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LipIDens: simulation assisted interpretation
of lipid densities in cryo-EM structures of
membrane proteins

T. Bertie Ansell1, Wanling Song1,2, Claire E. Coupland3,4, Loic Carrique3,
Robin A. Corey 1,5, Anna L. Duncan 1,6, C. Keith Cassidy 1,7,
Maxwell M. G. Geurts1, Tim Rasmussen 8, Andrew B. Ward 9,
Christian Siebold3, Phillip J. Stansfeld 10 & Mark S. P. Sansom 1

Cryo-electron microscopy (cryo-EM) enables the determination of membrane
protein structures in native-like environments. Characterising howmembrane
proteins interact with the surrounding membrane lipid environment is assis-
ted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless,
establishing themolecular identity of putative lipid and/or detergent densities
remains challenging. Here we present LipIDens, a pipeline for molecular
dynamics (MD) simulation-assisted interpretation of lipid and lipid-like den-
sities in cryo-EM structures. The pipeline integrates the implementation and
analysis of multi-scale MD simulations for identification, ranking and refine-
ment of lipid binding poses which superpose onto cryo-EM map densities.
Thus, LipIDens enables direct integration of experimental and computational
structural approaches to facilitate the interpretation of lipid-like cryo-EM
densities and to reveal the molecular identities of protein-lipid interactions
within a bilayer environment.We demonstrate this by application of our open-
source LipIDens code to ten diverse membrane protein structures which
exhibit lipid-like densities.

Recent methodological advances in cryo-electron microscopy (cryo-
EM) have transformed our understanding of membrane protein
structure and function1,2. As these methods develop and enable
determination of higher resolution membrane protein structures3–8,
additional non-protein lipid-like densities are increasingly resolved
surrounding protein transmembrane domains (TMDs)9–11. These addi-
tional densities are generally considered to correspond to bound lipid
or detergent molecules. However, determining the chemical identity
of putative lipid/detergent densities from cryo-EM maps is

challenging4,11,12. As such, assignment and discussion of lipid-like den-
sities isoften tentative, complicating subsequent interpretationof how
bound lipids and the bilayer environment may modulate membrane
protein function.

Molecular dynamics (MD) simulations enable exploration of the
lipid environment surrounding membrane proteins and have been
readily applied to characterise lipid binding sites on diverse family
members including G-protein coupled receptors, solute transporters,
and ion channels13–18. In such simulations, the identity of a lipid bound
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at a site is known precisely. However, accompanying experimental
validation of the lipid species at a predicted binding site in a native cell
membrane is often absent or at best difficult to obtain. Thorough
exploration of the surrounding membrane environment requires
simulation timescales that are sufficient to sample multiple lipid
binding/unbinding events across the TMD14,19. This is readily enabled
through use of coarse-grained (CG) and atomistic simulations which
have been used to successfully predict lipid binding sites subsequently
validated via experimental structural and biophysical methods20–22.
Additionally, experimental structural biology has benefited from
hybridmodelling approaches suchasflexiblefitting23,24. Thus, there is a
clear complementarity between MD simulations and structure deter-
mination by cryo-EM for identification and characterisation of protein-
lipid interactions. However, automated and objective protocols for
exploiting this complementarity have yet to be made available.

Recent advances in software development have sought to stan-
dardise methods for determining protein-lipid interactions from
simulations25–27. We recently developed the protein-lipid analysis
toolkit, PyLipID27, which uses a community analysis-based approach to
identify lipid binding sites and to characterise the kinetics of the
binding sites and their associated residues (see27 for details). PyLipID is
a powerful standalone tool, however the interpretation of PyLipID
outputs is dependent on a) the setup of the input MD simulations and
b) effective post-processing and assessment of PyLipID outputs.
Additional atomistic simulations may also be needed to refine
observed lipid interactions. This therefore prompted the development
of LipIDens, an integrated pipeline for assisted interpretation of lipid-
like cryo-EMdensities usingmulti-scaleMDsimulations.Outputs of the
pipeline include representative lipid binding poses at sites where
corresponding lipid-like densities are observed, including quantitative
assessment of howwell thesematchusingQ scores28 and an interactive
overlay of lipid poses with partitioned cryo-EMmaps for each binding
site. Importantly, LipIDens can be used to rank the binding site kinetics
of different lipid species at a binding site, and therefore aid identifi-
cation of the most likely lipid accounting for observed structural
densities. These can be used to refine lipid binding poses duringmodel
building in cryo-EM and assist structural interpretation. Thus, we
provide a formalised pipeline interlacing simulation methodologies
with structural characterisation of lipid-like densities; a frequently
encountered and nuanced challenge in membrane protein structural
biology.

Results
The LipIDens pipeline
An overview of the LipIDens pipeline is shown in Fig. 1. The LipIDens
pipeline can be broken into multiple sections corresponding to: a)
structure processing; b) setting up and performing CG simulations; c)
testing PyLipID cut-offs; d) selecting PyLipID input parameters and
running PyLipID analysis; e) screening PyLipID data; f) comparing lipid
poses with cryo-EM densities and ranking site lipids; and g) lipid pose
refinement using atomistic simulations. Pipeline steps are integrated
into a computational notebook to assist automation (https://github.
com/TBGAnsell/LipIDens/blob/main/LipIDens.ipynb) and detailed
within the accompanying procedure. A standalone python file also
permits modular implementation of LipIDens stages (https://github.
com/TBGAnsell/LipIDens/blob/main/lipidens_master_run.py).

We first demonstrate extended application of all pipeline steps to
the membrane protein Hedgehog acyltransferase (HHAT), before
expanding upon a range of LipIDens applications across a further nine
membrane protein structures to integrate structural data and assist
interpretation of lipid-like densities.

Pipeline implementation
We applied the LipIDens pipeline to a recent ~2.7Å cryo-EM structure
of the ER resident enzyme HHAT29 (Figs. 1–4). The structure of HHAT

reveals several lipid-like densities, evenly distributed around the TMD,
including twodensities whichprotrude into the enzyme core. LipIDens
was used to establish CG simulations of HHAT in a native-like bilayer
environment. After performing CG simulations, we used LipIDens to
screen dual cut-off interaction schemes for subsequent PyLipID ana-
lysis, exemplified for phosphatidylinositol 4,5-bisphosphate (PIP2)
(Fig. 2a, Supplementary Fig. 1). During cut-off screening the minimum
distances of each interacting PIP2 to a residue are calculated (Fig. 2a,
Supplementary Fig. 1a–d) in addition to exhaustive screening of
interactions over multiple cut-off pairs (Supplementary Fig. 1e–g). The
selected lower cut-off (0.475 nm) corresponds to the first peak in the
probability distribution plot (Fig. 2a) and the cut-off at which there is
an increase in interaction durations, computed binding sites and
residues comprising each site compared with smaller lower cut-off
values (Supplementary Fig. 1e–g). The upper cut-off captures the first
interaction shell in the probability density distribution (0.7 nm), cor-
responding approximately to the position of the minimum between
the first and second peaks (Fig. 2a).

