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Anti-TACI single and dual-targeting CAR T
cells overcome BCMA antigen loss in
multiple myeloma

Rebecca C. Larson 1,2,3, Michael C. Kann1,3, Charlotte Graham 1,3,
ChristopherW.Mount4, AnaP.Castano1,2,3,Won-HoLee1,3, AmandaA.Bouffard1,3,
Hana N. Takei 1,3, Antonio J. Almazan 1,3, Irene Scarfó1,2,3, Trisha R. Berger1,3,
Andrea Schmidts1,2,3, Matthew J. Frigault1,2,3, Kathleen M. E. Gallagher1,2,3 &
Marcela V. Maus 1,2,3

Chimeric Antigen Receptor (CAR) T cells directed to B cell maturation antigen
(BCMA) mediate profound responses in patients with multiple myeloma, but
most patients do not achieve long-term complete remissions. In addition,
recent evidence suggests that high-affinity binding to BCMA can result in on-
target, off-tumor activity in thebasal ganglia and can lead to fatal Parkinsonian-
like disease. Here we develop CAR T cells against multiple myeloma using a
binder to targeting transmembrane activator and CAML interactor (TACI) in
mono and dual-specific formats with anti-BCMA. These CARs have robust,
antigen-specific activity in vitro and in vivo. We also show that TACI RNA
expression is limited in the basal ganglia, which may circumvent some of the
toxicities recently reported with BCMA CARs. Thus, single-targeting TACI
CARs may have a safer toxicity profile, whereas dual-specific BCMA-TACI CAR
T cells have potential to avoid the antigen escape that can occur with single-
antigen targeting.

Multiplemyeloma is defined as a plasma cell disorder and accounts for
more than 10% of all hematologic malignancies1. Despite improve-
ments in available therapies with high-dose chemotherapy and auto-
logous stem cell transplant, until recently, multiple myeloma was
considered largely incurable and characterized by recurring relapses
of increasingly refractory disease2–6.

CAR T cell therapy has emerged as a revolutionary therapeutic
option for multiple myeloma, with two recent FDA approvals7,8 tar-
geting B cell maturation antigen (BCMA), a member of the TNF
receptor superfamily9. However, this therapy is not curative either, in
line with other single-targeted therapies10–13. Recent evidence suggests
that some patients treated with BCMA CAR T cells relapse with BCMA-
negative disease, or antigen escape14–17. In addition, there is evidence
that BCMA is strongly downregulated and trogocytosed after exposure

to BCMA CAR T cell therapies, suggesting that targeting of a second
antigen may be warranted18.

In the setting of CD19-directed CAR T cells, multiple approaches
to overcoming CD19-negative relapse have been explored, including
CARs targeting two antigens, such as CD19 and CD2019, CD19 and
CD2220, or CD19 and CD79b21. Based on the promising results with
BCMA targeting in multiple myeloma, we explored targeting TACI, a
relatedmember of the TNF receptor superfamily that provides plasma
cells with survival signals22. TACI is found at high levels on most
myeloma cells23 and is predominantly expressed on plasma cells. We
and others24 have previously devised an approach to target BCMA and
TACI with CAR T cells using its natural ligand, A Proliferation-Inducing
Ligand (APRIL), which binds both BCMA and TACI. A CAR construct
using a single moiety of APRIL as the binding domain of the CAR,
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however, did not show efficacy in a clinical trial (NCT0328780425). The
recent publication of the results of this study indicated that although
APRIL protein had reasonable binding affinity for BCMA that was
comparable to a single-chain variable fragment, APRIL-based CARs
induced poor T cell activation, weak cytokine production, and had
reduced binding avidity to tumor cells. Thus, although TACI has sig-
nificant potential as a target for multiple myeloma, the design of the
APRIL CAR was suboptimal26. We developed a trimeric form of APRIL,
termed TriPRIL, which more closely mimics the trimer state of the
natural ligand23, and is currently in clinical development
(NCT0502044427). One potential concern with using APRIL-based
CARs is that an ineffective cytotoxicity event following synapse for-
mation between the T cell and the tumor cell could result in the
amplification of a survival signal to the tumor cell based on signaling
through BCMA and/or TACI; however, our pre-clinical data and
others18 did not find any evidence of this hypothetical concern.

The first scFv-based CAR T cell targeting BCMA (idecabtagene
vicleucel, or ide-cel) achieved impressive clinical results but is gen-
erally not considered curative10. More recently, a bi-paratopic, single-
domain antibody approach (ciltacabtagene autoleucel, or cilta-cel) has
led to even deeper and more durable responses. However, recent
reports describe an unexpectedly high incidence (≥5%) of a severe
Parkinsonian-like toxicity after treatment with FDA-approved BCMA
CARs28,29. Subsequent correlative studies from autopsy samples of a
patient who succumbed to this toxicity demonstrated low but
detectable expression of BCMA in the basal ganglia30. This expression
was validated in a cohort of healthy donor tissue as well. Based on a
brain atlas dataset, we confirmed that TACI appears to be a safe target
without significant expression in the basal ganglia, wherewe could also
confirm detectable BCMA expression.

Here we describe the development of a second-generation CAR T
cell against themultiplemyeloma target TACI.We immunizemicewith
TACI protein, test resulting hybridoma antibodies for specificity to
TACI-expressing cells, and use the antibody sequence to design scFvs
in CAR format. Anti-TACI CAR T cells are cytotoxic in vitro and in vivo
in xenograft models of multiple myeloma. We show that TACI
expression is retained on multiple myeloma cells when BCMA
expression is lost in both knockout cell lines and in a patient with
relapsed multiple myeloma plasmacytoma after treatment with anti-
BCMA CAR, further supporting the use of TACI as an alternative CAR T
cell target in BCMA-negative malignancies. To overcome or prevent
relapse due to antigen loss, we design dual-specific tandem scFv CAR
T cells targeting both BCMA and TACI. We show that these dual-
targeting CAR T cells are efficacious against wildtype multiple mye-
loma cell line models. Even in the context of antigen loss, dual-
targeting CAR T cells can retain anti-tumor activity in cell lines and in a
plasma cell tumor from a patient who relapsed after BCMA-targeted
CAR T cell therapy. Thus, targeting two antigens may provide a more
effective long-term strategy for CAR T cell therapy for multiple mye-
loma, without increasing the risk of Parkinsonian-like neurotoxicity.

