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We consider two interacting systems when one is treated classically while the
other system remains quantum. Consistent dynamics of this coupling has been
shown to exist, and explored in the context of treating space-time classically.
Here, we prove that any such hybrid dynamics necessarily results in deco-
herence of the quantum system, and a breakdown in predictability in the
classical phase space. We further prove that a trade-off between the rate of this
decoherence and the degree of diffusion induced in the classical system is a
general feature of all classical quantum dynamics; long coherence times
require strong diffusion in phase-space relative to the strength of the coupling.
Applying the trade-off relation to gravity, we find a relationship between the
strength of gravitationally-induced decoherence versus diffusion of the metric
and its conjugate momenta. This provides an experimental signature of the-
ories in which gravity is fundamentally classical. Bounds on decoherence rates
arising from current interferometry experiments, combined with precision
measurements of mass, place significant restrictions on theories where Ein-
stein’s classical theory of gravity interacts with quantum matter. We find that
part of the parameter space of such theories are already squeezed out, and
provide figures of merit which can be used in future mass measurements and
interference experiments.

When considering the dynamics of composite quantum systems, there
are many regimes where one system can be taken to be classical and
the other quantum-mechanical. For example, in quantum thermo-
dynamics, we often have a quantum system interacting with a large
thermal reservoir that can be treated classically, whilst in atomic
physics it is common to consider the behaviour of quantum atoms in
the presence of classical electromagnetic fields. Things become more
complicated when one considers classical-quantum (CQ) dynamics
where the quantum system back-reacts on the classical system. This is
particularly relevant in gravity because we would like to study the
back-reaction of thermal radiation being emitted from black holes in
space-time, and while the matter fields can be described by quantum

field theory, we only know how to treat space-time classically. Likewise
in cosmology, vacuum fluctuations are a quantum effect that we
believe seeds galaxy formation, while the expanding space-time
they live on can only be treated classically. In addition to the need for
an effective theory that treats space-time in the classical limit, there
has long been a debate about whether one should quantise gravity' %

The prevailing view has been that a quantum-classical coupling is
inconsistent. Many proposals for such dynamics™'"* are not completely
positive (CP), meaning they are at best an approximation and fail
outside a regime of validity™>'®. A map A is completely positive (CP), iff
1 ® Ais positive. This is the required condition used to derive the GKSL
equation. If it is violated, the dynamics acting on half of an entangled

Department of Physics and Astronomy, University College London, Gower Street, London WCTE 6BT, UK. 2Department of Physics, University of Waterloo,
Waterloo, ON, Canada. 3Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada. - e-mail: j.oppenheim@ucl.ac.uk

Nature Communications | (2023)14:7910


http://orcid.org/0000-0002-8993-412X
http://orcid.org/0000-0002-8993-412X
http://orcid.org/0000-0002-8993-412X
http://orcid.org/0000-0002-8993-412X
http://orcid.org/0000-0002-8993-412X
http://orcid.org/0000-0002-7626-4227
http://orcid.org/0000-0002-7626-4227
http://orcid.org/0000-0002-7626-4227
http://orcid.org/0000-0002-7626-4227
http://orcid.org/0000-0002-7626-4227
http://orcid.org/0000-0002-5044-0229
http://orcid.org/0000-0002-5044-0229
http://orcid.org/0000-0002-5044-0229
http://orcid.org/0000-0002-5044-0229
http://orcid.org/0000-0002-5044-0229
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43348-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43348-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43348-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43348-2&domain=pdf
mailto:j.oppenheim@ucl.ac.uk

Article

https://doi.org/10.1038/s41467-023-43348-2

state, give negative probabilities. The semi-classical Einstein’s
equation™", which replaces the quantum operator corresponding to
the stress-energy tensor by its expectation value, is another attempt to
treat the classical limit from an effective point of view, but it is non-
linear in the state, leading to pathological behaviour if quantum fluc-
tuations are of comparable magnitude to the stress-energy tensor®.
This is often the precise regime we would like to understand.

However, examples of classical-quantum dynamics such as those
first introduced in refs. 21,22 and studied in refs. 11,23-27 do not suffer
from such problems and are consistent. More generally, the master
equation shown in Eq. (4)", is linear in the state space, preserves the
division of classical degrees of freedom and quantum ones, and is
completely positive (CP), and preserves normalisation. This ensures
that probabilities of measurement outcomes remain positive and
always add to 1. The dynamics is related to the GKSL or Lindblad
equation®®”, which for bounded generators of the dynamics, is the
most general Markovian dynamics for an open quantum system.
More precisely, we consider dynamics which is autonomous, meaning
the couplings in the theory do not depend on time. Likewise, Eq. (4) is
the most general Markovian classical-quantum dynamics with boun-
ded generators"*. Sub-classes of this master equation, along with
measurement and feedback approaches, have been discussed in the
context of Newtonian models of gravity****'"* and further developed
into a spatially covariant framework so that Einstein gravity in the ADM
formalism** emerges as a limiting case'”’. Dynamics which is mani-
festly diffeomorphism invariant has also been introduced using path
integral methods®**.

In this work, we move away from specific realisations of CQ
dynamics, in order to discuss their common features and the experi-
mental signatures that follow from this. An early precursor to the
discussion here is the insight of Di6si**, who added classical noise and
quantum decoherence to the master equation of ref. 13, and found
the noise and decoherence trade-off required for the dynamics to
become completely positive. Here we prove that the phenomena
found in refs. 11,22,26 are generic features of all CQ dynamics;
the classical-quantum interaction necessarily induces decoherence on
the quantum system, and there is a generic trade-off between the
rate of decoherence and the amount of diffusion in the classical phase
space. The stronger the interaction between the quantum system and
the classical one, the greater the trade-off. One cannot have quantum
systems with long-coherence times without inducing a lot of diffusion
in the classical system. One can also generalise this result to a trade-off
between the rate of diffusion and the strength of more general
couplings to Lindblad operators, with decoherence being a
special case.

Results

Our main result is expressed as Eqs. (26) and (23), which bounds
the product of diffusion coefficients and Lindblad coupling constants
in terms of the strength of the CQ-interaction. It is precisely this
trade-off which allows the theories considered here, to evade the
no-go arguments of Feynmann'?, Aharonov’, Eppley and Hannah*
and others” 715194048 The essence of arguments against
quantum-classical interactions is that they would prohibit super-
positions of quantum systems that source a classical field. Since dif-
ferent classical fields are perfectly distinguishable in principle, if
the classical field is in a distinct state for each quantum state in the
superposition, the classical field could always be used to determine the
state of the quantum system, causing it to decohere instantly. By
satisfying the trade-off, the quantum system preserves coherence
because diffusion of the classical degrees of freedom means that the
state of the classical field does not determine the state of the quantum
system'*”, Equation (26) and other variants we derive, quantify the
amount of diffusion required to preserve any amount of coherence. If
space-time curvature is treated classically, then complete positivity of

the dynamics means its interaction with quantum fields necessarily
results in unpredictability and gravitationally induced decoherence.
This trade-off between the decoherence rate and diffusion pro-
vides an experimental signature, not only of models of hybrid New-
tonian dynamics such as refs. 24,33 or post-quantum theories of
general relativity such as refs. 11,39 but of any theory which treats
gravity as being fundamentally classical. The metric and their con-
jugate momenta necessarily diffuse away from what Einstein’s general
relativity predicts. This experimental signature squeezes
classical-quantum theories of gravity from both sides: if one has
shorter decoherence times for superpositions of different mass dis-
tributions, one necessarily has more diffusion of the metric and con-
jugate momenta. In the “Methods” subsection “Detecting gravitational
diffusion” we show that the latter effect causes imprecision in mea-
surements of mass such as those undertaken in the Cavendish
experiment*’~! or in measurements of Newton’s constant “Big G"**,
The precision at which a mass can be measured in a short time, thus
provides an upper bound on the amount of gravitational diffusion, as
quantified by Eq. (42). In the other direction, decoherence experiments
place a lower bound on the diffusion. Our estimates suggest that
experimental lower bounds on the coherence time of large
molecules™*°, combined with gravitational experiments measuring
the acceleration of small masses® ", already place strong restrictions
on theories where space-time is not quantised. In the section
“Physical constraints on the classicality of gravity” we show that several
realisations of CQ-gravity are already ruled out, while other realisations
produce enough diffusion away from general relativity to be detect-
able by future table-top experiments. Although the absence of such
deviations from general relativity would not be as direct a confirmation
of the quantum nature of gravity, such as experiments proposed in
refs. 64-74 to exhibit entanglement or coherence generated by grav-
itons, it would effectively rule out any sensible theory that treats
space-time classically. While confirmation of gravitational diffusion
would suggest that space-time is fundamentally classical. Experiments
to detect or bind gravitational diffusion also provide immediate-term
prospects for probing the quantumness of gravity, while
entanglement-based experiments will only be feasible in the long term.
The outline of the remainder of this paper is as follows. In the
subsection “Classical-quantum dynamics” we review the general form
of the CQ master equation of classical-quantum systems as derived in
refs. 11,30. The CQ-map can be represented in a manner akin to the
Kraus representation’ for quantum maps, with conditions for it to be
completely positive and trace preserving (CPTP). We can perform a
short time moment expansion of the CQ-map taking states at some
initial time, to states at a later time. This gives us the CQ version of the
Kramers-Moyal expansion’®”’, presented in the subsection “The CQ
Kramers-Moyal expansion”. The physical meaning of the moments is
given in the subsection “Physical interpretation of the moments”. Our
main result is presented in the section “A trade-off between deco-
herence and diffusion”, where we show that there is a general trade-off
between decoherence of the quantum system and diffusion in the
classical system. We generalise the trade-off to the case of fields in the
subsection “Trade-off in the presence of fields” and in the subsection
“Physical constraints on the classicality of gravity”, we apply the
inequality in the gravitational setting. The positivity constraints mean
that the considerations do not depend on the specifics of the theory,
only that it treats gravity classically, and is time-local. This allows us to
discuss some of the observational implications of this result and we
comment on the relevant figures of merit required in interference and
precision mass measurements in order to constrain theories of gravity,
as they are not always readily available in published reports. In addition
to table-top constraints, we consider those due to cosmological
observations. We then conclude with a discussion of our results. The
“Methods” section collects or previews a number of technical results.
Since this paper appeared on the arXiv, we have found that when the
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decoherence-diffusion trade-off is saturated, there are two important
consequences. The first is that in the continuous class of dynamics, the
quantum state remains pure, conditioned on the classical trajectory’®.
The second is that in the path integral formulation, one can show that
the dynamics are completely positive from the path integral alone®.
For a generic path integral of Feynman-Vernon form’®, one typically
only knows that the dynamics are completely positive if it was derived
from a CPTP master equation.

