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Explainable machine learning for profiling
the immunological synapse and functional
characterization of therapeutic antibodies

Sayedali Shetab Boushehri 1,2,3,4,8, Katharina Essig5,8, Nikolaos-Kosmas Chlis5,
Sylvia Herter 6, Marina Bacac6, Fabian J. Theis 2,3, Elke Glasmacher 7 ,
Carsten Marr 1,2 & Fabian Schmich 4

Therapeutic antibodies are widely used to treat severe diseases. Most of them
alter immune cells and act within the immunological synapse; an essential cell-
to-cell interaction to direct the humoral immune response. Although many
antibody designs are generated and evaluated, a high-throughput tool for
systematic antibody characterization and prediction of function is lacking.
Here, we introduce the first comprehensive open-source framework, scifAI
(single-cell imaging flow cytometry AI), for preprocessing, feature engineer-
ing, and explainable, predictive machine learning on imaging flow cytometry
(IFC) data. Additionally, we generate the largest publicly available IFC dataset
of the human immunological synapse containing over 2.8 million images.
Using scifAI, we analyze class frequency and morphological changes under
different immune stimulation. T cell cytokine production across multiple
donors and therapeutic antibodies is quantitatively predicted in vitro, linking
morphological features with function and demonstrating the potential to
significantly impact antibody design. scifAI is universally applicable to IFC
data. Given its modular architecture, it is straightforward to incorporate into
existing workflows and analysis pipelines, e.g., for rapid antibody screening
and functional characterization.

The formation of an immunological synapse is the first event of the
adaptive immune reaction inducedby the interaction of aT cell with its
corresponding antigen-presenting cell (APC). This rapidly formed cell-
cell interface is initiated by the recognition of peptide-loaded major
histocompatibility complexes (MHC) by the T cell receptor (TCR).
It involves the rearrangement of actin filaments of the cytoskeleton
and the recruitment of signaling, co-stimulatory, co-inhibitory, and

adhesionmolecules to the nascent synapse1,2. This process is crucial to
trigger and fine-tune T cell responses and ensure intact immune
reactions. Dysfunctional immunological synapse formation has been
observed in several immune-related disorders3–8 and has thus been
considered a potential target to stimulate or inhibit immune responses
by modulating its assembly or function9–11. For instance, various ther-
apeutic antibodies were developed that alter immunological synapse
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formation to treat cancer and autoimmune diseases12–15. Although
significant progress in developing immunological synapse targeting
agents has been achieved in the last years9, there is still a need to refine
the compounds further, especially to improve their efficacy. It has
been identified that antibody size and format16,17, the dose, as well as
target expression18, can be critical parameters for immunological
synapse formation and its effect on T cell function.

However, so far, no study has provided a tool to systematically
quantify and characterize the morphology of the immunological
synapse, investigate its correlation to T cell response, or identify
properties predictive of the efficacy of antibodies in vitro. As a con-
sequence, only a literature-guided set of fluorescent stainings relevant
for investigating the immunological synapse is set in an otherwise
untargeted approach, allowing the exploration of a broad range of
possible characteristics. The key technology for high-throughput data
acquisition for this purpose is imaging flow cytometry (IFC), combin-
ing the benefits of traditional flow cytometry with deep, multichannel
imaging on the single-cell level19. IFC has recently been successfully
applied to visualize and quantify the immunological synapse of pri-
mary humanT:APC cell conjugates20–22. However, noneof these studies
investigated the formation of the immunological synapse in the con-
text of T cell function.

Recent studies have demonstrated the potential of machine
learning algorithms for a more robust and accurate analysis of high-
throughput imaging data, an approach that has been demonstrated to
overcome the limitations of conventional gating strategies23–25. Lever-
aging machine learning for IFC data analysis has also enabled the
identification of morphological patterns in the cell, combining RNA
and protein data analysis, and implementing predictive models23–27.
While limited open-source software implementations designed for IFC
data analysis are available27,28, they either rely on additional third-party
software which adds complexity to the analysis pipeline or focus on
prediction performance only and lack explainability. synapse in the
context of T cell effector function (cytokine production).

Here, we present scifAI, a machine learning framework for the
efficient and explainable analysis of high-throughput imaging data
based on amodular open-source implementation. We also publish the
largest publicly availablemultichannel IFCdatasetwith over 2.8million
images of primary human T-B cell conjugates from multiple donors
and demonstrate how scifAI can be used to detect patterns and build
predictivemodels.We showcase the potential of our framework for (1)
the prediction of immunologically relevant cell class frequencies, (2)
the systematic morphological profiling of the immunological synapse,
(3) the investigation of inter-donor and inter and intra-experiment
variability, as well as (4) the characterization of the mode of action of
therapeutic antibodies and (5) the prediction of their functionality
in vitro. Combining high-throughput imaging of the immunological
synapse using IFC with rigorous data preprocessing and machine
learning enables researchers in pharma to screen for novel antibody
candidates and improve evaluation of lead molecules in terms of
functionality, mode-of-action insights and antibody characteristics
such as affinity, avidity, and format.

Results
Comprehensive multichannel imaging flow cytometry dataset
of the immunological synapse
Formation of T cell immune synapses occurs at variable and relatively
low frequencies depending on the donor, the APC, and pharmacolo-
gical perturbations9,12,20–22. Therefore, high-throughput IFC was selec-
ted as the method of choice to capture a large number of samples,
enabling the detection of subtle changes in cell morphology. Using
IFC, we generated a comprehensive dataset for the systematic analysis
of the immunological synapse of T-B conjugates (Fig. 1a, Supplemen-
tary Figs. 1a and 2). Human memory CD4+ T cells, isolated from per-
ipheral blood of different donors were co-cultured with superantigen

(Staphylococcus aureus enterotoxin A, SEA)-pulsed EBV (Epstein-Barr
virus)-transformed lymphoblastoid B cells (B-LCL) expressing high
levels of the co-stimulatory molecules CD86 and CD80 or left
untreated (Supplementary Figs. 1b, c and 3a, b). P-CD3ζ (Y142) as a
readout of early T cell activation, the highest titrated concentration of
SEA (100ng/mL), and a time point of 45min was chosen to investigate
functional immune synapses (Supplementary Fig. 1d, e). In total, we
screened nine donors in four independent experiments (Supplemen-
tary Figs. 2 and 3a) and acquired 1,182,782 images (±SEA, Supple-
mentary Fig. 3b). The designed multichannel panel consisted of
brightfield (BF), F-actin (cytoskeleton), MHCII, CD3, and P-CD3ζ (TCR
signaling) allowed to capture a wide range of biologically motivated,
potentially relevant characteristics of the immunological synapse
(Fig. 1a)6,20. Dead, deformed, unfocused, or cropped cells were
removed using amulti-step pipeline (“Methods”). Additionally, a set of
5221 images from seven randomly selected donors was labeled by an
expert immunologist (K.E.) into nine classes organized in two levels.
(Fig. 1b and Supplementary Fig. 3e). The first level represented the
number of existing cells in the image: singlets (n = 1), doublets (n = 2),
and multiplets (n > 2). The second level characterizes the type of cells,
their interactions with each other, and the presence of TCR signaling.
The singlets are composed of “single B-LCL,” “single T cell w/o sig-
naling,” and “single T cell w/ signaling” classes. The doublets include
the “T cell w/ small B-LCL,” “B-LCL andT cell in one layer”, “synapsew/o
signaling,” “synapsew/ signaling,” and “no cell-cell interaction” classes.
The class “multi-synapse” contains more than two cells and at least
one B-LCL and T cell. Even though the ‘T cell w/ small B-LCL’ and ‘no
cell-cell interaction’ classes were artifacts of the experiments, they
were annotated to enhance the predictive power of classification
models and subsequently filtered out and not used in further analyses
(“Methods”).

Two donors were randomly selected to assess intra- and inter-
rater variability within two experiments (donor 1 in experiment III and
donor 7 in experiment IV). Next, 100 annotated samples from donor 1
and 224 annotated samples from donor 7 were randomly selected for
reannotation. Four annotators with diverse backgrounds annotated
the images (two immunology experts, including the original annotator
and a new expert, one data analyst, and one IFC analyst). For donor 1,
Cohen’s kappa29 scores were 0.84 (intra-), 0.80 (inter-), 0.79 (inter-),
and 0.66 (inter-rater), respectively, compared to the original annota-
tion by rater 1. For donor 7, comparing the original annotationwith the
new annotations yielded Cohen’s kappa scores of 0.95 (intra-), 0.86
(inter-), 0.78 (inter-), and 0.75 (inter-rater), respectively. The strong
agreement between the annotators, especially between the immunol-
ogists (scores > 0.8 are considered as almost perfect agreement29),
gave us confidence in the reproducibility and validity of the original
annotation (Supplementary Fig. 3f).

scifAI: an explainable AI python framework for the analysis of
multichannel imaging flow cytometry data
High-throughput imaging flow cytometry enables systematic profiling
of millions of cells, thus providing a valuable resource for gaining
biological insights19. Full manual annotation of such large datasets is
prohibitive as expert time is scarce and expensive30,31. Hand-crafted
gating strategies, commonly used in IFC applications22, are hard to
reproduce, often subjective and biased, and time-consuming for
extensive experiments32,33. Additionally, it has been shown that they
canbe suboptimal in predictionperformance25,34. In order toovercome
these limitations, we developed the single-cell imaging flow cytometry
AI (scifAI) framework for the unbiased analysis of high-dimensional
high-throughput IFC data.

