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Seismic arrival-time picking on distributed
acoustic sensing data using semi-supervised
learning

Weiqiang Zhu 1,2 , Ettore Biondi 1, Jiaxuan Li 1, Jiuxun Yin1,
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Distributed Acoustic Sensing (DAS) is an emerging technology for earthquake
monitoring and subsurface imaging. However, its distinct characteristics, such
as unknown ground coupling and high noise level, pose challenges to signal
processing. Existing machine learning models optimized for conventional
seismic data struggle with DAS data due to its ultra-dense spatial sampling and
limited manual labels. We introduce a semi-supervised learning approach to
address the phase-picking task of DAS data. We use the pre-trained PhaseNet
model to generate noisy labels of P/S arrivals in DAS data and apply the
Gaussian mixture model phase association (GaMMA) method to refine these
noisy labels and build training datasets. We develop PhaseNet-DAS, a deep
learning model designed to process 2D spatio-temporal DAS data to achieve
accurate phase picking and efficient earthquake detection. Our study
demonstrates a method to develop deep learning models for DAS data,
unlocking the potential of integrating DAS in enhancing earthquake
monitoring.

Distributed acoustic sensing (DAS) is a rapidly developing technology
that can turn a fiber-optic cable of up to one hundred kilometers into
an ultra-dense array of seismic sensors spaced only a fewmeters apart.
DAS uses an interrogator unit to send laser pulses into an optical fiber
and measure the Rayleigh back-scattering from the internal natural
flaws of the opticalfiber. Bymeasuring the tiny phasechanges between
repeated pulses, DAS can infer the longitudinal strain or strain rate
over time along a fiber-optic cable1–3. Previous studies have demon-
strated that DAS can effectively record seismic waves4–9. Compared
with traditional forms of seismic acquisition, DAS has several potential
advantages in earthquake monitoring. It provides unprecedented
channel spacing of meters compared with tens-of-kilometers spacing
of seismic networks. DAS can also take advantage of dark fibers (i.e.,
unused strands of telecommunication fiber) at a potentially low cost.
Furthermore, DAS is suitable for deployment and maintenance in
challenging environments, such as boreholes, offshore locations, and
glaciers. New DAS interrogator units are becoming capable of longer

sensing ranges at a lower cost with the development of high-speed
Internet infrastructure1. Thus, DAS is a promising technology for
improved earthquake monitoring and is under active research. How-
ever, applying DAS to routine earthquake monitoring tasks remains
challenging due to the lack of effective algorithms for detecting
earthquakes and picking phase arrivals, coupled with the high data
volume generated by thousands of channels. The ultra-high spatial
resolution offiber-optic sensing is a significant advantage compared to
seismic networks but also presents a challenge for traditional data
processing algorithms designed for single- or three-component
seismometers. For example, the commonly used STA/LTA (short-
term averaging over long-term averaging) method10 is ineffective for
DAS because DAS recordings are much noisier than dedicated seism-
ometer data due to factors such as cable-ground coupling and sensi-
tivity to anthropogenic noise. STA/LTA operates on a single DAS trace
and therefore does not effectively utilize the dense spatial sampling
provided by DAS. Template matching is another effective earthquake
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detection method, particularly for detecting tiny earthquake
signals11–14. However, the requirement of existing templates and high
computational demands limit its applicability for routine earthquake
monitoring15.

Deep learning, especially deep neural networks, is currently the
state-of-the-art machine learning algorithm for many tasks, such as
image classification, object detection, speech recognition, machine
translation, text/image generation, andmedical image segmentation16.
Deep learning is also widely used in earthquake detection17–22 for
studying dense earthquake sequences23–28 and routine monitoring
seismicity29–33. Compared to the STA/LTA method, deep learning is
more sensitive to weak signals of small earthquakes and more robust
to noisy spikes that cause falsepositives for STA/LTA. Compared to the
templatematchingmethod, deep learning generalizes similarity-based
search without requiring precise seismic templates and is significantly
faster. Neural network models automatically learn to extract common
features of earthquake signals from large training datasets and are able
to generalize to earthquakes outside the training samples. For exam-
ple, the PhaseNetmodel, which is a deep neural networkmodel trained
using earthquakes in Northern California, performs well when applied
to tectonic24,25, induced23,26, and volcanic earthquakes34,35 globally.

