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High resolution mapping of the tumor
microenvironment using integrated
single-cell, spatial and in situ analysis
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Single-cell and spatial technologies that profile gene expression across awhole
tissue are revolutionizing the resolution ofmolecular states in clinical samples.
Current commercially available technologies provide whole transcriptome
single-cell, whole transcriptome spatial, or targeted in situ gene expression
analysis. Here, we combine these technologies to explore tissue heterogeneity
in large, FFPE humanbreast cancer sections. This integrative approach allowed
us to explore molecular differences that exist between distinct tumor regions
and to identify biomarkers involved in the progression towards invasive car-
cinoma. Further, we study cell neighborhoods and identify rare boundary cells
that sit at the critical myoepithelial border confining the spread of malignant
cells. Here, we demonstrate that each technology alone provides information
about molecular signatures relevant to understanding cancer heterogeneity;
however, it is the integration of these technologies that leads to deeper
insights, ushering in discoveries that will progress oncology research and the
development of diagnostics and therapeutics.

High-throughput methods in single-cell genomics have made it pos-
sible to cluster thousands to millions of cells from a single experiment
into distinct types based on whole transcriptome gene expression and
cell surface protein data, sparking ambitious collaborations to profile
every cell type in the human body1–5. Meanwhile, advances in spatial
transcriptomics have introduced unbiased gene expression analysis
with spatial context for tissue sections, combining genomics, imaging,
and tissue pathology6,7. These technologies are complementary in that
single-cell methods lack spatial context, while spatial methods may
require integration with single-cell data to infer detailed information
about cell type composition. There has been significant progress in
integrating these data types through transcript distribution prediction
and cell type deconvolution8. However, analysis of high-resolution
cell–cell and ligand–receptor interactions that comprise intercellular

communication is lacking, as is the definitive assignment of transcripts
to a particular cell with spatial context at high gene plexy. An ideal
solution would provide high-plex, high throughput, multi-modal
readouts with spatial context and subcellular resolution, without
compromising tissue integrity, and be compatible with both fresh
frozen (FF) and formalin-fixed paraffin embedded (FFPE) tissues. Sev-
eral high plex in situ technologies have recently been commercialized
to address these needs and include: CosMx (NanoString), MERSCOPE
(Vizgen), Molecular Cartography (Resolve), and Xenium In Situ (10x
Genomics). However, a major challenge remains in integrating these
data types with whole transcriptome single cell or spatial data.

Here, we use single cell, spatial and in situ technologies on serial
sections of an FFPE-preserved breast cancer block to explore the het-
erogeneity within the tumor (Fig. 1). We use Chromium Single Cell
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Gene Expression Flex (RNA templated ligation (RTL) technology)
applied to FFPE tissues (scFFPE-seq), which unlocks vast biobanks of
samples while also improving sensitivity9. We use Visium CytAssist to
obtain whole transcriptome spatial data. Xenium provides subcellular
spatial resolution, which is particularly suited for studying tumor
invasion in ductal carcinoma in situ (DCIS), due to its high molecular
complexity and close proximity of different cell types. Using human
breast cancer cell atlas data, we selected 313 genes of interest for the
targeted Xenium In Situ panel. We show how three tumor subtypes
differ in their microenvironment, particularly with respect to distinct
myoepithelial cell populations, and how invasive cells intrude upon a
DCIS domain. We demonstrate howwhole transcriptome and targeted
in situ data can be integrated to provide complementary and additive
biological information. Combining scFFPE-seq and Visium CytAssist
enhances the annotation of cell types in the sample, which is further
refined by mapping the transcripts to the Xenium data. The large
imageable area provided by Xenium permits us to comprehensively
explore two tumor samples and identify rare cell types. Downstream
H&E staining on the same tissue section renders a useful registration of
morphology and RNA, thus fostering comparison between the mole-
cular readout from Xenium with pathologists’ annotations. In the first
tissue block (Sample #1), the Xenium data allows us to identify a cell
type positive for the RNA of three breast cancer classifying receptors
(estrogen, progesterone, and HER2) that the other technologies did
not detect. We derive high resolution spatially resolved whole

transcriptome information for this group of cells through integration
of Visium and Xenium data, revealing differentially expressed genes
associated with the triple-positive tumor region. In the second tissue
block (Sample #2), we locate a small population of “boundary cells”
expressing markers for both tumor and myoepithelial cells. We then
identify these cells in the single cell data from Sample #1, and derive
whole transcriptome information. By studying these tissues with our
integrative, multi-modal approach we are able to gain a deeper
understanding of the complex and diverse network of cells within the
tumor microenvironment.

Results
Comprehensive atlasing of human breast cancer FFPE tissues
with whole transcriptome single cell and spatial analysis
Breast cancer is a complex disease of multiple pathologies—each
tumor subtype has unique features and significant cellular and mole-
cular heterogeneity. To better understand tumorigenesis and the
cancer ecosystem, it is necessary to dissect cellular components and
molecular profiles within the spatial context of the tumor landscape.
Using discovery-based technologies, we characterized a breast cancer
sample with single cell and spatial whole transcriptome analysis. First,
we generated Chromium scFFPE-seq data from 2× 25 μm FFPE curls
(see “Methods”) of a breast cancer block (Stage II-B, ER+ /PR − /
HER2 +) that were adjacent to the tissue sections used for Visium and
Xenium workflows. Analysis of the scFFPE-seq data yielded 17 well-

Fig. 1 | Experimental design. A single FFPE tissue block was analyzed with a trio of
complementary technologies. Top: the ChromiumSingleCell Gene Expression Flex
workflowwith theMiltenyi FFPE Tissue Dissociation protocol (scFFPE-seq). Middle:
Visium CytAssist enabled whole transcriptome analysis with spatial context, and
was readily integrated with single-cell data from serially adjacent FFPE tissue sec-
tions. Bottom:TheXenium In Situ technology uses amicroscopy based readout. A 5
μmtissue sectionwas sectionedonto aXeniumslide, followedbyhybridization and
ligation of specific DNA probes to target mRNA, followed by rolling circle

amplification. The slide was placed in the Xenium Analyzer instrument for multiple
cycles of fluorescent probe hybridization and imaging. Each gene has a unique
optical signature, facilitating decoding of the target gene, from which a spatial
transcriptomic map was constructed across the entire tissue section. The Xenium
data could be easily registered with post-Xenium immunofluorescence (IF)/H&E
images (as the workflow is non-destructive to the tissue) and integrated with
scFFPE-seqandVisiumdata.Metrics from these experiments are contained inSupp.
Table 1.

Article https://doi.org/10.1038/s41467-023-43458-x

Nature Communications |         (2023) 14:8353 2



segregated clusters based on unsupervised clustering analysis, with a
median of 1480 genes identified per cell.

Next, we generated Visium whole transcriptome data by collect-
ing 5 μm tissue sections adjacent to those used for scFFPE-seq. Sec-
tions were H&E stained prior to imaging, followed by Visium CytAssist
library preparation and sequencing. The Visium CytAssist instrument
facilitates the transfer of analytes from standard glass slides to Visium
slides. Both Single Cell Gene Expression Flex and Visium use the same
probe set (18,536 genes targeted by 54,018 probes), allowing for easier
data integration. Dimensionality reduction of the Visium data yielded
17 spatial clusters (coincidently, the same number of clusters as the
scFFPE-seq data), with a median of 5712 genes identified per spot.