This open-source frameworkwas developed in Python, leveraging
functionality from state-of-the-art modules, such as scikit-learn, SciPy,
NumPy, pandas, and PyTorch (“Methods”), allowing for smooth inte-
gration and extension of existing analysis pipelines. Universally
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applicable for single-cell brightfield or fluorescent imaging projects,
the framework provides functionality for the import and preproces-
sing of input data, several feature engineering pipelines, including the
implementation of a set of biologically motivated features and

autoencoder-generated features (“Methods”), as well as the metho-
dology for efficient and meaningful feature selection. Moreover, the
framework implements several machine learning and deep learning
models for training supervised image classification models, e.g., for
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Fig. 1 | Explainable machine learning accurately predicts immunologically
relevant cell classes from IFC data and identifies the most informative image
features. a Schematic representation of the data generation and analysis pipeline.
To systematically analyze the immunological synapse of T-B conjugates, 1,182,782
images were acquired with an imaging flow cytometer. Next, scifAI was used to
extract morphological features, train machine learning models, profile immuno-
logical synapses, and characterize the functionality of therapeutic antibodies. b A
subset of 5221 images was annotated by an expert into nine immunologically
relevant classes that can be grouped into singlets (either B or T cells), doublets
(with one B and one T cell), and multiplets (containing >2 cells). Cell images show
brightfield (BF, scale bar = 2.4μm), F-actin (cytoskeleton), MHCII, CD3, and P-CD3ζ
(a marker for TCR signaling). c Six different approaches to training predictive
machine learningmodels for identifying the immunologically relevant classes were

benchmarked, combining different classification algorithms and feature engi-
neering strategies. These approaches included interpretable (interp.) features
combined with explainable classifiers, an autoencoder to generate data-driven
features, an explainable classifier, and three convolutional neural networks. Inter-
pretable features combined with the XGBoost classifier resulted in the best trade-
off between interpretability and classification performance. Each point depicts an
iteration in a stratified 5-fold cross-validation scheme with 10 times repetition. The
black line represents the mean of the points. Source data are provided as a Source
Data file. d Top seven features for detecting cell classes were ranked based on in-
model feature importance (“Methods”). The features include co-localization and
intensity ofMHCII (blue), CD3 (green), and P-CD3ζ (red), as well as themorphology
of BF (gray). The exemplary images are sampled from the 5th, 50th, and 95th
percentile of the distribution of each feature (scale bar = 2.4μm).
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predicting cell configurations such as the immunological synapse. The
implemented models included logistic regression35, linear discriminant
analysis35, support vector machine35, random forest36, and XGBoost37, as
well as deep learning models including a multi-encoder autocoder25,
DeepFlow24, ResNet18 and ResNet3438. Following the principle of
multiple-instance learning, the frameworkalso implements functionality
to regress a set of selected images against a downstream continuous
readout, such as cytokine production. Extensive documentation, as well
as how to reproduce the analysis in the form of Jupyter notebooks, is
provided online at https://github.com/marrlab/scifAI/ and https://
github.com/marrlab/scifAI-notebooks.

scifAI’s explainable design follows the definition of Singh et al.39

and Tjoa et al.40, where machine learning models are explained by
either in-model mechanisms, such as Gini-index or gain, or by using
post-model methods, such as saliency maps41 for deep learning mod-
els. Using interpretable features with a model whose internal
mechanisms can be readily analyzed, scifAI natively provides in-model
explainability and is fully compatible with other libraries, such as
SHAP42 or Captum43, to provide further post-model explainability.

scifAI enables high-throughput profiling of the immunological
synapse
In order to characterize the immunological synapse in an unbiased
fashion, we first designed and computed a series of biologically
motivated, interpretable features using the scifAI framework. These
featureswere based onmorphology, intensity, co-localization, texture,
and synaptic features extracted from the 5-panel stained images and
their corresponding masks (“Methods” and Supplementary Fig. 4a–c).
Morphology features included shape-related characteristics such as
area, perimeter, and roundness of cells. Intensity and texture features
were implemented to quantify the existence, distribution, and reg-
ularity of intensities within cells44. Co-localization features were
designed to capture similarities and differences in intensities among
different channels45. Finally, synaptic features were implemented to
give insights into the distribution of intensities within the synapse
region compared to the rest of the cell33,46. Synaptic features were
implemented based on the signal intensity ratio of each fluorescent
channel in the synaptic area to the whole cell. These features allowed
for comparing cell states within and among different populations.
Leveraging the large amount of unlabeled data,we also implemented a
multichannel convolutional autoencoder to learn a second set of data-
driven features from the images in an unsupervised fashion25. The
autoencoder was designed to encode the images to a 256-dimensional
abstract feature space by reconstructing the input images. Consider-
ing the computational complexity of machine learning modeling on
high-throughput data, all mentioned algorithms were implemented
using parallel computing, fully leveraging high-performance comput-
ing (HPC) infrastructure to speed up the calculations by distributing
the computational load on multiple CPUs (“Methods”).

Subsequently, scifAI was used to compose a supervised machine
learning pipeline for the classification of the 5221 annotated images
across the nine immunologically relevant cell classes. We trained and
benchmarked a series of supervised machine learning models for the
predictionof all nine classes using both the interpretable feature space
as well as the abstract autoencoder features across all donors and
experimental conditions. The models included an XGBoost37 classifier
on the interpretable features and a multi-class logistic regression (LR)
on the interpretable and data-driven features. To pre-select the fea-
tures and reduce the dimensionality, we implemented a feature pre-
selection pipeline using an ensemble of different methods (“Methods”
and Supplementary Fig. 5a, b). We also trained a number of convolu-
tional neural network (CNN) architectures, such as Resnet18,
ResNet34, and DeepFlow, which had previously been shown to be
successful in classification tasks on imaging flow cytometry data23–25.
For Deepflow, a random initialization was used. A self-supervised

method called Barlow Twins47 was used to pre-train ResNet18 and
ResNet34. Here, the unlabeled part of the ±SEA-based was utilized
based on Barlow Twins self-supervision task, and then the weights
were transferred for the supervised training. This method has been
shown to improve the performanceof the CNNmodels in classification
tasks47. In the supervised training, the CNN architectures intrinsically
learned a feature representation based on the input images and their
corresponding labels. To estimate the performance of the models, the
annotated ±SEA-based dataset with 5221 images in total was split into
train (70%) and test (30%) sets, resulting in 3654 images for training
and 1567 images for testing. All models were trained on the stratified
±SEA-based training set. We compared the macro F1-score on the
±SEA-based hold-out test set to benchmark the classification model
and feature space combinations as the (“Methods”). The XGBoost
model using the interpretable feature set performed best (F1-macro =
0.92 ± 0.01, mean± std 5-fold cross-validation with 10 repetitions)
among all the classifiers. It was followed by convolutional neural net-
works ResNet34 (0.91 ± 0.01), ResNet18 (0.91 ± 0.02), and DeepFlow
(0.90 ± 0.02). They were followed by multi-class logistic regression
using the interpretable feature set (0.90 ±0.02) and logistic regression
using the data-driven feature set (0.79 ±0.02). Based on the perfor-
mance and explainability, the XGBoost model was selected as the final
classifier for label expansion to the full dataset (Fig. 1c). Investigation
of the model’s confusion matrix on the hold-out set revealed that
misclassifications occurred mostly within the cell classes’ signaling
property, whereas all other classes showed good overall concordance
(Supplementary Fig. 5c).

An interesting observation was that even though the autoencoder
has been trained on all unlabeled data and thus was allowed to learn a
data-driven representation of the full dataset, this derived feature
space is considerably less performant as compared to the engineered
interpretable features in a logistic regression model (0.79 ± 0.02 vs.
0.90 ±0.02, Fig. 1c). To confirm the quality of the interpretable fea-
tures, the previously trained XGBoost and logistic regression models
were compared with different classifiers in an ablation study on the
interpretable features. These classifiers included random forest, sup-
port vector machine, and linear discriminant analysis. While XGBoost
performed best (0.92 ±0.02), we only observed minor drops in per-
formance using random forest (RF, 0.90 ± 0.02), linear regression (LR,
0.90 ±0.02), support vector machine (SVM, 0.90 ±0.02), or linear
discriminant analysis (LDA, 0.87 ± 0.02). Thus, we concluded that the
predictive performance driving factor is the feature space of inter-
pretable features (Supplementary Fig. 6a).

After confirming the quality of the interpretable features and the
choice of the classifier, it was investigated whether they can be used
in real-world examples where it is desirable to have a model that
can be generalized to new donors. Therefore, leave-one-donor-out
cross-validation was performed using the interpretable features
and XGBoost. The cross-validation yielded F1-macro values of
0.88 ± 0.04, demonstrating good generalizability across donors
(Supplementary Fig. 6b).