One critical factor in the success of deep learning in earthquake
detection and phase picking is the availability of many phase arrival-
timemeasurements manually labeled by human analysts over the past
few decades. For example Ross et al.18 collected ~1.5 million pairs of P
and S picks from the Southern California Seismic Network. Zhu and
Beroza19 employed ~700k P and S picks from the Northern California
Seismic Network. Michelini et al.36 built a benchmark dataset of ~1.2
million seismic waveforms from the Italian National Seismic Network.
Zhao et al.37 formed a benchmark dataset of ~2.3 million seismic
waveforms from the China Earthquake Networks. Mousavi et al.38

created a global benchmark dataset (STEAD) of ~1.2 million seismic
waveforms; Several other benchmark datasets are also developed for
training deep learning models39,40. Although many DAS datasets have
been collected41 and more continue to be collected, most of these
datasets have not yet been analyzed by human analysts. Manually
labeling a large DAS dataset can be costly and time-consuming. As a
result, there are limited applications of deeplearning for DAS data.
Most works focus on earthquake detection using a small dataset42–44.
Accurately picking phase arrivals is an unsolved challenge for DAS
data, hindering its applications to earthquake monitoring.

There have been a number of approaches proposed to train deep
learning models with little or no manual labeling, such as data
augmentation45, simulating synthetic data46–48, fine-tuning and transfer
learning49,50, self-supervised learning51, and unsupervised learning52,53.
However, those methods have not proven effective in picking phase
arrival time on DAS data. One challenge is the difference in the
mathematical structures between seismic data andDASdata, i.e., ultra-
dense DAS arrays and sparse seismic networks, which complicate
implementation of model fine-tuning or transfer learning. Addition-
ally, phase arrival-time picking requires high temporal accuracy, which
is difficult to achieve through self-supervised or unsupervised learning
without accurate manual picks. Semi-supervised learning provides an
alternative approach, which is designed for problems with limited
labeled data and abundant unlabeled data54,55. There are several ways
to utilize a large amount of unlabeled data as weak supervision to
improve model training. One example is the Noisy Student method54,
which consists of three main steps: (1) training a teacher model on
labeled samples, (2) using the teacher to generate pseudo labels on
unlabeled samples, and (3) training a student model on the combina-
tion of labeled and pseudolabeled data. Thus, the Noisy Student
method can leverage a substantial amount of unlabeled data to
improve model accuracy and robustness.

In this work, we present a semi-supervised learning approach for
training a deep learning model to pick seismic phase arrivals in DAS

data without needing manual labels. Despite the differences in data
modalities between DAS data (i.e., spatio-temporal) and seismic data
(i.e., time series), the recorded seismic waveforms exhibit similar
characteristics. Based on this connection, we investigate using semi-
supervised learning to transfer the knowledge learned by PhaseNet for
picking P and S phase arrivals from seismic data to DAS data. We
develop a new neural network model, PhaseNet-DAS, that utilizes
spatial and temporal information to consistently pick seismic phase
arrivals across hundreds of DAS channels. We borrow a similar idea of
pseudo labeling56 to generate pseudo labels of P and S arrival picks in
DAS data in order to train deep learning models using unlabeled DAS
data. We extend the semi-supervised learning method to bridge two
data modalities of 1D seismic waveforms and 2D DAS recordings so
that we can combine the advantages of the abundant manual labels of
seismic data and the large volume of DAS data. We demonstrate the
semi-supervised learning approach by training two models. The
PhaseNet-DAS v1 is trained using pseudo labels generated by PhaseNet
to transfer phase picking capability from seismic data to DAS data. The
PhaseNet-DAS v2 is trained using pseudo labels generated by
PhaseNet-DAS v1 to further improvemodel performance similar to the
Noisy Studentmethod. Unless specified otherwise, we default to using
the PhaseNet-DAS v2 model for evaluation in the following sections.
We test our method using DAS arrays in Long Valley and Ridgecrest,
CA, and evaluate the performance of PhaseNet-DAS in terms of num-
ber of phase picks, phase association rate, phase arrival time resolu-
tion, and earthquake detection and location.