We used these two discovery-based datasets and the guidance of
existing humanbreast cancer references4,10, to annotate the scFFPE-seq
clusters (Fig. 2a) and map cell types onto the Visium data (Fig. 2b, c)

using an iterative process. Differentially expressed genes between the
two macrophage groups are shown in Supp. Figure 1a. Ten Visium
clusters were annotated such that they could be unequivocally
assigned to cell types or disease states (Fig. 2b), while the other seven
clusters had mixed cell type compositions. Visium pinpointed the
spatial location of three tumor domains that were revealed as distinct
clusters by scFFPE-seq, including two molecularly distinct types of
ductal carcinoma in situ (DCIS), named here DCIS #1 and #2, and
invasive tumor (Fig. 2c). The Visium workflow also delineated the
general territory of immune and stromal cells and was able to recover
transcripts from adipocytes, a delicate cell type that can float, rupture
and/or stick to plastic surfaces during dissociation11,12 (Fig. 2c).

scFFPE-seq and Visium technologies resolved cellular hetero-
geneity at the single-cell level and provided spatial insights, respec-
tively. The integration of scFFPE-seq and Visium data was instrumental

Fig. 2 | Characterization of an FFPE-preserved breast cancer sample using
whole transcriptome single cell and spatial technologies reveals complex
tumor and myoepithelial heterogeneity. A human breast cancer sample was
obtained as an FFPE block (annotated by pathologist as invasive ductal carcinoma)
and processed for single cell analysis and spatial transcriptomics as described in
Fig. 1. aDimension reduction of the scFFPE-seq data yielded a t-SNE projection with
17 unsupervised clusters. Each point represents a cell and the colors/labels show
annotated cell types. Macrophages 1 cluster is marked by LYZ, IFI30, and ITGAX.
Macrophages 2 cluster is marked by SELENOP, F13A1, and RNASE1. b t-SNE pro-
jection of Visium spots also identifies 17 clusters. Based on differential gene

expression analysis, ten clusters could be unequivocally assigned to cell types,
while the others were mixtures of cell types. c H&E staining conducted pre-
CytAssist is shown for reference alongside the spatial distribution of clusters in (b).
Scale bar = 1mm. Cell type-specificmarker genes are expressed as log2(normalized
UMI counts). The Visium data elucidated the spatial location of two molecularly
distinct DCIS and invasive subtypes and the general locations of immune, myoe-
pithelial, adipocytes, and stromal cells. Additionally, Visium featuresmitochondrial
probes (e.g., MT-ND1), and their spatial distribution correlates with the invasive
region of the tissue section. This experiment was performed in replicate on two
serial sections, with one representative section shown here.
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to locating cell types and transcripts within the human breast cancer
tissue section. However, areas where cell types coexist in close proxi-
mity could not be precisely spatially segregated within the tissue. For
example, we observed substantial overlap between DCIS, myoepithe-
lial, immune, and stromal markers, and unannotated Visium clusters
representing mixtures of cell types. Given that the scFFPE-seq and
Visium data collectively revealed two distinct DCIS and myoepithelial
cell types, we wanted to explore the cellular neighborhoods of those
regions in finer detail and higher resolution. Thus,we set out to resolve
gene expression within the myoepithelial layer thinly sandwiched
between the glandular epithelial cells, the basement membrane and
the surrounding stroma.

Xenium in situ data provides the deepest insights into tumor
heterogeneity with spatially resolved gene expression at single-
cell resolution
We next used the Xenium workflow to generate high-resolution gene
expression data for a targeted panel of genes (Fig. 3). We used the
Xenium Human Breast Panel (280 genes) with 33 add-on genes for a
total of 313 genes, selected and curated primarily based on single cell
atlas data for human breast tissues, including healthy and tumorigenic
states4,13,14 (Supp. Figure 1b).We visualized the RNAfluorescence image
after one cycle of decoding, revealing the detailed structure of the
tissue with high resolution (Fig. 3a). Further interrogation of the tissue
allowed us to select relevant genes from the panel to identify stromal,
lymphocytes, macrophages, myoepithelial, endothelial, DCIS, and
invasive tumor cells (Fig. 3b). We also conducted post-Xenium H&E
using standard staining protocols (Fig. 3c), allowing us to cross refer-
ence our findings with the pathologists’ annotations.

Transcripts detected by Xenium were assigned to cells based on
expansion of DAPI stained nuclei, expanding outwards until either
15 μmmaximum distance was reached, or the boundary of another cell
was reached (see “Methods”). We visualized the cell segmentation
boundaries using the Xenium Explorer software (Fig. 3d), and the on-
instrument pipeline outputs Xenium data in which transcripts are
explicitly assigned to cells. In the section analyzed here, we observed
167,885 total cells, 36,944,521 total transcripts (Q score ≥ 20; see
“Methods”), with a median of 166 transcripts per cell (Fig. 3e, f). When
we downsampled the scFFPE-seq data to the 313 genes on the Xenium
panel, we observed a median of 34 genes per cell for scFFPE-seq com-
pared to a median of 62 genes per cell in the Xenium data (Fig. 3g, h).
Fifty percent of total transcripts observed contribute to 27 genes (i.e.,
complexity measurement; Supp. Figure 2a). Observed counts of nega-
tive controls were minimal; negative control probes accounted for
0.026% of the total counts (Q≥ 20) and decoding controls accounted
for 0.01% of the total counts (Q≥ 20) (Supp. Figure 2b).

To validate our 313-plex human breast Xenium panel, we explored
the relative expression of panel genes in expected cell types. We
transferred scFFPE-seq annotations to the Xenium data (supervised
labeling); 86% of cells were unambiguously identified as a single cell
type in the Xeniumdata.We filtered the scFFPE-seq data (17,696 genes;
Fig. 2a) to only the 313 genes used in the Xenium human breast panel
and found that the same cell type populations were identified (Fig. 3i),
confirming that the Xenium human breast panel faithfully captures
biological heterogeneity, although is less resolutive using only 1.8% of
the whole transcriptome. The accurate assignment of transcripts to
cells allows the same expected cell types to be identified from the
Xenium data as from the single cell data (Fig. 3j, k, Supp. Figure 3). We
mapped the localization of the cell types identified to generate a
Xenium spatial plot (Fig. 3l; Supp. Figure 4), which can also be explored
interactively (see Data availability). Analysis of two serial sections
demonstrated the reproducibility of the technology,with the replicates
having cell type proportions that were nearly identical and transcript
counts that were highly correlated (r2 = 0.99) (Supp. Figure 5).

Unsupervised labeling of cell types (Fig. 3j′), agnostic to the
scFFPE-seq data, revealed similar annotation of cell types to Fig. 3j,
however, the DCIS subtypes and proliferative tumor cells were not
resolved. Furthermore, some cells were labeled as immune instead of
stromal, which highlights the importance of accurate cell segmenta-
tion in tissue regions where different cell types coexist in close spatial
proximity. Natural killer cells formed a subset of CD8 +T cells, and
plasma cells formed a subset of B cells. Adipocytes were challenging to
identify with supervised labeling since scFFPE-seq did not capture
these cells (Supp. Figure 6a). Xenium, like Visium, successfully identi-
fied the locationof adipocytemarkers, but provided refined resolution
where adipocyte transcripts skirt the edge of the cell boundary, since
triglycerides fill the majority of the cell (Supp. Figure 6b–f). For this
reason, adipocyteswere challenging to segment, and therefore did not
form a distinct cluster (Fig. 3j, j′). In conclusion, both supervised and
unsupervised labeling contributed unique and complementary infor-
mation to the annotation of cell types within the human breast cancer
tissue.

Xenium in situ analysis detects RNA transcripts with high sen-
sitivity, specificity, and reproducibility
Xenium and scFFPE-seq are new technologies, and therefore, it is
prudent to benchmark their sensitivity against each other and relative
to existing single-cell technologies that use freshor frozen (rather than
fixed) cells. We compared these datasets to Chromium Single Cell 3′
and 5′ data generated from dissociated cells isolated from the same
tumor. We quantified sensitivity using median gene expression such
that high or low expressors would not bias our measurement. When
sequencing depth was kept constant across platforms (~10,000 reads
per cell), themedian gene sensitivity of scFFPE-seqwas higher than the
existing 10x single cell platforms (Chromium 5′Gene Expression (GEX)
and 3′ GEX) (Supp. Fig. 7a, b). To assess the gene dropout rates, we
show a Venn diagram of genes with zero counts in all cells for each
Chromium technology in Supp. Fig. 7c. To benchmark Xenium and
scFFPE-seq, we compared the number of transcripts per cell (Xenium)
to the number of UMIs per cell (scFFPE-seq), downsampling to the
number of genes on the Xenium panel. We found that Xenium is
comparable in sensitivity to scFFPE-seq (Supp. Fig. 7d, and
Supp. Fig. 8a).