Next, we focused on the explainability of the pipeline and
explored which underlying features drive the class prediction, ranking
features by their respective feature importance. The feature impor-
tance was based on the in-model mechanism called gain37, which sig-
nifies the relative contribution of a corresponding feature to the
classification (“Methods”). Themost predictive features were based on
the intensity of CD3, co-localization ofMHCII & P-CD3ζ, co-localization
of MHCII & CD3, the cell morphology in BF, and the intensity of the
MHCII (Fig. 1d). The intensities of CD3 andMHCII imply thepresenceof
a T cell or B-LCL in the image. The co-localization ofMHCII and P-CD3ζ
measures how many overlapping pixels the two proteins share. For
example, ‘synapse w/ signaling’ has a lower overlap between the T cell
and the B-LCL than the ‘T cell & B-LCL inone layer,’ and thus a lower co-
localization ofMHCII and P-CD3ζ. The same logic can be applied to the
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co-localization of MHCII and CD3. The equivalent diameter of BF hints
at the size of the cells or the existence of multiple cells. Based on the
features and the definition of classes, one could speculate that the
classifier uses (1) the intensity of CD3 and MHCII to detect the exis-
tenceof T and B-LCL cells in the image, (2) the co-localization ofMHCII
& P-CD3ζ as well as MHCII & CD3 the to detect the different doublets
types and the existence of signaling (3) the cell morphology in BF to
assist detecting the cell type (Fig. 1d). To validate the feature impor-
tance with a widely used, post-model explainability approach, SHAP42

values were calculated (“Methods”). SHAP is a game theory-based
approach that has recently been shown to be the most used post-
model explainabilitymethod in related topics48. The top-5 SHAP values
(Supplementary Fig. 6c) were similar to the previously shown feature
importances based on model-intrinsic gain, providing additional con-
fidence in the stability of the feature importance estimation (Fig. 1d).

Finally, to confirm the quality of experimental data, it was inves-
tigated whether adding SEA led to higher synapse frequency. The
trained XGBoost model was applied to the ±SEA-based complete
dataset. After data cleaning and removing artifacts (“Methods”), the
frequency of synapses was calculated for the -SEA and +SEA cases. The
results showed that adding SEA significantly increased ‘synapses w/
signaling’ frequency from 0.95%±0.55% to 2.58% ±0.86% (p <0.001,
Mann-Whitney U test, n = 9 donors). Therefore, the experimental data
followed the expected biological behavior. Moreover, the low per-
centage of the ‘synapses w/ signaling’ confirmed the rarity of synapses
and the importanceof a high-throughput technologywhileworking on
synapse formation.

A subset of annotated data and available IFC channels suffices
for a high classification performance
Considering that manual annotation of images can be time-consum-
ing, we performed an ablation study to investigate how many anno-
tated samples were necessary to achieve a high classification
performance. We repeatedly trained themodel on stratified subsets of
the ±SEA-based training data (5%, 15%, …, 95%) and evaluated the F1-
macro on the ±SEA-based test set. The results showed that by using
1500 images (45% of the training data), we could achieve 0.90 ± 0.01
F1-macro on the test set (Supplementary Fig. 7a). This result demon-
strated that it is possible to halve the manual annotation time and still
achieve a similar quality of classification performance, as compared to
using the whole annotated set (0.92 ± 0.01).

Next, we investigated the effects of fluorescent channels on the
classification performance to determinewhich antibodies are essential
for the detection of synapses and which ones can be freely exchanged
depending on the biological context. Considering thatBF is a stain-free
channel provided for free by IFC, we kept the BF channel fixed and
added all possible combinations of the fluorescent channels to train
the model. We found that the combination of the channels BF, MHCII,
and P-CD3ζ sufficed to reach an F1-macro of 0.91 ± 0.01 (Supplemen-
tary Fig. 7b), similar to using all the channels (0.92 ± 0.01).

Characterizing the impact of therapeutic antibodies on synapse
formation
We next used scifAI to investigate the effects of therapeutic anti-
bodies on the formation of the immunological synapse and to char-
acterize their morphological profiles better. This analysis included
the investigation of potential class frequency changes and feature
differences. We chose two antibodies, one activator and one inhibitor
of immune responses. The activating T cell bispecific (TCB) antibody
was designed to target CD3 and CD19, a co-receptor of B cells49

(Fig. 2a). The inhibitory antibody, Teplizumab, is described to only
bind to CD3 (Fig. 2c) and has been shown to dampen T cell
responses50,51. For each antibody, an appropriate control (Ctrl-TCB
and isotype) was run within the same experiment and donor. Since
Teplizumab required an existing immune response for subsequent

inhibition, we used SEA tofirst stimulate the T cells (Fig. 2c). The same
setup was also used for the isotype control. Six donors across two
experiments for CD19-TCB and seven donors across three experi-
ments for Teplizumab were measured (Fig. 2b, d and Supplementary
Fig. 3c, d) and were used to predict the class for all images based on
the interpretable features. A data cleaning pipeline was also imple-
mented to filter out unwanted images such as experimental artifacts
(“Methods” and Supplementary Fig. 8). To ensure that the previously
trained XGBoost model was transferable from ±SEA to the antibody
experiments, an expert (K.E.) annotated a randomly selected subset
of 396 images for CD19-TCB and 227 images for Teplizumab. A high
concordance between ground truth annotations and XGBoost pre-
dictions on the new experiments (macro F1-score = 0.86 for TCB and
0.85 for the Teplizumab) confirmed that the trained model gen-
eralizes across experiments and can thus be utilized for further ana-
lyses (Supplementary Fig. 9). For a compact representation of class
frequency changes, we computed log2-fold changes between the
antibodies and their controls. In a second step, we focused on the
feature differences of synapses under antibody stimulation and
selected all the images predicted as ‘synapses w/ signaling’ for each
donor and compared interpretable features from only fluorescent
channels, including texture, synaptic features, morphology, intensity
and co-localization between antibodies and their controls (“Meth-
ods”). Considering that we were interested in the mode of action of
antibodies, we focused on fluorescent channels providing targeted
information on components of the cell expected to change during
synapse formation morphologically.

CD19-TCB increases the formation of stable immune synapses
Stimulation of the immune response by CD19-TCB led to a significant
increase of doublets and multiplets frequencies. The ‘synapse w/ sig-
naling’ class showed thereby the highest increase (median log_2(CD19-
TCB/Ctrl-TCB) = 2.7, n = 6 donors, p =0.036) followed by ‘multi-
synapse’ (median = 2.03, p = 0.036), ‘B-LCL & T cell in one layer’
(median = 1.99, p =0.036), and ‘synapse w/o signaling’ class (med-
ian = 0.59, p =0.036). For the singlets, the overall trend was a decrease
in the class frequency of ‘single B-LCL’ (median = −0.21, p =0.036) and
‘single T cell w/o signaling’ (median = −0.77, p =0.036) (Fig. 2e).

Next, we investigated the feature differences in synapses induced
by the CD19-TCB (“Methods”), comparing the 210 interpretable fea-
tures from all fluorescent channels. We found 210 significantly
increased and 163 significantly decreased features out of 210*6 = 1260
possibilities from combination of features and donors (Fig. 3a). All
donors exhibitedmostly similar responses toward the stimulationwith
CD19-TCB. On average, 42 ± 4 features were significantly decreased,
and 39 ± 11 features were significantly increased per donor (dashed
lines bottom Fig. 3a). From these features, we were able to find a
number of features with similar changes within at least 4 out of 6
donors (Fig. 3a and Supplementary Table 1). We also observed an
increase in ‘mean intensity of P-CD3ζ’ with higher enrichment within
the synaptic area (Fig. 3b, c and Supplementary Table 1). In addition,
we also detected a stronger enrichment of F-actin and MHCII toward
the synapse (Fig. 3d–g). Taken together, the observed increase in
doublet and multiplet frequencies as well as a stronger enrichment of
F-actin and MHCII in the synaptic area, indicated an enhanced forma-
tion of tight immunological synapses, translating into an efficient TCR
signaling. These observations align with the mode of action already
described in general for TCBs, promoting a stable interaction between
tumor cells and T cells15,52,53.

Teplizumab alters synapse formation and TCR signaling
In contrast to the CD19-TCB, treatment with Teplizumab reduced the
frequency of doublets andmultiplets significantly (Fig. 2f). The highest
decrease was observed for the ‘synapse w/ signaling’ class (median
log_2(Teplizumab/Isotype) = −0.75, n = 7, p =0.022), followed by
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‘multiplets’ (median = −0.69, p =0.036), and ‘synapse w/o signaling’
(median = −0.57, p = 0.022). Accordingly, ‘single T cell w/ signaling’
(median = 0.70, p =0.022) and ‘single B-LCL’ (median=0.09, p =0.022)
were increased significantly as compared to the isotype. Surprisingly,
the ‘T cell w/o signaling’ class frequency was significantly decreased
(median = −0.30, p =0.022), probably due to the significant increase of
‘single T cell w/ signaling’ (Fig. 2f).