Results
Evaluating TACI expression in the brain
Single cell analysis from the Human Protein Atlas31,32 showed enriched
expression TNFRSF13B, the gene that codes for TACI, in plasma cells
and B cells (Supplementary Fig. 1), consistent with prior reports and
known expression patterns23. One principle of cancer-targeted thera-
pies is to avoid overlapping toxicity profiles. Due to the recent reports
of BCMA-associated movement and neurocognitive toxicities30, we
profiled TACI expression at the protein and RNA levels. Protein data-
sets did not show expression of either BCMAor TACI33,34. However, we
did observe BCMA RNA expression in the basal ganglia using the Allen
Human Brain Atlas35 microarray data at much higher levels than TACI,
which was negligible (Fig. 1a, b). In the six normal donors profiled, we
found consistent and high expression of BCMA in the body, head, and

tail of the caudate nucleus as well as the putamen. The negligible
expression of TACI relative to BCMA across the caudate nucleus and
putamen suggests reduced risk of on-target, off-tumor toxicity in the
basal ganglia with this target.

Anti-TACI antibody development
We generated an antibody targeting TACI by immunizing immuno-
competent mice with recombinant TACI protein and sequencing the
resulting hybridoma, cloneG3D2. Using surface plasmon resonance, the
KD of G3D2 binding to TACI was determined to be 8.61 × 10−10 M (Sup-
plementary Fig. 2). We tested the binding of the G3D2 soluble antibody
by staining K562 cells transduced to overexpress TACI as well as a panel
of human multiple myeloma cell lines (MM1S, RPMI-8226, and U266)
and evaluated binding by flow cytometry (Fig. 1c). To confirm the spe-
cificity of binding, we used CRISPR/Cas9 engineering to knock out TACI
fromMM1S cells (TACI KO). The G3D2 antibody proved to be specific in
its cell surface staining of TACI, with positive stains for high-level TACI
expression (K562 TACI) as well as endogenous-level expression (MM1S,
RPMI-8226). G3D2 showed no staining when TACI was knocked out
(MM1S TACI KO). One multiple myeloma cell line, U266, had no
detectable TACI expressionwith theG3D2 antibody.We also stained the
multiple myeloma lines with commercially available antibodies target-
ing TACI, which showed expression on K562-TACI, MM1S, and RPMI-
8226 and low expression on U266 (Fig. 1d). BCMA was expressed on all
multiple myeloma cell lines. We did not detect expression of either
BCMA or TACI on K562 WT cells (Supplementary Fig. 3a).

Expression of TACI on subsets of B cells and T cells has been
reported36,37. To determine if G3D2 could potentially target other
immune cells, we stained peripheral bloodmononuclear cells (PBMCs)
from five normal donors and evaluated binding to resting and acti-
vated T cells, B cells, NK cells, monocytes, and dendritic cells, and
compared the percentage of TACI+ cells to K562s overexpressing TACI
(Fig. 1e). Of these cell types, we only observedminor staining of CD19+

B cells (less than 2%). We also did not observe staining of TACI on CAR
T cells which are activated during production (Supplementary Fig. 3b).

Anti-TACI CAR T cells are efficacious in vitro and in vivo against
wildtype multiple myeloma
Based on sequencing the variable chains of the G3D2 antibody, we
designed CAR T cells targeting TACI. We created two orientations of
the heavy (H) and light (L) variable chains (Fig. 2a) linkedwith 4 repeats
of G4S. Throughout experiments, we compared the anti-TACI CARs to
tool anti-BCMACAR constructs wemade based on the patent literature
describing bb2121/ide-cel. Across multiple normal donors, anti-TACI
CARs had similar transduction efficiencies to that of anti-BCMA CAR
(Fig. 2b).We tested the ability of the CARs to bind soluble TACI protein
and observed increased binding of the L-H anti-TACI CARs compared
to the H-L version (Fig. 2c). Soluble TACI did not bind anti-BCMA CAR
oruntransducedTcells (UTD) fromthe samenormal donors.We tested
the anti-TACI CAR T cells against these cell lines in vitro and observed
cytotoxicity against MM1S and RPMI-8226 but much lower activity
against U266, consistent with the lack of binding of our antibody to
U266 (Fig. 2d). This suggests these CAR T cells are specific to targeting
TACI on multiple myeloma cell lines. Interestingly, across both MM1S
and RPMI-8226, the anti-TACI CARs had lower cytokine production of
IL-2, IFNγ and TNFα compared to anti-BCMA CARs (Fig. 2e).

We next tested the anti-TACI CARs in a xenograft model of mul-
tiple myeloma using luciferized MM1S, which homes to the bone
marrow when injected intravenously (IV). Two weeks after MM1S cell
injection, we injected CAR T cells IV and imaged animals biweekly to
assess tumor burden. Anti-TACI CAR T cells were comparable to anti-
BCMA andwere able to clear animals of tumor (Fig. 3a–c). To elucidate
differences between the anti-TACI CAR orientations, we tested these
two versions in a stress model of MM1S by using a lower dose of CAR
T cells. Here we observed that the L-H version had more potent
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anti-tumor activity (Fig. 3d–f). While anti-BCMA CARs had faster
clearance of tumor in thismodel compared to anti-TACI L-H, by day 28
there was no significant difference in tumor flux.

We expanded our findings to a third xenograft model using sub-
cutaneous engraftment of the RPMI-8226 multiple myeloma cell line.
Using caliper measurements to monitor tumor growth over time, we
again observed that L-H anti-TACI CARs were superior at controlling

tumor growth and promoting survival compared to H-L CARs, and
were comparable to anti-BMCA CARs (Fig. 3g–i).

