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Real-data-driven real-time reconfigurable
microwave reflective surface

Erda Wen 1 , Xiaozhen Yang 1 & Daniel F. Sievenpiper1

Manipulating the electromagnetic (EM) scattering behavior from an arbitrary
surface dynamically on arbitrary design goals is an ultimate ambition formany
EM stealth and communication problems, yet it is nearly impossible to
accomplish with conventional analysis and optimization techniques. Here we
present a reconfigurable conformal metasurface prototype as well as a work-
flow that enables it to respond to multiple design targets on the reflection
pattern with extremely low on-site computing power and time. The metasur-
face is driven by a sequential tandemneural networkwhich is pre-trained using
actual experimental data, avoiding any possible errors that may arise from
calculation, simulation, ormanufacturing tolerances. This platform empowers
the surface to operate accurately in a complex environment including varying
incident angle and operating frequency, or even with other scatterers present
close to the surface. The proposed data-driven approach requires minimum
amount of prior knowledge and human effort yet provides maximized versa-
tility on the reflection control, stepping towards the end form of intelligent
tunable EM surfaces.

It has been decades since the idea was first proposed to control EM
field behaviour with metamaterials—structures with subwavelength
geometrical details1–3. In particular, its 2-D version, i.e., metasurface,
draws broad attention and is intensively investigated due to its
advantage in engineering aspects—being able to be manufactured
relatively easily on thin sheet materials4. The reported application
space of metasurfaces is vast, ranging from directing surface waves in
the near-field5, beam-forming in the far-field6, to cloaking7 and
holography8,9, etc. Beyond the planer regime, efforts have been made
to implement flexible metasurfaces in hope of bringing these intri-
guingwavemanipulation capabilities to surfaceswith arbitrary shapes.
However, the mechanism of wave interaction with curved surfaces is
significantly more complex than its flat counterpart10, and as a result,
research has mainly focused on optimizing for specific tasks such as
wave-front control11, radar-cross-section (RCS) reduction12 or polar-
ization conversion13. To realize a reconfigureable version is even more
challenging. To start with, the severe RF loss of thin, electrically tun-
able metasurface generally limits its application to less loss-sensitive
tasks in microwave frequency14–16. In addition, there is a lack of accu-
rate and efficient algorithms to support the real-time inverse design.

Meanwhile, recent years have witnessed the emergence of
exploiting neural networks (NNs) in complicated EM/photonic sys-
tems. On the one hand, as a good regressor of highly non-linear
functions, NNs provide a cost-efficient solution to many analysis pro-
blems, from solving Poisson’s equations17, to handling inverse EM
scattering problem18. On theother hand, recent researchdemonstrates
the strongdesign capability ofNNs, includingoptimizing linear phased
arrays19, or designing photonic devices and nanoparticles20–24. One
special advantage of a pure NN-driven scheme, compared to conven-
tional optimization methods, is that no iterative process is involved in
the prediction phase, which is crucial for an on-site system in need of
fast response. This feature has been exploited recently to facilitate an
emerging concept—the intelligent metasurface, which refers to meta-
surfaces that tune themselves in an adaptivemanner, with little human
intervention25, from beam-forming26,27, to sensing purposes28,29. In
theory, similar strategy can be used for curved surfaces, and pre-
liminary studies on NN-driven non-planer surface have been reported
for cloaking or illusion applications30–32, yet a more universal and
versatile scheme is still needed for the surface to dynamically operate
under different types of tasks.
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This Article aims to demonstrate onepossible universalNN-driven
scheme to realize an intelligent surface that can respond to arbitrary
design goals. We start by demonstrating a practical realization of a
tunable conformal coating operating atmicrowave frequencies, whose
reflectionpattern can be controlledwithmulti-channel bias voltages. A
sequential neural network architecture is then proposed, which can
take free-formdesign targets on the pattern and environmental factors
as the input. We demonstrate that for reconfigurable EM design, it is
very feasible to collect and utilize real measurement data, which turns
out to be fast, accurate, and very adaptive to different environments
compared to simulated or calculated dataset.

Results
Reconfigurable flexible metasurface
The conformal metasurface design is based on a classical tunable
reflectivemetasurface topology in ref. 33. The surface is tiled with sub-
wavelengthmetallic patches, with varactor diodes placed between the
neighboring unit cells. By changing the reverse bias voltage across a
varactor diode, the reflection spectrum of a unit can be shifted. This
results in tuning the local reflectionphase in a frequency range close to
the resonance, and collectively all units forma reflection pattern in the
far-field region.