We next investigated feature differences in synapses induced by
Teplizumab in seven donors (“Methods”). From ‘synapses w/ signaling’

images we extracted 132 features based on F-actin, MHCII and P-CD3ζ
and their co-localizations. CD3 features could not be included in the
analysis because the binding of Teplizumab and the anti-CD3 staining
antibody interfere, therefore an anti-CD4 staining antibody was used
to identify T cells. We found 131 significantly increased and
169 significantly decreased features out of 132*7 = 924 possibilities
(Fig. 3h and Supplementary Table 2). In particular, on average, Tepli-
zumab led to 20± 15 significantly decreased features and 23 ± 9 sig-
nificantly increased features per donor (dashed lines bottom Fig. 3h).

Fig. 2 | CD19-TCB and Teplizumab show significant changes in the frequencies
of synapses. a, c Schematic representation of themode of action of CD19-TCB and
Teplizumab. CD19-TCB binds with one arm to the T cell receptor CD3 and with two
arms to the B cell co-receptor CD19, thereby bringing T and B cells into proximity
and activating T cells. Teplizumab binds with two arms to CD3 and has been
described to inhibit T cell activation. The T cells needed to be first stimulated via
the superantigen SEA to exert their full suppressive function. b, dDonors and their
respective experiments were used for the class frequency analysis in Fig. 2.
e, f Feature difference analysis in Fig. 3, and cytokine prediction analysis in Fig. 4.

e, f Class frequency differences depicted as log2-fold changes between CD19-TCB
(6 donors) or Teplizumab (7 donors) and their corresponding controls (Ctrl-TCB &
isotype). Eachdot represents a donor color-coded as in (b) or (d). The vertical black
line is themedian across donors for each class. A two-sidedWilcoxon-rank-sumwas
used to analyze the significance of the log2-fold-change, and the p-values were
correctedusing the Benjamini-Hochberg procedure. For (e), the p-values are0.036,
except for ‘T cell w/ signaling’, which was 0.109. For (f), the p-values are 0.022,
0.022, 0.022, 0.109, 0.022, 0.022, 0.036. (*) represents p-value < 0.05, and (n.s.)
represents not significant. Source data are provided as a Source Data file.
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Donor 6 showed the least number of changes with 15 significantly
increased features. In contrast, donor 4 yielded the highest number
of increased features with 32 features, indicating a fair amount of
inter-donor variability. We found a set of features that were sig-
nificantly increased or decreased for at least 3 out of 7 donors (Fig. 3i,
k). We observed a decrease in the mean intensity of F-actin, whereas
donors 2 and 4 indicated a significant increase (Fig. 3i, j). This opposite
reaction of the two donors could also be detected for other F-actin-
related features (Supplementary Table 2). Besides the changes in
F-actin features, we also detected a significant reduction of P-CD3ζ
intensity within the synapse and observed a stronger clustering of TCR
signaling around the whole T cell (Fig. 3k, l). In conclusion, we gained
new insights into the immunosuppressive mode of action of Teplizu-
mab as we observed a reduction in the number of synapses as well as
changes in the F-actin reorganization and P-CD3ζ signaling toward the
synapse.

Morphological profiles of the immunological synapse predict
functionality of therapeutic antibodies in vitro
Next, the capabilities of scifAI in predicting the functionality of anti-
bodies by analyzing T cell cytokine production were explored. We
included an additional antibody in our analysis, the CD20-TCB (Sup-
plementary Fig. 3c and “Methods”). CD20-TCB is a therapeutic anti-
bodywith the same format similar to CD19-TCBbutwith varying target
moiety15. CD3 features could not be included in this analysis because
the binding of the TCBs interferes with the anti-CD3 staining antibody
resulting in erroneously lower CD3 intensity features. Given the rich-
ness of interpretable features, we investigated whether it is possible to
forecast downstream T cell responses as measured by Granzyme B
(GrzmB) for the TCBs. While the IFC measurement was taken after
45min, GrzmB was measured after 24 h, respectively, using conven-
tional fluorescence-activated cell sorting (FACS) for each donor and
condition to address the effects of the antibodies in later time points
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(Supplementary Fig. 10a). In line with the differences in target
expression, the CD20-TCB (20.23 ± 6.32, n = 4) showed the highest
expression of GrzmB, followed by the CD19-TCB (12.58 ± 3.04) and
Ctrl-TCB (1.16 ± 0.51) (Fig. 4a and Supplementary Fig. 10b). A similar
pattern was also detected for killing of two tumor cell lines with dif-
ferent expression levels ofCD19 andCD20 (Supplementary Fig. 10c, d).

Since there is a one-to-many relationship between FACS cytokine
measurements and IFC images, where each cytokine measurement
corresponds to an IFC cell population consisting of 54,708 images on
average, an aggregation pipeline based on the interpretable features
was implemented. For each donor and condition, the first images
predicted as synapses were selected, and their previously extracted
features were aggregated using the 5th, 50th, and 95th percentile. This
aggregation ensured that every feature’s extrema and average
expression were captured (Fig. 4b and “Methods”). Next, it was
attempted to predict the cytokines for an unseen antibody. Due to the
low number of samples, a linear model with Lasso Lars penalization
was used (“Methods”). The cross-validation was performed on CD19-
TCB and CD20-TCB, while the No Ab and Ctrl-TCB were kept in the
training set (Fig. 4c). The prediction performance reached a Spearman
correlation of 0.38 (Fig. 4d).Whilewe could observe subtle differences
between the predictions and the ground truth, the model correctly
identified the separation between CD20-TCB and CD19-TCB. Further-
more, themodel suggested that the ‘standarddeviation ofMHCII (95th
perc.) [intensity]’ and ‘eccentricity of F-actin (95th perc.) [morphol-
ogy]’ as the most important features (Fig. 4e, f).

Discussion
In the present work, we established scifAI, a pipeline based on two
innovative technologies, imaging flow cytometry and explainable
machine learning to understand the mode of action and predict the
functionality of therapeutic antibodies in vitro. We analyzed mor-
phological profiles of the immunological synapse to better char-
acterize the mode of action of therapeutic antibodies early after the
initiation of an immune response and to apply it to forecast down-
streamTcell responses. Thiswork is thefirst coherent functional study
using large image datasets and the consequential analytical part to
visualize, understand and study synapse formation and its link to
predictive features.

We generated the largest publicly available imaging flow cyto-
metry data with over 2.8 million images using human primary immune
cells from nine donors in four independent experiments that were

treated with various therapeutic antibodies to study synapse forma-
tion. The large number of acquired images across multiple experi-
ments provided sufficient statistical power to enable the study synapse
formation, a potentially low-probability event, going beyond previous
works that did, for example, not consider inter-experiments effects or
inter- and intra-donor variability22,33. While we demonstrate good
generalizability of our model, we do not expect that themodel trained
on our specific IFC data will be predictive without additional training
on different datasets obtained with other IFC machines out of the box
due to the inherent domain shifts in resolution, magnification, light
wavelengths, or focal depth. However, exploiting transfer learning,
self-supervised pre-training54, and domain adaptation and general-
ization techniques55, this dataset will be a valuable resource for future
applications, such as transfer to other fluorescent imaging modalities,
for example, confocal microscopy, where data can be scarce. Training
deep generative models to understand the mode of action of ther-
apeutic antibodies56 is another exciting avenue for future research.

To detect and study immunological synapses, we implemented an
interpretable feature extraction and machine learning framework in
Python by only using well-maintained Python modules. scifAI natively
implements parallel computing, fully leveraging modern HPC infra-
structure and allowing for efficient processing and analysis of high-
throughput data by parallelizing tasks such as data preprocessing and
model fitting across multiple CPUs. On a 24-CPU machine, scifAI
enables feature extraction and class-label prediction of approximately
250,000 images per hour. This is, by orders of magnitude, more effi-
cient than manual annotation, as reported by our annotators, with a
rate of approximately 100 images per hour. These choices guarantee
performance, scalability, and reproducibility and facilitate the
deployment into existing workflows, which differs from previous
works that use a combination of CellProfiler, R, and Python for each
stage of the analysis28,57,58. In this work, we followed the definitions of
Singh et al.39 and Tjoa et al.40 in the context of the explainability of
machine learning andAI.We regard thebiologicallymotivated features
as interpretable as they are meaningful and can potentially hint at
underlying biological mechanisms. We also considered our XGBoost
model explainable as it natively provides a feature importance
measure42. This design also enables a deeper understanding of the
model’s decision-making using additional methods, such as SHAP42.
The insights from the interpretable features and explainable models
have the potential to generate new biological hypotheses, which can
lead to a better understanding of the underlyingmechanisms at play. It