BCMA-negative multiple myeloma can be targeted by anti-TACI
CAR T cells
Since BCMA loss has been reported in the clinic after treatment with
anti-BCMA CAR T cells14–17, we wanted to test if the anti-TACI CAR
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T cells were functional in the context of antigen loss. We generated
MM1S BCMA KO tumor using CRISPR/Cas9 technology and observed
that BCMA-negative cells retained TACI expression (Fig. 4a). In in vitro
cytotoxicity assays, anti-BCMACARTcells haddiminished cytotoxicity
against the BCMA-negative line, but anti-TACI CAR T cells remained
equally as cytotoxic (Fig. 4b). We next tested the efficacy of these CAR
Tcells in vivo and again observed that anti-TACICARTcells could clear
the BCMA negative tumor while anti-BCMA CAR T cells were com-
parable to untransduced T cells (Fig. 4c–e). It is conceivable that tar-
geting TACI alone could result in TACI loss, as has been observed with
prior single-targeting CAR T cell therapies. We tested the anti-TACI
CAR T cells against MM1S TACI KO cells in vitro and confirmed loss of
cytotoxic activity (Fig. 4f, g). These data also suggest, but do not
confirm, that TACI-CARs have lower tonic signaling than BCMA-CARs,
whichwe confirmed using in vitro cytotoxicity assays against the T cell
SupT1 line (Supplementary Fig. 4).

Dual-specific CAR T cells directed against BCMA and TACI are
efficacious when either antigen is lost
To mitigate potential relapse due to antigen loss with monospecific
targeting, we decided to target both BCMA and TACI using tandem
scFv bispecific CAR T cells containing the superior L-H version of the
anti-TACI CAR. We created two bispecific CARs, changing the proxi-
mity of the anti-TACI and anti-BCMA scFvs to the transmembrane
domain and linking the two scFvs with 4 repeats of the flexible G4S
linker (Fig. 5a, b). Despite the larger vector size, the transduction
efficiency of the dual-targeting CAR constructs was comparable to that
of single scFvs in normal donor T cells (Fig. 5c). The tandem dual-
specific scFv-based CARs had comparable binding to soluble BCMA as
anti-BCMA CARs and soluble TACI to anti-TACI L-H CARs at the
population level. The dual-specific CARs had slightly reduced binding
of TACI by MFI compared to the mono-specific anti-TACI CAR
(Fig. 5d, e).

Both of the tandem dual-specific CAR T cells had higher in vitro
cytotoxicity compared to monospecific anti-BCMA and anti-TACI L-H
CAR T cells against wildtype multiple myeloma cell lines MM1S and
RPMI-8226 (Fig. 6a, b). Interestingly, only anti-TACI–anti-BCMA bis-
pecific CAR T cells were more cytotoxic against TACIlow multiple
myeloma line U266 compared to anti-BCMA CAR T cells. At the 1:1
effector:target (E:T) cell ratio, anti-BCMA–anti-TACI bispecific CAR
T cells had equivalent killing to anti-BCMA CAR T cells. There were no
significant differences in cytokine production observed between the
anti-BCMA and dual-targeting CAR T cells (Fig. 6c).

We also tested the dual-targeting CAR T cells in two of the xeno-
graft multiple myeloma models used earlier. In the stress model
against MM1S, the tandem bispecific CAR T cells controlled tumor
growth similar to anti-BCMA CAR T cells (Fig. 7a–c). The anti-
TACI–anti-BCMA bispecific CAR T cells showed faster kinetics in
reducing tumor burden (for example, at Day 10), though by Day 18
there were no significant differences among the treatment groups. In
the subcutaneous RPMI model, the bispecific CAR T cells also delayed
tumor growth and increased survival (Fig. 7d–f). Again, the anti-
TACI–anti-BCMA CAR T cells showed slightly improved tumor control
compared to the anti-BMCA–anti-TACI version.We also evaluated CAR

T cells expanding in the blood of these animals at day 28 post treat-
ment. We did not observe any significant differences in CAR T cell
expansion, memory phenotype or exhaustion marker expression
(Supplementary Fig. 5).

Finally, we investigated how these bispecific CAR T cells behaved
when BCMA or TACI antigen was lost. We utilized MM1S KO tumors
and tested the CARs in vitro and in vivo. In these antigen-escape sce-
narios, loss of BCMA showed the greatest difference among the con-
structs, with the anti-TACI–anti-BCMA bispecific losing efficacy,
indicating greater dependency on the presence of BCMA antigen for
thisCAR (Fig. 8a). However, the anti-BCMA–anti-TACICAR retained the
activity of single targeting anti-TACI CAR T cells against MM1S BCMA
KO in vitro. In vivo, anti-BCMA–anti-TACI CARs were able to have
extended control of MM1S BCMA KO tumor in the stress model
whereas anti-TACI–anti-BCMA CARs were not (Fig. 8b, c). When TACI
antigen was knocked out, both bispecific CARs were initially able to
clear tumor in vitro and in vivo, but both anti-BCMA and anti-
BCMA–anti-TACICARs eventually relapsedwhile anti-TACI–anti-BCMA
CARsmediated sustained tumor clearance (Fig. 8d–f). We hypothesize
that the proximal scFv to signaling has a stronger effect on CAR
function, and the initial response by both bispecific constructs sug-
gests loss of TACI is not as impactful on dual-specific CAR activity.