Classical-quantum dynamics

Let us first review the general map and master equation governing
classical-quantum dynamics. The classical degrees of freedom are
described by a differential manifold M and we shall generically denote
elements of the classical space by z. For example, we could take the
classical degrees of freedom to be position and momenta in which case
M=R?and z= (g, p). The quantum degrees of freedom are described
by a Hilbert space . Given the Hilbert space, we denote the set of
positive semi-definite operators with trace at most unity as S_;(H).
Then the CQ object defining the state of the CQ system at a given time
is @ map @: M — S.;(H) subject to a normalisation constraint
J dzTryle]=1. To put it differently, we associate to each classical
degree of freedom an un-normalised density operator, o(2), such that
Tr;[e]=p(z) 20 is a normalised probability distribution over the clas-
sical degrees of freedom and [, ,dzo(z) is a normalised density
operator on H. An example of such a CQ-state is the CQ qubit depicted
as a 2 x 2 matrix over phase space’®. More generally, we can define any
CQ operator f(z) which lives in the fibre bundle with base space M and
fibre H.

Just as the Lindblad equation is the most general evolution law
that maps density matrices to density matrices, we can ask what is the
most general evolution law that preserves the quantum-classical state-
space. Any such dynamics, if it is to preserve probabilities, must be
completely positive, norm-preserving, and linear in the CQ-state. That
dynamics must be linear can be seen as follows: if someone prepares a
system in one of two states g or g; depending on the value of a coin
toss (]0)(0| with probability p,|1)(1| with probability 1-p), then the
evolution £ of the system must satisfy p|0)(0| ® Loy +(1— p)|1)(1| ®
L0,=L(poy+(1— p)o;) otherwise the system evolves differently
depending on whether we are aware of the value of the coin toss. A
violation of linearity further implies that when the system is in state og
it evolves differently depending on what state the system would have
been prepared in, had the coin been |1)(1] instead of |0)(0|. This
motivates our restriction to linear theories. We will also require the
map to be Markovian on the combined classical-quantum system,
which is equivalent to requiring that there is no hidden system that
acts as a memory. This is natural if the interaction is taken to be fun-
damental, but is the assumption that one might want to remove if one
thinks of the hybrid theory as an effective description. We thus take
these as the minimal requirements that any fundamental
classical-quantum theory must satisfy if it is to be consistent.

The most general CQ-dynamics, which maps CQ states onto
themselves can be written in the form”

oz t+60= [ 42 SN2, 0L,00z oL )
Hv

where the L, is an orthogonal basis of operators and A*(z|2/, 6t) is
positive semi-definite for each z,z’. Henceforth, we will adopt
the Einstein summation convention so that we can drop 3, with the
understanding that equal upper and lower indices are presumed to be
summed over. The normalisation of probabilities requires

/ ' dzN"(z|z,60)L]L, =1. )

The choice of basis L, is arbitrary, although there may be one
which allows for unique trajectories®. Equation (1) can be viewed as a
generalisation of the Kraus decomposition theorem.

In the case where the classical degrees of freedom are taken to be
discrete, Poulin® used the diagonal form of this map to derive the most
general form of Markovian master equation for bounded operators,
which is the one introduced in ref. 21. When the classical degrees of
freedom are taken to live in a continuous configuration space, we need
to be a little more careful, since o(z) may only be defined in a dis-
tributional sense; for example, o(z)=06(z,2)o(2). In this case (1) is
completely positive if the eigenvalues of A" (2|2, 6t), (z|Z/, 6t), are
positive so that [ dzdz/Pﬂ(z,z/)/l”(z\z’,ét) >0 for any vector with
positive components P,(z,2')*. One can derive the CQ master equa-
tion by performing a short time expansion of Eq. (1) in the case when
the L, is bounded". To do so, we first introduce an arbitrary basis of
traceless Lindblad operators on the Hilbert space, L, ={/, L,}. Now, at
6t=0, we know Eq. (1) is the identity map, which tells us that
A°(z|z, 6t=0)=6(z,2'). Looking at the short-time expansion coeffi-
cients, by Taylor expanding in 6t <1, we can write

N"(z|Z,6t)=64646(z,2') + W (212)6t + O(61%). 3)

By substituting the short-time expansion coefficients into Eq. (1)
and taking the limit 6t > O we can write the master equation in the form

a Z’t ! v A / i 1 v T
WD = [ a2 W@ - s W @b, @)

where {,}. is the anti-commutator, and preservation of normalisation
under the trace and [ dz defines

WH (z)= / dzZw# (7' |2). (5

We see the CQ master equation is a natural generalisation of the
Lindblad equation and classical rate equation in the case of
classical-quantum coupling. We give a more precise interpretation of
the different terms arising when we perform the Kramers-Moyal
expansion of the master equation at the end of the section. The posi-
tivity conditions from Eq. (1) transfer to positivity conditions on the
master equation via (3). We can write the positivity conditions in an
illuminating form by writing the short time expansion of the transition
amplitude A*"(z|2/, 6t), as defined by Eq. (3), in block form

8(z,2)+6tW°z|z) tW(z|1z)

AN(z)Z,6t)=
(elz. 61 5tW(z|2') Stw(z|2)

+0(682)  (6)

and the dynamics will be positive if and only if A*(z|2’, 6t) is a positive
matrix. It is possible to introduce an arbitrary set of Lindblad operators
L, and appropriately redefine the couplings W*"(z|2’) in Eq. (4)". For
most purposes, we shall work with a set of Lindblad operators that
includes the identity L, = (/, L); this is sufficient since any CQ master
equation is completely positive if and only if it can be brought to the
form in Eq. (4), where the matrix (6) is positive.

The CQ Kramers-Moyal expansion

In order to study the positivity conditions it is first useful to perform a
moment expansion of the dynamics in a classical-quantum version of
the Kramers-Moyal expansion as in ref. 11. In classical Markovian
dynamics, the Kramers—-Moyal expansion relates the master equation
to the moments of the probability transition amplitude and proves to
be useful for a multitude of reasons. Firstly, the moments are related to
observable quantities; for example, the first and second moments of
the probability transition amplitude characterise the amount of drift
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and diffusion in the system. This is reviewed in the subsection “Physical
interpretation of the moments”. Secondly, the positivity conditions on
the master equation transfer naturally to positivity conditions on the
moments, which we can then relate to observable quantities. In the
classical-quantum case, we shall perform a short time moment
expansion of the transition amplitude A*”(z|z’, 6t) and then show that
the master equation can be written in terms of these moments. We
then relate the moments to observational quantities, such as the
decoherence of the quantum system and the diffusion in the classical
system.