Results
Phase picking performance
One challenge in picking phase arrivals in DAS data is the presence of
strongbackground noise, asfiber-optic cables are often installed along
roads or in urban environments and DAS is highly sensitive to surface
waves. The waveforms of traffic signals have certain resemblance to
earthquake signals with sharp emergence of first arrivals and strong
surface waves, which leads tomany false detections by the pre-trained
PhaseNet model. Traffic signals are usually locally visible over short
distances of a few kilometers without clear body waves. In contrast,
earthquake signals tend tobemuchstronger and recordedbyanentire
DAS array with both body and surface waves present. PhaseNet-DAS
uses both spatial and temporal information across multiple channels
of a DAS array, making it more robust to traffic noise. Figure 1 shows
four examples of earthquake signals that can be observed in sections
of the DAS array. Due to strong background noise, we can see that
PhaseNet detects many false P and S arrivals. However, PhaseNet-DAS
predictions have fewer false detections and are consistent across
channels with reduced variation in the picked arrival times. We apply
bothmodels to all events of four DAS cables and compare the number
of associated picks, since picks that can be successfully associated are
more indicative of true positives. After applying the phase associator
GaMMA57, the rates of associated phase picks increase from 59% - 69%
for PhaseNet to 89% - 92% for PhaseNet-DAS (Table S1).

In addition to traffic noise, other factors such as poor ground
coupling and instrumental noise make the signal-noise ratio (SNR) of
DAS data generally lower than that of seismic data. The low SNRmakes
it challenging to detect and pick phase arrivals on DAS data. The
PhaseNet model pre-trained on seismic data can detect high SNR
events, but struggles with low SNR events in DAS data (Fig. 2). After re-
training using semi-supervised learning on DAS data, the PhaseNet-
DAS model significantly improves detections of low SNR events.
PhaseNet-DAS v1 detects 2–5 times more events than PhaseNet across
four DAS cables, and PhaseNet-DAS v2 enhances detection sensitivity
by an additional 25–50% compared to PhaseNet-DAS v1 (Fig. 2).
Moreover, the number of phase picks per events also significantly
increases for both high and low SNR events after re-training (Fig. S1).
This demonstrates that the PhaseNet-DASmodel, which is designed to
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use coherent spatial information, can effectively detect weaker
earthquake signals recorded by DAS and pick P and S picks on more
DAS channels than the PhaseNet model, which is designed for
3-component seismic waveforms.

The noisy condition of DAS recording could also impact the
temporal precision of picked phase arrival-times for both manual
labeling and automatic algorithms. Because we lack manual labels of P
and S arrivals as benchmarks, we evaluate the temporal accuracy of
PhaseNet-DAS’s picks indirectly. First, we compared the automatically
picked phase arrival-times with the theoretical phase arrival-times
using a 1D velocity model58. For events within ~100 km, the automatic
picks have small time residuals within 2 s, while the time residuals
increase with epicenter distances (Fig. S2). This discrepancy arises not
from imprecise automaticpicks, but fromdifferences between the true
3D velocity model and the 1D velocity model we used. Then, we con-
ducted a more precise analysis of the automatically picked phase
arrival-times by comparing the differential arrival-times between two

events measured using waveform cross-correlation. Waveform cross-
correlation is commonly used for earthquake detection (known as
template matching or match filtering)11–14, measuring differential
travel-time59–62 and relative polarity63. Cross-correlation achieves a
high temporal resolution of the waveform sampling rate or super-
resolution using interpolation techniques. We cut a 4-s time window
around the arrival picked by PhaseNet-DAS, applied a band-pass filter
between 1Hz and 10Hz, and calculated the cross-correlation between
event pairs. The differential time was determined from the peak of the
cross-correlation profile. Because DAS waveforms are usually much
noisier than seismic waveforms and have low cross-correlation coef-
ficients, we further improved the robustness of differential time
measurements using multi-channel cross-correlation64,65 to accurately
extract the peaks across multiple cross-correlation profiles. We selec-
ted 2539 event pairs and ~9millions differential timemeasurements for
both P and S waves as the reference to evaluate the temporal accuracy
of PhaseNet-DAS picks. Figure 3 shows the statistics of these two

(a) (b)

(d)(c)