Next, we compared Visium and Xenium data by registering the
corresponding H&E images to identify the common capture area (78%
of the full Visium dataset) (Supp. Fig. 8b). Since Visium probes the
whole transcriptome and Xenium probes 313 genes, Visium exhibited
3.6x more total transcripts within the shared region (Supp. Fig. 8b).
Visium and Xenium exhibited concordant spatial expression, exem-
plified by the tumor-associated epithelial marker TACSTD2 (Supp.
Fig. 8c, d). We mapped Xenium expression data onto the Visium cap-
ture area using the H&E registration information, and calculated
pseudobulk counts within each Visium spot (Supp. Fig. 8e). The
median gene sensitivity of Xenium across all genes on the human
breast probe panel compared to Visiumwas 8.4x higher (Supp. Fig. 8f).
To examine specificity, we compared TACSTD2 transcript counts for
Visium and Xenium and observed strong correlation (r2 = 0.88)
(Supp. Fig. 8g).

To validate the localization of gene expression (and specificity of
the Xenium probes) we performed immunofluorescence, which is
possible since the Xenium on-instrument biochemistry and decoding
cycles preserve protein epitopes. HER2 (tumor) and CD20 (B cell)
antibodies were detected with fluorophore-conjugated secondary
antibodies and their expressionwas compared to their cognateRNAby
overlaying the protein and RNA data together. As both images were
taken from the same section, we were able to obtain a high degree of
concordance and registration between the RNA and protein expres-
sion profiles (Supp. Fig. 9).
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Exploration of a breast carcinoma sample with three distinct
tumor subtypes reveals heterogeneity in myoepithelial,
immune, and invasive cell populations
Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive
ductal carcinoma, which can develop into invasive disease, the treat-
ment of which often involves surgical removal of the lesion and
radiotherapy15. Because not all DCIS lesions progress to invasive

disease, there is great interest in understanding the molecular
mechanisms underpinning invasiveness in DCIS, which are currently
not well known15,16, but could help to guide better therapeutic strate-
gies. Our goal was to use single cell and in situ data to identify different
tumor subtypes and supplement H&E imaging and pathology with
molecular targets. First, we used scFFPE-seq data to map three differ-
ent tumor epithelial cell subtypes and two myoepithelial subtypes to
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our Xeniumdata.We selected three regions of interest (ROIs): DCIS #1,
DCIS #2, and invasive tumor (Fig. 4a). We verified these regions with
expert pathologists who observed that (1) post-XeniumH&E exhibited
high-quality morphology comparable to standard H&E, and (2) ROIs
were either morphologically distinct or were surrounded by a unique

microenvironment. The pathologist annotation showed that DCIS #1
ROI had a smaller and round intermediate nuclear grade ductal
hyperplasia with cells that showedmild tomoderate variability in size,
shape, and placement, and nuclei with variable coarse chromatin. DCIS
#2 ROI had invasive carcinoma lesions scattered throughout the

Fig. 3 | Xeniumdata provide extremely high-resolution single-cell information
with spatial localization from a targeted panel of genes. a Maximum intensity
projection of RNA fluorescence signal in Cycle 1 from a 5 μm FFPE section. Fifteen
of such images (unprojected, original z-stacks), one per cycle, were input into the
on-instrument pipeline to decode 313 genes. Scale bar = 1mm. b Selected genes
representing major cell types are shown: stromal (POSTN, yellow), lymphocytes
(IL7R, blue), macrophage (ITGAX, turquoise), myoepithelial (ACTA2, KRT15, green),
endothelial (VWF, dark blue), DCIS (CEACAM6, pink), and invasive tumor (FASN,
red). c H&E staining performed post-Xenium workflow, highlighting the minimal
impact of the Xenium assay on tissue integrity. d Deep learning-based cell seg-
mentation assigns individual transcripts to cells. Scale bar = 0.1mm. e Histogram
showing the distribution of transcripts per cell (Q≥ 20). Dotted lines: 10th per-
centile = 61 and 90th percentile = 372 median transcripts per cell. Solid line: 50th
percentile = 166median transcripts per cell. f Log10(transcripts per cell) across the
entire section. g, h Bar plots showing the number of genes detected per cell for

scFFPE-seq (downsampled to the 313 genes on the Xenium panel) compared to
Xenium. i t-SNE projection of scFFPE-seq data using all 17,696 genes (left) then
down-selected to 313 genes (right). j t-SNE projection of Xenium cells annotated
using supervised labels derived from scFFPE-seq data. Cells which were not
unambiguously identified in the Xenium data (<50% of the nearest neighbors
coming from one cell type) were unlabeled (~14% of cells). j′ t-SNE projection of
Xeniumcells annotatedusing unsupervised labels, agnostic to the scFFPE-seq data.
k Heatmap representation of the t-SNE j showing the relative expression of genes
across different cell types found in the Xenium data. Scale bar is a z-score com-
puted across cell types for each gene by subtracting the mean and dividing by the
standard deviation. See Supp. Figure 3 for the corresponding scFFPE-seq heatmap.
l Spatial plot with cell type labels transferred. The Xenium experiment was per-
formed in replicate on two serial sections, with one representative section shown
here. The scFFPE-seq data isN = 1 due to inherent limitations in using a single block
for multiple technologies (see “Methods”).

Fig. 4 | Integrating scFFPE-seq and Xenium data deciphers differences in cell
type composition andmolecularmarkers betweenDCIS subtypes and invasive
tumor regions. aWith histology/pathology and scFFPE-seq guidance, we selected
three ROIs capturing DCIS #1, DCIS #2, and invasive tumor cell types, and all other
cell types in their proximity. b We determined the proportions of 17 cell types
within these ROIs. We identified four major differences in cell type composition
across the ROIs: asterisk = ACTA2+ and KRT15+ myoepithelial cell populations are

distinct in DCIS #1 and DCIS #2 ROIs, but completely absent from invasive tumor
ROI; diamond = invasive tumor cells are found within the DCIS #2 ROI; looped
square = endothelial cells are found in slightly larger numbers within the invasive
ROI. c Validation of the finding in (b). Scale bar = 0.2mm. d Dot plots showing
canonical markers of cell types as well as differentially expressed genes between
the tumor subtypes. This experiment was performed in replicate on two serial
sections, with one representative section shown here.
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stromal connective tissue, surrounding a large aggregate of highly
proliferative ductal carcinoma in situ with two central comedo
necrotic formations.

Weused scFFPE-seqdata to determine proportions of 15 cell types
within ROIs in the Xenium data, including lymphocytes, macrophages,
stromal, myoepithelial, and invasive cells. We identified four major
differences in cell type composition across ROIs (Fig. 4b). ACTA2+
myoepithelial cells were found to be prominent in DCIS #2 ROI, less
common inDCIS #1 ROI, and absent in the invasive ROI, invasive tumor
cells were found within DCIS #2 ROI, and endothelial cells were found
in slightly larger numbers within the invasive ROI. We verified these
findings (Fig. 4c) to illustrate how Xenium and scFFPE-seq data can
reveal tumor heterogeneity not apparent in the H&E morphology or
the pathology report. The DCIS #2 ROI contained many more invasive
cells than the DCIS #1 ROI, and also less KRT15+ myoepithelial cells,
suggesting that DCIS #2 ROI is more invasive than DCIS #1 ROI. The
invasive ROI had a high incidence of invasive cell types, and the
myoepithelial cell types were entirely absent. The high resolution of
Xenium enabled us to capture information about neighboring cells.
This is well illustrated in the DCIS #2 ROI with the thin boundary of
ACTA2+ myoepithelial cells encircling invasive cells (Fig. 4c).

Finally, we graphed the expression of canonical markers repre-
senting seven major cell types and differentially expressed genes
between the tumor subtypes (Fig. 4d). These analyses revealed that
MZB1 is an exclusive marker of the DCIS #1 ROI and cell type, GJB2+
stromal cells were found in the DCIS #2 ROI, ALDH1A3, KRT15, and
KRT23were highly expressed in myoepithelial cells of the DCIS #1 ROI,
and themacrophagemarkerMMP12was absent from the invasive ROI.

Integration of whole transcriptome spatial and targeted in situ
data provides robust characterization of a small triple receptor
positive region
The hormone receptor status of a tumor is important biologically and
has clinical relevance. Clinically, breast cancers are classified based on
the expression of the estrogen receptor (ER/ESR1), progesterone
receptor (PR/PGR), and human epidermal growth factor receptor 2
(HER2/ERBB2)10. These classifications typically define treatment stra-
tegies; for example, endocrine therapies are commonly used to treat
patients with ER+ breast cancers17. The tissue block used in this
study was annotated as HER2 + /ER + /PR−. The Xenium data shows
mostly regions of ERBB2 + (HER2 +) and double positive ERBB2 + /
ESR1 + (HER2 + /ER +) gene expression (Fig. 5a). However, we identified
a small triple positive (ERBB2 + /ESR1 + /PGR + (HER2 + /ER + /PR +))
DCIS region located in proximity to adipocytes which consisted of a
predominantly DCIS #2 tumor epithelium without a KRT15+ myoe-
pithelial cell layer (Fig. 5b–d).