We work with the form of the dynamics in Eq. (4), using an arbi-
trary orthogonal basis of Lindblad operators L, ={I, L,}. We take the
classical degrees of freedom M to be d dimensional, z=(z, ...z4), and
we label the components as z;, i € {1, ...d}. We begin by introducing the
moments of the transition amplitude W*”(z|z’) appearing in the CQ
master Eq. (3)

1/
Dﬁ”ll )= o / dzW" 2|2\ z - 2), ...z = 2); . (7)

The subscripts ;€ {1, ...d} label the different components of the
vectors (z — 2’). For example, in the case where d =2 and the classical
degrees of freedom are position and momenta of a particle,
z=(z,2)=(q, p), then we have
(z—-2)=(z,—21,z, —25)=(@—q,p—p'). The components are then
given by (z-2');=(q—¢q) and (z—-2),=(p - D). Mﬁ”ll (z,6¢) is
seen to be an nth rank tensor with d” components.

In terms of the components D"” i, the short time expansion of
the transition amplitude A*"(z]2') is glven by*°

o Voo v 0" ,
N (2|2, 6t) =5’6505(Z,Z ) +6["Z Dﬂn i (Z ) (w) 6(z,2')+ 0(51.2),

®

and the master equation takes the form™

0oz, ) _ n 0" 00
o 2V (az,.l...az,.”)@" i

p a, T 1 @,
—z[H(zm(z)]+Doﬂ<z>Lae<z)L — 508 @)Ll 0@, ()

£y Z( 1" ( )(D”n”,l

puv#00 n=

where we define the Hermitian operator H(z)= (DgOL - DO"Ly)
(which is Hermitian since D"O DO" ). We see the ﬁrst line of Eq. (9)
describes purely classical dynamlcs and is fully described by the
moments of the identity component of the dynamics A%°(z|2’). The
second line describes pure quantum Lindbladian evolution described
by the zeroth moments of the components A®°(z|2'), A%¥(z|z'); speci-
fically the (block) off diagonals, D3°(z), describe the pure Hamiltonian
evolution, whilst the components Dgﬂ (2) describe the dissipative part
of the pure quantum evolution. Note that the Hamiltonian and Lind-
blad couplings can depend on the classical degrees of freedom so the
second line describes the action of the classical system on the quan-
tum one. The third line contains the non-trivial classical-quantum back-
reaction, where changes in the distribution over phase space are
induced and can be accompanied by changes in the quantum state.

L @0z, 0))

@L,0z 0L}),

Physical interpretation of the moments

Let us now briefly review the physical interpretation of the moments
that will appear in our trade-off relation. In particular, the zeroth
moment determines the rate of decoherence (and Lindbladian cou-
pling more generally), the first moment gives the force exerted by the
quantum system on the classical system, and the second moment

determines the diffusion of the classical degrees of freedom. For this
discussion, we shall take the classical degrees of freedom to live in a
phase space I' = (M, w), where w is the symplectic form.

Consider the expectation value of any CQ operator
0(2), (0(2)) := [ dzTr[O(z)g] which does not have an explicit time
dependence. Its evolution law can be determined via Eq. (9)

d
%— / dzTr{O(z) } / dzTrg

{ [0(2), H@)|+ DP LSO L __D“”(z) LL},0@), (10)
v an T
+HZD“,, 0@ (M) (tiL,0e, t))},

where we have used cyclicity of trace and integration by parts, to bring
the equation of motion into a form that would enable us to write a CQ
version of the Heisenberg representation® for a CQ operator. If we are
interested in the expectation value of phase space variables O(z) =z;1
then Eq. (10) gives

Zi) / dzDi!Tr|L]L,0z, )] (1)

with all higher order terms vanishing, and we see that Zy,,;zooDﬁ',V,-(LiLM
governs the average rate at which the quantum system moves the
classical system through phase space, and with the back-reaction is
quantified by the Hermitian matrix D{* := (Dbr) . The force of this
back-reaction is especially apparent if the equations of motion are
Hamiltonian in the classical limit as in ref. 11. Le. if we define
H\(z2) = h"’ﬂL L, and take D"ﬂ w’d h*® with w the symplectic form
and d; the exterlor derlvatlve Then Eq (11) is analogous to Hamilton’s
equations, and the CQ evolution equation after tracing out the
quantum system has the form of a Liouville’s equation to first order
and in the classical limit,

opz, ) _

ot 1)

={H,,p(z, O} +tr({H,(2), o2)}) +

with p(z) := Tr[o(2)].
The significance of the second moment is also seen via Eq. (10) to

be related to the variance of phase space variables
o'zilziz = <Zilzi2> - <Zi1><zi2>

%, o8t a8 a8t

ar =205, Lgla) + (22D Lpla) — 21D, Lgla) 1B3)

+ <zi1 Digiz Lﬂl'a> - (zi1><D‘11'ﬁzfz LEL“)

In the case when D, z is uncorrelated with z;, and D, , uncor-
related with z; , then the growth of the variance only dependzs on the
diffusion coefficient.

The zeroth moment Dgl3 is just the pure Lindbladian couplings.
The simplest example is the case of a pure decoherence process with a
single Hermitian Lindblad operator L and decoherence coupling Do.
Then we can define a basis {|a)} via the eigenvectors of L and

9
(dfarle)~ -
and we see that the matrix elements of ¢ which quantify coherence
between the states |a), b> decay exponentially fast with a decay rate of
Do(L(a)-L(b))>. For a damping/pumping process of a quantum har-
monic oscillator with Hamiltonian H=wa'a, L, =a, L+ =a', a the crea-
tion operator, and D}!,D§' the non-zero couplings, then standard

ial[H(2),al1b) — 3 Doll(@ — Lb) (alalb),  (14)
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calculations***° show that an initial superposition }5 |n+m) with n,m

large and n>m will initially decohere at a rate of approximately
(D" +D§")(m+n)/2, and the state will eventually thermalise to a
temperature of w/log(Dy*/D{"). So in this case, the Lindblad
couplings not only determine the rate of decoherence but also the
rate at which energy is pumped into the harmonic oscillator. In the
next section, we will derive the trade-off between Lindblad couplings
and the diffusion coefficients. Although we will sometimes refer to this
as a trade-off between decoherence and diffusion, this terminology
is only strictly appropriate for pure decoherence processes, while
more generally, it is a trade-off between Lindblad couplings and
diffusion coefficients.

A trade-off between decoherence and diffusion

In this section, we present our main result by using positivity condi-
tions to prove the trade-off between decoherence and diffusion seen in
models such as those of refs. 11,22,26 are in fact a general feature of all
classical-quantum interactions. We shall also generalise this, and
derive a trade-off between diffusion and arbitrary Lindbladian cou-
pling strengths. The trade-off is in relation to the strength of the
dynamics and is captured by Egs. (20), (23) and (26). In the subsection
“Trade off in the presence of fields” we extend the trade-off to the case
where the classical and quantum degrees of freedom can be fields and
use this to show that treating the metric as being classical necessarily
results in diffusion of the gravitational field.

There are two separate possible sources for the force (or drift) of
the back-reaction of the quantum system on phase space—it can be
sourced by either the D 7 components or the Lindbladian components
D"’ﬂ We shall deal w1th both sources simultaneously by considering a
CQ Cauchy-Schwartz inequality which arises from the positivity of

Tr{ / dzdz N*(212)0,(z,2)p(z)0](z,2')| 20 (15)

for any vector of CQ operators O,. One can verify that this must be
positive directly from the positivity conditions on A*/(z|z") and we go
through the details in the Appendix section “Positivity conditions and
the trade-off between decoherence and diffusion”. A common choice
for O, would be the set of operators L, = {1, L} appearing in the master
equation.

The inequality in Eq. (15) turns out to be especially useful since it
can be used to define a (pseudo) inner product on a vector of opera-
tors with components O, via

(0;,0,)= / ' dzdZTr {A"”(z\z’)olﬂg(z’)of,/] (16)

where ||0]|=/(0, 0) > 0 due to Eq. (15). Technically this is not positive
definite, but this shall not be important for our purpose. Taking the
combination O, = \|02||201ﬂ —(0y,0,)0,, for vectors Oy, Oy, posi-
tivity of the norm gives

1012 =11(110,1170; — (04, 0,)0;) |2

N ot 0 17)
=101 (I1011*110,1* = (04, 0)*) 20,
and as long as ||0,|| # 0 we have a Cauchy-Schwartz inequality
110112110,1> = 101, 05)* 2 0. 18)

We can use Eq. (18) to get a trade-off between the observed dif-
fusion and decoherence by picking 0,,=6,L, and Oy, =b'(z — 2),L,,
where L, ={I, L,} are the Lindblad operators appearing in the master
equation and & are the components of an arbitrary vector. In this case

110,11= [ dzTr {D“ L QL’] and one can verify using CQ Pawula
theorem® that in order to have non-trivial back-reaction on the

quantum system complete positivity demands that ||0,|| > 0, meaning
the Cauchy-Schwartz inequality in Equation (18) must hold. To reach
this conclusion one can insert the CQ state into the CQ
Cauchy-Schwartz inequality and repeat the proof of the Pawula
theorem®, which must now hold once averaged over the state. By
using the short-time moment expansion of A*”(z|z’) defined in Eq. (8)
and using integration by parts, we then arrive at the observational
trade-off between decoherence and diffusion
/ dzTr [b'

which must hold for any positive CQ state o(2). Stripping out the &'
vectors, (19) is equivalent to the matrix positivity condition

2
1,0;LMQ(Z)LL]
19)

/ dzTe[257 D b/ (o)L / AeTr[D Lol 2

’

0 < 2(D,)(Do) — (D)D), Vo), (20)

where we define

O0)= [ deTr DLty 08, = [ daTe (it e, .