There is some concern that targeting TACI will not have a strong
effect due to the lack of clinical efficacy of APRIL-based CARs25 but we
previously generated ligand-based, trimeric APRIL (TriPRIL) CARs to
improve binding and function relative to monomeric APRIL-based
CARs. Here we also compared TriPRIL CARs to our tandem scFv bis-
pecific anti-BCMA–anti-TACI CAR. We observed lower binding of
soluble BCMA to TriPRIL CARs compared to anti-BCMA–anti-TACI and
remarkably lower binding of TACI as well (Supplementary Fig. 6a). In a
subcutaneousmodel of RPMI-8226, we observed stronger efficacy and
survival of animals treated with anti-BCMA–anti-TACI CAR compared
to TriPRIL CAR (Supplementary Fig. 6b, c), suggesting the tandem scFv
based bispecific could have higher potency than TriPRIL, though only
clinical data could test this hypothesis.

Finally, we identified a patient treated with ciltacabtagene auto-
leucel, as per the standard of care, who relapsed after CAR treatment.
Plasma cells were isolated from a core biopsy of an expanding extra-
medullary lesion and cryopreserved. We evaluated the tumor cells for
BCMA and TACI expression and discovered the patient had relapsed
with BCMA-negative disease but had significant expression of TACI
(Fig. 8g, h). We cocultured the patient’s cells with anti-TACI based
CARs to evaluate CAR response in terms of expansion, activation, and
cytokine secretion. While anti-BCMA and anti-TACI–anti-BCMA CARs
had limited activity against the tumor cells, anti-TACI and anti-
BCMA–anti-TACI CARs had a significant increase inCAR expansion and
activation (Fig. 8i, j). In addition, anti-TACI CARs had a significant
cytokine response with increased levels of IL-2, IL-13, IFNγ, GM-CSF,
TNFα, and IL-18 compared to anti-BCMA CARs. Anti-BCMA–anti-TACI
CARs had a more modest response with a significant increase of IL-13,
IFNγ, GM-CSF, and IL-18. This shows the superiority of the anti-
BCMA–anti-TACI orientation for dual-specific design in the context of
BCMA loss and the functionality of anti-TACI CARs in the setting of
BCMA-negative relapsed disease.

Fig. 1 | TACI expression in the basal ganglia is limited and the anti-TACI anti-
bodyG3D2 specifically stainsmultiplemyeloma. a Spatial representation ofRNA
expression in the basal ganglia (indicated in purple) fromone representative donor
(H0351.1015). Colormap indicates Z-score (Allen Human Brain Atlas Brain Explorer
2). Structure abbreviations: FL frontal lobe, CgG cingulate gyrus, OL occipital lobe,
PL parietal lobe; TL temporal lobe, Str striatum, Hy hypothalamus, CbCx cerebellar
cortex, MY myelencephalon. b RNA expression across basal ganglia structures.
Data from two distinct probes for TACI - P1 and P2 - were available. Each point for
the indicated structure indicates one human donor (n = 6). Expression Z-scores
were queried from the Allen Brain Atlas Data Portal. Structure abbreviations: GPe

globus pallidus external segment, GPi globus pallidus internal segment, BCd body
of caudate nucleus, HCd head of caudate nucleus, TCd tail of caudate nucleus, Acb
nucleus accumbens, Pu putamen. c G3D2 staining of cell lines transduced with
membrane-bound TACI protein and TACI-expressing multiple myeloma cell lines
(anti-TACI with secondary in orange, isotype with secondary in blue, secondary
alone in red). d BCMA and TACI staining of K562-TACI and multiple myeloma cell
lines using commercially available conjugated flow antibodies (stained cells in red,
isotype stain in blue). e G3D2 staining of vital immune cells present in PBMC or
activated T cells (n = 5ND, +/– SEM). Raw data is provided in the Source Data file.
ND = normal donor.
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Discussion
BCMA-targeted CAR T cell therapy has been efficacious as a treatment
for multiple myeloma, leading FDA approval of two BCMA-directed
CAR T cell products7,8. Despite the overall success rate, reports of
patients relapsing with BCMA-negative disease after BCMA-directed
CAR T cell therapy are now emerging14–17. This constitutes a significant
obstacle for BCMA-directed therapies. Efforts to target additional

antigens are becoming increasingly important. Some groups have
identified SLAMF738 and GPRC5D39 as targets, which have been tested
in clinical trials40,41 (NCT0395865642, NCT0455555143). Another antigen,
TACI, has also been identified as a potentially favorableCAR target due
to high expression onmultiplemyeloma, but hasnot yet been tested in
the form of single-chain variable fragment CARs44. To avoid antigen
escape, CARs targeting both BCMA and TACI simultaneously are in
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clinical development, but so far only using natural ligand (APRIL) of
these molecules as the extracellular domain of the CAR23,24.

In this study, we took a different approach to target TACI by
generating an scFv sequence from TACI-immunized mice. While TACI
has reported expression on activated T cells37, we did not detect
staining on activated T cells using our G3D2 anti-TACI antibody. The
only peripheral blood cells with minor staining were CD19+ cells, as
would be expected. In addition, TACI has also been reported to be
expressed on regulatory T cells45, making TACI especially appealing to
target as a strategic approach to directly kill tumor aswell as indirectly
manipulate the immunosuppressive tumor microenvironment inflic-
ted by regulatory T cells.

We demonstrated that T cells engineered to express a second-
generationCARbasedonanscFvdirectedagainstTACIhad the ability to
cure multiple myeloma tumors in xenograft models. The anti-TACI L-H
orientation showed superior anti-tumor efficacy compared with its H-L
counterpart. We observed that BCMA loss due to CRISPR/Cas9 deletion
did not affect TACI expression on multiple myeloma cell line MM1S,
confirming previous reports23. We also were able to validate the
hypothesis that TACI surface expression is retained in patients who
relapsewith BCMA-negative disease after BCMA-targeted therapywith a
primary patient sample. Even in cases with biallelic loss, as observed by
Samur et al.17, TACI expression would be preserved as it is on another
chromosome. Indeed, anti-TACI CAR T cells were able to induce
regressionof BCMAnegative tumors in vivo andhad apro-inflammatory
response to BCMA-negative patient multiple myeloma cells.