Next, we compared expression of the three clinically-relevant
receptor genes between the Xenium and scFFPE-seq data (Fig. 5e, f).
While few PGR+ cells were found in the scFFPE-seq data, these cells did
not coexpress ESR1 or ERBB2. In the Visium data, this region is repre-
sented by only 5-6 spots (Fig. 5g) as part of Cluster 12 (Fig. 5h), which
may have gone unnoticed. However, Visium proved critical here
because we could obtain whole transcriptome information from this
triple positive region. Using the registration of Xenium to Visium, we
binned transcripts from Xenium into the Visium spots by proximity
and called this process “spot interpolation” (see “Methods” and Supp.
Fig. 10). This allowedus to visualize the cell typeproportionswithin the
triple positive region (Fig. 5i), and then performed whole tran-
scriptome differential gene expression analysis of these five spots
compared to all other malignant spots. This enabled us to identify 48
differentially expressed genes (log2FC > 1.5;p-value < 0.05) for the PGR
+ spots compared to PGR–DCIS #1 and 44 differentially expressed
genes for the PGR+ cells compared to PGR–DCIS #2. Four of those
genes are shown in Fig. 5j. Next we conducted a gene ontology analysis
on the three DCIS categories: triple positive PGR +, PGR–DCIS #1, and

PGR–DCIS #2 to reveal enriched terms from the BioPlanet and Reac-
tome databases (Supp. Fig. 11). We found that the PGR+ spots yielded
ontology terms related to ErbB4 and estrogen receptor signaling as
well as transmission across chemical synapses. DCIS #1 predominantly
showed terms related to metabolism and DCIS #2 was positive for
genes related to interferon signaling pathways.

Integration of single cell and in situ data to profile cells at the
myoepithelial boundary
We next wanted to explore whether our data integration strategy
could be applied to the study of the DCIS-to-invasive transition in a
different biological sample. We obtained a human breast cancer sec-
tion from a different block (Sample #2) which was annotated as HER2+
and ER − /PR− and contained normal, DCIS and invasive regions. We
ran serial 5 µm sections of this sample through the Xenium workflow
using the Human Breast Panel described earlier (Supp. Figure 1b). We
performed dimension reduction in Seurat and identified immune,
myoepithelial, epithelial, and tumor cell populations (Fig. 6a). Adipo-
cytes, cytotoxic T (CTLA4 +), plasma, dendritic, endothelial, mast, and
NKcellswere easilydetected in this sampleas theXeniumgenepanel is
designed to target these specific cell types. Two stromal populations
segregated into distinct clusters and were spatially distinct, with
tumor-associated fibroblasts marked by the expression of POSTN, and
normal-associated fibroblasts marked by SFRP4.

Subclustering analysis of the tumor, myoepithelial, and macro-
phage populations identified proliferative (TOP2A+), SCD +, and
S100A8+ tumor cells, although these populations were not spatially
distinct. We were also able to segregate M1, M2 and CD83+ macro-
phages, which are associated with metastasis in breast cancer18. Three
types of epithelial (ESR1 +, PIGR +, andOPRPN +) and onemyoepithelial
population (DST+) were molecularly and spatially distinct, consistent
with scRNA-seq reference data where these epithelial subtypes form
distinct clusters4. A summary of all cell subtypes identified can be
found in Supp. Fig. 12. Intriguingly, there were two regions where the
histology appeared to have normal duct morphology, but the mole-
cular data revealed tumor cell markers (Supp. Fig. 13). This suggests
that the Xenium data can provide insight as to whether a duct will
progress towards a carcinoma prior to morphological changes
detectable by a pathologist.

We highlight a small population of cells, a subcluster located in
between tumor andmyoepithelial populations which coexpress tumor
(ERBB2, ABCC11) and myoepithelial markers (MYLK, DST) (Fig. 6a, a′).
High magnification inspection of a region of DCIS with a deteriorating
myoepithelial boundary confirmed that these cells express both mar-
kers (Fig. 6b, b′, c, c′). As a control, we looked at a normal duct where
myoepithelial and epithelial cells are in close proximity, yet cell type-
specific markers are not commingled (Fig. 6d, d′) indicating that our
observations are not an artifact of gross segmentation errors. Next, we
performed differential gene expression analysis on this population of
boundary cells identified in the Xenium data (Fig. 6e (red box)). We
then looked for this cell type-specific gene expression profile in the
scFFPE-seq data fromSample #1 (featured in Figs. 1–5) bymatching the
expressionprofile of the rareboundary cells shown in Fig. 6e (red box).
Most of these cells had been previously annotated as myoepithelial
cells and constitute about ~1% of the cells in the scFFPE-seq data. We
compared these cells to tumor and myoepithelial cells and derived
whole transcriptome information. This analysis led to the identifica-
tion of the genes CX3CL1, CCL28, PROM1, and KLK5, which were highly
expressed in the boundary cells and not in tumor cells, myoepithelial
cells or any other colocalized cell type (Fig. 6f).

Discussion
Resolving the complexities of the tumor microenvironment is neces-
sary for a comprehensive understanding of cancer biology. This is
illustrated in our study using an FFPE block from a patient breast

Article https://doi.org/10.1038/s41467-023-43458-x

Nature Communications |         (2023) 14:8353 7



biopsy that contains both ductal carcinoma in situ and invasive ductal
carcinoma. In this model, DCIS refers to neoplastic epithelial cells that
remain confined within the ducts, and DCIS is therefore considered
nonlethal15,16,19. DCIS can be (albeit is not always) the immediate pre-
cursor of potentially lethal invasive ductal carcinoma, when the ductal
morphology is broken down and cancerous cells invade the stroma.
Understanding why some DCIS regions become invasive, while others

do not, remains an open question in the field. Attempts to answer this
question often begin with clinical classifications of FFPE blocks by
receptor type (e.g., HER2 + /ER + /PR+) and degree of invasiveness and
proliferation, but this taxonomy is insufficient to describe hetero-
geneity within the sample. Despite that the first FFPE block used in our
study (Sample #1; Figs. 1–5) was annotated by a pathologist as
HER2 + /ER + /PR−, we found a region of DCIS that was positive for the

Fig. 5 | Visium and Xenium integration derive differentially expressed genes in
a triple-positive receptor ROI. aXenium spatial plot for ERBB2 (HER2—gray), ESR1
(estrogen receptor—green), and PGR (progesterone receptor—magenta) decoded
transcripts. Scale bar = 1mm. b Closer view of triple-positive ROI. Scale bar =
0.2mm. c Corresponding H&E image. d Cell types contained within ROI reveal that
this is a DCIS #2 tumor epithelium. e Individual Xenium spatial plots from (b).
f Chromium scFFPE-seq yields only about 30 cells that are positive for PGR, but
these cells do not express ERBB2 or ESR1. g Triple-positive region is identified in
Visium (given a priori knowledge from Xenium) and is h part of a distinct cluster
(see Fig. 2b). i Spot interpolation (see Supp. Fig. 10) provides cell type frequencies

within each Visium spot. Color code legend is shown in (d). j Visium H&E and four
representative differentially expressed genes in the tumor epithelium (94 genes;
log2FC> 1.5; p-value <0.05) revealed by Visium data across the whole tran-
scriptome. Scale bar = 1mm. Differential expression was performed in Loupe
Browser (see “Methods”), which performs a variant of the negative binomial exact
test (for small gene counts), or a fast asymptotic beta test derived from edgeR (for
large gene counts). P-values were adjusted for multiple testing using the
Benjamini–Hochberg procedure to control for the false discovery rate. Both the
XeniumandVisiumexperimentswereperformed in replicate on twoserial sections,
with one representative section from each technology shown here.
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RNA of all three receptors, in just one 5.5mm×7.5mm section of the
much larger biopsy (Fig. 5). Furthermore, the block was annotated as
25%DCIS, but this did not capture the fact that at least twomolecularly
distinct DCIS regions were observed. One DCIS region showed an
absence of myoepithelial markers along with the presence of cells
already expressing an invasive molecular signature (Fig. 4).