Next, PyLipID implements this dual interaction distance cut-off
(i.e. 0.475/0.7 nm) to robustly capture lipid interactions and account
for transient deviations in their position due to Brownian motion30.
Input lipid atoms may also be tuned to match structural densities (if
required) i.e., by including only headgroup atoms or averaging over
protein subunits (Fig. 2b). Lipid interaction durations are used to
obtain the normalised survival time correlation function (hereafter
survival function) of interactions. A dissociation rate constant (koff) for
lipid interactions with a residue is obtained by bi-exponential curve
fitting of the interaction survival function alongside bootstrapping to
the same data. PyLipID can also identify binding sites by grouping
residues which simultaneously interact with the same bound lipid
molecule, basedupon a community analysis approach31,32, as shown for
PIP2 sites mapped onto the HHAT structure using an automatically-
generatedPyMOL script (Fig. 2c).Kinetic parameters are thenobtained
for each predicted binding site. Representative lipid binding poses at a
site areobtainedby empirical scoringof lipid bindingposes against the
simulation-derived lipid density within the site. Here the representa-
tive PIP2 pose at the site with longest residence time (BS4) is shown
(Fig. 2d). In addition, lipid interactionoccupancies arecalculated as the
percentage of frames where lipid is bound compared to the total
number of frames on a per residue or site basis (Fig. 2e). The metho-
dological underpinnings of PyLipID are described extensively
elsewhere27 andhave been applied to a number of recent examples33–35.

After calculation of lipid binding sites and their kinetics, the
LipIDens pipeline implements additional extensions to rank site out-
puts for inspection of site quality, extending beyond simple kinetic
parameter generation to assist experimental integration. Site occu-
pancies, residence times and surface areas are ranked from lowest to
highest or closest to 0 for Δkoff (defined as the difference between koff
calculated by curve-fitting and via bootstrapping the same data)
(Fig. 3a). This plot can be used to inspect the quality of calculated
binding sites. Typically, a good site has a Δkoff between ± 1 μs. For
example, for HHAT, binding site 12 is ranked last by allmetricswhereas
binding site 4 (Fig. 3a, Fig. 2c, d) has the longest predicted residence
time and occupancy and a small Δkoff indicating good agreement
between koff values calculated from the survival function (Fig. 3b).
Poorly fitted sites, indicated by large Δkoff values and/or sparse inter-
action durationplots (Fig. 3c) should be excluded in subsequent stages
of the pipeline. Thus, the LipIDens pipeline employs automated steps
to guide users through structure and simulation processing and assess
the quality of interaction outputs.

Comparing lipid poses with cryo-EM densities
Subsequent additional stages of the pipeline concern simulation-
assisted interpretation of structural lipid-like densities. First, a com-
parative dictionary of lipid binding sites is generated by comparing
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binding site residues to a specified reference lipid (i.e. per site best
match). Top ranked CG lipid binding poses for each site are auto-
matically backmapped to atomistic resolution and an interactive
PyMOL (https://PyMOL.org/2/) session is created to compare lipid
poses at each site with partitioned cryo-EMdensities surrounding each
site. Hence cryo-EM densities in proximity to each site can be directly
compared to the lipid poses, for all lipids which bind to that site, to
facilitate structural interpretation. In addition to the structural com-
parison of lipid poses and site densities, plots of the relative residence
times of each lipid at a site are generated, providing further quanti-
tative justification of lipid modelling.

For HHAT, we compared the top ranked CG lipid binding poses
with the position of cryo-EMdensities and ranked the relative residence
times of all lipids binding to the same site (Fig. 4). These plots can be
used to assess how binding site properties may dictate binding of a
particular lipid type and evaluate the relative specificity of the site. For

example, a site of lipid tail-insertion within HHAT (Fig. 4a) shows
equivalent preference for PC and PE lipids whereas a surface site
(Fig. 4d) preferentially binds anionic lipids. Refinement of lipid binding
poses using atomistic simulations revealed remarkably good overlap
with densities, quantified by Q scores28 for the lipid poses (Qavg = ~0.4
compared to ~0.7 for structurally modelled palmitate moieties and
HHAT heavy atoms at 2.7Å) (Fig. 4, Supplementary Fig. 2). This is
particularly impressive considering lipid poses were derived ab initio
from the simulations and in the absence of any density guided
restraints. We note that LipIDens can be employed iteratively
throughout the model building process, including for low-resolution
maps. We exemplify this for HHAT using a low-resolution map at ~5Å
(Fig. 4a) whereby PyLipID was able to identify a lipid binding site cor-
responding to kinked tail density which was subsequently revealed
(among the other peripheral densities) when the map resolution was
improved to ~2.7Å (Fig. 4b–e), thus serving as a double-blind test study.

Fig. 1 | The LipIDens pipeline for characterising lipid densities using simula-
tions. A workflow for LipIDens assisted interpretation of lipid densities using
simulations, applied to Hedgehog acyltransferase (HHAT, PDBid: 7Q1U)29 enzyme as
an example (across n= 10 ×15 μs independent CG simulations). Steps involving
structure processing (grey), setup and performingMD simulations (orange), analysis
of lipid sites/densities (blue) andmodelling (yellow) are indicated. Optional steps are
boxed by grey dashed lines. A protein structure is used as input and, if required,
missing peptide linkages and/or residue sidechains are amended in the input
structure. Superfluous protein components e.g. nanobodies/ligands are removed.
The protein is converted to coarse-grained (CG) resolution and embedded in a

selected membrane environment which is solvated using water and ions. CG simu-
lations are performed and analysed using the lipid interaction analysis toolkit
PyLipID27. Lipid binding sites and poses identified by PyLipID are processed, ranked
and compared to densities in the cryo-EM map within an interactive PyMOL session
to assist interpretation of putative lipid densities in the structure. Illustrative outputs
are shown and described in detail in later figures. Bottom right: ranked residence
times across all PIP2 binding sites on HHAT. Bottom left: the relative residence times
for all lipids binding to a site on HHAT derived from koff values calculated via bi-
exponential curve fitting of the interaction survival function. Asymmetric error bars
correspond to a second koff value obtained via bootstrapping to the same data.
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Application to other membrane proteins
We applied the pipeline to three different membrane proteins for
which lipids have been assigned to putative densities in recent struc-
tures; the eukaryotic proton channelOtopetrin1 (OTOP1)36, the Erwinia
pentameric ligand-gated ion channel ELIC37 and the mechanosensitive
channel of small conductance (MscS) from Escherichia coli38 (Fig. 5).
These examples serve to demonstrate the diverse applicability of
LipIDens to assist interpretation of structure-function questions.