Loss of BCMA from anti-BCMA CAR T cell-treated patients likely
reflects selective pressure on the antigen exerted by the CAR T cells46.
Developing novel CARs against multiple surface antigens may prevent
this problem. We therefore designed and validated the efficacy of a
tandemCARwith scFvs directed against TACI andBCMA. Interestingly,
we found that when target cells express both antigens, the anti-TACI-
anti-BCMA configuration appeared slightly superior with regard to
in vitro activity and in vivo tumor control. However, in the face of
BCMA loss, this CAR configuration lost all activity, indicating its heavy
dependenceonBCMAexpression. In contrast, in the faceof BCMA loss
induced by CRISPR/Cas9 or in a recurrent plasmacytoma after cilta-cel
treatment in a patient, anti-BCMA-anti-TACI CARs retained activity;
this leads us to conclude that this configuration is the superior dual-
specific construct. Because of the widespread clinical use of BCMA-
targeted therapies, we believe that there will be more selective pres-
sure on BCMA, and therefore higher likelihoodof loss of this antigen in
patients with relapsed disease. In this setting, we would expect the
anti-BCMA-anti-TACI CARs to have greater clinical impact based on
their ability to target TACI. These data may suggest that for tandem
bispecific scFvs, the scFv closer to the signaling domain has a stronger
signal.

Because BCMA loss is relatively rare (4–33%) in patients treated
with BCMA-targeting CARs10,14,15, one approach has been to target
BCMAwith higher-affinity or tighter-bindingCARs, such as biparatopic
binding domains. However, this approach may result in increased on-
target toxicity, based on recent reports of Parkinsonian features
reported in at least six anti-BCMA CAR T cell-treated patients28–30.

These neurotoxicities occurred after a period of recovery from CRS.
Symptoms included agitation, personality changes, short term mem-
ory loss, shuffling gait, difficulty swallowing, and joint stiffness, among
others30. Further investigation discovered BCMA expression in the
brain, on neurons and astrocytes in the basal ganglia30. In addition,
BCMA RNA expression was validated in healthy brain tissue, suggest-
ing that the resulting Parkinsonian features were due to on-target, off-
tumor toxicity. Further investigationof three patientswhodiedon trial
showed no acute abnormalities via brain MRI. These patients experi-
enced other adverse events, including sepsis and infection, but it is
possible neurotoxicity contributed to the cause of death. It is possible
that targeting a second antigen, such as TACI, could be a potentially
safer alternative than increasing binding to BCMA avidity to BCMA,
given our analysis showing limited expression of TACI in the basal
ganglia. It should be noted that the dual targeting approach described
would notprevent the BCMA toxicities and is limited in this regard, but
the lack of overlapping toxicities is generally a feature sought in
combination therapy strategies for cancer. Should these toxicities
continue to be a main area of concern for BCMA therapy, targeting
TACI alone would theoretically have a better safety profile than the
anti-BCMA-anti-TACI approach.

In conclusion, we report potent anti-tumor activity of mono-
specific anti-TACI and bispecific anti-BCMA–anti-TACI CAR T cells
in vitro and in xenograft models of multiple myeloma. These CAR
T cells could offer an additional therapeutic option for patients with
multiple myeloma or other plasma cell disorders.

Methods
Study design
This study was designed to develop anti-TACI directed CAR T cells for
multiple myeloma. To validate the efficacy of these CARs, in vitro and
in vivo functional assays were performed using a variety of multiple
myeloma tumor cell lines. T cells were sourced from anonymized
human blood samples. An Institutional Review Board protocol
approved the purchase of anonymous human healthy donor leuka-
pheresis products from theMGH blood bank. The Institutional Review
Board (IRB) at theMassachusetts General Hospital determined the use
of these T cells to be “non-human subjects research”. The Institutional
Animal Care and Use Committee (IACUC) approved protocols for all
animal work. Prior to CAR T cell treatment, animals were randomized.
The multiple myeloma patient sample was obtained after written
informed consent under protocol 16–206 that is approved by the
Dana-Farber/Harvard Cancer Center IRB.

RNA expression analysis
RNA microarray expression levels from the basal ganglia of 6 human
donors were queried from the Allen Brain Atlas Data Portal. Dataset:
Allen Institute for Brain Science (2010). Allen Human Brain Atlas:
Microarray [TNFRSF13B; TNFRSF17]. Available from human.brain-
map.org35. RRID:SCR_007416. Anatomic visualization was performed
in Brain Explorer 2 (v2.3.5, Allen Institute for Brain Science)47. RNA
single cell analysis expression data was assessed from the Human
Protein Atlas32.

Fig. 2 | Anti-TACI CARs are functional against TACI+ cell lines in vitro with
lower cytokine production than anti-BCMA CARs. a Anti-TACI and control anti-
BCMA CAR T cell design. b Transduction efficiency measured by flow cytometry
reported by mcherry of human normal donor T cells transduced with anti-TACI or
anti-BCMA CAR T cells (n = 3ND). c Binding of soluble TACI to anti-BCMA and anti-
TACI CARs at the indicated concentrations measured by flow cytometry. Percen-
tage of TACI+ mcherry+ CAR T cells shown on left and MFI of FITC on mCherry+
CAR T cells on right (n = 3ND+/– SEM, paired t test at each concentration; ns at all
concentrations between H-L and L-H anti-TACI CAR percentage on left, *=0.047921
at 1000nM, **=0.002989 at 300 nM, **=0.009396 at 100nM, and *=0.029103 at
30nM between H-L and L-H anti-TACI CAR MFI on the right). d Luciferase-based

cytotoxicity assays of multiple myeloma cell lines targeted by anti-TACI or BCMA
CAR T cells at the indicated E:T ratios after 18 h of coculture (n = 3ND in biological
triplicate +/– SEM, unpaired t tests at each ratio, ns between anti-TACI and anti-
BCMACARs forMM1S andRPMI-8226 at all E:T ratios; lowest significance shown for
U266 where *=0.044010 and **=0.002825). Calculated as a percentage of lumi-
nescence of tumor only wells. e IL-2, IFNγ, and TNFα cytokine production from
supernatant of 1:1 E:T coculture for 18 h (n = 3ND in biological duplicate +/– SEM,
one way ANOVA compared to control anti-BCMACAR). Raw data is provided in the
Source Data file. E:T = effector:target cell; ns = non-significant. All tests are two-
sided. p = ****<0.0001.