Previous attempts to unmask such tumor heterogeneity, using
bulk and single-cell next-generation sequencing (NGS) approaches and
immunofluorescence, often target specific genes associated with an
invasive/metastatic prognosis and treatment regime20–22. Our results
are consistent with several published examples, albeit with higher

resolution and gene plexy. For example, low keratin15 (KRT15)
expression has been previously suggested to be associated with poor
prognosis for patients with invasive carcinoma21. Our comparison of
two DCIS regions in Sample #1 reveals reduced myoepithelial markers
KRT15, KRT23, and ALDH1A3 and increased invasivemarkers in DCIS #2
(Fig. 4) which could indicate a higher grade tumor. ALDH1A3 (a.k.a.
RALDH3), which catalyzes the formation of retinoic acid (RA), is highly
expressed and spatially localized to themyoepithelial layer in DCIS #1,
but is reduced in DCIS#2 and invasive regions. Although RA has varied
roles in cancer, there is some evidence in cell lines that it increases
senescence and adhesion to the basement membrane in breast
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myoepithelial cells, thereby decreasing the invasive capacity of tumor
epithelium23. Xenium identified AGR3 as a tumor epithelial marker
associated with DCIS ROIs, but not the invasive ROI (Fig. 4). AGR3
protein expression in breast tumors is significantly associated with
estrogen receptor α and lower tumor grade22, suggesting that AGR3
could serve as a biomarker for prognosis and early detection.

In a second biological sample of invasive ductal carcinoma
(Sample #2), we identified regions of the tissue that had normal ductal
morphology, as annotated by a pathologist based on the H&E staining.
However, the molecular data revealed several ducts containing tumor
cells. It has been reported that pathology diagnoses are only con-
cordant 75%of the time24. Thedatawepresent heredemonstrateswhat
early diagnosis would potentially look like, detecting the cancer before
the morphology is drastically altered. Thus, this ability of Xenium to
map the localization and expression level of key genes at high reso-
lutionholds greatpromise to transform,diagnose, prognoseandguide
more effective treatment management.

Female breast cancer is the most commonly diagnosed cancer
globally, with ~2.3 million new cases reported in 202025, and the pre-
valence of cancer as a leading cause of premature death is ever-
increasing worldwide, particularly in developing nations26. How can
single-cell, spatial, and in situ technologies scale to deal with this
challenge? The key to this question is the ability of these technologies
to glean high quality data from FFPE tissues. FFPE methods for pre-
servation of samples are well established in clinical practice as they
allow for a high degree of morphological detail to be maintained, and
as such, there are large numbers of FFPE specimens in biobanks that
are potentially available for genomics research27. Using RTL technol-
ogy with carefully designed probe sets, we are able to overcome the
formalin-induced obstacles of strand cleavage and cross-linking that
have plagued researchers for decades.

In the present study, we used three independent but com-
plementary genomic technologies to explore the biology of FFPE-
preserved tissue sections. Our results typify how the integration of
these technologies is an iterative process, and suggest howdiscoveries
in one data modality can rapidly inspire explorations in another. What
did each technology bring to the table, and what did we learn from
integrating them that we could not have learned from a single tech-
nology individually? scFFPE-seq is the most sensitive of the three,
particularly for lowly expressed genes. We found that scFFPE-seq
median gene sensitivity was higher than both Chromium 5′ and 3′ GEX
data, from patient-matched dissociated tumor cells (Supp. Fig. 7). Of
the three FFPE-compatible assays presented here, scFFPE-seq is the
only one offering whole transcriptome data at single-cell resolution,
making it well suited for establishing a baseline of disease, annotating
cell types (Fig. 2a), and designing or validating targeted Xenium gene
panels. Like scFFPE-seq, Visium also provides whole transcriptome
data. Although Visium lacks true single cell resolution at this time, it
provides a spatial context that cannot be explored with single-cell

technologies. Integrating scFFPE-seq and Visium data was straight-
forward due to the identical probe set used in both technologies, and
allowed for accurate deconvolution of cell types that composed the
Visium spots (Supp. Fig. 10).

In the early stages of data exploration, Visium and H&E data were
used to annotate three tumor cell types within the scFFPE-seq data by
noting that the differentially expressed genes in specific scFFPE-seq
clusters were mapping to the invasive tumor domain, or one of two
spatially distinct DCIS regions in the H&E image (Fig. 2). Hence, Visium
alone identified that therewere three spatiallydistinct tumor subtypes,
which was not captured in the pathologist annotations. When we
clustered Xenium data from Sample #1 without relying on the Visium
and scFFPE-seq derived cell annotations, we did not resolve the two
distinct DCIS cell types, further substantiating that information is
gained by using an integrative approach. We then integrated Xenium
and Visium data to derive differentially expressed genes from a tumor
region containing cells expressing RNA of three receptors (ERBB2 +
/ESR1 + /PGR+). Neither Visium nor scFFPE-seq identified these cells
initially because they were so sparse, and their detection required the
high-resolution spatial information gained by Xenium. Using spot
interpolationmethods (Supp. Fig. 10), we identified the relevant tumor
epithelial cells in the Visium data and derived whole transcriptome
information. Gene ontology analysis revealed that the triple positive
(ERBB2 + /ESR1 + /PGR+) spots express the receptor ERBB4 (a.k.a.
HER4) and its cognate ligand EREG (a.k.a. epiregulin) in addition to ESR
and PGR. This is a reasonablefinding given thatHER4 is correlatedwith
ER and PR expression in breast cancer, and when all of these receptors
are found together, the prognosis can be more favorable (reviewed in
ref. 28). Although the triple positive region is small in this particular
section, it might be representative of a larger percentage of cells
elsewhere within the biopsy and potentially change the classification
and treatment protocol.

Xenium is particularly suited for investigations of intricate tissues
with a high diversity of cell types in a small area, including immune and
myoepithelial cells (Figs. 4–6), that elude lower resolution technolo-
gies.One exampleof thiswas the identification of a small populationof
boundary cells in Sample #2 (Fig. 6), which were discovered by sub-
clustering the epithelial and myoepithelial cell clusters. We were then
able to identify cells co-expressing both tumor and myoepithelial
markers in the scFFPE-seq data (from Sample #1). Differential gene
expression analysis identified CX3CL1, CCL28, PROM1, and KLK5 as
being upregulated in this cell population. CX3CL1 promotes breast
cancer metastasis29,30 and CCL28 is an epithelial, tumorigenic
cytokine31. PROM1 (a.k.a. CD133) is a well-characterized cancer stem
cell marker32. It is an open question in the field whether myoepithelial
cells during the DCIS-to-invasive transition commit apoptosis, ded-
ifferentiate, senesce, or transdifferentiate. Our findings are in good
agreement with a recent study that highlighted that some tumor-
associated myoepithelial cells express oncogenic cytokines and

Fig. 6 | Chromium and Xenium integration derive differentially expressed
genes in a rare cell type. a Xenium UMAP for a different biological section (dif-
ferent donor) of invasive ductal carcinoma (Sample #2). Most cell types are driven
by a single marker (Supp. Fig. 12). TAFs = Tumor-Associated Fibroblasts. When
subclustering the epithelial and myoepithelial populations, we noticed a group of
cells situated between tumor and DST+ cells, which we label “boundary” and color
red. a′ Zoomed-in view of UMAP from (a) showingmyoepithelial and epithelial cell
subtypes.bDCIS ROI containing these cells which are viewed close-up in (b′), along
with markers for both tumor (purple) and myoepithelial (green) cells. c and c′
Corresponding H&E images. Scale bar = 200 µm in c and 10 µm in (c′). d Normal
duct ROI containing myoepithelial and epithelial cells in closer proximity. d′
Zoomed in region of (d) showing minimal comingling of transcripts representing
each cell type: myoepithelial (dark green) and epithelial (light green). Scale bar =
50 µm. e Heatmap representation of the UMAP showing relative expression for
selected features. HVGs = highly variable genes. Scale bar is a z-score computed

across cell types for each gene. Red box highlights that these rare boundary cells
express both tumor and myoepithelial markers. The Xenium experiment was per-
formed in replicate on two serial sections, with one representative section shown
here. fUsing the gene expression profile of the rare boundary cells shown in (e), we
identified this cell type (~283 cells) in the scFFPE-seq data of Sample #1 shown in
Figs. 1–5. We conducted a differential gene expression analysis of these cells
compared to tumor and myoepithelial cells and validated that these cells express
bothmyoepithelial (MYLK) and tumor (ABCC11) markers. We further derived genes
CX3CL1, CCL28, PROM1, and KLK5 which are differentially expressed in the bound-
ary cells. Differential expression was performed in Loupe Browser (see “Methods”)
which performs a variant of the negative binomial exact test (for small gene
counts), or a fast asymptotic beta test derived from edgeR (for large gene counts).
P-values are adjusted formultiple testing using theBenjamini–Hochbergprocedure
to control for the false discovery rate.
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promote invasiveness, contrary to normal myoepithelial cells which
are considered protective33. This suggests that the existence of a
transitional boundary cell which exhibits properties of both myoe-
pithelial and tumor cells is very possible, however, further investiga-
tion would be required in order to validate this.