Fig. 1 | Examples of noisy picks predicted by PhaseNet and improved picks predicted by PhaseNet-DAS. a–d Four examples with different signal-to-noise ratios. Each
sub-panel shows (i) DAS recordings of 30 s and 5000 channels, (ii) the PhaseNet picks, and (iii) the PhaseNet-DAS picks.
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differential time measurements. If we assume the differential time
measurements by waveform cross-correlation are the ground truth,
the errors of differential time measurements by PhaseNet-DAS have a
mean of 0.001 s and a standard deviation of 0.06 s for P waves and a
mean of 0.005 s and a standard deviation of 0.25 s for S waves. For
comparison, the absolute arrival-time errors of the pre-trained Pha-
seNet model compared with manual picks have a mean of 0.002 s and
a standard deviation of 0.05 s for P waves and amean of 0.003 s and a
standard deviation of 0.08 s for S waves19. Although the differential
time errors and absolute arrival-time errors can not be directly com-
pared, the similar scales of these errors demonstrate that we can
effectively transfer the high picking accuracy of the pre-trained Pha-
seNet model to DAS data.

Applications to earthquake monitoring
The experiments above demonstrate that PhaseNet-DAS can effec-
tively detect and pick P- and S-phase arrivals with few false positives,
high sensitivity, and precise temporal accuracy. These automatic
phase arrival-time measurements can be applied to many seismic
studies such as earthquakemonitoring and seismic tomography. Here,
we further applied PhaseNet-DAS to earthquakemonitoring. Following
a similar workflow of earthquake detection using seismic networks66,
we applied PhaseNet-DAS to DAS data of 11,241 earthquakes in the
earthquake catalogs ofNorthernCalifornia Seismic Network, Southern
California Seismic Network, and Nevada Seismic Network within 5
degrees from two Long Valley DAS arrays (Fig. 5). These events were
filtered based on an approximate scaling relation determined by Yin et
al.67. Because of different sensor coverages between seismic networks
and DAS cables, seismic signals from distant but small magnitude
events are expected to be too small to be detected by DAS, the abso-
lute number of earthquakes in the standard catalogs and those
detected by DAS can not be directly compared. To evaluate the
improvements from semi-supervised learning, we compared the
magnitude and distance distributions of earthquakes detected by
three models, PhaseNet, PhaseNet-DAS v1, and PhaseNet v2, in Fig. 4
and Fig. S3. PhaseNet-DAS significantly improves detection of both
small magnitude events near the DAS array and large magnitude
events at greater distances. We also plotted the approximate locations
of these detected earthquakes determined by phase association (Fig. 5
and Fig. S4). The locations of events within the Long Valley caldera,

which are close to the DAS array, can be well-constrained using these
automatic arrival-time measurements, while the earthquake locations
become less constrained with increasing epicentral distances due to
the limited azimuthal coverage of a single DAS array (Fig. S5). The
physical limitation in azimuth and distance coverage could be
addressed by combining seismic networks, deploying additional DAS
arrays, or designing specific fiber geometries in future research.

Lastly, we evaluated PhaseNet-DAS on continuous data to
demonstrate its potential applications in large-scale data mining and
real-time earthquake monitoring. We applied PhaseNet-DAS to 180 h
of continuous data from 2020/11/17 to 2020/11/25 using a 5000-
channel × 200-s window sampled at 100Hz without overlap. As
PhaseNet-DAS is a fully convolutional network (Fig. 7) and the con-
volution operator is independent of input data size, it can be directly
applied to various time lengths and channel numbers subject to the
memory limitations of computational servers. The picked phase arri-
vals were associated using GaMMA in the same manner as above.
Fig. S6 shows the detected and associated picks from three models:
PhaseNet, PhaseNet-DAS v1, and PhaseNet-DAS v2. The results from
these models show a good consistency, while PhaseNet-DAS proves
more effective in detecting several times more picks. To assess the
potential for false positive events, we compared the associated
earthquakes with events in standard earthquake catalogs. The histo-
grams of temporal earthquake frequency in Fig. S7 reveal a good
correlation between events detected by the DAS array and seismic
networks. In particular, for events within ~0.5 degree of the DAS cable
(Fig. S7c), we can observe that earthquake frequencies vary from over
80 events to no events per 6-hour period. Given the background noise
generally does not change dramatically from day to day, this indicates
that these detections are less likely to be false detections from noise
sources such as traffic. In addition to the high correlation with the
standard catalog, PhaseNet-DAS can detect 2–3 times more events
usingDAS alone, demonstrating the potential of combining fiber-optic
networks to enhance the earthquake monitoring capability of con-
ventional seismic networks. The entire processing time of the con-
tinuous DAS data (180 hours and 10,000 channels, 1.8million channel-
hours) was ~3.5 h using 8 GPUs (NVIDIA Tesla V100). The model pre-
diction of PhaseNet-DAS is fast considering the substantial size of DAS
data. Since the phase-picking task can be embarrassingly parallelized
by segmenting DAS data into windows, the model prediction can be