In the ELIC structure, authors observe an elongated density tra-
versing both leaflets,modelled as a highly unusual extended and tilted

cardiolipin (CDL) molecule (Fig. 5a, magenta)37. In simulations we also
observe CDL binding to this site, constituting the top ranked CDL site
across the protein (Supplementary Fig. 3). We were unable to replicate
the unusual tilted modelled pose despite pose refinement with ato-
mistic simulations (Fig. 5a, teal). We observe a more conventional CDL
binding pose whereby the phosphate beads remain in close z axial
proximity (Fig. 5b, Supplementary Fig. 3), consistent with a large-scale
analysis of CDL binding poses in E. coli33. Re-assessment of the pro-
posed CDL density shows discontinuity at approximately the position
of the bilayer midplane (Fig. 5c). Consistent with this we identified a

Fig. 2 | Analysing simulations using PyLipID. a The upper and lower distance cut-
offs used to define lipid contacts with a protein are selected from a probability
distribution of the lipid of interest around the protein; exemplified here for PIP2
binding to HHAT. b The user can tune appropriate inputs for the lipid interaction
analysis using PyLipID27. For example, if only headgroup density is visible the user
may limit the selection to lipid headgroup atoms. This is exemplified for a PIP2 (red
sticks) binding on the neurotensin receptor (NTSR1, white cartoon). Density
modelled as the PIP2 headgroup is shown as blue mesh (PDBid: 6UP7)68. Alter-
natively if tail density is visible the user may choose to analyse the whole lipid, as
exemplified for densities (blue mesh) visible surrounding the Connexin-50 gap
junction channel (PDBid: 7JJP, white cartoon)5. Analysis can also be averaged over

homo-multimeric proteins to enhance sampling of lipid interactions. c–e Example
outputs from PyLipID analysis of PIP2 binding to HHAT from n = 10 ×15 μs inde-
pendent CG simulations. A 0.475/0.7 nm dual cut-off was used to analyse interac-
tions with the whole PIP2 lipid. c PIP2 binding sites mapped onto the structure of
HHAT. Binding sites are coloured individually and residues comprising each site are
shown as spheres, scaled by residence time. The binding site (BS) with the longest
residence time (BS4) is boxed. d CG representation of the highest ranked lipid
binding pose for PIP2 (red) at BS4. HHAT is shown in white and the top 5 residues
with highest residence times within BS4 are shown as yellow spheres. e PIP2
interaction occupancies mapped onto the structure of HHAT, coloured from low
(white) to high (red).
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second lipid site in the inner leaflet which also preferentially bound
CDL, albeitwith amuch lower residence time (Fig. 5d, e). This raises the
possibility that the density in fact corresponds to two lipids in adjacent
leaflets, for which additional experimental analysis will be required to
establish (Fig. 5d, e). The diffuse nature of densities in this region may
also be accounted for by tail promiscuity/dynamics across the twoCDL
binding sites, a feature we also observed in atomistic simulations
(Supplementary Fig. 3c). This highlights the highly non-trivial nature of
interpreting lipid-like densities fromcryo-EM structures and the power
of the pipeline to assist model building and density interpretation.

For OTOP1, assignment of the putative lipid densities was chal-
lenging, due to resolution ranging 3.1–3.4Å around the TMD. The
authors assigned three densities per protein subunit as cholesterol-
hemisuccinate (CHS), trapped between the dimer interface and thus
occluded from the bilayer accessible region. An additional density
between the N- and C- domain of each monomer was modelled as
cholesterol36. Assignment of these densities was likely possible due to
enclosure between the transmembrane segments which may have
stabilised the bound lipids/detergents. Given these observations we
used LipIDens to assess which of the remaining 17 densities per
monomer may also correspond to cholesterol. Cholesterol binding
posesmatched the location of 4/17 of the additional lipid-like densities
(Fig. 5f, green), for which cholesterol was one of the highest ranked
lipids (Supplementary Fig. 4). We were able to recapitulate exclusive
binding of cholesterol at the N/C domain interface, consistent with the
modelling in the structure (Fig. 5g). Modelling of this density as

cholesterol is also ranked highly in the PDB ligand validation tool. In
addition, we were able to use the pipeline to suggest the most likely
identity of lipid species at those sites where cholesterol did not bind
(Supplementary Fig. 4).Weobservedpreferential bindingof lipidswith
anionic headgroups (PIP2/PS) to three of these sites (Fig. 5f, red, Sup-
plementary Fig. 4). This included one notable curved tail-like density at
the edge of the dimer interface which was also captured in the top
ranked PIP2 pose at this site (Fig. 5h, i). These densities may therefore
correspond to bound PIP2 and/or PS molecules extracted from the
native bilayer. There were 3 densities per monomer which we could
not assign to lipids based on the top ranked simulation poses (Fig. 5f,
dark blue, Supplementary Fig. 4). These densities were smaller and
may result from differences between the binding properties of deter-
gents vs. lipids or from the limited resolution of low occupancy bind-
ing events. LipIDens may help uncover biological relevance of these
smaller densities by facilitating interpretation of signal vs. noise.

A high-resolution structure of MscS was solved to 2.3Å allowing
for modelling of 8 detergent moieties per subunit (5x lauryl maltose
neopentyl glycol (LMNG), 3x N-dodecyl-β-maltoside (DDM)). The
authors were also able to resolve a bound lipid, assigned as PE, which
was tilted by ~80° degrees with respect to the bilayer normal38. We
wished to assess whether a) PE preferentially bound to this site when
MscS was embedded in an E. coli inner membrane-like lipid composi-
tion (i.e. PE/PG/CDL) and b) whether a tilted lipid conformation was
also observed when the protein is embedded within a lipid bilayer. In
simulations, this site emerges as a prominent and prolonged binding

Fig. 3 | Screening binding site data.Metrics for discerning binding site quality
during processing of PyLipID outputs. a Comparison of binding site Δkoff values
(koff bootstrap—koff curve fit), residence times, site occupancies and surface areas
for PIP2 interactions with HHAT (n = 10 ×15μs independent CG simulations).
Binding sites are ranked either from lowest to highest (residence times/occu-
pancies/surface areas) or from worst agreement between calculated site koff
values (Δkoff) to best (i.e., closest to 0). Arrows indicate sites corresponding to

those in b (green) and c (red). Example binding site plots for PIP2 binding to a (b)
well sampled site (BS4) and (c) an infrequently observed site (BS12) on HHAT. In
each case a sorted index of interaction durations within the simulations is shown
on the left panel. The right plot corresponds to the survival time correlation
function of interaction durations (purple dots). koff values are derived either via
biexponential curve fitting to the survival time correlation function (red line) or
via bootstrapping (grey lines).
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Fig. 4 | Comparison of cryo-EM densities with lipid poses from simulations.
Identification of representative bound poses of lipid species to assist interpretation
of cryo-EMdensities, exemplified for lipid interactions surrounding HHAT. Left: CG
binding poses for lipids bound to identified binding sites on HHAT. CG simulations
were initiated using a low-resolution structure derived from a preliminary cryo-EM
map (a, ~5Å) or a higher resolutionmap (b–e ~2.7Å)29 to illustrate howLipIDens can
be implemented throughout the model building process. HHAT was simulated for
n = 10 ×15 μs in each case. Middle left: selected pose of a lipid bound to HHAT
during atomistic simulations initiated by back-mapping from CG simulations.
Middle right: comparison of cryo-EMdensities (greymesh) with the atomistic pose.