(Dy);; / dzTr D“’y ”Q(z)LV]‘

Since Eq. (20) holds for all states, the tightest bound is provided
by the infimum over all states

0 < inf(2(D;) (Do) - DYy (0P}, 22)

The quantities (D,) and (Do) appearing in Eq. (20) are related to
observational quantities. In particular (D,) is the expectation value of
the amount of classical diffusion which is observed and (Do) is related
to the amount of decoherence on the quantum system. The expecta-
tion value of the back-reaction matrix (Dfr) quantifies the amount of
back-reaction on the classical system. In the trivial case D'l’r =0,Eq.(20)
places little restriction on the diffusion and Lindbladian rates appear-
ing on the left-hand side. We already knew from refs. 28,29 that the Dgﬂ
must be a positive semi-definite matrix, and we also know that diffu-
sion coefficients must be positive semi-definite. However, in the non-
trivial case, the larger the back-reaction exerted by the quantum sys-
tem, the stronger the trade-off between the diffusion coefficients and
Lindbladian coupling. Equation (20) gives a general trade-off between
observed diffusion and Lindbladian rates, but we can also find a trade-
off in terms of a theory’s coupling coefficients alone. We show in the
Appendix section “General trade-off between decoherence and diffu-
sion coefficients” that the general matrix trade-off

D' Dy'p < 2D, (23)
holds for the matrix whose elements are the couplings D5"; D%, DY
for any CQ dynamics. Moreover, (I — DyDg )Dbr 0, which tells us that
Do cannot vanish if there is non-zero back-reaction. Equation (23)
quantifies the required amount of decoherence and diffusion in order
for the dynamics to be completely positive. In Eq. (23), and
throughout, Dal is the generalised inverse of Dgﬁ, since Dgﬁ is only
required to be positive semi-definite. In the special case of a single
Lindblad operator a =1 and classical degree of freedom, and when the
only non-zero couplings are Dy := Dy, D5, := 2D, and DY =1 this
trade-off reduces to the condition D,Dq >1 used in ref. 22.

As a more general example, let us consider the class of theories
that are continuous in phase space, and whose back-reaction is gen-

erated by a classical-quantum Hamiltonian A™ which is only a
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function of the canonical coordinates g;*°. These are given by

R N S L By

£y (m) 7, (m) (24)
;o 1 oH oH
+{p,{P’,Dz,ijQ}}+2Do,ij 76(7,- ;| 76(]}

where H, is the purely classical Hamiltonian, p/ are the conjugate
momenta, and Do and D, are g; dependent matrices with elements Do ;;
and D, ;. Then the trade-off (23) implies that they must obey the matrix
equation 2D,Dq < 1.

Itis also useful to try to obtain an observational trade-off in terms
of the total drift due to back-reaction as calculated in Eq. (11)

ohi= 3 / dzTr {D‘lf’;L,,g(z)L;]. 25)

pv#00

It follows directly from Eq. (20) that when the back-reaction is
sourced by either D?f; or D‘f‘f we can arrive at the observational trade-
off in terms of the total drift

0 < 8(D,)(Do) — (O1)D])',  Va(@), (26)
where the quantities appearing in Eq. (26) are now all observational
quantities, related to drift, decoherence and diffusion as outlined in
the previous subsection “Physical interpretation of the moments”. We
believe that Eq. (26) should hold more generally, though we don’t have
a general proof.

In the case where the back-reaction is Hamiltonian at first order in
the sense of Eq. (12), then Eq. (26) can be written as

o

As a result, we can derive a trade-off between diffusion and
decoherence for any theory that reproduces this classical limit and
treats one of the systems classically.

To summarise, whenever the back-reaction of the quantum sys-
tem on the classical system induces a force on the phase space, then we
have a trade-off between the amount of diffusion on the classical
system and the strength of decoherence on the quantum system (or
more precisely the strength of the Lindbladian couplings Dg”). This can
be expressed both as a condition on the matrix of coupling co-
efficients in the master equation, via Eq. (23) or in terms of observable
quantities using Eqgs. (20) and (26). In the case when the back-reaction
is Hamiltonian, we further have Equation (27). We would like to apply
this trade-off to the case of gravity in the non-relativistic, Newtonian
limit. In order to do so, we will need to generalise the trade-off to the
case of quantum fields interacting with classical ones, which we do in
the subsection “Trade-off in the presence of fields”. The goal will be to
understand the implications of treating the metric (or Newtonian
potential) as being classical by using the trade-off when the quantum
back-reaction induces a force on the gravitational field which, on
expectation, is the same as the weak field limit of General Relativity.

i
%> =< 8(D,){Dy), Ya(2).

27
a7 @7

Trade-off in the presence of fields

We would like to explore the trade-off in the gravitational setting and
explore the consequences of treating the gravitational field as being
classical and matter quantum. Since gravity is a field theory, we must
first discuss classical-quantum master equations in the presence of
fields. In the field-theoretic case, both the Lindblad operators and the
phase space degrees of freedom can have spatial dependence,
z(x),L,(x) and a general bounded CP map which preserves the

classicality of the two systems can be written"
pi,t)= / dz'dxdyN" (212, t; x, )L, (x, 2, 2 )e(Z, oLy, z2), (28)

where, as is usually the case with fields, in Eq. (28) it should be impli-
citly understood that a smearing procedure has been implemented.
We elaborate on some of the details when fields are introduced in the
Appendix section “Classical-quantum dynamics with fields”. The con-
dition for Eq. (28) to be completely positive on all CQ states is that for
all vectors at x with components A,(y, z,2)

/ . dzdxdyA, (x, 2,2 )N"(2|2';x,))A,(¥,2,2) 20 (29)

meaning that A*(x, y) can be viewed as a positive matrix in v and a
positive kernel in x, y. In the field-theoretic case, one can still perform
a Kramers-Moyal expansion and find a trade-off between the
coefficients Dy(x, y), Di(x,y), Do(x, y) appearing in the master equation.
The coefficients now have an x,y dependence, due to the spatial
dependence of the Lindblad operators. The coefficients
Di(x,y), Dy(x,y) still have a natural interpretation as measuring the
amount of force (drift) and diffusion, whilst Do(x,y) describes the
purely quantum evolution on the system and can be related to
decoherence.

Using the positivity condition in Eq. (29) we find the same trade of
between coupling constants in Eq. (23) but where now D,(x, y) is the
(p +1)n x (p +1)n matrix-kernel with elements D‘z“y(x ), D?r(x, y) is the
(p + 1)n x p matrix-kernel with rows labelled by pi, columns labelled by
f, and elements D‘l‘ﬁ(x, ¥), and Do(x, y) is the p x p decoherence matrix-
kernel with elements Dgﬁ(x,y). Here i€fl,...,njae{l, ..., p} and
peEfl ...,p+1}. In the field-theoretic trade off we are treating the
objects in Eq. (23) as matrix-kernels, so that for any position-
dependent vector b, (x), (D) (x)= [ dyD%’;(x,y)b,(y), whilst for any
position-dependent  vector aﬂ(x),(Doa)“(x) = dyDgﬂ(x, ag).
Explicitly, we find that positivity of the dynamics is equivalent to the
matrix condition

(30)

br
/ dxdy[b (x), a*(x)]{ZDz(x.y) DY (x, y):| { b(y)

DY'(x,y) Dy(x,y) | La®)

which should be positive for any position-dependent vectors bL(x) and
a.(x). This is equivalent to trade-off between coupling constants in
Eq. (23) if we view (23) as a matrix-kernel equation.

In order for the theory to be diffeomorphism invariant, we expect
Do(x,y) and Ds(x,y) to approach delta functions. We will not assume
this, but we shall assume that the drift back-reaction is local, so that
D'l”(x, ¥)=06(x, y)Dfr(x). As we shall see in the next section, this is a
natural assumption if we want to have back-reaction which is given by a
local Hamiltonian. However, one might not want to assume that the
form of the Hamiltonian remains unchanged to arbitrarily small dis-
tances. With this locality assumption, Eq. (30) gives rise to the same
trade-off of Eq. (23), where the trade-off is to be interpreted as a matrix
kernel inequality. Writing this out explicitly we have

|0

[ dxdyal comsoDg') . 008 0al )= [ dxdyzalonnt o),
(31

where asking that this inequality holds for all vectors a;',(x) is equiva-
lent to the matrix-kernel trade-off condition of Eq. (23).