Article https://doi.org/10.1038/s41467-023-43416-7

Nature Communications |         (2023) 14:7509 6

http://human.brain-map.org/microarray/search/show?exact_match=false&search_term=
http://human.brain-map.org/microarray/search/show?exact_match=false&search_term=


MM1S curative model

MM1S stress model

RPMI-8226 subcutaneous model

a

c

d

f

g h

i

b

0 10 20 30
105

106

107

108

109

1010

1011

Days post CAR treatment

Fl
ux

 (P
ho

to
ns

/s
^2

)

Anti-TACI H-L
Anti-TACI L-H
Anti-BCMA
Untransduced
Tumor Only**

0 20 40

2000

4000

6000

m
m

^3

Anti-TACI H-L

0 20 40

2000

4000

6000

Days post CAR treatment

Anti-BCMA

0 20 40

2000

4000

6000

Tumor Only

0 20 40

2000

4000

6000

Anti-TACI L-H

0 20 40

2000

4000

6000

Untransduced

0 50 100 150
0

50

100

Days post CAR treatment

Pr
ob

ab
ili

ty
 o

f S
ur

vi
va

l

RPMI8226 survival

Anti-TACI H-L
Anti-TACI L-H
Anti-BCMA

Untransduced
Tumor Only

 D0          D4        D7          D11          D14

 D-14: 5e6
RPMI SubQ

2e6
CAR IV

Caliper
Measurements

 D-1  D0          D4        D7          D11          D14

 D-14: 1e6
MM1S IV

2e6
CAR IV

 D-1   D0        D3        D7          D10          D14

 D-14: 1e6
MM1S IV

5e6
CAR IV

Imaging

**

ns

0 10 20 30
105

106

107

108

109

1010

1011

Days post CAR treatment

Fl
ux

 (P
ho

to
ns

/s
^2

)

Anti-TACI H-L
Anti-TACI L-H

Untransduced
Tumor Only

*

Anti-BCMA

photons/s^2

1e6

1e4

photons/s^2

1e6

1e4

D-1

D4

D7

D11

D14

Imaging

e

ns

Fig. 3 | Anti-TACI L-HCAR shows superior efficacy in vivo against stressmodels
ofmultiplemyeloma. a Schematic ofMM1S curativemodel treatedwith 5e6 CAR+
cells intravenously 14 days after intravenous engraftment of 1e6 MM1S cells. b BLI
imaging of a. c, Quantified BLI of a (5 mice per group +/– SEM, unpaired t test to
Untransduced at day 35 where **=0.004935 for anti-TACI H-L, **=0.001696 for anti-
TACI L-H, **=0.004928 for anti-BCMA). d Schematic of MM1S stress model treated
with 2e6 CAR+ cells. e BLI imaging of d. fQuantified BLI of d (5 mice per group +/–
SEM, experiment representative of 3 separate experiments each treated with a

different ND, unpaired t test at day 28 between anti-TACI H-L and anti-TACI L-H
where *=0.014174). g Schematic of RPMI-8226 subcutaneous model treated with
2e6 CAR+ cells intravenously 14 days after subcutaneous engraftment of 5e6 RPMI-
8226 cells. h Survival of g (log-rank Mantel-Cox test **=0.0026). i Caliper mea-
surements of individual mice from g for the first 50 days (5 mice per group,
experiment representative of 2 separate experiments each treated with a different
ND). Raw data is provided in the Source Data file. All tests were two-sided unless
otherwise stated.
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Mice and cell lines
Male and female NOD-SCID-γ chain -/- (NSG) mice purchased from
the Jackson laboratory were bred under pathogen-free conditions at
the MGH Center for Cancer Research. Animals were maintained in
rooms with 12:12 h light:dark cycles, humidity of 30–70%, and
temperature of 21.1–24.5 C. All experiments were approved
according to MGH Institutional Animal Care and Use Committee
protocols. All cell lines (K562,MM1S, RPMI-8226, U266, SUPT1) were
sourced from the American Type Culture Collection (ATCC). Cells
were grown in conditions as recommended by ATCC. Tumor cells
were transduced with enhanced GFP (eGFP) and click beetle green

(CBG) luciferase. Cell lines were then sorted for 100% transduction
on a BD FACSAria II or FACSAria Fusion cell sorter. For knockout
generation, the MM1S cell line was transduced vectors obtained
from the Broad Institute Genetic Perturbation Platform containing
guide RNA and puromycin-resistance from the Brunello library
(Brunello library) or electroporated with mRNA of the guide.
Afterwards, cells were electroporated using a BTX ECM830 with
CleanCap Cas9 mRNA (TriLink) and then again sorted for knockout
by FACs. The following guides were used: BCMA TAACGCTGACA
TGTTAGAGG (BRDN0001494990) and TACI ACAATTCAGACTCG
GGA (BRDN00016948784).
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Fig. 4 | Anti-TACI CARs are functional against BCMA negative multiple mye-
loma but lose efficacy against TACI negative tumor. a BCMA and TACI flow
cytometry staining of MM1S Cas9+ WT and BCMA KO cells. b Luciferase-based
cytotoxicity assay of MM1S BCMA KO cell line targeted by anti-TACI or BCMA CAR
T cells at the indicated E:T ratios after 18 h of coculture (n = 3ND+/– SEM in biolo-
gical triplicate, unpaired t tests at each ratio where **=0.005797 between anti-
BCMA and anti-TACI H-L and 0.001331 between anti-BCMA and anti-TACI L-H and
0.001224 between anti-TACI H-L and anti-TACI L-H at a 10:1 E:T and **=0.002689
between anti-TACI H-L and anti-TACI L-H at a 3:1 E:T). Calculated as a percentage of
luminescence of tumor only wells. c Schematic of MM1S BCMA KO curative model