Fig. 3 | CD19-TCB and Teplizumab induce morphological changes in synapse
formation, including texture, intensity, and synaptic features. a Systematic
comparison of 210 relevant features between CD19-TCB and Ctrl-TCB across ima-
ges predicted as ‘synapse w/ signaling’ across six donors. Each line represents a
feature, and each column represents a donor. For each donor, the significantly
increased features are depicted in red, and the significantly decreased ones are in
blue. The significance is measured by a two-sided Mann-Whitney U test and cor-
rected by the Benjamini-Hochberg procedure. In each column, the number of
‘synapse w/ signaling’ for every donor is: donor 5 experiment 3 (Ctrl-TCB = 86,
CD19-TCB = 660), donor 2 experiment 4 (265, 729), donor 8 experiment 4 (194,
753), donor 7 experiment 4 (96, 822), donor 9 experiment 4 (169, 746) and donor 1
experiment 3 (77, 666). The donors are sorted based on the number of significantly
changed features. The bottom barplot shows the count of increased or decreased
features per donor. Heatmap rows with arrows are shown in detail in (b, d, and f).
b,d, f Statistical and visual inter-donor comparison of three representative features
between CD19-TCB and Ctrl-TCB. The features are mapped separately between
zero and one for each donor for visualization purposes. The boxes represent
quartiles of the data, and thewhiskers represent a 1.5 times interquartile range from
the nearest hinge. The p-values for (b) are 7.7e-20, 8.7e-11, 7.2e-08, 3.3e-08, 4.8e-12,
and 5.7e-24. For (d), they are 3.8e-01, 2.4e-04, 1.4e-01, 3.9e-05, 9.1e-04, and 6.5e-01.
For (f) we have 3.8e-02, 1.5e-07, 1.9e-04, 3.8e-05, 1.9e-05, and 2.7e-01. (*) represents
0.01 < p-value < 0.05, (**) represents 0.01 < p-value < 0.01 and (***) represents p-

value < 0.001. c, e, g Visual representatives for all features were randomly sampled
for both Ctrl-TCB and CD19-TCB from donor 9 and were found to be in con-
cordance with the statistical results (scale bar = 2.4μm). h Systematic comparison
of 132 relevant features between Teplizumab and isotype across images predicted
as ‘synapse w/ signaling’ among all six donors. The significance is measured by a
two-sided Mann-Whitney U test and corrected by the Benjamini-Hochberg proce-
dure. The color code, barplot, and sorting are the same as described in (a). In each
column, the number of ‘synapse w/ signaling’ for every donor is: donor 6 experi-
ment 3 (isotype = 204, Teplizumab = 128), donor 1 experiment 1 (254, 119), donor 1
experiment 3 (328, 222), donor 2 experiment 1 (265, 89), donor 3 experiment 2 (421,
288), donor 5 experiment 3 (326, 227), donor 4 experiment 2 (480, 285).
i, k Statistical and visual inter-donor comparison of two representative features
between Teplizumab and its isotype (also shown by three small arrows in h). The p-
values for i are 4.3e-24, 8.7e-15, 4.4e-15, 4.3e-22, 3.0e-12, 1.4e-52, 5.2e-13. The boxes
represent quartiles of the data, and the whiskers represt 1.5*interquartile range
from the nearest hinge. The p-values for (k) are 9.0e-02, 1.4e-01, 7.5e-06, 4.1e-01,
1.8e-08, 1.8e-05, and 1.5e-01. (*) represents 0.01 < p-value < 0.05, (**) represents
0.01 < p-value < 0.01 and (***) represents p-value < 0.001. j, l Visual representatives
for two features were randomly sampled for both isotype and Teplizumab from
donor 3 andwere found to be in concordancewith the statistical results (scale bar =
2.4μm). Source data are provided as a Source Data file.
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is essential to mention that explainable models can offer a helpful
intuition only if trained on interpretable features and will fail to pro-
vide a meaningful interpretation when trained on abstract features
such as the bottleneck layer of an autoencoder. The combination of
interpretable features and explainablemachine learning enabled us to
identify various relevant classes, such as immunological synapses,with
state-of-the-art accuracy. It also allowed us to investigate the mor-
phological profiles of the immunological synapse in an unbiased way
and characterize the mode of action of antibodies in a biologically
relevant context. This methodology is thus a substantial contribution
to the field, which has so far primarily focused on performance over
interpretability by using a ResNet CNN architecture as the
backbone27,54. A potential limitation in this work is the choice of mar-
kers. While the markers were carefully selected to reflect immunolo-
gical synapse characteristics, our results are restricted to those
choices. Nonetheless, feature engineering in scifAI is designed in an
unbiased way toward any IFC dataset with an arbitrary set of stainings.
As proof of concept, we provide three examples within the scifAI code
repository on how to analyze IFC datasets from Jurkat cells (3 channels
per image)24, white blood cells (12 channels)23, and apoptotic cells (2
channels)25 using scifAI.

To demonstrate the capabilities of the scifAI framework, we
investigated the effects of two therapeutic antibodies on the immu-
nological synapse, the CD19-TCB and Teplizumab, which are both
binding CD3 and have been described to activate and suppress T cell
responses, respectively49–51. We found that the CD19-TCB forms more
stable immune synapses, as indicated by a stronger enrichment of
MHCII and F-actin within the synapse, paralleled by a higher intensity
of P-CD3ζ. The formation of stable T cell-tumor cell synapses has

already been reported for other TCBs like the CEA- and CD20-TCB15,52.
In contrast to the CD19-TCB, treatment of Teplizumab yielded a
decrease in synapse formation andprevented F-actin reorganization as
well as localization of P-CD3ζ toward the synapse. These observations
gave new insights into Teplizumab’s immunosuppressive mode of
action that has rarely been investigated in vitro so far50,51. One could
speculate that steric hindrance by Teplizumab prevented T-B cell
interactions leading to less stable synapses and reduced cytokine
production. It has been shown that antibody size and format can
substantially impact synapse formation16,17. Another hypothesis could
be that the binding of Teplizumab induced strong TCR internalization
that led to diminished SEA-mediated TCR-MHCII crosslinking and thus
inhibitedTcell activation. The reducedP-CD3ζ intensity in the synaptic
area and the observed unpolarized distribution of the P-CD3ζ signal
around the whole T cell could also indicate altered TCR signaling that
might be translated into a reduced T cell effector function. High
numbers of peripheral P-CD3ζ microclusters have already been
reported for self-reactive T cells with altered synapse formation and
aberrant T cell responses6. Interestingly, scifAI identified features
within the synapse class, revealing inter-donor variability upon sti-
mulation with the different antibodies. However, we were not able to
correlate the variability of those features to a different functionality
in vitro because the differences in the T cell responses between donors
were justminor. Patientmaterial fromongoing clinical trials couldhelp
elaborate further if these synapse features could predict clinical
response. In that case, scifAI could enable us to rapidly screen for
responders in vitro and potentially pre-select suitable patients for
clinical trials. Taken together, by applying scifAI we were not only able
to thoroughly investigate themode of action of therapeutic antibodies
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Fig. 4 |Morphological profiles of synapses are predictive of the functionality of
antibodies in vitro. a Frequencies of GrzmB+ CD4+ T cells (gated as single live+

cells) measured by FACS after 24h. Corresponding to each imaging flow cytometry
experiment, a separate FACS experiment was performed with the same batch to
obtain the cytokine production values. Each dot represents a donor from experi-
ment IV (4 donors). The barplot represents the mean with a 95% confidence
interval. b Data aggregation pipeline: For each donor and condition, images iden-
tified as synapses with and without signaling are selected (N = number of detected
images). Then, image-level features (F = number of relevant features) are extracted
across all selected images. The features were aggregated for each donor and con-
dition using the 5th, 50th, and 95th percentile. This 620-dimensional aggregated

feature reduces the cytokine prediction to amultivariate regression task. cAnalysis
scheme: Cytokines are predicted for an unseen activator antibody using only the
control (No Ab and Ctrl-TCB) and another activator antibody. Data originates from
one experiment with four donors. d Scatterplot of the predictions versus ground
truth values of GrzmB+ CD4+ frequencies. The dots are only based on the predic-
tions from (c); therefore, only CD19-TCB and CD20-TCB are depicted.
e, f Scatterplot of the features ‘standard deviation of MHCII (95th percentile)’ and
‘eccentricity of F-actin (95th percentile)’ versus the GrzmB+ CD4+ frequencies.
These two features were selected based on the trained linear model in (d). Both
features show a high correlation with respect to GrzmB+ CD4+ frequencies. Source
data are provided as a Source Data file.
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by identifying significant features but also to gain more insights into
inter-donor variability that might potentially translate into different
functional outcomes in vivo.

The immunological synapse has previously been studied using
high-content cell imaging on human cell lines and primary cellswith an
artificial APC system that utilized plate-bound ICAM-1 and stimulatory
antibodies58. Although German et al. convincingly demonstrated the
capabilities of their pipeline by profiling the immunological synapse,
they did not investigate whether they could use these profiles in pre-
dicting drug effectiveness58. In other studies, the potential of synapse
formation was also investigated for CAR T cell therapy, where inves-
tigators used the mean intensity of stainings such as F-actin and
P-CD3ζ per cell, clustering of tumor antigen and polarization of
perforin-containing granules as a measure of synapse formation
quality. These features varied between different CAR T cells and cor-
related with their effectiveness in vitro and in vivo as well as with
clinical outcomes59,60. In our work, we improved this by incorporating
296 biologically motivated features such as texture, intensity statistics
and synaptic-related features.