We give two examples of master equations satisfying the coupling
constant trade-off in the Appendix section “Examples of Kernels
saturating the decoherence diffusion coupling constants trade-off”.
The decoherence-diffusion trade-off tells us how much diffusion and
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stochasticity are required to maintain coherence when the quantum
system back-reacts on the classical one. If the interaction between the
classical and quantum degrees of freedom is dictated by unbounded
operators, such as the mass density, then there can exist states for
which the back-reaction can be made arbitrarily large. This is the case
for a quantum particle interacting with its Newtonian potential
through its mass density at arbitrarily short distances. Hence, if one
considers a particle in a superposition of two peaked mass densities,
then there can be an arbitrarily large response in the Newtonian
potential around those points, and either there must be an arbitrary
amount of diffusion, or the decoherence must occur arbitrarily fast.
The former is unphysical, while the latter turns out to be the case in
simple examples of theories such as those discussed in the Methods
subsection “Decoherence rates”.

Since our goal is to experimentally constrain classical-quantum
theories of gravity, we shall hereby ask that the map (28) is CP when
acting on all physical states p. If one allows for arbitrarily peaked mass
distributions then the coupling constant trade-off of Eq. (31) should be
satisfied. In the field-theoretic case, we can similarly find an observa-
tional trade-off, relating the expected value of the diffusion matrix
(D5(x,y)) to the expected value of the drift in a physical state ¢ as we
did in subsection “A trade-off between decoherence and diffusion”.
This is done explicitly in the “Methods” subsection “Classical-quantum
dynamics with fields”, using a field-theoretic version of the
Cauchy-Schwartz inequality given by Eq.n (73), we find

2(D,(x, )) / dx'dy (Do, ) = Doy 0y, (32)

where Eq. (34) is to be understood as a matrix inequality with entries

o= [ d2Te DL etjo], (332)
(DY, ), = / dzTr DAL, (x)eL b0, (33b)
Dy, )= / d2Tr (DAL o)Ly (330)

Similarly, when the back-reaction is sourced by either Dg’lf or Dl”‘lf it
follows from Eq. (32) we can arrive at the observational trade-off in
terms of the total drift due to back-reaction

8(D,(x, X)) / dx'dy (Do, y) = DTy DTy, (34

where

0fe0n;= [ dzTr [DRxIaL 0+ DELyel) + DL (et o]
(39)

We shall now use the trade-off to study the consequences of
treating the gravitational field classically. We will consider the back-
reaction of the mass on the gravitational field to be governed by the
Newtonian interaction (or more accurately, a weak field limit of Gen-
eral Relativity). We shall then find that experimental bounds on
coherence lifetimes for particles in superposition require large diffu-
sion in the gravitational field in order to be maintained and this can be
upper bounded by gravitational experiments.

To summarise this section, we have derived the trade-off between
decoherence and diffusion for classical-quantum field theories, both
in terms of coupling constants of the theory and in terms of

observational quantities. This trade-off puts tight observational con-
straints on classical theories of gravity which we now discuss.

Physical constraints on the classicality of gravity

In this section, we apply the trade-off of Eq. (30) to the case of gravity.
A number of classical-quantum models of Newtonian gravity have
been proposed®**™*, but since the trade-offs derived in the previous
section depend only on the back-reaction, or drift term, they are
insensitive to the particulars of the theory. We shall consider the
Newtonian, non-relativistic limit of a classical gravitational field which
we reproduce in the “Methods” subsection “Newtonian limit of CQ
theory”. A fuller discussion, including a derivation of the Newtonian
limit starting from the covariant theories of refs. 11,39 can be found in
ref. 81. It is in taking this limit where some care should be taken, since
one is gauge fixing the full general relativistic theory. We denote ® to
be the Newtonian potential and in the weak field limit of General
Relativity, it has a conjugate momenta we denote by mg. We assume:
(i) The theory satisfies the assumptions used to derive the master
equation as in subsections “Trade-off in the presence of fields”; in
particular that the theory be a completely positive norm-
preserving Markovian map, and that we can perform a short-
time Kramers-Moyal expansion as in “Methods” subsection
“Classical-quantum dynamics with fields”.

We apply the theory to the weak field limit of General Relativity,
whereas recalled in “Methods” subsection “Newtonian limit of CQ
theory” the Newtonian potential interacts with matter through its
mass density m(x),

(ii)

H(®)= / d*x®OmX). (36)
and the conjugate momentum to ® satisfies
o= 52— mx), (37)

where in the ¢ - * limit the momentum constraint 74 = 0 is imposed
and we recover Poisson’s equation for the Newtonian potential. We
assume this limit of General Relativity is satisfied on expectation, at
least to leading order. This may be an overly strong assumption, since
the weak field limit may cease to be valid at short distances when the
diffusion becomes large. A relativistic treatment is initiated in (J.
Oppenheim and A. Russo, manuscript in preparation). It is also worth
noting that General Relativity has not been tested at distances shorter
than the millimeter scale, and here we assume it holds to arbitrarily
short distances.
(iii) In relating Do to the decoherence rate of a particle in super-
position, we shall assume that the state of interest is well
approximated by a state living in a Hilbert space of fixed particle
number. We believe this is a mild assumption: ordinary non-
relativistic quantum mechanics is described via a single particle
Hilbert space, and we frequently place composite massive
particles in superposition and they do not typically decay into
multiple particles.
We will assume that the diffusion kernel D,(®,x,x’) does not
depend on rry, i.e. it is minimally coupled. This is reasonable, since
in the purely classical case matter couples to the Newtonian
potential and not its conjugate momenta.

(iv)

With these assumptions, and treating the matter density as a
quantum operator m(x), this tells us that in order for the back-reaction
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term to reproduce the Newtonian interaction on average

]
Tr[{H,,0}] =Tr U d®x m(x) %}

3. 6Q (38)
=-> Tr{/ d’xDy'; (@, nm,x)L”(x)ﬁL,,(x) ,
=00
then we must pick
(D] 1, (®, g, %)) = — (X)), (39)

meaning that the back-reaction matrix D’l“’;T is nonvanishing. In the
“Methods” subsection “Newtonian limit of CQ theory” we give
examples of master equations for which Eq. (39) is satisfied, but their
details are irrelevant since we only require the expectation of the back-
reaction force to be the expectation value of the mass—a necessary
condition for the theory to reproduce Newtonian gravity.

As a consequence of the coupling constant and observational
trade-offs derived in Eqs. (31) and (32), a non-zero D; o implies that
there must be diffusion in the momenta conjugate to 1. This diffusion
is equivalent to adding a stochastic random process J(x, ¢) (the Lan-
gevin picture), to the equation of motion (37) to give

2

Vo '
Mo = g c = M)+ u(®, m)(,X),

(40)
where we allow some colouring to the noise via a function u(®, m)
which can depend on ®, and the matter distribution /m (assumption
(iv)). The noise process satisfies

Ep, oW, 0]1=0, Eq oW, W, t)]=2(Dy(x,y, ®)E(L, 1), (41)

where we have defined (D, (x,y, ®)) =Tr[D5"(x, ), (D)L”(x)pLZ(y)], andp
is the quantum state for the decohered mass density. Here the m, ®
subscripts of E,, o allow for the possibility that the statistics of the
noise process can be dependent on the Newtonian potential and mass
distribution of the particle. The restriction on E,, [t/(x, t)] follows
from assumption (ii). If w/(x, t) is Gaussian, Eq. (41) completely deter-
mines the noise process, but in general, higher-order correlations are
possible, although they need not concern us here, since we are only
interested in bounding the effects due to D,(x, y, ®).

In the non-relativistic limit, where ¢ > «, we impose the momen-
tum constraint g = 0 and we recover Poisson’s equation for gravity,
but with a stochastic contribution to the mass. This is precisely as
expected on purely physical grounds: in order to maintain coherence
of any mass in superposition, there must be noise in the Newtonian
potential and this must be such that we cannot tell which element of
the superposition the particle will be in, meaning the Newtonian
potential should look like it is being sourced in part by a random mass
distribution. In other words, the trade-off requires that the stochastic
component of the coupling obscures the amount of mass m at the
different points in space where the mass may be found.

In the case where u is independent of @, it is simple to solve
Eq. (40) in terms of Green’s function for Poisson’s equation as in the
“Methods” subsection “Detecting gravitational diffusion”. A formal
treatment of solutions to non-linear stochastic integrals of the more
general form of Eq. (40) can be found in ref. 82. A higher precision
calculation would involve a full simulation of CQ dynamics, for
example using unravelling methods**’® or the path integral as in ref. 81.
However, care should be taken, as we have found that relativistic
corrections put constraints on the degree of diffusion even at low
energy (J. Oppenheim and A. Russo, manuscript in preparation), and
one should bear this in mind when drawing conclusions on the models
presented here.