Modelled palmitate moieties in the HHAT structure are shown as grey sticks.
Average Q scores28 for the atomistic lipid tail pose within the cryo-EM density are
indicated. Right: binding site residence times and R2 values for each lipid which
binds to the site, used to assess preferential binding of a lipid species to specific
sites. Residence time is defined as 1/koff whereby koff is obtained by bi-exponential
curve fitting to the interaction survival function27. Asymmetric residence time error
bars report a second koff value calculated via bootstrapping. POPC is coloured dark
blue, DOPC light blue, POPE purple, DOPE pink, cholesterol green, PIP2 red, POPS
coral and palmitate (PAL) ochre throughout.
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site for PE, PG andCDLwith all lipid types bindingwith residence times
of at least 15 μs (Fig. 5j). This is consistent with an experimental study
suggesting the pocket can be accessed by multiple lipid types,
including CDL, in a manner that was broadly independent of the
headgroup type39. Assessment of the top ranked lipid binding poses
revealed a tilted conformation for CDL with the tails inserting into a

groove between TM2 and TM3a and the phosphate headgroups
coordinated by R46 and R74 (Fig. 5k, Supplementary Fig. 5). This also
highlights the ability of simulations to provide additional native con-
text, given CDL was not added during determination of the MscS
structure. LipIDens facilitates direct simulation and experimental
comparison at high resolution, reducing the need for manual
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intervention. We did not observe lipid tilt amongst the top ranked
poses of PE or PG but tilted conformations were present in subsidiary
pose clusters. The trapped CDL tail between TM2 and TM3a is intri-
guing since the acyl-tail of DDM is observed tooccupy the samegroove
as the PE tails in the MscS structure (Fig. 5k, Supplementary Fig. 5).
Thus, DDM may aid stabilisation of the protein by mimicking the
behaviour of ‘bulkier’ lipid types with additional tails (such as CDL) in a
detergent context and/or by displacing tail binding from the groove
during protein solubilisation. It is also possible that DDMmay modify
the hydrophobic volume of the groove between TM2/TM3a to
accommodate the tilted PE molecule.

Extended demonstration of LipIDens applications
To further demonstrate specific LipIDens applications, we analysed six
additional membrane proteins which underscore the range of listed
pipeline uses:

• Assess the relative contribution of a lipid headgroup vs. hydro-
phobic acyl tail to the interactions at a binding site.

The LipIDens pipeline was applied to the gap junction channel
Connexin-50, resolved by cryo-EM in DMPC nanodiscs5. We simulated
Connexin-50 in bilayers composed of DLPC (which has the same bead
structure as DMPC at CG resolution) and examined predicted binding
sites vs. densities using the interactive PyMOL session (Supplementary
Fig. 6a). We observe two binding sites in the extracellular leaflet and
assessed the relative contribution of headgroups vs. tails to predicted
residence times at a single site (Supplementary Fig. 6b). DLPC tails had
longer residence times compared toheadgroups at this site, in support
of the array of acyl-like densities visible in the extracellular leaflet of
the cryo-EM structure (Fig. 2b)5.

• Generate the relative residence times of distinct lipid species
binding to the same site. This can aid interpretation of structure-
function relationships such as how the properties of a site might
favour preferential binding of one lipid species over another.

• Quantify the kinetics of lipid binding to different sites or of
multiple lipids binding to the same site. This can be used infer
which sites may be more important in a biological context.

To assess LipIDens suitability for evaluation of multiple lipid
species across one or more sites, we applied the pipeline to the tri-
meric pump-like channelrhodopsin ChRmine. ChRmine was resolved
to 2.7Å in nanodiscs composed of DOPE, POPS and POPC40. The
molecular identity, putative connectivity, and interaction kinetics of
four densities on the extracellular side (modelled as acyl chains in the
deposited structure) remain uncertain (Supplementary Fig. 7a, den-
sities numbered i-iv). We predict two binding sites (BS) in the region,
encompassing density-i (BS1) and densities ii-iv (BS2) (Supplementary
Fig. 7b). Comparison of top ranked lipid poses at BS1 with structural

densities shows overlay of a single lipid tail with density-i while the
second lipid tail faces the surrounding bilayer (Supplementary Fig. 7c,
d). At BS2 the top ranked POPS pose overlays with densities-ii/iii
whereas DOPE superposes density-iv (Supplementary Fig. 7e, f). Based
on the residence time plots and observed connectivity of density-ii to
density-iii (Supplementary Fig. 7e) we therefore suggest density-i and
-iv are occupied by a single lipid tail of POPS and DOPE respectively
whereas densities-ii and -iii can be modelled as a POPS lipid (Supple-
mentary Fig. 7g). Hence, we demonstrate how LipIDens can be applied
to assess the relative contribution of distinct lipids species bound to
either the same or different binding sites across the protein surface,
and to assist lipid identification during modelling.

• Assesswhether adjacent tail-like densities observed in a cryo-EM
map are likely to belong to the same or different binding sites.

We applied LipIDens to a recent structure of the calcium-selective
ion channel TRPV6 (apo state), resolved in complex with an array of
lipid-like densities41. The densities are crowded together and illustrate
how challenging assigning a) identity and b) connectivity (if present)
between acyl-like densities is without additional contextualising
information. We do not wish to downplay the insights and experience
of the structural experimentalist here, but ratherwewish to emphasise
how formalised computational workflows can improve assignment
confidence of lipid-like densities. We used LipIDens to develop inter-
pretation of adjacent densities across five binding sites (BS1, BS3, BS4,
BS5, and BS13) and facilitate structural interpretation (Fig. 6a).

Single density — single site — single pose: At BS1 an acyl chain is
modelled parallel to the C-terminal membrane juxtaposed TRP helix.
The residence time plots reveal preferential binding of anionic lipids,
notably PIP2, to this site (Fig. 6b). The top ranked lipid binding poses
for PIP2 and DOPS overlay with the density, whereby a tail punctures
into the trigonal space between S1, S2 and the TRP helices (Fig. 6c).
Hence, themodelled acyl canmost likely be assigned toone tail of PIP2.

Multiple densities — single site — single pose: On the extracellular
face of TRPV6, two adjacent densities are assigned to a single POPC
molecule in proximity to the pore domain. The poses for POPC, DOPC,
POPE and DOPE at BS13 overlay well with these densities (Fig. 6d, e),
validatingmodelling of a single lipid into two adjacent densities within
the structure41. We also observe cholesterol binding within a cavity
which overlaps with a density modelled as CHS, albeit with a reversed
orientation (further discussed below) (Supplementary Fig. 8).