This work is the first to use interpretable features of the immu-
nological synapse to predict the effectiveness of therapeutic antibodies
on T cell cytokine production. These features allowed us to predict the
functional outcome of an unseen antibody and to pinpoint the driving
factors required for the prediction. For the TCBs,we found the intensity
of MHCII and morphology of F-actin as the most prominent features in
predicting cytokine readouts. These features can be used as inspiration
for further investigation and formulation of new hypotheses on the
mode of action of TCBs. Nonetheless, additional experiments are
necessary to validate them. The ability to predict unseen antibodies
could potentially enable the investigation of various antibody formats
to understandmechanistically better how different formats can impact
T cell responses and help to guide format selection.

scifAI is an end-to-end data acquisition and analysis framework
which can be adjusted to investigate various hypotheses and to
develop diverse applications based on imaging flow cytometry data.
For instance, while in this study,memory CD4+ T cells were analyzed as
they are poised to show faster immune responses and a higher synapse
propensity compared to naive T cells48, imaging and analysis of CD8+

T cells, as themain players in cytotoxicity, could further elaborate how
synapse features correlate with killing efficiency of therapeutic anti-
bodies against tumor cells. scifAI can also be utilized in the design of
IFC experiments, optimizing the number and type of stainings, as well
as the total number of images per donor to be acquired. In Pharma
R&D, scifAI has the great potential to improve the quality and the
speed of antibody development, for example, giving new insights into
the mode of action of particular candidate molecules or predicting
in vitro efficacy in high-throughput. AI-assisted identification of lead
molecules and better prioritization in terms of epitope, affinity, avid-
ity, and antibody format can greatly impact the decision-making pro-
cess. In a nutshell, IFAI could provide substantial benefits by assisting
in the investigation of the mode of action and the functionality of
newly generated antibody candidates.

Methods
Human PBMC isolation
Blood samples from healthy donors were obtained through the inter-
nal Medical Service from Roche Diagnostics GmbH at Penzberg, Ger-
many, with the approval of the ethics committee of the Bayerische
Landesärztekammer. The donors were volunteers who gave informed
consent for experimental research work and were selected based on
availability and independent of age and gender by theMedical Service.
An overview of the gender, number and age of participants for each
experiment can be found in Supplementary Fig. 3a. No gender analysis
and disaggregation according to sex were carried out due to insuffi-
cient numbersof individuals of different genders. PBMCswere isolated

from whole blood by density-gradient centrifugation over Pancoll
(density: 1077 g/mL, PAN-Biotech, cat # P04-601000).

Cell line culture
EBV-transformed B-lymphoblastoid cell line (B-LCL) from donor 333
was obtained from Astarte Biologics (# 1038-3161JN16), and cells were
cultivated in RPMI-1640 medium (PAN-Biotech; cat # P04-17500) with
10% FBS (Anprotec; cat # AC-SM-0014Hi) and 2mM L-glutamine (PAN-
Biotech; cat#P04-80100). Z138 (MCL, gift fromUniversity of Leicester)
and Nalm-6 (ALL, DSMZ ACC 128) tumor cells were cultivated in
RPMI1640 containing 10% FBS and 1% Glutamax (Invitrogen/Gibco #
35050-038).

Immune synapse formation and imaging flow cytometry
To analyze immune synapses, human memory CD4+ T cells were iso-
lated from peripheral blood mononuclear cells (PBMCs) of nine heal-
thy human donors using a negative selection EasySep Enrichment kit
fromSTEMCELLTechnologies (cat#19157). Live/dead staining of T and
B-LCL cells was separately performed using the fixable viability dye
eF780 for 15min at RT (eBioscience; cat # 65-0865-14). Cells were then
re-suspended in RPMI-1640 medium supplemented with 10% FBS
(Anprotec; cat # AC-SM-0014Hi), 5% Penicillin-Streptomycin (Gibco;
cat # 15140-122), and 2 mM L-glutamine (PAN-Biotech; cat # P04-
80100). Afterward, B-LCL cells were transferred into a well of a 96-well
round bottom plate (300,000 cells per well) and were pre-incubated
with the superantigen Staphylococcal enterotoxin A (SEA) (Sigma-
Aldrich; cat # S9399) for 15min at 37 °C or left untreated. HumanCD4+

Tmem were added to the afore-prepared B-LCL cells (250.000 cells per
well) to generate a final ratio of 4:3 (B-LCL:Tmem), and subsequently,
the appropriate in-house made compounds (10 µg/mL of Isotype Ctrl
or Teplizumab and 1 µg/mL (5 nM) of Ctrl-TCB, CD19-TCB49 or CD20-
TCB15,53) were added to the B-LCL-Tmem cell co-culture. To strengthen
the conjugate formation between B-LCL and T cells they were cen-
trifuged at 30×g for 30 s and then directly transferred to a 37 °C
incubator for 45min. Thereafter, themedium ineachwellwas carefully
aspirated with a pipette, and cells were immediately fixed for 12min at
RT followed by permeabilization using the Foxp3/Transcription factor
staining buffer set from eBioscience (cat # 00-5523-00). Intracellular
staining was performed in permeabilization buffer containing fluor-
escently labeled antibodies for 40min at 4 °C: CD3-BV421 (clone
UCHT1, Biolegend; cat # 300433; 1:20), HLA-DR-PE-Cy7 (clone L243,
Biolegend; cat# 307616; 1:200), PhalloidinAF594 (ThermoFisher; cat#
A12381; 1:600) and P-CD3ζ Y142-AF647 (clone K25-407.69, BD cat #
558489; 1:20). After washing, cells were suspended in FACS buffer (PBS
supplemented with 2% FBS) and acquired on an Amnis ImageStreamX

Mark II Imaging Flow Cytometer (Luminex) equipped with five lasers
(405, 488, 561, 592 and 640nm). On average, around 55,000 images
were collectedper sample at 60xmagnification on a low-speed setting.
IDEAS software (version 6.2.187.0, EMD Millipore) was used for data
analysis and labeling of cells. To identify immune synapses using the
IDEAS software the gating strategy in Supplementary Fig. 1a was
implemented. Cells were first gated on in-focus live+ CD3+ MHCII+ cells
using the features area, aspect ratio, gradient RMS, and intensity of the
respective fluorescent-labeled markers. Within this population images
that show single CD3+ T cells and single MHCII+ B-LCL cells were
selected using the area and aspect ratio feature. Next, to exclude non-
interacting cells the CD3 intensity within a self-created synapse mask
was determined. The synapse mask was defined as a combination of
the morphology CD3 and MHCII mask with a dilation of 3. Only
synapses that showed a CD3 signal in the mask were gated. Finally,
T + B-LCL cells in one layer were excluded by using the height and area
feature of the brightfield (BF) and single T-B-LCL synapses were ana-
lyzed. For each experiment, a compensation matrix was calculated
to minimize spillovers into the different channels (see Supplemen-
tary Fig. 2).
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Conventional flow cytometry
For analysis of cell surface markers, live/dead staining was first per-
formed using the fixable viability dye eF780 for 20min at 4 °C
(eBioscience; cat # 65-0865-14). Afterward, cells were pre-incubated
with human Fc-block (BD, cat # 564220) in FACS buffer (PBS sup-
plemented with 2% FBS and 1mM EDTA) for 10min at 4 °C and then
stained with the appropriate fluorescently labeled antibodies for
30min at 4 °C: CD4-BV510 (clone RPA-T4, Biolegend: cat # 300546;
1:100) or CD4-BV421 (clone RPA-T4, BD; cat # 562424; 1:50), HLA-DR-
PE-Cy7 (clone L243, Biolegend; cat # 307616; 1:200), CD69-PE (clone
FN50, Biolegend; cat # 310906; 1:100), CD80-APC (clone 2D10, Bio-
legend cat # 305220; 1:200) or CD86-PE (clone IT2.2, Biolegend cat #
305406; 1:200). For intracellular cytokine staining cells were first
treated with GolgiPlug (BD Biosciences; cat # 555029) and GolgiStop
(BD Biosciences; cat #554724) for at least 2–4 h before being stained.
After incubation, live/dead staining was performed using the fixable
viability dye eF780 for 20min at 4 °C (eBioscience; cat # 65-0865-14).
Cells were then fixed and permeabilized using the Foxp3/Transcrip-
tion factor staining buffer set from eBioscience (cat # 00-5523-00) as
described for the synapse formation assay. Intracellular staining was
performed in permeabilization buffer containing the fluorescently
labeled antibodyGranzymeB-PE-Cy7 (cloneQA16A02, Biolegend; cat
# 372214; 1:50) or TNF-ɑ (clone MAb11, BD; cat # 554514; 1:50) for
30min at 4 °C. Finally, cells were suspended in FACS buffer (PBS
supplemented with 2% FBS and 1mM EDTA) and acquired on a FACS
Celesta from BD Biosciences.

A representative example of the gating strategy used for analyzing
conventional flow cytometry data in this study is shown in Supple-
mentary Fig. 11. Briefly, lymphocytes were selected in the FSC-A and
SSC-A gate. In the next step, single cells were selected using FSC-H/
FSC-W, and viable cells were identified using the fixable viability dye
eF780 (gated on eF780 negative cells). Finally, cells were gated on
CD4+ T cells, and markers of interest were analyzed (see Supplemen-
tary Figs. 1d and 10a).