High-resolution in situ analysis of complex tissues will revolutio-
nize how we understand biology, providing insights not previously
possible with other technologies. Integration of the data we present
here with imaging mass cytometry and CITE-seq data, to further
extract biological insights has already been performed34. With the
continued development of tools to study these biological questions,
we will derive an even greater understanding of molecular profiles as
they relate to the tissue architecture, and how cells interact with other
cells and non-cellular components in their local tissue environment.
Our findings demonstrate that the highest resolution and richest bio-
logical information are gleaned through the combination of com-
plementary technologies. While each technology independently
elucidates high-quality gene expressiondata fromFFPE tissues, it is the
integration of this data that illuminates biology with more rigor and
refinement than with a single technology alone. The resolution and
breadth of the technologies we describe have promising implications
across the biological sciences, but particularly in the future of trans-
lational and clinical research, and ultimately, in advancing human
health.

Methods
Samples and sample collection
Sample #1. A single formalin-fixed, paraffin-embedded (FFPE) breast
cancer tissue block (TNM stage T2N1M0, ER + /HER2+ /PR −) was col-
lected on 2021-07-26 and obtained from Discovery Life Sciences.
Corresponding dissociated tumor cells, fresh frozen in liquid nitrogen,
were also sampled from the same biopsy (patient matched). 5 μm
sections were taken from the FFPE tissue using a microtome (Thermo
Scientific HM355S; MX35 blades). For the Chromium Single Cell Gene
Expression Flex (scFFPE-seq) workflow, 25 μm FFPE curls were col-
lected into a tube prior to serial sectioning for Visium CytAssist and
Xenium (two replicates of 5 μm sections for each spatial platform),
then an additional 25 μm FFPE curl was collected into the same tube
reserved for scFFPE-seq. These pooled 25 μm curls (50 μm total) were
treated as a single replicate. Another replicate could not be performed
due to the large amount of input material required by scFFPE-seq and
needing to reserve the same block for multiple technologies.

Sample #2. A formalin-fixed, paraffin-embedded (FFPE) breast
cancer tissue block (AJCC pathologic stage pT2 pN1a pMX,
ER − /HER2 + /PR −) was collected on 2009-07-24 and obtained from
Discovery Life Sciences. 5 μmsections were taken from the FFPE tissue
using a microtome (Thermo Scientific HM355S; MX35 blades).

Chromium 3′ and 5′ single-cell gene expression (GEX)
We collected Chromium 3′ and 5′ GEX data from dissociated tumor
cells to benchmark performance against the scFFPE-seq data. Dis-
sociated tumor cells were recovered following Demonstrated Protocol
CG000233. For the 3′ and 5′ workflows, cells were loaded on to the
ChromiumX instrument following the library preparation protocols in
the Chromium Next GEM Single Cell 3′ Reagent Kits v3.1 User Guide
(CG000204) and Chromium Next GEM Single Cell 5′ Reagent Kits v2
(Dual Index) User Guide (CG000331), respectively. Libraries were
sequenced on an Illumina NovaSeq with paired-end dual-indexing (28
cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2). All of the 3′
and 5′ flowcells were demultiplexed with bcl2fastq (Illumina). FASTQ
files were processed with Cell Ranger v7.0.1 (10x Genomics), using the
cellranger count pipeline on each GEM well with the GRCh38-2020-A
reference to produce gene-barcode matrices and other output files,
followed by aggregation of GEM wells with the cellranger aggr
pipeline.

Chromium Single Cell Gene Expression Flex (scFFPE-seq)
Our goal in producing scFFPE-seq data was to precisely define the cell
types present in serial tissue sections to enable downstream integra-
tion of data types. 50μmFFPE curls were dissociated with theMiltenyi
Biotech FFPE Tissue Dissociation Kit. Approximately 600,000 cells
were washed, counted, and resuspended, loading 16,000 cells per
each of four GEM wells (targeting 10,000 recovered cells) on a single
Chromium X chip. Sequencing libraries were generated following the
User Guide (CG000477). Libraries were sequenced on an Illumina
NovaSeq with paired-end dual-indexing (28 cycles Read 1, 10 cycles i7,
10 cycles i5, 90 cycles Read 2). Sequencing libraries were demulti-
plexed with bcl2fastq (Illumina). FASTQ files were processed with Cell
Ranger v7.0.1 (10x Genomics) using the multi pipeline and the
GRCh38-2020-A reference.

Visium CytAssist
Whole transcriptome spatial data. Our goal in producing Visium
CytAssist data was to obtain whole transcriptome, spatially-barcoded
sequence data in serial sections. The histology workflow was per-
formed using the Visium CytAssist Spatial Gene Expression for FFPE
(Demonstrated Protocol CG000520). The tissue was sectioned as
described in Visium CytAssist Spatial Gene Expression for FFPE – Tis-
sue Preparation Guide (Demonstrated Protocol CG000518). 5 µm sec-
tions were placed on a Superfrost™ Plus Microscope Slide
(Fisherbrand™) and H&E-stained following deparaffinization. Sections
were imaged, decoverslipped, followedby hematoxylin destaining and
decrosslinking (Demonstrated Protocol CG000520). The glass slide
with tissue section was processed with a Visium CytAssist instrument
to transfer analytes to a VisiumCytAssist Spatial Gene Expression slide
with a 0.42 cm2 capture area. The probe extension and library con-
struction steps follow the standard Visium for FFPE workflow outside
of the instrument. Libraries were sequenced with paired-end dual-
indexing (28 cycles Read 1, 10 cycles i7, 10 cycles i5, 90 cycles Read 2).
Sequencing librarieswere demultiplexedwith bcl2fastq (Illumina). The
Space Ranger pipeline v2022.0705.1 (10x Genomics) and the GRCh38-
2020-A reference were used to process FASTQ files.

Xenium in situ workflow
Gene panel design. The Xenium In Situ technology uses targeted
panels to detect gene expression. 313 genes for cell type identification
(280 of which are included in the Xenium Human Breast Panel) were
selected and curated primarily based on single-cell atlas data for
human breast tissue4,13,14. The probes were designed to contain two
complementary sequences that hybridize to the target RNA and a third
region encoding a gene-specific barcode, so that the paired ends of the
probe bind to the target RNA and ligate to generate a circular DNA
probe. If the probe experiences an off-target binding event, ligation
should not occur, suppressing off-target signals and ensuring high
specificity.

Xenium sample preparation. The Xenium workflow (using in-
development chemistry and a prototype instrument and consum-
ables) began by sectioning 5 μm FFPE tissue sections onto a Xenium
slide, followed by deparaffinization and permeabilization to make the
mRNA accessible. The mRNAs were targeted by the 313 probes
described above and two negative controls: (1) probe controls to
assess non-specific binding and (2) genomic DNA (gDNA) controls to
ensure the signal is from RNA. Probe hybridization occurred at 50 °C
overnight with a probe concentration of 10 nM. After stringency
washing to remove un-hybridized probes, probes were ligated at 37 °C
for two hours. During this step, a rolling circle amplification (RCA)
primer was also annealed. The circularized probes were then enzy-
matically amplified (for one hour at 4 °C followed by two hours at
37 °C), generating multiple copies of the gene-specific barcode for
each RNA binding event, resulting in a strong signal-to-noise ratio.
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After washing, background fluorescence was quenched chemically.
The biochemistry is designed to mitigate autofluorescence, which is a
known issue due to the presence of lipofuscins, elastin, collagen, red
blood cells, and formalin-fixation itself35. Sections were placed into an
imaging cassette to be loaded onto the Xenium Analyzer instrument.