In*® it was shown that there are two classes of CQ dynamics, at
least in the sense that there are those with continuous trajectories in
phase space and those which contain discrete jumps. For the class of
continuous CQ models (see ref. 24 and Appendix section “Continuous
master equation”), we know that J(x, t) should be described by a white
noise process in time, and its statistics should be independent of the
mass density of the particle.

For the discrete class (see ref. 11 and J. Oppenheim, “The con-
straints of a continuous realisation of post-quantum-classical gravity",
manuscript in preparation) and “Methods” subsection “Discrete mas-
ter equation”), J(x, t) can involve higher order moments, and will gen-
erally be described by a jump process*°, Its statistics can also depend
on the mass density, since in general the diffusion matrix D‘Z’”y couples
to Lindblad operators. It is worth noting that the discrete CQ theories
considered in"***” generically suppress higher order moments, and
often we expect that we can approximate the dynamics by a Gaussian
process, but this need not be the case in general.

The stochastic contribution to the Newtonian potential leads to
observational consequences which can be used to experimentally test
and constrain CQ theories of gravity for various choices of kernels
appearing in the CQ master equation. One immediate consequence is
that the variation in Newtonian potential leads to a variation of force
g(perienced by a particle or composite mass via
Fe=—1 d>xm(x)Vd(x). We can also estimate the time-averaged
force via - fgr F . where AT is the time resolution over which the
force is measured and is the useful quantity when compared with
experiments. In the “Methods” subsection “Table-top experiments” we
impose the constraint 7 = 0 in Eq. (40) and find that the variance of the
magnitude of the time-averaged force experienced by a particle in a
Newtonian potential is given by Eq. (146),

2_262 3 3,43/ A3/

GF_F/ d°xd’yd’x’'d’y m(x)m(y)

/ / (42)

X-X)--¥)
x—xPy-yP

<D2(X,,y/, q)))’

where the variation is averaged over the time resolution AT. We will use
this to estimate the variation in precision measurements of mass, such
as modern versions of the Cavendish experiment for various choices
of (D,(x',y, ®)).

On the other hand, experimentally measured decoherence rates
can be related to Do. The important point is that the decoherence rate
is dominated by the background Newtonian potential ®, due to the
Earth. In the “Methods” subsection “Decoherence rates”, we show that
for a mass whose quantum state is a superposition of two states |L) and
|R) of approximately orthogonal mass densities m,(x), mgr(x), and
whose separation we take to be larger than the correlation range of
Do(x,y), the decoherence rate is given by

1 ‘
=5 / dxdyDE (¢, Y)((LILIOLGOIL) + (RILLOILLOIR).  (43)

Via the coupling constant trade-off, Eqs. (42) and (43) then give
rise to a double-sided squeeze on the coupling D,. Equation (42) upper
bounds D, in terms of the uncertainty of acceleration measurements
seen in gravitational torsion experiments, whilst the coupling constant
trade-off Eq. (43) lower bounds D, in terms of experimentally mea-
sured decoherence rates arising from interferometry experiments.

We now show this for various choices of diffusion kernel, with the
details given in the “Methods” subsection “Table-top experiments”.
The bounds are summarised in Table 1. The diffusion coupling strength
will be characterised by the coupling constant D,, which we take to be a
dimension-full quantity with units kg* sm™, and is related to the rate of
diffusion for the conjugate momenta of the Newtonian potential. We
upper bound D, by considering the variation of the time averaged
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Table 1| Current experimental bounds on classical-quantum theories for different master equations and functional depen-

dence on the diffusion coefficient

Master equation Diffusion kernel

Experimental squeeze

Continuous (ultra-local, non-rel.)

Dy(®; X, y) = Do(D)S(x, y)Do(P) = ,c"P"

10 > D, > 107kg?sm™ (Eq. (44))

Continuous (Eq. (116) or (118))

Dy(®;x,y)= — 2D (®)V?5(x,y)Dy(®) =3, c"D"

107° > 2D, > 10~ kg®sm~" (Eq. (47))

Discrete (ultra-local)

Dy(®;X,Y) = - Dy(D)5(x,y)Dp(®) = 3,c" D

107" > E2 > 102 kg (Eq. (46))

The diffusion coefficient is bounded from above by observed acceleration variations 02 seen in precision mass experiments via Eq. (42). In all cases the master equation is assumed to saturate the
bound which is used to find the lower bound the amount of diffusion on the quantum system by bounding Do from coherence rates via Eq. (43). It is seen that minimally coupled continuous models
which are non-relativistic and do not create spatial correlations (we call these ultra-local) and have polynomial dependence on the Newtonian potential are ruled out, while continuous models with
non-local correlations, such as the Diosi-Penrose (DP) kernel of Eq. (116)or the relativity inspired kernel of Eq. (118), and ultra-local discrete models are less constrained. Here lp, mp are the Planck
length and Planck mass respectively, which are required in order for the dimensions of D(®) to be the same in all cases.

acceleration g, = 7t for a composite mass M which contains N atoms
which we treat as spheres of constant density p with radius ry and mass
my. We lower bound D, via the coupling constant trade-off of Eq. (30)
and then by considering bounds on the coherence time for composite
particles with total mass M, and which are made up of N, constituents,
each with typical length scale when in superposition R, and volume V;.

For continuous dynamics (D,(x,y, ®)) = D»(x, y, ®) since the dif-
fusion is not associated with any Lindblad operators. Let us now con-
sider a very natural kernel, namely D,(x,y; ®) = D,(®)6(x, y) which is
both translation invariant, and does not create any correlations over
space-like separated regions. We call dynamics which does not create
correlations over space-like separated regions ultra-local since the-
ories that are not of this form can still be non-signalling. This is a
natural kernel from the point of view of constructing theories which
are diffeomorphism invariant. We also label this model as being non-
relativistic since it does not include various relativistic corrections to
the diffusion.

The decoherence rate for this kernel is found in the “Method”
subsection “Decoherence rates” and follows immediately from Eq.
(137). For a nucleon of mass M, and wavepacket volume V), it is
A=2DoM3/V,. In general, the squeeze will depend on the functional
choice of D,(®) on the Newtonian potential. However, in the presence
of a large background potential @, such as that of the Earth’s, we will
often be able to approximate D,(®) = D,(®y,). This is true for kernels
that depend on ® and V @, though the approximation does not hold
for all kernels, for example D, ~ —V?® of Eq. (118) which creates diffu-
sion only where there is mass density. For diffusion kernels D,(®y)
where the background potential is dominant, we find the promised
squeeze on Dy(dy)

NM?2

OININAT
=2t yva

VG (44)
b

where V4, is the volume of space over which the background Newtonian
potential is significant. V/}, enters since the variation in acceleration is
found to be

2 DZGZ

~ 45
% riNAT (43)

/ PxDy(Dy),

where the d®x’ integral is over all space.

This immediately rules out continuous theories of Newtonian
gravity with noise everywhere, i.e., with a diffusion coefficient inde-
pendent of the Newtonian potential, since the integral will diverge. We
consider the relativistic case elsewhere.

Standard Cavendish-type classical torsion balance experiments*’
measure accelerations of the order 107 m s over minutes AT ~10%, so
a very conservative bound is g, - 107 m s, whilst for a kg mass N - 10%
and ry~10"m. Conservatively taking Vy ~r2hm> where rg is the
radius of the Earth and h is the atmospheric height gives
D, <10 kg?>sm>, The decoherence rate A is bounded by various
experiments®. Typically, the goal of such experiments is to witness
interference patterns of molecules that are as massive as possible.

Taking a conservative bound on A, for example, that arising from the
interferometry experiment of*” which saw coherence in large organic
fullerene molecules with total mass M, =10 kg over a timescale of
0.1s, gives an upper bound on the decoherence rate 1<10's™. Full-
erene molecules are made up of N, - 10° particles with a typical atomic
size 10® m. After passing through the slits the molecule becomes
delocalised in the transverse direction on the order of 107 m before
being detected. Since the interference effects are due to the super-
position in the transverse x direction, which is the direction of align-
ment of the gratings, it seems like a reasonable assumption to take the
size of the wavepacket in the remaining y, z direction to be the size of
the fullerene, since we could imagine measuring the y, z directions
without effecting the coherence. We, therefore, take the volume
V3 ~10™107107 m® =10 m?, which gives D, >107? kg?sm™, and sug-
gests that classical-quantum theories of Newtonian gravity with ultra-
local continuous noise are ruled out by experiment.