Fig. 2 | SNRdistributionsofdetectedevents across fourDASarrays. aMammoth
north, bMammoth south, c Ridgecrest north, d Ridgecrest south. The locations of
the four DAS array are shown in Fig. 8. The SNR is calculated using two 5-s windows

before and after the theoretical P wave arrival time. The PhaseNet-DAS v1 and v2
models are from the first and second iterations of the semi-supervised learning
procedures illustrated in Fig. 6.
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further accelerated with additional GPUs for large-scale data mining
tasks. The rapid prediction speed of PhaseNet-DAS also demonstrates
its potential for real-time earthquakemonitoring and earthquake early
warning.

Discussion
DAS enhances seismic observations by turning the existing fiber optic
infrastructure into dense arrays of sensors, recording seismic wave-
forms with unprecedented spatial resolutions. Meanwhile, deep

learning advances seismic data processing by transforming historical
datasets into effective models for analyzing earthquake signals.
PhaseNet-DAS attempts to combine these advantages to effectively
detect and pick seismic phase arrivals in DAS data. The semi-
supervised learning approach bridges the gap between two distinct
data modalities of 1D conventional seismic waveforms and 2D DAS
recordings. This approach addresses the challenge of lack of manual
labels on DAS data, facilitating an efficient transfer of phase-picking
capability from pre-trained deep learning models on 1D time series of

Fig. 4 | Magnitude and distance distributions of earthquakes. a PhaseNet-DAS
v2, b PhaseNet-DAS v1, and c PhaseNet. The gray dots are earthquakes in standard
earthquake catalogs within 3 degrees of the Long Valley DAS array. The red dots
indicate the earthquakes that can bedetectedwithmore than 500 associated P and

Spicks. The PhaseNet-DASv1 and v2models are from the first and second iterations
of semi-supervised learning (Fig. 6). The histogram of earthquake numbers is
shown in Fig. S3.

(a) (b)

Fig. 3 | Residuals ofdifferential arrival-timespickedbyPhaseNet-DAS. aPwaves
and b S waves. We first measure differential arrival-times of PhaseNet-DAS picks
(dtphasenet-das) andwaveform cross-correlation (dtcross-correlation) from selected event

pairs. Then we calculate the residuals between these two differential arrival-times
(dtphasenet-das − dtcross-correlation) to evaluate the accuracy of PhaseNet-DAS picks,
assuming waveform cross-correlation measurement as the ground truth.
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seismic data to new models designed for 2D spatio-temporal mea-
surement of DAS data. In addition to earthquake monitoring, the
PhaseNet-DAS model can be applied to other tasks such as seismic
tomography and source characterization. It would be promising to
explore whether the semi-supervised approach could also serve in
developing deep learningmodels for other seismic signals in DASdata,
such as detecting tremors13[,68 and picking first motion polarities69

where large seismic archives are available.
Our experiments demonstrate the improvements from semi-

supervised learning. PhaseNet-DAS, which is trained to pick phases
across multiple channels of a DAS array, can effectively reduce false
positive picks (Fig. 1 and Table S1), increase phase picks per event
(Fig. S1), detect more low SNR events (Fig. 2, Fig. 4, and Fig. S3), and
achieve a temporal precision similar to PhaseNet (Fig. 3). However,
potential limitations of the current model should also be considered.
While the semi-supervised learning approach addressed the challenge
of the lack of manual labels for DAS data, the pseudo labels generated
by the pre-trained PhaseNet model could potentially be subject to
systematic bias, such as missing very weak first arrivals or confusing
phase types using single-component data. In order to mitigate these
biases, we adopted two approaches in this work. Firstly, we applied
phase association to filter out inconsistent phase picks across chan-
nels. While the phase-picking step using PhaseNet only considers
information from a single channel, the phase association step incor-
porates physical constraints across multiple channels, i.e., the phase
type should be the same for nearby channels, and the phase arrival
time should follow the time move-out determined by channel loca-
tions and wave velocities. Through phase association, we reduce the
potential bias in pseudo labels of inaccurate phase time or incorrect
phase types. Secondly, we added strong data augmentation to the
training dataset to increase its size and diversity. For example, we
superpose various real noises on the training dataset in order to make
the model more sensitive to weak phase arrivals. Because the pseudo