Xeniumanalyzer instrument. The XeniumAnalyzer is fully automated
and includes an imager (imageable area of about 12 × 24mmper slide),
sample handling, liquid handling, wide-field epifluorescence imaging,
capacity for two slides per run, and an on-instrument analysis pipeline.
The imager is a fast area scan camera featuring a high numerical
aperture, a low read noise sensor, and ~200 nm per-pixel resolution.
On the Xenium Analyzer, image acquisition was performed in cycles.
The reagents, including fluorescently labeled probes for detecting
RNA,were automatically cycled in, incubated, imaged, and removedby
the instrument. Following the binding of fluorescent oligos to the
amplified barcode sequence, the sample underwent 15 rounds of
fluorescent probe hybridization, imaging, and probe removal. The
Z-stacks were taken with a 0.75 μm step size across the entire tissue
thickness.

Image pre-processing. The Xenium Analyzer captured a Z-stack of
images every cycle and in every channel, which needed to be pro-
cessed and stitched to build a spatial map of the transcripts across the
tissue section. Stitchingwasperformedon theDAPI image, taking all of
the stacks from different FOVs and colors to create a complete 3D
morphology image (morphology.ome.tif) for each of the stained
regions. First, the lens distortion in internal sensor data was corrected
based on instrument calibration data, which were collected in order to
characterize the optical system and were saved on-instrument. Next,
the Z-stacks from the internal sensor data were further subsampled to
a 3 μm step size, which was determined empirically to be a useful
resolution for cell segmentation quality. Image features were then
extracted from the regions where FOVs overlapped. Featurematching
was performed to estimate the offsets between adjoining FOVs. The
offsets were used to ensure consistent global alignment across the
image. Finally, the 3DDAPI image volumes (Z-stacks) generated across
FOVs were stitched together.

RCA product image processing. The goal of RCA product image
processing was to detect and filter puncta and correct distortion. A
punctum is a point source in microscopy, smaller than a pixel, and is
measured in units of observed photons. The 3D image volumes
(Z-stacks) obtained for each FOV were processed, for four color
channels and 15 cycles, to detect the puncta in 3D space that corre-
spond to labeled RCA products. The RNA fluorescence images were
scanned for punctumsignals that standout from the local background.
TheXYZ coordinates of eachpunctumwere refined by examining local
brightness. The signal intensity of the punctum was determined by
fitting a Gaussian distribution to the observed emitted light to deter-
mine the center, size, and intensity of thepoint sources.Wefilteredout
puncta thatwere unlikely to be from true RCA products (non-punctate
or low-quality signals). Similar to DAPI images, curvature distortion
was corrected.

Decoding. In order to proceed from puncta to transcripts, decoding
was performed using a Xenium codebook—a collection of codewords
that were assigned to genes in the gene panel (gene_panel.json). Each
codeword was defined based on an expected pattern of fluorescent
signals recorded across channels and cycles. Some codewords were
reserved for negative controls. The fluorescent signals from all chan-
nels and cycles were compared to the codebook using a global (across
all FOVs) maximum likelihood approach. This approach considered
attributes such as puncta locations, their color and cycle of detections,
and signal intensities.

Q-Scores and controls. A Phred-style calibrated quality score
(Q-Score) was assigned to each decoded transcript to signify the con-
fidence in the decoded transcript identity. Raw Q-Scores were derived
from the likelihood of the maximum likelihood codeword (the code-
word that best explains the observed data) compared to the likelihood
of other sub-optimal codewords. Codewords were mapped to targets
using thegenepanel information. FinalQ-Scoreswere calculatedbyfirst
binning the full rangeof rawQ-Scores, then the rawQ-Scores in eachbin
were calibrated by the proportion of “Negative Control Codewords” in
the bin. A final Q-Score was assigned to each bin to ensure that each
bin’s Q-Scores were correctly calibrated. Control probes were built into
the process to ensure that the final Q-Scores were accurately calibrated.
Three types of controls were used:
1. Negative control codewords are codewords in the codebook that

do not have any probes matching that code. They are chosen to
meet the same requirements as regular codewords and can be
used to assess the specificity of the decoding algorithm.

2. Negative control probes are probes that exist in the panels but
target non-biological sequences. They can be used to assess the
specificity of the assay.

3. Unassigned codewords are unused codewords. There is no probe
in this particular gene panel that will generate the codeword.

We only included transcripts with a Q-Score ≥ 20 in the cell-
feature matrix and downstream analyses.

Cell segmentation. In order to assign mRNA transcripts to cells, we
first segment nuclei based on the signal in the DAPImorphology image
and then assign transcripts to the closest nucleus within a maximum
distance of 15 µm. Transcript assignment was performed using a 2D
segmentation mask that was the result of combining multiple 2D
segmentations taken at different Z-planes. Individual nuclei were
detected and nuclei that were close in X, Y, and Z were identified as a
single nucleus. Thefinal 2D segmentationdidnot allow foroverlapping
nuclei.

DAPI-based nucleus segmentation was achieved using a deep-
neural-network approach. This approach is conceptually similar to the
popular CellPose algorithm36 in that an encoder-decoder neural net-
work does not directly solve for the segmentation mask, but instead
solves a related problem that is easier to learn and allows for the
imposition of geometric constraints. The training data is based on
hundreds of thousands of hand-drawn cells covering a wide range of
tissues imaged on the Xenium instrument. Segmentation quality was
judged by holding back a subset of hand-labeled images for bench-
marking purposes. We adopted the evaluation methodology used by
Greenwald et al., 202137 and first proposed in Moen et al., 201938. We
trained to achieve an F1 score of greater than 0.80 on benchmark
datasets using an overlap threshold of 0.5 for detection.

Output file export. A variety of output files were produced by the on-
instrument pipeline. The essential files used downstream were the
feature-cell matrix (HDF5 and MEX formats identical to those output
by Cell Ranger and Space Ranger for Chromium and Visium data,
respectively), the transcripts (listing each mRNA, its 3D coordinates,
and a quality score), and the cell boundaries CSV file. These files were
then transferred for downstream analysis off-instrument.

Post-Xenium histology
H&E and IF staining. The post-Xenium H&E staining followed
Demonstrated Protocol CG000160. For post-Xenium IF staining, sec-
tions were washed with PBST, then incubated in a blocking buffer
(ScyTek AAA999) for 30min at room temperature. The primary anti-
body (Table 1) in the blocking buffer was added and incubated in the
dark at 4 °C overnight. The following day, the sections were washed
three times (10min each) with PBST then incubated with secondary
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antibodies (Table 1) and DAPI in a blocking buffer, in the dark at room
temperature, for two hours. Next, the sections were washed three
times (10min each) with PBST. Sections were imaged in a proprietary
Xenium imaging buffer and imaged on a Zeiss Axioimager with a 40x
dipping objective. The Zen Blue software was used for tiling, image
acquisition, and exporting TIFF files. Post-Xenium H&E and IF images
were registered to Xenium data using Fiji BigWarp.

Downstream analysis & integration
Chromium & Visium post-processing. The 3′, 5′, and scFFPE-seq data
werefilteredwith scanpy 1.19. Cellfilteringparameters included largest
gene fraction ≤0.2, mitochondrial fraction ≤0.15, and number of genes
observed ≥500. We performed t-distributed stochastic neighbor
embedding (t-SNE) on Chromium and Xenium data using the monet
package v0.3.239. A principal component analysis (PCA)was performed
on the feature-cell matrix, and the top 50 components were input to
the t-SNE. We subsampled the whole transcriptome Chromium and
Visium data to only the 313 genes used in the Xenium panel. The
Xenium t-SNE coordinates were initialized with the scFFPE-seq cluster
centers. The Visium t-SNE was generated in Loupe, and expression is
either reported as log2(counts) when shown stand-alone, or as raw
counts when comparing directly with Xenium transcript counts.