treated with 5e6 CAR+ cells. d BLI imaging of c. e Quantified BLI of c (5 mice per
group +/– SEM, experiment representative of 3 separate experiments each treated
with a different ND, unpaired t test to Untransduced at day 31 where **=0.002040
for anti-TACI H-L and **=0.005764 for anti-TACI L-H). f BCMA and TACI flow
cytometry staining of TACI KO MM1S Cas9+ cells. g Luciferase-based cytotoxicity
assayofMM1SCas9+TACIKOcell line targetedbyanti-TACI or BCMACARTcells at
the indicated E:T ratios after 18 h of coculture (n = 3ND+/– SEM in biological tri-
plicate, unpaired t tests at each ratiowhere *=0.045779). Calculatedas a percentage
of luminescence of tumor only wells. Raw data is provided in the Source Data file.
All tests are two-sided. p = ****<0.0001.
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TACI antibody development
Mice were immunized using commercially available TACI protein in
collaboration with LifeTein LLC. LifeTein developed and screened
hybridomas for anti-TACI positive antibodies. The resulting positive
clone (G3D2) was sequenced (GenScript) and antibody isolated by
LifeTein assessed for binding to TACI protein using surface plasma
resonance (Affina Biotechnologies). Antibody was made 1 ug/mL in
running buffer (PBS-P, 10mM sodium phosphate, 150nM NaCl,
0.005% Tween 20, pH 7.4) and captured on anti-mouse IgG surface
(CM5 chip, 10,000RU anti-IgG antibody immobilized by standard
amine-directed chemistry according to the manufacturer’s instruc-
tions; GE Healthcare Cat# BR-1008-38) to achieve 130 RU for TACI
analysis. Theflow ratewas50uL/minwith 2min contact timeand 5min
dissociation.

Flow cytometry
Cells were washed with FACS buffer (2% FBS in PBS) and then incu-
bated with antibody in the dark for 20min at 4C. Cells were then
washed twice andDAPIwas used to separate live/dead staining prior to
analysis on a BD LSRFortessa X20 with the exception of Fig. 8g which
was analyzed on a BD FACSLyric. Antibodies that required secondary
staining had a similar protocol: after primary staining as described, the
secondary was added beforeDAPI, again stained in the dark for 20min
at 4 C. The following antibodies were used: BCMA (19F2, BioLegend,

1:50 dilution), CCR7 (150503, BD Biosciences, 1:33 dilution), mouse
CD11b (M1/70, Biolegend, 1:50 dilution), CD138 (MI15, BD Biosciences,
1:50 dilution), CD19 (SJ25C1, BD Biosciences, 1:33 dilution), CD27 (M-
T271, BDBiosciences 1:50dilution), CD27 Fig. 8g (L128, BDBiosciences,
1:50 dilution), CD3 (UCHT1, BD Biosciences, 1:50 dilution), CD38
(multi-epitope, Alpco Cytognos, 1:20 dilution), CD4 (SK3, BD Bios-
ciences, 1:50 dilution), CD45 (HI30, BD Biosciences, 1:50 dilution),
CD45RA (HI100, BD Biosciences, 1:100 dilution), CD56 (MY31, BD
Biosciences, 1:50 dilution), CD56 Fig. 8g (HCD56, Biolegend, 1:25
dilution), CD69 (FN50, Biolegend, 1:100 dilution), CD8 (SK1, BD Bios-
ciences, 1:50 dilution), CD95 (DX2, BD Biosciences, 1:50 dilution),
cytoplasmic kappa (TB28-2, BDBiosciences, 1:10 dilution), cytoplasmic
lambda (1-155-2, BD Biosciences, 1:10 dilution), HLA-DR (L243, BD
Biosciences, 1:50 dilution), Lag-3 (T46-530, BD Biosciences, 1:50 dilu-
tion), mouse Ly-6G/Ly-6C (RB6-8C5, Biolegend, 1:50 dilution), mouse
NK1.1 (PK136, Biolegend, 1:50 dilution), PD-1 (NAT105, Biolegend, 1:50
dilution), TACI (1A1, BioLegend; G3D2, Maus lab, 1.67ug/ml), anti-
mouse IgG2b (RMG2b-1, BioLegend, 1:588 dilution), TACI Fig. 8h (1A1-
K21-M22, BD Biosciences, 1:20 dilution), mouse TER-119 (TER-119,
Biolegend, 1:50 dilution), TIM-3 (7D3, BD Biosciences, 1:50 dilution).
For soluble protein binding assays the following were used: Human
BCMA / TNFSRF17 Protein Fc Tag andHumanTACI/TNFRSF13B Protein
Fc Tag (ACROBiosystems) with the anti-human IgG Fc secondary
(HP6017, BioLegend, 1:100 dilution). Protein was titrated and used to
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Fig. 6 | Bispecific CAR T cells targeting BCMA and TACI are efficacious against
wildtype multiple myeloma in vitro. a Luciferase-based cytotoxicity assays of
MM1S, RPMI-8226, and U266 cell lines targeted by CAR T cells at the indicated E:T
ratios after 18 h of coculture (n = 3ND+/– SEM in biological triplicate). Calculated as
a percentage of luminescence of tumor only wells. b Cytotoxicity from a at the 1:1
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control anti-BCMA CAR). c IL-2, IFNγ, and TNFα cytokine production from super-
natant of 1:1 E:T cell coculturewith the indicatedCART cells and tumor cells for 18 h
(n = 3ND+/– SEM, one way ANOVA compared to control anti-BCMA CAR, ns not
shown). Raw data is provided in the Source Data file. All tests are two-sided.
p = ****<0.0001.
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stain 50,000 CAR+ cells for 1 hr at 4 C. Cells were washed three times
and stained for 20min 4C with secondary before being washed three
times and analyzed by flow cytometry. For kappa/lambda staining of
patient multiple myeloma cells, cells were stained for CD38, CD56,
CD45, CD19, CD138, andCD27 for 15min at 4 C, washed and resuspend
in Cytofix/Cytoperm reagent (BD Biosciences) for 20min at 4 C and
then washed twice in Perm/Wash buffer (BD Biosciences) prior to
kappa and lambda staining. Isotypes were used from the corre-
sponding manufacturer throughout experiments. Trucount Absolute
Counting Tubes (IVD BD Biosciences) were used according to manu-
facturer recommendations for CAR quantification in blood samples

from in vivo. All data were collected using the BD FACSDiva software
and analyzed using FlowJo Software.