Tumor cell lysis assays (in vitro)
B cell-depleted PBMCs derived from the blood of healthy donors were
prepared using standard density-gradient isolation followed by B cell
depletion with CD20 Microbeads (Miltenyi; cat # 130-091-104). B cell-
depleted PBMCs were then incubated with the tumor targets (Z-138 or
Nalm-6) at a ratio of 5:1 for 24 h in the presence or absence of CD20-
TCB or CD19-TCB. Tumor cell lysis was calculated based on LDH
release (LDH Cytotoxicity Detection Kit from Roche Applied Science)
and normalized to spontaneous release (PBMCs + targets without
treatment = 0% tumor cell lysis) and maximal release (lysis of tumor
targets with Triton X-100 = 100% lysis).

Quantification of CD20 and CD19 expression
CD19 and CD20 expression on B-LCL cells were determined using the
Quantum™ Alexa Fluor® 647 MESF Kit from Bangs Laboratories (cat #
647) according to themanufacturer’s instructions using an anti-human
CD20-AF647 (Biolegend # 302318) or an anti-human CD19-AF647
(Biolegend # 302220) antibody as well as the corresponding isotype
controls muIgG1 (Biolegend # 400130) and muIgG2b (Biolegend #
400330). For the quantification of CD19 and CD20 molecules on the
tumor target cell lines Nalm-6 and Z-138, the QiFi Kit from Dako (cat #
K0078) was performed according to the manufacturer’s instructions
by using an anti-human CD20 purified (BD # 555621) or an anti-human
CD19 purified (BD # 555410) antibody as well as the corresponding
isotype controls muIgG1 (BD # 554121) and muIgG2b (BD # 557351).

Preparation of the imaging dataset for analysis
We recorded 2,899,575 images from the commercial imaging flow cyt-
ometer, Luminex Amnis ImageStreamX Mark II Imaging Flow Cyt-
ometer, with estimated throughput of 100–200 events/s. The dataset

consists of nine distinct donors across four independent experiments.
Donor 1 andDonor 2were used twice (Supplementary Fig. 3a). Different
conditions weremeasuredwhich included -SEA (total images=625,001),
+SEA (557,781), Ctrl-TCB (330,000), CD19-TCB (324,020), CD20-TCB
(254,398), Isotype (405,000), and Teplizumab (403,375). The images
contained brightfield (BF), F-actin, MHCII, CD3, P-CD3ζ, and Live/Dead
stainings. The Live/Dead staining is only used to filter out the dead cells.
For each experiment, the images were compensated using a compen-
sationmatrix derived from stained single cells. After the compensation,
the raw images (16-bit) and their corresponding channel-wise segmen-
tation masks were exported from the IDEAS software and saved in an
HDF5 format. To enable parallelization, each image and its corre-
spondingmaskwere savedseparately. In addition, our expert annotated
a subset of data for -SEA (labeled images = 1160), +SEA (4061), CD19-
TCB (396) and Teplizumab (227). The labeled ±SEA-based data (5221)
was used for training and validation of the classification models, where
70% was used for training and 30% for testing in a stratified way.

Interpretable feature engineering from images
We extracted a set of 296 biologically motivated features to study the
immunological synapse. These features included morphology, inten-
sity, co-localization, texture and synaptic-related values (see Supple-
mentary Fig. 4). The morphology features were calculated based on
the segmentation mask from each channel. The features included
‘area’, ‘bounding box area’, ‘convex area’, ‘eccentricity’, ‘equivalent
diameter’, ‘Euler number’, ‘extent’, ‘maximum Feret diameter’, ‘mini-
mum Feret diameter’, ‘filled area,’ ‘length of major axis’, ‘length of
minor axis’, ‘Hu moments’, ‘orientation’, ‘perimeter’, ‘Crofton peri-
meter’, ‘solidity’, ‘weighted Humoments’. All the morphology features
are extracted using scikit-image library61. For the intensity features,
first the cells were segmented using their corresponding mask. The
intensity features included ‘min’, ‘sum’, ‘mean’, ‘standard deviation’,
‘skewness’, ‘kurtosis’, ‘max’ and ‘Shanon entropy’. In addition, the
percentile of intensity values, including ‘10th percentile’, ‘20th per-
centile’, …, ‘90th percentile’ were calculated. All of the intensity fea-
tures were calculated based on NumPy62 and SciPy63 functionality. For
co-localization features, we implemented ‘dice distance’ and ‘Jaccard
distance’ to calculate the masks overlap between two channels using
the SciPy63 library. In addition, we calculated the ‘correlation
distance’63, ‘Euclidean distance’63, ‘Manders overlap coefficient’64,
‘intensity correlation quotient’64, ‘structural similaity’61 and ‘Hausdorff
distance’61. For texture features, we used Gray Level Co-occurrence
Matrix (GLCM) features65 including ‘contrast’, ‘dissimilarity’, ‘homo-
geneity’, ‘ASM’, ‘energy’ and ‘correlation’. The synapse related features
were defined as ‘enrichment of Ch (mean)’=meanðintensity of
Ch in synapseÞ=meanðintensity of ChÞ, ‘enrichment of Ch (sum)’=
sumðintensity of Ch in synapseÞ=sumðintensity of ChÞ, and ‘enrich-
ment of Ch (max)’=maxðintensity of Ch in synapseÞ=mean
ðintensity of ChÞ33. Finally, we implemented ‘background mean’ and
‘gradient RMS’ for quality control of images. All these features were
implemented using NumPy (version=1.18.5), Pandas (1.1.5), SciPy
(1.8.0), scikit-image (0.19.2), and scikit-learn(1.0.2)66.

Autoencoder feature extraction
To leverage the large amount of unlabeled data, we implemented and
trained a multichannel autoencoder25. This autoencoder included a
separate encoder for each channel. The encoders were designed to
map each channel to a 32-dimensional vector. The concatenation of
these vectors led to a 5*32 dimensional space. Then these features
weremapped to a 256-dimensional feature vector. A decoder on top of
the concatenated vectors was implemented for reconstructing the
original image. Mean squared error (MSE) was used as the recon-
struction loss. The augmentations used for training the autoencoder
included random rotation, random scaling, random flipping, and ran-
dom Gaussian noise.
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Feature pre-selection
Considering that the number of features was large, we implemented a
feature pre-selection pipeline to select the most relevant features. We
followed the work of Haq et al.67 (see Supplementary Fig. 5a). First, the
Pearson correlation between the features wasmeasured. If at least two
features were highly correlated (|corr| >0.95), then only one of them
was kept (at random), and the rest were eliminated. Six different
methods were used to rank the features in the next step. These
methods includedmutual information, linear support vectormachine,
logistic regression with L1 regularization, logistic regression with L2
regularization, random forest, and XGBoost. The top-k (hyper-para-
meter to be selected) features from each method were selected, and
their union was used. After this reduction, the Spearman correlation
matrix between the features was calculated, and spectral clustering
was performed on the correlations. Then,m clusterswere created, and
one feature at random per cluster was selected. The last step was
performed to account for multicollinearity between the features.

Classification
There are three main approaches that are used for training a super-
vised learning algorithm in this work, feature-based approach and
deep learning.

Classical supervised learning models
We used two different algorithms for training machine learning mod-
els. We used a boosting method called XGBoost37 which uses an
ensemble of trees on the data (n_trees = 100). The second model was
logistic regression. The advantage of using thesemodels was that they
provide explainability after the training.

Convolutional neural networks
For training supervised deep learning models, we used well-known
architectures in the field of computer vision, including ResNet18,
Resnet34, and DeepFlow23–25. All models were pre-trained on Ima-
geNet. Considering thesemodels are originally designed for three RGB
channels input, we had to substitute the first convolutional layer with
three input channels to five input channels, including BF, F-actin,
MHCII, CD3, and P-CD3ζ. In addition, the classification layer also nee-
ded to be adjusted to have nine classes. Barlow Twins47 was used for
pre-training the ResNet18 and ResNet34 networks using the unlabeled
data. Next, we used multi-class cross-entropy loss for training on the
labeled data. The learning rate (lr) was set to 0.001, with the adaptive
strategy of reducing on the plateau of 10 epochs. The augmentations
used for training included random rotation, random scaling, random
flipping, and random Gaussian noise. 15% of the training data was
selected randomly and used as a development set to avoid overfitting.

Classification feature importance
As mentioned, a feature pre-selection filtering was used to reduce the
number of features, and then an XGBoost classifier was trained on the
annotated data. While the XGBoost can provide in-model feature
importance, these importances can be biased due to different reasons,
such as the correlation between the pre-selected features, the number
of features, the pre-selection process, outliers, etc. To account for this,
we split the training data randomly to 5-fold (stratified) and trained the
XGBoost classifier five times, each time using 4 out of the 5 folds. We
repeated this process 100 times, leading to 500 different models. In
each training, we used a randomnumber of pre-selected features (top-
k) between 30 to 200 features. Eventually, for every feature, a series of
feature importances were obtained. The median feature importance
for each feature was used to rank the features.