On the other hand, the discrete models appear less constrained
due to the suppression of the noise away from the mass density. For
example consider the ultra-local discrete jumping models, such as the
one given in the section “Discrete master equation” which have

(Dy(x,y, Dp)) = l'a’Dfni(:’”)m(x), where mp = \/% is the Planck mass and

lp= \/’;:Q is the Planck length, required to ensure D, has the units of
kg? sm™. We find the squeeze on D,

2 N4 3
TNNAT by o Ma (46)
mNG mp 1

and plugging in the numbers tells us that discrete theories of classical
gravity are not ruled out by experiments and we
find 10~ kg > ;TPPDZ 210 5 kg.

We can also consider other noise kernels, with examples and some
discussion is given in the section “Examples of Kernels saturating the
decoherence diffusion coupling constants trade-off”. A natural kernel
is Dy(x,y,dy)= — I,Z,D(d)b)Vzé(x,y). The inverse Lindbladian kernel
satisfying the coupling constants trade-off is to zeroeth order in ®(x),
the Diosi-Penrose kernel Dy (x,y, ®) = D‘;}%‘ﬂﬁ’. We here consider higher-
order terms such as those coming from the relativistic theory and in
particular the diffusion kernel of Eq. (118). For this choice of dynamics,
we find the squeeze for D, in terms of the variation in acceleration

NP AT
GZ

NaM3

212D, > R

(47)

Using the same numbers as for the ultra-local continuous model,
with R ~ V;/3~10’12m we find that classical torsion experiments
upper bound D, by 107° kgzsm*1 > I,Z,DZ, whilst interferometry
experiments bound D, from below via l,Z,D2 >10 ¥ kg? smL.

Equations (44), (46) and (47) show that classical theories of gravity
are squeezed by experiments from both ways. We have here been
extremely conservative, and we anticipate that further analysis, as well
as near-term experiments, can tighten the bounds by orders of
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magnitude. There are several proposals for table-top experiments to
precisely measure gravity, some of which have recently been per-
formed, and which could give rise to tighter upper bounds on D,. Some
of these experiments involve millimeter-sized masses whose gravita-
tional coupling is measured via torsional pendula®*, or rotating
attractors®®. With such devices, the gravitational coupling between
small masses can be measured while limiting the amount of other
sources of noise. There are proposals for further mitigating the noise
due to the environment, including inertial noise, gas particle collisions,
photon scattering on the masses, and curvature fluctuations due to
other sources® ¢, Other experiments are based on interference
between masses; for example, atomic interferometers allow for the
measurement of the curvature of space-time over a macroscopic
superposition®”*’,

We can get stronger lower bounds via improved coherence
experiments. Typically, the goal of such experiments is to witness
interference patterns of molecules that are as massive as possible,
while here, we see that the experimental bound on CQ theories is
generically obtained by maximising the coherence time for massive
particles with as small wave-packet size V).

Thus far we have considered local effects on particles due to
diffusion. While this enables us to rule out some types of theories, the
bounds are generally weak if one wants to rule out all of them. How-
ever, it may be possible to do so via cosmological considerations. In
attempting to place experimental constraints on this diffusion, it is
also worth considering other regimes, such as longer range effects
which might be detected by gravitational wave detectors such as LIGO,
or table-top interferometers’®’!. We leave a detailed study of the effect
of gravitational diffusion on cosmological scales and LIGO to future
work. It suffices to mention that the effect will again depend on the
form of the kernel D,(x, x). Our estimates (J. Oppenheim and Z. Weller-
Davies, “Estimating space-time diffusion in interferometers”, unpub-
lished note) suggest that local effects from table-top experiments
currently place a stronger bound on gravitational theories than LIGO
currently does. In particular, unlike gravitational wave measurements,
which are reasonably high-frequency events requiring extraordinarily
high precision in the relative displacement of the arm length from its
average, it is preferential to have a lower precision measurement,
which occurs over a longer time period to allows for the diffusion in
path length to build up, and with a smaller uncertainty in the average
length of the arm itself. Furthermore, since the LIGO arm is kept in a
vacuum, we do not expect strong bounds on discrete models where
the diffusion is associated with an energy density.

Discussion
A number of direct proposals to test the quantum nature of gravity are
expected to come online in the next decade or two. These are based on
the detection of entanglement between mesoscopic masses inside
matter-wave interferometers®*’%’>>, For these experiments, some
theoretical assumptions are needed: one requires that it is only grav-
itons that travel between the two masses and mediate the creation of
entanglement. If this is the case, then the onset of entanglement
implies that gravity is not a classical field. These can be thought of as
experiments that if successful, would confirm the quantum nature of
gravity (although other alternatives to quantum theory are possible®).
Here, we come from the other direction, by supposing that gravity
is instead classical, and then exploring the consequences. Theories in
which gravity is fundamentally classical were thought to have been
ruled out by various no-go theorems and conceptual difficulties.
However, these no-go theorems are avoided if one allows for non-
deterministic coupling as in"*2¢3%¥_ We have here proven that this
feature is indeed necessary and made it quantitative by exploring the
consequences of complete positivity on any dynamics that couples
quantum and classical degrees of freedom. Complete positivity is
required to ensure the probabilities of measurement outcomes remain

positive throughout the dynamics. We have shown that any theory
which preserves probabilities and treats one system classically is
required to have fundamental decoherence of the quantum system,
and diffusion in phase space, both of which are signatures of infor-
mation loss. Using a CQ version of the Kramers-Moyal expansion, we
have derived a trade-off between decoherence on the quantum sys-
tem, and the system’s diffusion in phase space. The trade-off is
expressed in terms of the strength of the back-reaction of the quantum
system on the classical one. We have derived the trade-off both in
terms of coupling constants of the theory and in terms of observa-
tional quantities that can be measured experimentally.

In the case of gravity, the trade-off places a lower bound on the
rate of diffusion of the gravitational degrees of freedom in terms of the
decoherence rate of particles in superposition. We find that theories
that treat gravity as fundamentally classical, are not ruled out by cur-
rent experiments, however, we have been able to rule out a broad
parameter space of Newtonian theories. This is done partly through
table-top observations via Eqs. (44), (46) and (47). Given any diffusion
kernel, we can compute the inaccuracy of mass measurements due to
fluctuations in the gravitational field, and using the trade-off, we can
derive a bound on the associated decoherence rate. This allows us to
rule out broad classes of theories in terms of their diffusion kernel. For
example, we are able to rule out a number of non-relativistic theories
which back-react continuously in phase space.

Any theory that treats gravity classically has fairly limited freedom
to evade the effects of the trade-off. There is the freedom to choose the
diffusion or decoherence kernels D,(x,x’) and D (x, x’), but the trade-
off restricts one in terms of the other. Then, because of the results
proven in*’, one can consider two classes of theory, those which are
continuous realisations and whose diffusion can only depend on the
gravitational degrees of freedom, and discrete theories whose diffu-
sion can also depend directly on the matter fields. Examples of both
classes of the theory are given in the “Methods” subsection “Newtonian
limit of CQ theory”. Finally, one could consider theories that do not
reproduce the weak field limit of General Relativity to all distances,
namely we could imagine that the interaction Hamiltonian of Eq. (36)
does not hold to arbitrarily short distances, or arbitrarily high mass
densities. This is reasonable since we do expect the Newtonian theory
to break down at short distances where relativistic corrections at high
energy affect the low-energy behaviour of the theory. One could also
consider modifying D;(x,x’) in some other way, for example, by
making it slightly non-local, or by disallowing arbitrarily high mass
densities, or by including an additional contribution such as the fric-
tion term discussed in the continuous master equation. All of these
modifications would seem to violate Lorentz invariance in some way,
and likely lead to observational consequences”.

Here, we have only given an order of magnitude estimate of when
gravitational diffusion will lead to appreciable deviations from New-
tonian gravity. The most promising experiments bounding the diffu-
sion appear to be table-top experiments which precisely measure the
mass of an object. This is an area that is important from the perspective
of weight standards, for example, those undertaken by NIST on the 1 kg
mass standard K20 and K4°. The increased precision and measuring
time of Kibble Balances” and atomic interferometers®” 7 would
make such measurements an ideal testing ground, both to further
constrain the diffusion kernel and to look for diffusion effects, whose
dependence on the test mass is outlined in the “Methods” subsection
“Detecting gravitational diffusion”. Here, we have found that the
resolution time AT over which variations of acceleration are estimated
affects the strength of the bound, and it would be helpful if future
experiments reported this value. Since we have found that CQ theories
predict an uncertainty in mass measurements it is perhaps intriguing
that different experiments to measure Newton’s constant G yield
results whose relative uncertainty differs by as much as
5x10™*m’kg™s?, which is more than an order of magnitude larger
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than the average reported uncertainty’>>*. If one were to try and
explain the discrepancy in G measurements via gravitational diffusion,
then for all the kernels we studied in Section 'Physical constraints on
the classicality of gravity’ we find that the variation in acceleration
depends on -L the number of nucleons in the test mass, so that masses
with smaller volume should yield larger uncertainty and this would be
the effect to look for in measurement discrepancies. The relatively
large uncertainty in such measurements, also makes it challenging for
table-top experiments to place strong upper bounds on gravitational
diffusion.