Construction of CARs
Monospecific and bispecific anti-TACI and BCMA (bb212148) CAR T
constructs were synthesized (GenScript) under the regulation of a
human EF-1ɑ promoter and cloned into a third-generation lentiviral
backbone. All CAR constructs contained a CD8 hinge and trans-
membrane domain, 4-1BB costimulatory domain, CD3ζ signaling
domain, and fluorescent reporter mCherry to evaluate transduction
efficiency.
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Lentiviral production
HEK293 T cells from ATCC were cultured in RPMI supplemented
with 10% fetal bovine serum and 1% pencillin streptomycin. Syn-
thesized CAR constructs were transfected with third generation
packaging plasmids using Lipofectmine 3000 and P3000 (Ther-
moFisher Scientific) in OptiMEM (Gibco) media. Viral supernatants

were harvested 24 and 48 h after transfection, combined, filtered
and concentrated by ultracentrifugation (ThermoFisher Scientific
Sorvall WX+ Ultracentrifuge) at 25000 RPM for 2 h at 4 C. Con-
centrated virus was stored at -80C and titered on SUPT1 cells to
determine MOI for transduction of primary T cells via mCherry
expression.
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CAR T cell production
An Institutional Review Board protocol approved purchase of anon-
ymous human healthy donor leukapheresis products from the MGH
blood bank. Stem Cell Technologies T cell Rosette Sep Isolation kit
were used to isolate T cells. Bulk humanT cells were activated onDay0
using CD3/CD28 Dynabeads (Life Technologies) at a 1:3 T cell:bead
ratio to generate CAR T cells and untransduced T cells from the same
donors to serve as controls. T cells were grown in RPMI 1640 media
with GlutaMAX and HEPES supplemented with 10% FBS, penicillin,
streptomycin, and 20IU per ml recombinant human IL-2 (Peprotech).
On Day 1 (24 h after activation) cells were transduced with CAR lenti-
virus at an MOI of 5. T cells continued expanding with media and IL-2
addition every 2–3 days. Dynabeads were removed via magnetic
separation on Day 7 and cells were assessed by flow cytometry for
mCherry expression on Days 12–14 to determine transduction effi-
ciency. Prior to use in in vitro functional assays, CAR T cells and
untransduced cells were thawed and rested for 2–24h in IL-2.

Cytotoxicity assays
CAR T cells were incubated with luciferase-expressing tumor cells at
the indicated effector to target (E:T) cell ratios for 18 h. Cells were then
lysed and luciferase activity was measured using a Synergy Neo2
luminescence microplate reader with Gen5 version 2.09 software
(Biotek). The following formula was used to determine percentage
lysis: (target cells alone relative luminescence units (RLU)–total RLU
with CAR T cells)/(target cells alone RLU) x 100.

Cytokine analysis
CAR T cells and tumor cells were cultured at a 1:1 ratio for 18 h with the
exception of Fig. 8k which was a 2:1 E:T ratio for 24 h. Supernatants
were thenharvested and frozen for later cytokine analysis of cytokines.
Cytokine expression was assessed with the Th1/Th2 Cytokine 11-Plex
Human ProcartaPlex Panel (Invitrogen) according to the manu-
facturer’s instructions using a FLEXMAP 3D (Luminex, ThermoFisher
Scientific).

In vivo models
MM1Scellswere administered intravenouslywith 1e6 cells in 100ul PBS
and engrafted for 14 days prior to 5e6 (curative model) or 2e6 (stress
model) CAR+ cells were administered intravenously in 100ul PBS.
Animals were monitored biweekly for bioluminescent emission using
an Ami HT optical imaging system (Spectral Instruments) following
intraperitoneal substrate injection of D-Luciferin (30mg/mL). All
images were analyzed using Aura software. For the RPMI-8226 model,
5e6 tumor cells were administered subcutaneously in 200ul PBS and
treated 14 days later with 2e6 CAR+ cells intravenously in 100ul PBS.
Animals were monitored for tumor progression biweekly with caliper
measurements with tumor volume calculated as length x width x
(length + width)/2. Animals were euthanized as per the experimental
protocol or when they met pre-specified endpoints defined by the
IACUC. The maximal tumor size allowed was a diameter of 20mm,

which was not exceeded. One animal technician who performed all
animal injections and monitoring was blinded to expected outcomes.
All animal experiments included 5 animals per group. Mice were ran-
domized post-tumor injection prior to treatment.

Statistical methods
Analyses were performed with GraphPad Prism 9 (version 9.0). Unless
otherwise stated, data were presented as mean +/– SEM and a 2-tailed
Student t test. All testswere two-sided. Significancewas considered for
P <0.05 as the following: p = *<0.05, **<0.01, ***<0.001, ****<0.0001.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Original data for graphs is provided in the Source Data file. For addi-
tional questions, please contact marcelavmaus@mgh.harvard.edu.
TheAllen Institute for Brain Science (2010) publicly availabledata used
in this study are available in the Allen Brain Atlas Data Portal database
under the Allen Human Brain Atlas: Microarray, Dataset: [TNFRSF13B;
TNFRSF17]. Available from human.brain-map.org35. RRID:SCR_007416.
The remaining data are available within the Article, Supplementary
Information, or Source Data file. Source data are provided with
this paper.
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