Classification performance validation and generalizability
We validated the prediction performance of classification models
across multiple datasets. To offer a comprehensive view of the

generalizability of our results, we present a complete list of all the
steps taken. The first validation was performed on the ±SEA-based test
set (30% hold-out set) to confirm inter-experiment comparability
(Supplementary Fig. 5c). The second validation was performed using
leave-one-donor-out cross-validation to confirm inter-donor general-
izability (SupplementaryFig. 6b).Next, themodelwas validatedon two
separate test sets with Teplizumab-based and CD19-TCB-based per-
turbations to validate inter-experiment and inter-stimulation general-
izability (Supplementary Fig. 9). Overall, we demonstrated that the
XGBoost model trained on ±SEA perturbations could indeed general-
ize to new perturbations with previously unseen antibodies and inter-
donor variability.

Feature importance of the XGBoost model
Average gain was used to determine the XGBoost model’s feature
importance. To calculate the average gain for a specific feature, it is
necessary to find all trees and splits that used that feature. Then, the
improvement by each split in themulti-class loss function is calculated.
Finally, the average gain is calculated by summing all improvements
and dividing this sum by the total number of splits involving the fea-
ture of interest.

Classification staining importance
To determine which staining contributes the most to the predictions,
we used recursive channel elimination. In every run, we always kept BF
as it is stain-free. Then train the ‘interpretable features + XGBoost’
based on the features of the selected channels (see Supplemen-
tary Fig. 7b).

Data cleaning pipeline
For each donor, we used the trained XGBoost classifier to predict the
class of every image. We excluded low-quality and outlier images
based on the following data cleaning protocol, where we first describe
the types of cells we filtered out, followed by the concrete feature-
based rule:
1. Dead cells (using Live/Dead staining): ‘mean Live/Dead intensity’

>= ‘mean Live/Dead intensity (90th perc.)’
2. Out-of-focused images: ‘Gradient RMS BF’ > ‘Gradient RMS BF

(2nd perc.)’ & ‘Gradient RMS BF’ <‘Gradient RMS BF (90th perc.)’
3. High entropy images, based on the XGBoost predictions: entropy

> 1.0. The entropy was calculated using the SciPy package. This
step is done to omit images that the classifier is the most uncer-
tain in terms of prediction.

4. Images predicted as ‘B-LCL’ with low MHCII: ‘mean intensity of
MHCII’ <‘mean intensity of MHCII (5th perc.)’. This step guaran-
tees that the images predicted as ‘B-LCL’ contain a minimum of
MHCII intensity.

5. ‘B-LCL’with ‘area ofMHCII’ <‘area ofMHCII (10th perc.)’. This step
guarantees that the images predicted ‘B-LCL’ contain a cell with
appropriate size.

6. ‘T cell’ with ‘mean intensity of CD3’ <‘mean intensity of CD3 (1st
perc.)’. This step guarantees that images predicted as ‘T cell’
contain a minimum CD3 intensity.

7. ‘B-LCL and T cell in one layer’with small ‘B-LCL’s: ‘B-LCL and T cell
inone layer’with ‘area ofMHCII’<‘area ofMHCII (20th perc.)’. This
step is performed to omit misclassified ‘B-LCL and T cell in one
layer’ with small ‘B-LCL’s.

8. Outlier detected via isolation forest68: We used n_estimators =
100, max_samples = ‘auto’, contamination = ‘auto’, and max_fea-
tures = 20 as the main parameters. We only used the top 30 fea-
tures based on feature importance from the XGBoost training to
reduce the run time.

9. Outlier detected viaDBSCAN69: First, we transformed all images to
2D dimensional space using Uniform Manifold Approximation
and Projection (UMAP). The features were standardized using the
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mean and std of each feature. For reducing the run time, we only
used top 30 features based on feature importance from the
XGBoost training. Then a DBSCAN algorithm was run with eps =
0.09 andmin_samples = 5. The resulting clusters were filtered out
if (#images in cluster)/(#total images) <0.0001.

All these steps are based on scikit-learn implementations. All
parameterswere set using thedefault valueof scikit-learnunless stated
otherwise. Twenty random examples of filtered-out images are shown
in Supplementary Fig. 8.

Class frequency analysis
After the data cleaning, the frequency of each class was calculated
with ‘F_C = (#images predicted as C)/(#total images)’ for each con-
dition per donor. To deal with the compositional nature of the data,
we used log_2(F_C_antibody/F_C_control) to compare the frequency
fold changes. This transformation has the advantage that the fre-
quencies do not sum to a constant value. After calculating the log_2
fold changes, we used the Wilcoxon-rank-sum test to analyze
the effects of antibodies on class frequencies. Wilcoxon-rank-
sum tests whether two samples are likely to derive from the same
population. To account for multiple testing, we used Benjamini-
Hochberg correction for +SEA/-SEA, CD19-TCB/Control TCB and
Teplizumab/isotype, respectively. Because the experiments were
performed independently, we only corrected each of these com-
parisons separately.

Feature difference analysis
We analyzed the effect of perturbation with CD19-TCB, and Tepli-
zumab on signaling synapses using the previously trained XGBoost
model from the ±SEA training set and then used statistical tests to
investigate the mode of action of these therapeutic antibodies. First,
we selected the images predicted as ‘synapse w/ signaling.’ We only
focused on fluorescent channels as they contain targeted informa-
tion on components of the cell expected to morphologically change
during synapse formation. This procedure yielded 210 features for
comparison for TCB based on F-actin, MHCII, CD3, and P-CD3ζ. For
Teplizumab, CD3 was not available for the analysis because of the
usage of CD4 in recording images for Teplizumab instead of CD3.
Thus we analyzed 132 features extracted from F-actin, MHCII, and
P-CD3ζ. After the feature selection, we compared the features using
the Mann-Whitney U test for each condition and its control. To
understand the direction of change, we used the difference in the
median of features for each condition and its control. To account for
multiple testing, we used the Benjamini-Hochberg procedure with
α = 0.05. As the conditions were independent, we corrected the p-
values for each condition and its control separately. If the test was
not significant, we assigned that feature 0 (gray in Fig. 3a, h and 0 in
Supplementary Tables 1 and 2). If it was significant and the median
value of the feature for the antibody was greater than the median of
the feature of the control antibody, we assigned +1 (red in Fig. 3a, h
and +1 in Supplementary Tables 1 and 2). On the contrary, if the test
was significant, but the median value of the feature for the antibody
was smaller than the median value of the feature of the control,
we assigned −1 (blue in Figs. 3a, h and −1 in Supplementary Tables 1
and 2).

Validation of the biological findings
In the study of the mode of action of antibodies, six donors for the
CD19-TCB and seven donors for Teplizumab were analyzed, respec-
tively. To avoid systematic bias in the analysis due to potential batch
effects and emphasize the generalizability of the results, we included
at least two independent experiments for each antibody: experiments
III and IV for CD19-TCB and I, II, and III for Teplizumab. This allowed us
to focus on consistent findings between the experiments. All statistical

tests were corrected for multiple testing to account for the inflated
occurrence of false positive results. Finally, visual inspections of the
acquired images were done by expert immunologists, and the findings
were validated in the literature.

GrzmB prediction and feature ranking
To predict GrzmB, we only used images predicted as ‘synapse w/o
signaling’ and ‘synapse w/ signaling’ for each condition. This choice
was made as it is assumed that the synapses will lead to cytokine
production. Considering that we had thousands of images for each
donor and condition, we used an aggregation pipeline to create a
feature vector corresponding to each donor and condition. To reduce
the number of features, we only used the consistent feature changes
for the CD19-TCB (Fig. 3). For each donor and condition, we aggre-
gated the features using the 5th, 50th, and 95th percentile to capture
the extremes and average of every feature.

After deriving the aggregated features, we used one-donor-leave-
out cross-validation to train a linear regression model with LassoLars.
The most important features were based on the magnitude of the
coefficients.

Visualizations and tables
For visualizing the conjugates and biological context, we used www.
BioRender.com. We used matplotlib (version 3.3.2) and seaborn
(0.11.2) in Python for the plots and images. Finally, Inkscape was used
for creating the figures and tables, including the glossary of all the
abbreviations in Supplementary Table 3.

Statistics and reproducibility
For reproducing the results or running exemplary code provided as
part of the software package, it is necessary to download the dataset
and install scifAI. Extensive documentation has been provided that will
allow users with basic programming knowledge to follow four appli-
cation examples and,withminormodifications, adapt the code to their
needs. To tackle more advanced use cases, such as defining a new
feature or applying scifAI to an entirely new dataset, more program-
ming experience is required.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All imaging flow cytometry data generated in this study, including all
data and instructions to reproduce all findings described in this article
and the supplementary information, have been published and can be
freely downloaded at Datadryad70 under the following link: https://doi.
org/10.5061/dryad.ht76hdrk7. Additional metadata can be requested
from the corresponding authors upon request. Source data are pro-
vided as a Source Data file. Source data can also be found in this
repository https://github.com/marrlab/scifAI-notebooks. Source data
are provided with this paper.

Code availability
The scifAI code and instructional notebooks on how to run the code
and build analysis pipelines can be found at: https://github.com/
marrlab/scifAI/. https://github.com/marrlab/scifAI-notebooks. For
reproducing the results, a minimal dataset is provided in the
repository.
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