While this continuous-phase tuning approach generally provides
greater degrees of freedom than discrete-state tuning methods like
binary phase stateswith pin-diodes (alsoknownasphasecoding)34, it is
more sensitive to dissipation losswhich leads to significant decrease in
reflection amplitude near the resonant frequency. In supplementary
note 1we showhow it is especiallyproblematic for designswith smaller
physical volume, and why thicker substrate is preferred to maximize
the radiation efficiency of the metallic patches. This is particularly
unfavorable for conformal design since thick radio frequency (RF) low
loss materials are not typically flexible. To address this we propose a
double-layered rigid-flex stacking structure to provide the overall
flexibility of the coating: unit cells are implemented using relatively
thick microwave materials, which are separately attached to a single
ultra-thin flexible layer that also contains circuits for bias feeding. In

this demonstration, we built 24 separate columns, with 10 patches in
eachcolumn,making a 38.51 cm× 13.64 cm× 1.97mmsurface. Units on
each column share the same reversed bias voltage, forming a 24
dimensional vector V, realizing pattern control in the azimuth plane,
with intensity noted as D(θ).

Figure 1c, d depict themeasured static reflection amplitude/phase
response of a flat board. Note that this data is not used throughout the
entire inverse design workflow but rather merely as an initial exam-
ination and verification of the surface reflection performance. The
results show that theboardcovers a large reflectionphase rangewithin
the 4.5–4.7 GHz frequency band that is necessary to achievemaximum
pattern tunability.

Determining the relationship between the reflection pattern and a
given bias combination D(θ) = f(V) can be challenging, due to the non-
linear relationship between bias voltages, local reflection phases and
directivity to certain directions. Additionally, the coupling and multi-
reflection effect in the concave regions invalidates any theoretical
models that consider the surface as simply a reflective antenna array31

(Supplementary Note 3). Other factors that complicate the problem
are, but are not limited to, the reflection phase that depends to dif-
ferent incident angle for each column (Supplementary Note 3), toler-
ance of individual lumped components, or in some cases, the
presentation of scattering objects near the device. In this scenario, a
pure data-driven model is especially advantageous, since it can auto-
matically take into account of all these factors by using the real mea-
sured data. However, the extremely large search space of the input
variables renders the conventional interpolation or regression meth-
ods impractical and make the neural network method the best
candidate.

Sequential tandem neural network
Consider the fact that a simple feed-foward network (FFN), or a mul-
tilayer perceptron (MLP), can theoretically approximate any given
function provided large enough scale, it is tempting to believe it can be
used to find the underlying pattern-voltage mapping V = f−1(D). The
pitfall is that the design parameters and design goals usually have a
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Fig. 1 | Conformal metasurface and its static performance. a Illustration of the
conformable rigid-flex printed circuit design. The substrate of each columns is
made with 1.57mm semi-rigid reinforced PTFE material designed for microwave
applications. They are then bonded to a singleflexible sheetmade of 0.18mm thick

polyimide, with a feeding network on the bottom side to provide the varactorswith
d.c. bias voltages.b Photo of the prototype. c,dMeasured reflection amplitude and
phase response under normal incidence of the flat surface under various bias
voltages.
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multiple-to-one relationship. In this case, similar or even identical
reflection patterns may correspond to very different bias voltage
combinations. When the network is trained with gradient descent
methods, conflict gradientsmay arise fromdatawith very similar input
(i.e. pattern) but very different labels (i.e. bias voltages), preventing the
parameters from converging. For a problem where the input contains
less information than the output, as in this case, a generative type of
neural network is necessary. Recent large generative models such as
diffusion35 and transformer36 have shown extremely powerful cap-
ability in generating image and language content, even stepping
towards artificial general intelligence (AGI)37, yet for engineering pro-
blems on specific tasks, small-scale efficient models are still preferred,
among which the tandem architecture has proven a very effective
framework20,21,38–40.

In tandem architectures, a predictor is first trained to solve the
analysis problem, in our case, the bias-pattern mapping; then another
network, the desinger, is trained to handle the synthesis procedure—
determining the bias combination given a specific pattern. The
designed bias can be fed into the predictor to produce an expected
pattern ~D, and the performance can be evaluated by comparing the
discrepancy between ~Dwith the design goalD, which serves as the loss
function for training designer network. Importantly, the second step
does not involve D −V mapping from any dataset, thus there is
expected to be no gradient conflict. Essentially, instead of fitting the
reverse function f−1( ⋅ ), the network aims at seeking any function that
simply optimizes the design performance.