Supervised labeling & label transfer. We annotated the scFFPE-seq
data by first conducting a differential gene expression (DGE) analysis
across unsupervised clusters in Loupe. Annotations were built upon
this DGE analysis, and literature review4,10, and pre-CytAssist H&E
staining. We assigned labels DCIS #1 and DCIS #2 according to tran-
scriptional similarity between the scFFPE-seq and Visium platforms.
We performed a log-normalization step of the data, and then calcu-
lated a z-score across cells. A PCA was performed and the top 50 PCs
were selected. From the in situ data, we determined the 30 nearest
neighbors for each cell after normalization and projection into PC
space, and if at least 50% were one cell type, then that is the cell type
that was assigned. If that criteria was not met, then the cell was clas-
sified as “unlabeled”.

Unsupervised labeling and subclustering. For Sample #2 (Fig. 6 and
Supp. Fig. 13), we used the Seurat vignette (https://satijalab.org/seurat/
articles/spatial_vignette_2.html) as guide to load and analyze the
Xenium data with the development branch of Seurat 5 (https://github.
com/satijalab/seurat/tree/develop). We identified 14 clusters (resolu-
tion = 0.3), and further subclustered the epithelial and macrophage
clusters to increase resolution of the cell types within. Annotations
were aided by single cell atlas data4,13,14. Cropped FOV images with
segmentationwere generatedwith the ImageFeaturePlot function, and
a custom ggplot2 script was used to plot individual transcripts on top
of the segmented cells.

Chromium and Visium differential gene expression (DGE). Cell
Ranger, Space Ranger, and Loupe Browser test, for each gene and each
cluster, whether the in-cluster mean differs from the out-of-cluster
mean using one of two methods. When gene counts are small, the
quick and simple method, a version of the negative binomial exact
test40 was used. For larger counts, a modified version of the fast
asymptotic beta test41 was used. For the differential gene expression

analysis shown in Fig. 6, we created a heatmap in Seurat v4.3 and
obtained variable features using the vst selection method. These fea-
tures were used to define a gene expression profile for tumor, myoe-
pithelial, and rare boundary cells. We then used the Filter function in
Loupe Browser v6.4.1 to threshold marker genes and assign identities
(tumor, myoepithelial, and boundary) to barcodes in the scFFPE-seq
data. We then performed a locally distinguishing feature comparison
to find novel differentially expressed genes in the rare boundary cells.
We visualized these genes using VlnPlot in Seurat v4.3.

Gene ontology analysis. Using spot interpolation (see Supp. Fig. 10),
we derived information about the cell composition of the triple posi-
tive region (ERBB2 + /ESR1 + /PGR +). Using Loupe Browser v6.4.1, we
lassoed around the spots within the triple positive domain that were
predominantly composed of the DCIS cell type. We then conducted a
global differential gene expression analysis to derive genes featured in
Fig. 5j. For the gene ontology analysis, we used Loupe to lasso around
PGR–DCIS #1 and PGR–DCIS #2 cells, and compared them to the triple
positive region (PGR +). We then took the differentially expressed
genes and inputted them into Enrichr to obtain the ontology infor-
mation shown in Supplemental Fig. 11.

Xenium differential gene expression (DGE). We drew a region of
interest (ROI), a polygon around morphological features (individual
cells, groups of cells, etc.) and performed DGE across these ROIs with
scanpy v1.19. ROI selection was performed in the Xenium Explorer
software (development version, 10x Genomics), and significance was
assessed with the Wilcoxon test on log-normalized count data. The
DGE was performed for each cell type across ROIs.

Benchmarking sensitivity. The Xenium assay’s sensitivity is unique for
each gene. Therefore, we designed probes to estimate the effective
sensitivity of the assay for each gene, and we describe the effective
sensitivity as an average or median gene sensitivity. Because mean sen-
sitivity is biased by high expressors, we calculated median gene sensi-
tivitybyfirst computing the sensitivityof eachgene separately (themean
of the counts per cell), then calculating the median across all genes.
Because sensitivity is dependent on sequencing saturation, the 3′ and 5′
GEXdataweredownsampled to 10,000mean readsper cell tomatch the
sequencingdepthof 10,000 readsper cell (the recommendeddepth) for
scFFPE-seq, and 20,000 mean reads per cell (the recommended
sequencing depth for the 3′ and 5′ assays). The 3′ and 5′ GEX data were
also downsampled to only the genes on the RTL scFFPE-seq probe set.

Image registration. For registration of IF images to the Xenium mor-
phology images, which are both DAPI images, we used a SIFT regis-
trationwith the cv24.5.4 package inpythonv3.9.7, whichproduces the
transformation between IF and Xenium (see the 10x Analysis Guide
available at https://www.10xgenomics.com/resources/analysis-guides/
he-to-xenium-dapi-image-registration-with-fiji). For registration of
Visium to Xenium data, serial sections were rotated 2.58 degrees
relative to each other, then a manual-defined keypoint registration
between the corresponding H&E images (serial sections) was used.
Over 100 landmark features were identified on commonly shared
microstructures. Using RANSAC, we determined the subset of coor-
dinates that matched, and performed the transformation between
coordinates with the FindHomography() function in the cv2 package.

Visium/Xenium spot interpolation and deconvolution. Using the
registration of Xenium to Visium, we binned cells (by centroid) and
transcripts from Xenium into the Visium spots. This was done by
proximity. The closest spot to a cell or transcript was identified as the
spot a cell or transcript lies within. Robust Cell Type Decomposition
(RCTD) with spacexr 2.0.142 in R was used to deconvolve Visium spots
into cell types using the unsupervised scFFPE-seq reference. See the 10x

Table 1 | Antibodies used for the post-Xenium IF staining

Protein Host Fluor Vendor Catalog Dilution

CD20 Mouse Unconj. Abcam AB219329 1:200

HER2 Rabbit Unconj. Abcam AB134182 1:1500

Ms IgG Goat Alexa 488 ThermoFisher A-11029 1:500

Rb IgG Goat Alexa 594 Abcam AB150088 1:500
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Analysis Guide (https://www.10xgenomics.com/resources/analysis-
guides/integrating-10x-visium-and-chromium-data-with-r).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw scFFPE-seq, Visium, and Xenium data generated in this study
have been deposited in the GEO database under accession code
GSE243280. The data are available here: Downloadable datasets:
https://www.10xgenomics.com/products/xenium-in-situ/preview-
dataset-human-breast. Interactive data explorer: https://www.
10xgenomics.com/products/xenium-in-situ/human-breast-dataset-
explorer. In addition, source files have been uploaded which provide
raw data for the heatmaps, violin plots, and bar graphs in the Arti-
cle. Source data are provided with this paper.

Code availability
The following software programs used for analysis and visualization
have been previously reported and are made available by 10x Geno-
mics, Inc. (“10x”) to the public, and current versions can be down-
loaded from https://www.10xgenomics.com/support#software: Cell
Ranger, Space Ranger, Xenium Ranger, Loupe Browser, and Xenium
Explorer (all versions thereof collectively, “Software”). You may
download and use the Software solely with data generated using 10x
products, including with the data provided by the authors in connec-
tion with this manuscript, as detailed in the 10x End User Software
License, available at https://www.10xgenomics.com/legal/end-user-
software-license-agreement. To summarize, the right to use Software
is limited, non-exclusive and revocable, and no right is granted to
sublicense, transfer, or distribute the Software to a third party, nor to
permit access to or use of the Software by any third party. Merging,
combining, modifying, or reverse engineering the Software is strictly
prohibited. Custom scripts used for this paper that are not Software
(e.g., for spot interpolation) (“Code”) are availableonGitHub at https://
github.com/10XGenomics/janesick_nature_comms_2023_companion,
under the non-exclusive license provided with the Code. You may use
the Code solely with data generated using 10x products, including for
the purpose of validating the data and results of this paper, and you
may not redistribute, license or sublicense the Code to any third party
without 10x’s prior written permission. Any breach or attempt to cir-
cumvent the use restrictions above will automatically terminate all
your rights to use Software and Code under the licenses granted. The
Software and Code are provided by 10x “AS IS” without warranties of
any kind, statutory, express or implied, including but not limited to the
warranties of merchantability, fitness for a particular purpose, or
noninfringement. 10x is not responsible for any use by you of the
Software or Code, including any damages related to your use of the
Software or Code.
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