Multiple densities — single site — multiple poses: BS3 is located
within a cavity between neighbouring TRPV6 subunits. Lipids are
modelled into three densities in the deposited structure whereby
POPC tails occupy twodensities in proximity to the S5 helix and an acyl
tail is modelled between S5 and S4 of the neighbouring subunit
(Fig. 6f). In addition, we note the presence of another elongated den-
sity (Fig. 6f, blue) which becomes apparent at higher sigma values

Fig. 5 | Application of the pipeline to a range of example proteins. The LipIDens
pipeline applied to assist interpretation of lipid-like densities within structures of
a–e the Erwinia pentameric ligand-gated ion channel (ELIC, PDBid 7L6Q)37, f–i the
proton channel Otopetrin1 (OTOP1, PDBid 6NF4)36 and j, k the E. coli mechan-
osensitive ion channel (MscS, PDBid 7ONJ)38. aOverlay of the structurallymodelled
cardiolipin (CDL) pose on ELIC (magenta)with the pose at the end (t = 200ns) of an
atomistic simulation (teal) initiated from the top ranked CG CDL binding pose.
Phosphate groups of each CDL molecule are shown as spheres connected by a
vector indicating the relative lipid tilt angle. b Angle of the vector with respect to z
across n = 3 ×200ns independent atomistic simulations (teal). The magenta line
indicates the structurally modelled lipid tilt angle (153°). Box plot divisions for
n = 3003 anglesmeasured: lower quartile (82°),median (92°), upper quartile (103°),
whiskers excluding outliers (minimum: 53°, maximum: 134°). c Discontinuity
between the lipid-like densities within the upper (teal) and lower (dark teal) leaflets
across the bilayermidplane. Relative residence times for PE, PG and CDL binding to
the identified upper (d) and lower (e) sites (defined as in Fig. 4), across n = 10 ×15μs

independent CG simulations. Asymmetric residence time error bars report the
second koff value calculated via bootstrapping (also applies to parts g, h and j). f
Lipid-like densities surrounding OTOP1 coloured according to whether bound
cholesterol (green) or PIP2/PS (red) were among the highest site residence times.
Other lipid densities where sites were identified by PyLipID are shown in blue (see
Supplementary Fig. 4) and densities where sites were not identified are dark blue.
g Exclusive binding of cholesterol between the OTOP1 N- and C- domains, corre-
sponding to the cholesterol site modelled in the structure36. h Preferential binding
of anionic lipids at a kinked lipid density at theOTOP1dimer interface. iTop ranked
PIP2 binding pose identified by PyLipID from CG simulations, showing curved tail
position whichmatches the lipid density at this site. j Prolonged interactions of PE,
PG and CDL with MscS between TM2 and TM3a. k Comparison of the top ranked
CDL binding pose from CG simulations (left) with the modelled PE and DDM
molecules in the MscS structure (right) showing tail insertion/stacking between
TM2 and TM3a and a tilted lipid binding pose.
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(densities numbered i-iv). Our analyses suggest that these densities
actually belong to a single site whereby lipid headgroups are coordi-
nated by the intracellular portion of S5 and the tail positions show
promiscuity between density locations which are dependent on the
lipid type (Fig. 6g). For example, PIP2, POPS and DOPS have conserved
tail positions which overlaywith one of the densities assigned to POPC
(density-ii) and the unassigned density-iii (Fig. 6h). By contrast POPC,

DOPC, POPE and DOPE tails positions vary between densities-i-iii
(Fig. 6i). This illustrates the complexity ofmodelling lipids into a single
site where the headgroup pose is conserved but tails show positional
variability. This may be a more common occurrence for sites which
have longer residence times but are relatively non-specific (Fig. 6j) and
is, to some degree, the lipid equivalent of dual-conformations occa-
sionally modelled for protein side-chains.

Fig. 6 | Interpreting adjacent lipid-like densities surrounding TRPV6.
a Snapshot from the interactive PyMOL session comparing lipid poses with site
densities surrounding TRPV6 (PDBid: 7S88)41. The lipid poses at five binding sites
(BS1, BS3, BS4, BS5, BS13) are shown as sticks and partitioned site density maps are
shown as mesh. b Relative residence times and c selected top-ranked lipid binding
poses for BS1 across n = 10 ×15μs independent CG simulations. Residence times
were derived from koff values obtained via bi-exponential curve fitting of the
interaction survival function. Error bars correspond to koff values obtained from
bootstrapping to the same data. Lipid poses correspond to those directly back-
mapped from CG simulations (without refinement using atomistic simulations).
Partitioned site densities are shown as mesh while the density of interest and

modelled lipids/acyls are shown in grey. d, e As in b/c for BS13. Lipids are coloured
as in Fig. 4 throughout. f Lipid-likedensities (numbered i-iv) atBS3. Thosemodelled
within the structure are grey. An additional density visible at a higher sigma value is
shown in cyan. g Comparison of all lipid poses with densities at BS3, showing
conservation of the headgroup position and tail variability. Overlay of h PIP2/POPS/
DOPS and iPOPC/DOPC/POPE/DOPEposeswith densities atBS3. Relative residence
time plots for j BS3 and k BS4 (defined as in b). lOverlay of one tail of all lipid poses
forBS4 (lilac)with a single tail of densitiesmodelled asPOPC (grey). The top-ranked
cholesterol pose from the neighbouring binding site (BS5) is shown in green.
m Comparison of the BS5 cholesterol pose with the density assigned to the second
tail of the modelled POPC (grey).
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Multiple densities — distinct sites — multiple poses: Within the
structure, POPC is modelled into densities near the intracellular
regions of S1. The top ranked lipid poses at this site (BS4) have tail
positions which overlay with one of these densities while the other
lipid tail points into the surroundingmembrane (Fig. 6k, l).We observe
substantial overlap of the second density with the top ranked choles-
terol binding pose from the neighbouring site (BS5), demystifying the
likely identity of this proximal density (Fig. 6l, m). Hence, we suggest
the adjacent densities (modelled as a single lipid in the structure), in
fact belong to two distinct binding sites occupied by a single lipid tail
and a sterol respectively.

• Assess differences in lipid binding properties compared with
related detergent densities.

• Check whether sterol derivates such as CHS, commonly used as
detergents in protein purification, bind in a similar location to
cholesterol in simulations. This can aid differentiation of sterol-
like vs. phospholipid-like densities.