Notice in conventional tandem networks reported by previous
works, a design target with the exact form as the predictor’s output is
required as the input of the network, for example, a vector that con-
tains the whole pattern with a certain resolution. This largely limits its
practicality since in many cases, free-form design goals are more
favorable, for example, one may want to specify several target direc-
tivity intensity in certain directions without having to constructing the
entire pattern. To enable this free-form input capability, here we
introduce the recurrent neural network (RNN) layer in the designer
Fig. 2. RNN is typically utilized to process temporal signals such as
video and speech41: the recurrent layer updates itself from a current
state as a sequential signal is fed in, resulting in a memory effect on all

past inputs in the sequence. Here we can use a sequence of design
goals as the input, which could be, for example, a sequence with a
length of lt, repeating nt angle-directivity pairs ðθi,Dθi

Þ. Despite that
there is no explicit temporal relationship between these design goals,
we still expect the layers to memorize all those targets within the
sequence. In this way, the network can respond to design goals with
arbitrary dimensions as long as nt is below reasonable threshold to
avoid vanishing gradient.

For the predictor, convolutional layers are employed, which is
based on the physical knowledge of a linear phased array42: the same
phase difference between neighboring units should have similar effect
in the far-field no matter where they are located within the array, and
therefore the parameters can be shared among all adjacent units. The
convolutional layers significantly reduce the number of parameters so
that the predictor requires less data and suffers less from overfitting.

To allow the surface to operate with changing incident frequency
and under different incident angles, this varying environmental
information can be also cascaded to the input design goal vectors
in the designer, and to the input bias-voltage vectors in the predictor.

Experiments and Results
Here we demonstrate four scenarios in which the conformal meta-
surface may operate, with an increasing complexity as follows: A) the
simplest case of a flat surface operating under a normally incident
plane wave at a single frequency; B) a curved surface, under normal
incidence, at a single frequency; C) a curved surface working in a
varying environment: with incident wave angles ranging from − 30° to
30°, and a frequency band from 4.5GHz to 4.7 GHz, and D) a curved
surface under varying incident angle and frequency, with a plastic
scattering object present in front of the surface, disturbing the
reflective pattern. The pattern data are gathered using a setup in an
anechoic chamber shown in Fig. 3. The patterns are collected in 5-
degree-resolution from0° to 180°, forming a 37-dimensional vectorD.

For cases with constant environment (case A and B), 20,000
samples are collected with random combinations of bias voltages
ranging from 0 V to 18 V on each channel. For case C and D, 4000
random bias samples are collected for each incident angle, with 13
incident angles; 5 random frequencies within the band of interest are
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Fig. 2 | Real-data-driven real-time inverse design workflow. (a) The time-
consuming and computationally-heavy part are done off-site in the first two steps -
data gathering andnetwork training.Thepre-trainednetworkcanbe thendeployed
to on-site controllers with very limited computing resources to realize fast-
response inverse design. (b) Proposed sequential tandem network architecture.

The predictor is first trained with measured pattern data. Then the parameters of
the predictor are fixed and random design target sequences are used to train
the designer. Detailed layer dimensions and connections are shown in Fig. S9 in
Supplementary Note 5.
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sampled for each incident/bias setup,making a total 260,000 samples.
It isworth noting here that the number is absolutely not comparable to
dataset needed for, say, building a table lookup table: a most coarse
grid search with a resolution of 0.2V (very reasonable from the
reflection curve) from 10V to 18V makes 4024 = 2.8 × 1038 samples. As
the response time of the varactor diodes is relatively fast, on the order
of nanoseconds, the data collecting speed is mostly limited by the
response time of the control/measurement instrument being used,
generally on the order ofmilliseconds. To obtain a stable result for our
setup, 20 ms wait time is used in between samples so the total data
collection time is on the order of several hours, details listed in Table 1,
which is much faster than any full-wave simulation methods can
achieve.

The data is split 80/20 as the training/test set to train and evaluate
the predictor. Fig. S11 in SupplementaryNote 5 shows the performance
of the trained predictor network. The prediction matches extremely
well with measured data in test set for all four cases, with an error
almost close to the noise level in the chamber, and considering the
signal to noise ratio (SNR) is estimated to be above 30 dB (Supple-
mentary Note 4), the trained predictor provides great accuracy for the
following-up designer training.