labels are generated using data from high SNR events, sharp and clear
first arrivals are less likely to be missed by PhaseNet. By superposing
strongnoise, we canmake these arrivals similar to the cases of low SNR
data from either small magnitude earthquakes or strong background
noise, such as during traffic hours. Through such data augmentation,
we can reduce the potential bias in pseudo labels of missing weak
arrivals for low SNR events. Other approaches, such as employ-
ing waveform similarity, could also be considered to further reduce
bias in pseudo labels. Incorporating regularization techniques, such as
adding Laplacian smoothing between nearby channels to the training
loss, could be another direction to reduce the effect of inconsistent
labels and improve model performance in future research.

Another common challenge for deep learning is model general-
ization to new datasets, as the performance of deep neural networks is
closely tied to the training datasets. The current PhaseNet-DAS model
was trained and tested using only four DAS arrays in Long Valley and
Ridgecrest, CA. The datasets are also formatted using a same temporal
sampling of 100Hz and a similar spatial sampling of ~10m. These
factors may limit the model’s generalization to DAS arrays at different
locations and/or with varying spatial and temporal sampling rates.
However, because manual labels of historical seismic data are readily
available at many locations, we can also apply the semi-supervised
learning approach to train deep learning models for other DAS arrays
orfine-tune thepre-trainedPhaseNet-DASmodels if limitedDASdata is
available.

In conclusion, with the deployment of more DAS instruments and
the collection of massive DAS datasets, developing novel data pro-
cessing techniques becomes a key direction in discovering signals and
gaining insights from massive DAS data. Deep learning is widely
applied in seismic data processing but has limited applications to DAS
data due to the lack ofmanual labels for training deepneural networks.
We explored a semi-supervised learning approach to pick P- and
S-phase arrivals inDASdatawithoutmanual labels.We applied the pre-

Fig. 5 | Earthquake locations determined by phase arrival-times measured by
PhaseNet-DAS. The black dots are earthquakes in the standard earthquake cata-
logs. The red dots are earthquakes detected by the DAS arrays and the PhaseNet-

DAS v2 model. Only the DAS events corresponding to a catalog event are shown.
The results of PhaseNet and PhaseNet-DAS v1 models are shown in Fig. S4.
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trained PhaseNet model to generate noisy phase picks, used the
GaMMA model to associate consistent picks as pseudo labels, and
trained a new deep neural network model, PhaseNet-DAS, which is
designed to utilize both temporal and spatial information of DAS data.
The experiments demonstrate that PhaseNet-DAS can effectively
detect P and S arrivals with fewer false picks, higher sensitivity to weak
signals, and similar temporal precision compared to the pre-trained
PhaseNet model. PhaseNet-DAS could be applied to earthquake
monitoring, early warning, seismic tomography, and other seismic
data analysis using DAS. The semi-supervised learning approach
bridges the gap between limited DAS training labels and abundant
historical seismic manual labels, facilitating future developments of
deep learning models for DAS data.

Methods
In this section, we discuss three components of applying deep learning
to accurately pick phase arrival times in DAS data: the semi-supervised
learning approach, the PhaseNet-DAS model, and the training dataset.

Semi-supervised learning
We explore a semi-supervised learning approach to train a deep-
learning-based phase picker using unlabeled DAS data. The procedure
of the semi-supervised learning approach is summarized in Fig. 6.

First, we train a deep-learning-based phase picker on three-
component seismic waveforms using many analyst-labeled manual
picks. Given the existence of several widely used deep-learning-based
phase pickers18–20, we directly reuse the pre-trained PhaseNet19 model
to omit retraining a deep-learning phase picker for conventional seis-
mic data, which is not the focus of this work. Despite PhaseNet being
trained on three-component seismic waveforms, it can also be applied
to single-component waveforms because channel dropout (i.e., ran-
domly zero-out one or two channels) is added as data augmentation70.