To assess differences in predicted binding sites for detergents vs.
related lipids we applied the pipeline to three proteins; the Class D
GPCR Ste2, the ion-channel TRPV6 and the lysosomal cholesterol
transporter Niemann-Pick C1 (NPC1). The detergent CHS was used
during solubilisation of Ste2 and TRPV6 for cryo-EM41,42. By contrast,
NPC1 was purified for X-ray crystallography in DDM but cholesterol is
directly transported by NPC143. For Ste2, the predicted cholesterol site
overlayed with the modelled CHS at the dimer interface (Supplemen-
tary Fig. 8a, Supplementary Fig. 9, BS1). In addition, we observed two
similar cholesterol binding sites on either side of the dimer interface
with longer residence times, which bind underneath modelled CHS
molecules (Supplementary Fig. 9, BS3/BS4). A later active state struc-
ture of Ste2 resolved putative CHS densities adjacent to these poses44.
For TRPV6, cholesterol overlayedwith the density assigned to CHS but
in a flipped orientation (Supplementary Fig. 8b). Reorientation may
result from differences in binding properties of the less hydrophobic
CHS molecule vs. cholesterol (we note our predicted orientation
matches that of cholesterol binding to another TRPV channel at this
site21), or could indicate further atomistic simulations are needed to
refine the pose. For NPC1, we predict cholesterol binding between
TM8-TM12 with a residence time ~15μs (Supplementary Fig. 8c, d).
There are no current structures of NPC1 with cholesterol bound to this
site, but it does overlay with density assigned to POPC in amore recent
cryo-EM structure45 (Supplementary Fig. 8c) and, given the clear role
for cholesterol in NPC1 function, we suggest LipIDens can be applied
predictively to compare with emerging structures. Hence, we have
demonstrated how LipIDens can be applied to assess differences
between detergents and related lipid species, or predict whether lipid-
mimetic detergents may be useful for future structural experiments.

• Obtain a more complete picture of lipid interactions within the
context of a native-like membrane. This may reveal transient
lipid interaction sites which are less likely to survive the
purification strategies used in cryo-EM, or assist interpretation
of signal vs. noise in lower resolution regions.

We applied LipIDens to the PAT-Sec61 translocon complex, to
assess whether the pipeline can be used to gain biological insights into
large, multi-component membrane protein complexes now resolvable
via cryo-EM46. The PAT-Sec61 complex mediates co-translational
insertion of multipass proteins with partially hydrophilic helices dur-
ing biogenesis in the ER. The complex comprises PAT (CCDC47 and
Asterix), TMEM147, Nicalin and Sec61 (α, β and γ) (in addition to the
ribosome which was excluded from our analyses) (Supplementary
Fig. 10a). The resolution within the TM region varied between ~4–7Å,
hence lipids were not resolved within the structure. Given the implicit
role of lipids in foundation of the hydrophobic environment necessary
for membrane protein insertion, assessment of lipid interactions may

reveal connectivity between complex components and/or insight into
the mechanisms of individual proteins.

We chose to focus on a binding site with one of the highest resi-
dence times across all lipid types within the ER membrane mimetic
bilayer. This site was situated on TMEM147 between TM2 and TM4,
within a membrane accessible groove near a ‘lipid-filled cavity’
enclosed by the PAT-Sec61 complex46. In the top ranked binding pose
for POPC and DOPC the lipid headgroup folds into the cavity formed
by TMEM147 helices with the head-group position further supported
by a luminal loop of Sec61α (Supplementary Fig. 10b, c). This posewas
not replicated for POPE or DOPE, reflected also in the relative resi-
dence time plot (Supplementary Fig. 10d). In addition, we observe a
binding site for cholesterol on the opposite face of
TMEM147 sandwiched between the C-terminal helix of TMEM147 and
Nicalin, which had a residence time of 14 μs (Supplementary Fig. 10e).

The role of TMEM147 is still uncertain but has been suggested to
be involved in stabilisation of the multipass translocon complex, reg-
ulating Sec61 function by interaction with the luminal loops or opti-
misation of the environment for substrate folding46. We suggest the
bound POPC/DOPCmay act as a bridge or ‘hydrophobic glue’ between
TMEM147/Sec-61α components, as previously shown for GPCR-G-
protein stabilisation by PIP2

47. Alternatively, binding of PC lipids within
the TMEM147 groove may hint towards a function in screening less
hydrophobic chemical groups from the surrounding membrane.

• Enable iterative simulation and model building cycles in
cryo-EM.

To demonstrate this application, we further refined the HHAT
bound POPE pose from atomistic simulations (Fig. 4a) within an
additional lipid headgroup density not accounted for within the
structure29 (Supplementary Fig. 11). Hence, simulations poses can be
used to seed and assist model building cycles within cryo-EM maps.

Discussion
In summary, we have developed the LipIDens pipeline for simulation-
assisted interpretation and refinement of lipid-like structural densities.
We describe how LipIDens can be applied to establish and analyse
simulations and to assess the quality of lipid interaction data
(Figs. 1–3). We detail how the pipeline can be employed to assess lipid
site identity and specificity using HHAT as an example (Fig. 4). Finally,
we assess lipid-like densities across a range of other membrane pro-
teins to illustrate how LipIDens can be applied to:
1. Identify and refine lipid binding poses using a multiscale simula-

tion approach (Fig. 5a–e).
2. Suggest the most likely identity of lipid densities and rank the

relative residence timesof different lipids binding at a site (Fig. 5d,
e, g, h, j, Fig. 6, Supplementary Fig. 7).

3. Differentiate between lipid-tail and sterol like densities (Fig. 5f,
Supplementary Fig. 8).

4. Identify differences between structural densities and simulation
derived lipid poses (Fig. 5f, Supplementary Fig. 8).

5. Discriminate between binary lipid binding sites and those able to
interact with a range of lipid types (Fig. 5f–I, Fig. 6).

6. Capture possible occurrences of detergent biomimicry as exem-
plified by comparison of CDL poses with detergent/lipid stack-
ing (Fig. 5k).

Cellular membranes contain hundreds of different lipid species,
with highly diverse headgroup and tail compositions dependant on
e.g. subcellular localisation48–50. Only a subset of these lipid types are
available for use in CG simulations, although topology files for the
most abundant lipid species are generally available51. Consequently,
the goal of this pipeline is not to definitively identify exact molecular
identity per se of a bound lipid at a site but to guide the user towards
the most likely identity of the lipid within a given membrane
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composition. As such, selected membrane compositions should
mimic, at least to a first approximation, the native environment of the
membrane protein or experimental lipid conditions (such as the
nanodisc composition)52–55. In particular, if there is already data sug-
gesting a biological role for a specific lipid, it would of course be wise
to include this in the bilayer component of the simulation. In addition
wenote there is likely tobe somebias in the initial densitymap towards
lipids with strong interactions which are able to survive membrane
protein purification, as has been suggested by previous affinity
calculations56.

One key feature of LipIDens is the ability to capture lipid binding
sites and representative poses a priori from unbiased (equilibrium)
simulations whereby, unlike in e.g. docking studies (where search
space is restricted) sites are explored over the whole membrane lipid
accessible surface. LipIDens also automates processing and validation
steps to readily obtain meaningful results from these comprehensive
data sets. Ultimately, the LipIDens pipeline demonstrates how inte-
grative structural biology methods can be applied to facilitate the
biologically relevant contextualisation of membrane protein
structures.