Training the designer network is a non-supervised learning pro-
cess, since the label for any design targets is itself: the loss function is
defined by the masked means square error (MSE) on target directions
LðT,~DÞ= 1

nt

Pnt
i = 1 ðDθi

� ~DðθiÞÞ
2
. In this demonstration, we randomly

generate sequences with up to five targets. In practice, we found the
sequence length lt should be three or four times of target numberNt to
yield a converged output, thus for up to 5 targets, we choose lt = 20.
Considering the energy distributing effect for multiple targets, the
directivity ranges for different target numbers nt is ½0,Dmax=

ffiffiffiffiffi
nt

p �,
where Dmax = 8.85 is the maximum directivity that can be ideally
achieved with the surface aperture. For cases A and B, 100,000 sam-
ples are generated, and for case C andD, 260,000 samples. The data is
again split 80/20 for training/test set, and the performance is shown in
Fig. 4. The network performs very well for fewer numbers of targets
and still decentlywell for 3 ormore targets, obtaining an averageRMSE
below 1 for most cases.

It is worth noticing that this performance is evaluated on random
targets that is not necessarily physically feasible, such as the existence
of a peak and a null in proximity, or strong beams at the end-fire
direction.

Compared with the training process, the prediction of the net-
work consumes minimal computing resources. Therefore, this trained
network can be deployed on modest micro-controllers with very lim-
ited computing power. In Table 1 we demonstrate the speed of inverse
design (with designer) and the speed of evaluation (with predictor) in
addition to inverse design on a controlling system using a cheap
commercially available SoC controller Raspberry Pi. The speed
depends on various factors such as the machine learning platform,
batch sizes of input, etc, but generally the responding time for both
designing (with designer) and evaluation (with predictor) are on the
order of milliseconds per sequence, which can be considered as
real-time.

Discussion
Being able to specify target directivities in multiple directions makes
the surface suitable for numerous applications. One simple example is
to reduce the back-scatter of a surface for manipulating RCS in a
dynamic environment—by specifying a null at the direction of
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Fig. 3 | Experiment setup for pattern data gathering. The data collection is done
in an microwave anechoic chamber but can be also done in environment most
resembles specific real-world condition as needed. A vertically polarized beam is
excited with a horn antenna Tx, and its specular reflection from the surface under
test (SUT) is received by another horn antenna Rx. The intensity and phase are
recorded by a vector network analyzer (VNA). Both SUT and Tx antenna are

attached to a servo motor to realize azimuth pattern scanning. Another servo
motor is used to rotate the SUT to simulate incident angle changes. Revered bias-
voltages of 24 channels are generated and applied to the board with data acquisi-
tion (DAQ) cards. The whole data gathering process is automated controlled by a
single National Instruments controller.

Table 1 | Time consumption of tasks in the workflow

Case A Case B Case C Case D

Data
gathering

5h26min 5h27min 14h37min 14h32min

Network
training1

Predictor 5min 18min 27min 26min

Designer 46min 1h1min 2h5min 3h44min

Network
prediction2

Inv. design 5.3ms 5.5ms 7.7ms 7.7ms

Inv. design +
evaluation

5.9ms 6.0ms 10.3ms 9.8ms

1Server hardware specs are described in Methods, network training process in Supplementary
Note 5.
2On a lite micro-controller Raspberry Pi 4, specs given in Methods.
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the incoming wave, the surface can be constantly optimized to reduce
the mono-static RCS to a single station, as shown in Fig. 5a. A more
intriguing task is to instruct the surface to cancel out the scattering
fromanobject in front of the surface, keeping it frombeingdetected in
certain directions, as in Fig. 5b. It can also be utilized for intelligent
communication applications, performing tasks ranging from creating
a single pencil beam, as in Fig. 5c, to arranging multiple peaks and
nulls, completely redistributing the incoming energy as in Fig. 5d. In
Fig. S17, we alsogivemore examples for beams/nulls steering, themost
common design targets in real world scenarios.

The design presented in this paper works over relatively narrow
bandwidth but this is not limited by the model itself: design para-
meters like substrate thickness can be increased to increase the
bandwidth. The efficiency can be improved as the semiconductor
technology for varactors develops. The double stackmethodology can
be also used for any other units design such as in30, which is more
suitable to be accommodated to a 2-D surface in the future due to the
component placement (Supplementary Note 6). Modifications can
also be made to the network input to achieve even higher versatility,
for example by expending the target pairs with operators to form
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tokens like (θi,Di, ≤) representing design goalD(θi) ≤Di. Other types of
tasks, such as polarization conversion or holographic pattern, can also
be achieved with proper types of surface coating design, by including
polarization or near-field data in the input and output of the network.
Other possible future study may include enabling the coating to work
on moving parts with constantly varying shapes, by parameterize the
geometry and include that information into the network.