Second, we apply the pre-trained PhaseNet model to pick P and S
arrivals on each channel of a DAS array independently to generate
noisy pseudo labels of P and S picks. While PhaseNet works well on
channels with high signal-to-noise (SNR) ratios in DAS data, its accu-
racy is limited compared to that in seismic data (Fig. 1). For example,
the model could detect many false picks due to strong anthropogenic
noise in DAS data. The picked phase arrival times also have large var-
iations between nearby channels, since each channel is processed
individually.

Third, we apply the phase association method, Gaussian Mixture
Model Associator (GaMMA)57 to filter out false picks and build a DAS
training dataset with pseudo labels. GaMMA selects only picks that fall
within a narrow window of the theoretical arrival times corresponding
to the associated earthquake locations.We set the timewindow size to
1 s in this study (Table S2). This hyperparameter can be adjusted to
balance the trade-off between the quantity and quality of pseudo
labels. A small window size results in a small training dataset with high-
quality pseudo labels. Conversely, a large window size creates a large
training dataset with potentially less accurate arrival times.

Last, we train a new deep-learning-based phase picker designed
for DAS data. The model architecture is explained in the following
section (Fig. 7). The training labels utilize the same Gaussian-shaped
target function as proposed by Zhu and Beroza19:

PP = e
�ðt�tP Þ2

2σ2 ð1Þ

PS = e
�ðt�tS Þ2

2σ2 ð2Þ

PN = maxð0, 1� PP � PSÞ ð3Þ

where tP and tS are the arrival-times of P and S phase; PP, PS, and PN are
the target functions for P-phase, S-phase, and Noise; σ is the width of
the Gaussian-shaped target function, which is used to account for

Fig. 6 | The procedure of semi-supervised learning for training the PhaseNet-
DAS model. The PhaseNet model19, which is pre-trained using a large dataset of
seismic waveforms, is used to generate pseudo-labels on DAS data. This semi-
supervised approach transfers the phase picking capability from PhaseNet to the
new PhaseNet-DAS model designed for DAS recordings.

Fig. 7 | The neural network architecture of PhaseNet-DAS.We use the U-Net73

architecture to consider spatial and temporal information of 2D DAS recordings.
PhaseNet-DAS processes raw DAS data through four stages of downsampling and

upsampling anda sequenceof 2D convolutional layers and reluactivation functions
andpredicts P and S phase arrivals in each channel of theDAS array, representedby
blue and red lines respectively.
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uncertainties in phase arrival times similar to label smoothing
commonly used in computer vision71. We set σ to 1.5 s in this work.
Because the pseudo labels are mostly picked on high SNR channels, a
deep learning picker trained only on high SNR waveforms could
generalize poorly to noisy waveforms. Data augmentation, such as
superposing noise onto seismic events, can synthesize new training
samples with noisy waveforms, significantly expand the training
dataset, and improve model generalization on noisy DAS data and
weak earthquake signals45,72. In addition to superposing noise, we add
augmentations of randomly flipping data along the spatial axis,
masking part of data, superimposing double events, and stretching
(resampling) along the temporal and spatial axes.

By following these steps, we can automatically generate a large
dataset of high-quality pseudo labels and train a deep neural network
model on DAS data. We can further use this newly trained model to
generate pseudo labels and train an improved model. This procedure
can be repeated several times to enhance performance. In this study,
we conducted two iterations using pseudo labels generated by Pha-
seNet and PhaseNet-DAS. We named the two resulting models as
PhaseNet-DAS v1 and v2 for clarity. Futurework could further optimize
the number of iterations to enhance performance.

