100 µL) of the reaction
mixture was pipetted out and transferred into the micro-holes of the
microscopic glass slide, fully covering the holewith an ultra-thin round
glass slide (as shown in SI, Experimental setup-3). It was then placed
under a 532 nm laser attached to a Raman spectrometer, and the
corresponding time-dependent spectra were recorded. A similar
approach was employed to obtain time-dependent Raman spectra
using the controlled catalyst, Pd/AuNC@h-SiO2. In the case of
thiolated-diphenylacetylene tethered on pCOL-Pd/AuNC@h-
SiO2 (synthesis details in SI), 1 mg of catalyst was dispersed in 1 mL
methanol, followed by a rapid addition of NH3.BH3 (8.6 mg, 0.280
mmol, 5 equiv.) under constant stirring. Then, 100 μL of the reaction
mixture was pipetted out, and a real-time SERS study was performed.

Data availability
Source data are provided as a Source Data file. Source data are
provided in this paper.
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