Considering the versatility of the proposed workflow, we believe
this work paves the way for the next generation of tunable EM devices
working under extremely complex and dynamic environments. In
addition, the proposed sequential tandem architecture can potentially
be accommodated to any real-time inverse design problem in different
science/engineering fields.

Methods
Rigid-flex PCB manufacturing
The rigid layer is made with Rogers RT/Duroid 5880 material and the
flexible layer is made with polyimide substrate,The unit periodicity is
13mm along the column and 16.05mm across the column with
3.05mmseparation in between columns (SupplementaryNote 1).GaAs
Hyperabrupt high-quality-factor varactor diode Macom MA46H070-
1056 are used across the units. Each channel is protected by a 10 kΩ
series resistor RNCF0603TKY10K0 by Stackpole Electronics Inc.

Measurement setup
The static reflection spectrum of a flat metasurface is measured with a
single horn RCDLPHA2G18B by RF-Lambda. S11 is recorded with an
Agilent E5071C VNA for 3 cases: (1) bare horn, (2) metatasurface in
front of the horn, and (3) an aluminium plate of the same size in front
the horn. The effective reflection amplitude and phase are then cal-
culated (Supplementary Note 2).

The example curve in case B,C and D is a spline with 4 anchor
points. The plastic scatter in case D is a 3-D printed PLA cylinder
(Supplementary Note 3).

The pattern collection test bench is controlled by a single con-
troller PXIe-8135 by National Instruments(NI) running python 3.7. For
the bias voltage supply, three 8-channel 16-bit DAQ cards NI PXI-6733
and a d.c. source Keithley 2410 are used. The azimuth scanning is

realized with an ETS Lindgren 2005 motor and the incident control is
facilitated by a ZOSKAY DS3235SG servo motor, driven by an Adafruit
FT232Hbreakout and aAdafruit 12-bit PMWdriver. Directivity andRCS
are calculated with respect to the measured reflection from an alu-
minum plate of the same size as the board. Blank case calibration and
time-gating are used in post-processing to reduce noise and undesired
reflection from the experiment setup (Supplementary Note 4).

Neural network and training process
The neural network is implemented using TensorFlow 2.6.0 under
Python 3.9.5, and is trained on the UCSD Data Science/Machine
Learning Platform (DSMLP) using four Intel XeonGold 6130 CPU @2.1
GHz core and one NVIDIA GeForce GTX 1080 Ti GPU.

The designer consists of 3 recurrent layers and 3 flat fully con-
nected layers. The predictor consists of 3 convolutional layers and 3
flat fully connected layers. The parameters are trained with ADAM43

optimizer. L2 regularizaion is used for the predictor to reduce the
overfitting44. See Supplementary Note 5 for the detailed training pro-
cess. The SoC computer for network prediction speed evaluation is
Raspeberry Pi 4 with Quad-core Cortex-A72 @1.8GHz and 8GB RAM,
running Python 3.7.3 and TensorFlow lite 2.3.0. The time is the average
on a dataset with 6000 samples for case A,B or 6500 smaples for case
C,D, processing with a batch size of 500.

For visual examples in Fig. 4 and Fig. S13–S16, we use random
seeds 1,2,3,4 when sampling for case A,B,C and D, respectively. to
ensure the generality and reproductivity.

Data availability
Rawpatterndata and processing code to generate training samples for
the neural network has been deposited to https://doi.org/10.6084/m9.
figshare.22908602. Source Data for Fig. 1c, d, Fig. 4e–h, Fig. S13–S16b,
from which Fig. 4i–l are excerpted, and Fig. 5e–l, are provided with
this paper.

Code availability
The example Python code (in Jupyternote format) for building and
training the network is provided on https://github.com/ErdaWen/Real_
data_driven_Metasurface.
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Fig. 5 | Exemplary applications of the free-form design capability. a Creating
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directions to stealth a scatterer in front of the surface. c Creating a pencil beam at
65∘ direction under a normal incident. d Creating beams at 75∘ and 150∘ direction

and nulls at 30∘ and 100∘, under 15∘ incident. The operating frequency is 4.6GHz for
these four examples. e–h Bias voltages on channel 0–23, designed by the designer.
i–l The corresponding patterns.
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