Neural network model
The pre-trained PhaseNet model is a modified U-Net architecture73

with 1D convolutional layers for processing 1D time series of seismic
waveforms. DAS data, on the other hand, are 2D recordings of seismic
wavefields with both spatial and temporal information. So the pre-
trained PhaseNet model cannot utilize the spatial information from
DAS’s ultra-dense channels. In order to exploit both spatial and tem-
poral information of 2D DAS data, we extend the PhaseNet model
using 2D convolutional layers. The architecture of the PhaseNet-DAS
model is shown in Fig. 7, which is similar to the original U-Net
architecture73. In order to consider the high spatial and temporal
resolution of DAS data, we use a larger convolutional kernel size (7 × 7)
and a stride step (4 × 4) to increase the receptive field of PhaseNet-
DAS74. We add the transposed convolutional layers for up-sampling75,
batch normalization layers76, relu activation functions77, and skip
connections to the model. The semi-supervised approach does not
require using the same neural network architecture as the pre-trained
model, so that we can also use other advanced architectures designed
for the semantic segmentation task, such as DeepLab78, deformable
ConvNets79, and Swin Transformer80. In this work, we focus on
exploring whether we can transfer the knowledge of seismic phase
picking from seismic data to DAS data, so we keep a simple U-Net

architecture as PhaseNet. The exploration of optimal neural network
architectures, e.g., transformer22,80,81, for DAS data could be done in
future research.

Training data
We collected a large training dataset using four DAS cables in Long
Valley and Ridgecrest, CA (Fig. 8). The Long Valley DAS array consists
of two cables, each with a length of 50 km, 5000 channels, and a
channel spacing of ~10m8,82–85, referred to as the Mammoth north and
Mammoth south cables for clarity (Fig. 8a). The Ridgecrest DAS array
consists of one short cable (10 km and 1250 channels) and one long
cable (100 km and 10,000 channels), referred to as the Ridgecrest
north and Ridgecrest south cables respectively (Fig. 8b). The cable
locations are determined using a GPS-tracked moving vehicle devel-
oped by Biondi et al.85. We extracted event-based DAS records based
on the standard catalogs of the Northern California Seismic Network,
Southern California Seismic Network, and Nevada Seismic Network.
Following the semi-supervised learning approach outlined above, we
applied the pre-trained PhaseNetmodel to pickP andS arrivals in these
extracted event data, applied the GaMMA model to associate picks,
and kept the events with at least 500 P and S picks as the training
datasets. In the first iteration using PhaseNet as the pre-trainedmodel,
we obtained a dataset of 1056 events and 1116 events from the Mam-
moth north and Mammoth south cables, and 597 events and 1430
events from the Ridgecrest north and Ridgecrest south cables
respectively. In the second iteration using PhaseNet-DAS v1 as the pre-
trained model, we obtained a dataset of 3405 events and 3437 events
from the Mammoth north and Mammoth south cables, and 3590
events and 3311 events from theRidgecrest north andRidgecrest south
cables respectively. Because we do not have manual labels as ground
truth to evaluate the model performance, we only split each dataset
into 90% training and 10% validation sets. We randomly selected
training samples of 3072 × 5120 (temporal samples × spatial channels)
and applied a moving window normalization to each channel. The
moving window normalization, implemented using a convolutional
operation with a window size of 1024 and a stride step of 256, removes
the mean and divides by the standard deviation within a fixed window
size,making it independent of input data length. Coupledwith the fully
convolutional network architecture of PhaseNet-DAS, the model can
be applied to flexible length of continuous data. We trained PhaseNet-
DAS using the AdamW optimizer and a weight decay of 0.186,87, an
initial learning rate of 0.01, a cosine decay learning rate with linear
warm-up88, a batch size of 8, and 10 training epochs. Futurework could
further explore optimal hyperparameters to enhance performance.

Fig. 8 | Four DAS cables used in the training dataset. a Long Valley and b Rid-
gecrest, CA. The blue and orange lines are the locations of the fiber-optic cables.

The black dots are earthquakes in the standard earthquake catalogs used to build
the training dataset.
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Data availability
The example dataset of the Ridgecrest north cable is available at:
https://doi.org/10.57967/hf/0962. These examples are extracted from
thepublic RidgecrestDASdataset hostedunder the SCEDCEarthquake
Data AWS Public Dataset (https://scedc.caltech.edu/data/getstarted-
pds.html). The other DAS datasets used for training and testing are
available upon request from Zhongwen Zhan (zwzhan@caltech.edu).

Code availability
Thepre-trainedmodel of PhaseNet is available at https://ai4eps.github.
io/PhaseNet/. The model of GaMMA is available at https://ai4eps.
github.io/GaMMA/. The source code and pre-trained model of
PhaseNet-DAS is available at https://ai4eps.github.io/EQNet/89.
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