Methods
Input data
Protein coordinate files in pdb format and corresponding cryo-EM
density map for the protein (e,g. from the Electron Microscopy Data
Bank (EMDB) https://www.ebi.ac.uk/emdb/) are required. MARTINI
(version 2.2 or 3.0) parameters (http://cgmartini.nl/index.php/
downloads) are used for CG simulations and automatically obtained
by LipIDens. For atomistic simulations, CG2AT provides a choice of
forcefields automatically57. Molecular dynamics simulation parameter
files are automatically provided in the pipeline. The default linear
constraint solver (LINCS)58 parameters (lincs_order=4, lincs_iter=1) are
used in GROMACS mdp files unless MARTINI-2.2 cholesterol with vir-
tual sites59 is included in the bilayer, in which case lincs_order=12 and
lincs_iter=2 are used instead, in line with recent findings60.

Molecular dynamics simulations in the examples described used
GROMACS 2019 (>version 5 recommended) (https://www.gromacs.
org/), with visualisation using VMD61 (https://www.ks.uiuc.edu/
Research/vmd/), PyMOL (https://PyMOL.org/2/) and ChimeraX62

(https://www.cgl.ucsf.edu/chimerax/). The LipIDens pipeline was
installed from the GitHub repository (https://github.com/TBGAnsell/
LipIDens). LipIDens uses additional packages which are automatically
installed: PyLipID (version >=1.5)27 (from https://github.com/wlsong/
PyLipID) and Martinize2 (version >=0.7) (https://github.com/marrink-
lab/vermouth-martinize). Additionally, dssp (https://swift.cmbi.umcn.
nl/gv/dssp/); CG2AT (https://github.com/owenvickery/cg2at)57; and
propKa (https://github.com/jensengroup/propka)63 may be required.

LipIDens pipeline
The LipIDens pipeline is composed of multiple stages, run using an
interactive standalone master python file (‘lipidens_master_run.py’) or
by pre-defining variables, as described in the tutorial jupyter (https://
jupyter.org) notebook (‘LipIDens.ipynb’). A detailed step-by-step guide
to LipIDens usage is provided in the accompanying protocol (https://
doi.org/10.21203/rs.3.pex-2408/v1) (https://protocolexchange.
researchsquare.com). The GROMACS 2019 MD simulation software64

(https://www.gromacs.org/) was employed throughout. Additionally,
the MARTINI-2.2 forcefield was used for CG simulations51 due to its
broad applicability and ability to replicate experimentally observed
lipidbinding poses65. Thepipeline can also beusedwithMARTINI-3.0 if
required.

Coarse-grained MD simulations
Simulations of HHAT were initiated using coordinates derived from
two cryo-EM maps at ~2.7Å (Protein Data Bank (PDB)id: 7Q1U)29 and

~5Å resolution. HHATCG simulationswere set up as described in29 and
as detailed in the accompanying protocol for all proteins. Coordinates
for OTOP1 (PDBid: 6NF4), ELIC (PDBid: 7L6Q), Connexin-50 (PDBid:
7JJP), Ste2 (PDBid: 7AD3), NPC1 (PDBid: 5U74), ChRmine (PDBid: 7SFK),
TRPV6 (PDBid: 7S88) and the PAT-Sec61 complex (without the ribo-
some) (PDBid: 7TM3) were derived from the PDB5,36,37,40–43,46. The
structure of MscS was kindly provided by Dr. Tim Rasmussen, and is
now also obtainable from the PDB (PDBid: 7ONJ)38.

Simulationswere setup as described indetail in the accompanying
protocol (https://doi.org/10.21203/rs.3.pex-2408/v1). The MARTINI-
2.2 forcefield51 was used to describe all components and simulations
were performed using GROMACS 201964 (www.gromacs.org). Lipid
compositionswere selected tomimic thenative bilayer compositionof
proteins (HHAT, OTOP1, ELIC, TRPV6, PAT-Sec61 complex, MscS),
recapitulate experimental nanodisc compositions (ChRmine, Con-
nexin-50) or probe binding of a key lipid species (cholesterol) in a
binary bilayer mixture (Ste2, NPC1) (as detailed in Supplementary
Table 1). Alternatively, LipIDens provides a number of default mem-
brane compositions (Supplementary Table 2). Energy minimisation,
equilibration and production simulations were run using the para-
meters detailed in the.mdp files within the GitHub repository. Each
systemwas simulated for a total of 10 ×15μs except forNPC1whichwas
simulated for 10 ×30 μs to ensure sufficient sampling of cholesterol
interactions.

Testing PyLipID cut-offs
PyLipID analysis was used to test lower and upper cut-off values to
define interactions of a specific lipid with a protein. In general, it is
recommended to exhaustively test a range of upper and lower cut-off
value pairs over a few different lipid types, particularly thosewhich are
chemically diverse such as e.g. sterols vs. phospholipids. The output
from this analysis is provided as a plot of interaction duration times,
number of calculated binding sites and number of contacting residues
for each dual cut-off combination (Supplementary Fig. 1e–g). In addi-
tion, a probability distributionplot ofminimum lipid-residue distances
is also generated by LipIDens (Fig. 2a, Supplementary Fig. 1a–d).

Appropriate lower and upper cut-offs correspond approximately
to the position of the first solvation peak and the proceeding trough
respectively (Fig. 2a). In addition, the lower cut-off demarks the point
at which there is a jump in calculated duration times, binding site
numbers and contacting residues when exhaustively testing cut-off
pairs. Choice of upper cut-off also depends on whether deviations are
observed in the exhaustive cut-off search when the upper cut-off is
changed. Ideally the interaction metrics should plateau when an
appropriate upper cut-off value is reached (Supplementary Fig. 1e–g).

Selecting PyLipID input parameters and running PyLipID
analysis
The next step of the LipIDens pipeline relates to the computation of
lipid binding sites and associated interaction kinetics using PyLipID.
The lipid atoms included in site calculations can be tuned based on the
putative lipid densities present in the corresponding cryo-EMmaps by
for example, restricting to lipid headgroup atoms (Fig. 2b, Supple-
mentary Fig. 6). The sites calculated here included all lipid atoms and
implemented a 0.475/0.7 nm dual cut-off scheme for all proteins. In
the case of protein homo-oligomers, OTOP1 (dimer), ChRmine (tri-
mer), TRPV6 (tetramer), ELIC (pentamer), Connexin-50 (hexamer) and
MscS (heptamer), lipid interactions were averaged over protein sub-
units. All other PyLipID input parameters were kept at default
settings (binding_site_size=4, n_top_poses=3 and n_clus-
ters=auto). PyLipID outputs were automatically mapped onto pro-
tein structures provided in the input pdb file. Top ranked lipid poses,
pose clusters, per residue and site kinetics and structural coordinates
with kinetics mapped to the B-factor column were generated by
PyLipID. Bound lipid poses outputted by PyLipIDwere visualised using
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VMD, forboth the top ranked lipid binding poses (‘BSidX_rank’) and the
clustered poses (‘BSidX_clusters’).

Screening PyLipID data
LipIDens ranks the lipid binding sites generated by PyLipID from
lowest to highest (in the case of e.g. Occupancy, Residence time or
Surface area) or closest to 0 (for Δkoff where Δkoff is the difference
between the koff calculated form the curve fit of the survival function
and the bootstrapped koff of the same data) (Fig. 3a). Poorly defined
sites with large Δkoff values (generally > ± 1μs) were excluded from
future stages of the pipeline (i.e. pose/density comparisons). Site
ranking was used to identify sites with long residence times and
occupancies and with Δkoff ~ 0 μs whichmay be of biological relevance
and/or for comparison with cryo-EM densities. It is useful to inspect
the mean survival time correlation function plots to assess site sam-
pling and quality of calculated binding sites (Fig. 3b-c). The interaction
durations plots should be well populated and the biexponential fit/
bootstrapping curves should approximate the underlying survival
function data (Fig. 3b). Additional R2 values for predicted residence
times are provided as a further metric for assessing the quality of
PyLipID outputs. Ifmost of the sites are not well defined, this is usually
an indication you should increase the length of simulations to improve
site sampling.

Comparing lipid poses with cryo-EM densities and ranking
site lipids
LipIDens generates plots to compare the residence times and R2 values
of different lipids binding to the same site (Fig. 4, Supplementary
Fig. 4). Asymmetric residence time error bars report the second koff
value calculated via bootstrapping. LipIDens automatically calculates
the closest matching binding sites for selected lipids based on simi-
larity between binding sites residues. Residues comprising binding
sites are compared to those of the reference lipid (i.e. the first lipid
inputted when prompted). It is recommended to use an abundant
phospholipid (rather than e.g. a sterol) as the reference lipid. These
were further inspected to check predicted site matches and remove
poorly defined sites.

Once comparable lipid binding sites are matched, the top ranked
CG binding poses for all lipids bound to a site are automatically
backmapped to atomistic resolution using CG2AT57. The unequi-
librated lipid poses (i.e. which directlymap fromCGposes without any
movement whichmay occur during equilibration) are aligned with the
input structure using the protein coordinates in each pdb file. The
cryo-EM density map is partitioned around each binding site in
proximity to predicted site residues at a specified sigma factor such
that densities can be directly compared with the coordinates of all
lipids which bind to the site. These features are incorporated into an
interactive PyMOL session where corresponding binding sites, cryo-
EM densities and lipids are coloured accordingly (Fig. 6a, Supple-
mentary Fig. 6a, Supplementary Fig. 7b). Hence, the most likely iden-
tity of the lipid species accounting for a given density can be inferred
by assessing the residence time plots and the interactive PyMOL ses-
sion comparing poses and densities.

Lipid pose refinement using atomistic simulations
The final stage of the LipIDens pipeline generates inputs for atomistic
simulations which can be used to refine the CG lipid poses. CG simu-
lations frames (i.e. those from which the top ranked CG lipid poses
were derived) were back-mapped to atomistic resolution using
CG2AT57 which generates all inputs and parameters needed for simu-
lationwithGROMACS. Atomistic simulations ofHHATwere performed
as described for the apo state (5 ×200ns) in29 and detailed within the
accompanying protocol. Additional atomistic simulations (8 ×200ns)
were established via back-mapping from different CG frames to refine
the poses of different lipids. Setup of the additional simulations was

performed identically to previous replicates. For ELIC the CG frame
from which the top ranked cardiolipin binding pose was derived was
backmapped to atomistic resolution, energy minimised and equili-
brated using CG2AT57. The CHARMM-36 forcefield66 was used describe
all components and simulations were performed using GROMACS
201964 (www.gromacs.org). The ELIC system was simulated for 3
×200 ns. Parameters used in the production run are provided in.mdp
files on the GitHub page (CG: https://github.com/TBGAnsell/LipIDens/
tree/main/lipidens/simulation/mdp_files, atomistic: https://github.
com/TBGAnsell/LipIDens/tree/main/lipidens/simulation/mdp_
files_AT).

Once the atomistic simulations had finished running, refined
lipid binding poses were compared to the cryo-EM density (see also
Supplementary Fig. 11 for further refinement). The match between a
simulation derived lipid pose and the cryo-EM density can be eval-
uated using Q scores28 within in UCSF Chimera using the MapQ
plugin28. Average Q scores of lipid tails were calculated for HHAT in
regions overlaying the density (Fig. 4), along with corresponding per
atoms values (Supplementary Fig. 2). We note that lowQ score values
are calculated for lipid regions outside densities, consistent with
increased lipid fluctuation of these exposed regions (Supplemen-
tary Fig. 2).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
LipIDens code is located at https://github.com/TBGAnsell/LipIDens.
Simulation parameter files compatible with GROMACS (*.mdp files)
are embedded within the LipIDens pipeline and accessible on
the GitHub page (CG: https://github.com/TBGAnsell/LipIDens/tree/
main/lipidens/simulation/mdp_files, atomistic: https://github.com/
TBGAnsell/LipIDens/tree/main/lipidens/simulation/mdp_files_AT).
Forcefield parameters compatible with MARTINI are automatically
obtained by LipIDens from http://cgmartini.nl. Atomistic parameters
are from CG2AT (https://github.com/owenvickery/cg2at). The
accompanying LipIDens protocol is provided at https://doi.org/10.
21203/rs.3.pex-2408/v1 (https://protocolexchange.researchsquare.
com). Accession codes for previously published structures are as
follows: HHAT (PDBid: 7Q1U), OTOP1 (PDBid: 6NF4), ELIC (PDBid:
7L6Q), MscS (PDBid: 7ONJ), Connexin-50 (PDBid: 7JJP), Ste2 (PDBid:
7AD3), NPC1 (PDBid: 5U74), ChRmine (PDBid: 7SFK), TRPV6 (PDBid:
7S88) and the PAT-Sec61 complex (PDBid: 7TM3). The first and last
frames from simulations are available at https://doi.org/10.5281/
zenodo.10002139. Source data underlying Figs. 1, 3, 4, 5 and 6 and
Supplementary Figs. 1, 3, 4, 6, 7, 8, 9 and 10 are provided as a Source
Data File. Source data are provided with this paper.

Code availability
The LipIDens pipeline (https://doi.org/10.5281/zenodo.8408682) and
codes described within this work are available at https://github.com/
TBGAnsell/LipIDens67. Notebook workflows (LipIDens.ipynb) and
python scripts (lipidens_master_run.py) to run LipIDens are found on
the GitHub page. Test data and simulations are also available on the
GitHub page. As with all open-source code, we rely on feedback and
contributions from users for continued development and testing
which can be submitted through the GitHub repository.
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