Turning to the other side of the trade-off, improved decoherence
times would further squeeze theories in which gravity remains classi-
cal. While a current experimental challenge is to demonstrate inter-
ference patterns using larger and larger mass particles, we here find
the bounds in Eqgs. (44) and (46) depend on the expectation of the
particle’s mass density in ways that depend on the particular kernel.
Thus interference experiments with particles of high mass density
rather than mass can be preferable. There are also kernels, for which
the relevant quantity is the expectation of the mass density or M2/V,
which will depend on both the particle’s mass M, and volume V; of the
wave-packet used in the interference experiment, a quantity which is
not always obtainable from many reports on such experiments. While
this dependence might initially appear counter-intuitive, it follows
from the fact that in order to relate the trade-off in terms of coupling
constants to observational quantities, and in particular, the deco-
herence rate, we took expectation values of the relevant quantities to
get a trade-off in terms of only averages. And indeed the decoherence
rate, which is an expectation value, can easily depend on the wave-
packet density, as we see from examples in the section “Deco-
herence rates”.

Since we here show that all theories that treat gravity classically
necessarily decohere the quantum system, another constraint on
theories that treat gravity classically is given by constraints on funda-
mental decoherence. These are usually constrained by bounds on
anomalous heating of the quantum system’®. However, these con-
straints are not in themselves very strong, since fundamental deco-
herence effects can be made arbitrarily weak. In the simplified model in
the “Methods” subsection “Newtonian limit of CQ theory”, the strength
of the decoherence depends on the strength of the gravitational field,
thus, constraints due to heating”™ can be suppressed, either by
scaling the Lindbladian coupling constants or by having strong deco-
herence effects more pronounced near stronger gravitational fields
such as near black holes where one expects information loss to occur.
The necessity for decoherence to heat the quantum system is further
weakened by the fact that the dynamics are not Markovian on the
quantum fields, if one integrates out the classical degrees of freedom,
space-time acts as a memory. This potentially captures some of the
non-Markovian features advocated in ref. 112, who recognised that
Markovianity is a key assumption in attempts to rule out fundamental
decoherence or information loss. Here, however, we see that there is
less freedom than one might imagine. If the Lindbladian coupling
constants are made small to reduce direct heating, the gravitational
diffusion must be large. Thus, heating constraints which place bounds
on Dy (x, x") place additional constraints on D,(x, x'). In*, it was found
that for the Newtonian models of ref. 33, large D,(x,x’) creates sec-
ondary heating which further constrain the theory experimentally. The
decoherence-diffusion trade-off implies that this is a general feature of
all theories which treat gravity classically.

While the absence of diffusion could rule out theories where
gravity is fundamentally classical, the presence of such deviations, at
least on short time scales, might not by itself be a confirmation of the
classical nature of gravity. Such effects could instead be caused by
quantum theories of gravity whose classical limit is effectively described

by Oppenheim". In other words, one might expect some gravitational
diffusion, because, from an effective theory point of view, one is in a
regime where space-time is behaving classically. There are even claims
that holographic effects could cause stochasticity> " in the gravita-
tional field. However, the trade-off we have derived is a direct con-
sequence of treating the background space-time as fundamentally
classical. In a fully quantum theory of gravity, the interaction of the
gravitational field with particles in a superposition of two trajectories
will cause decoherence, but coherence can then be restored when the
two trajectories converge. This is because the particle’s position is
entangled with the gravitational field (or dressed by it), and this
entanglement is erased when the different paths of the superposition
converge. This is what happens when electrons interact with the elec-
tromagnetic field while passing through a diffraction grating, yet still
form an interference pattern at the screen. This is a non-Markovian
effect—the which-path superposition decoheres almost immediately,
but this is false-decoherence" so the amount of diffusion can be arbi-
trarily small and is unrelated to the coherence time of the superposition.

On the other hand, the trade-off we derived is a direct con-
sequence of the positivity condition, which is a direct consequence of
the Markovian assumption. In the non-Markovian theory where Gen-
eral Relativity is treated classically, one still expects the master equa-
tion to take the form found in", but without the matrix whose elements
are D% needing to be positive semi-definite at all times"”"%. It would
therefore be surprising, if a quantum theory of gravity predicted
anything close to the level of diffusion predicted by the decoherence-
vs-diffusion trade-off, as there would be no need for diffusion to
explain the coherence of superpositions. The regime in which the
classical-quantum theory can be regarded as an effective one is taken
up in ref. 119, both to address the issue of false decoherence, and also
to explore the regime in which the classical-quantum theory may be a
useful tool to understand the back-reaction of quantum matter in
space-time, such as during black-hole evaporation, and during infla-
tion. If we instead regard the theory as describing a fundamentally
classical space-time, then it follows from the decoherence-diffusion
trade-off, that the diffusion is either fundamental or its source is not
describable within quantum or classical mechanics (J. Oppenheim,
“Post-quantum soup", unpublished note).

Methods
Positivity conditions and the trade-off between decoherence
and diffusion
In this section, we will introduce two forms of positivity conditions
used to prove the decoherence diffusion trade-off.

The first inequality we would like to introduce is

/ dzA, (2,2 )N" (2|2, 60)A (2,220, (48)

which holds for any A,(z,z') for which Eq. (48) is well defined: i.e., so
that the distributional derivatives in Eq. (48) are well defined.
We can derive the positivity condition (48) from the positivity of
N (z|2"), which must be a positive semi-definite matrix in uv. More
precisely, the eigenvalues of A*/(z|z), which we denote by A*(z|z’)
must be positive. They must be positive in the distributional sense,
since we allow for the case that A*(z|2’) is a positive distribution, for
example /lo(z|z’) ~&(z — Z'). Hence we require
/ dzdz’ (212 )P(z,2)) (49)

is positive for any positive smearing function P(z,z’). Since each #*
must be positive, we can also pick a different smearing function for
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each y, so that

/ dzdz’ ¥'(z|12')P(2,2') (50)

should be positive for any vector P,(z,2’) with all positive entries. We
can then write the matrix A*(z|2’) in terms of its eigenvalues

N(z|2') = UST (212 WP (212) U}y (212). (51)

We can then see the positivity of Eq. (48) directly since
/ . dzAL(z, N (2|12, 60)A,(2,2)) = / A dz(UA);(z\z’)/l”(z|z’)(UA)y(z,z’)

= / dz|(UA), Pz, ) (212
(52

which is positive as a consequence of Eq. (50).
As a consequence of Eq. (48) being positive, we also know that

Tr { / dzA"(2|12))0,(z, z’)p(z’)O,f(z,z’)} >0 (53)

will be positive for any vector of operators (potentially phase space
dependent) O,(z,z"). This follows from the cyclicity of the trace and
the fact that A””(z|z’)OI(z,z’)Oﬂ(z,z’) will be a positive operator so
long as Eq. (48) holds. A common choice of O, would be the Lindblad
operator L, appearing in the master equation.

The inequality in Eq. (48) proves useful to derive positivity
conditions on the coupling constants appearing in the master
equation, whilst Eq. (53) is useful in deriving the observational
trade-off for the continuous master equation as we shall now
discuss.

General trade-off between decoherence and diffusion
coefficients
We can get a general trade-off between the decoherence and diffusion
coefficients which appear in the master equation, arriving at a trade-off
between the decoherence and diffusion coefficients in terms of the
back-reaction drift coefficient D/;. '

Consider Eq. (48), and choose A, = SZaa + bL(z —Z2');. By inte-
grating parts over the phase space degrees of freedom, we find

20/, D46, + b, D ag + a, Db, + a, D az 2 0. (54)

Taking i€{l,...,.nja€{l,...,p} and p€{l,...,p+1}, we can write

this as a matrix positivity condition
)
>
a

where D, is the (p +1)n x (p +1)n matrix with elements D‘”f’y,Df’ is
the (p+1nxp matrix with rows labelled by pi and columns
labelled by g with elements D’l"f and Dg is the p x p decoherence
matrix with elements D D}’fi describes the quantum back-
reacting components of the drift. Equation (55) is equivalent to
the condition that the ((p+1)n+p)x((p +1)n+p) matrix

br
2D, D7 0.
D" Do

. . [2D, D
a1 2 (55)
Dl DO

(56)

Since we know D, and Dy must be positive semi-definite, we know from
Schur decomposition that

2D, =D Dy D", (57)
and (I — DyD, — 1)DY" =0, where Dy, is the generalised inverse of D,.

Furthermore, if Do vanishes, then clearly DY must also vanish in order
for (56) to be positive semi-definite.

Classical-quantum dynamics with fields

In this section, we describe CQ dynamics in the case where the Lind-
blad operators and the phase-space degrees of freedom can have
spatial dependence z(x), L,(x).

For the case of fields, operators O(x) constructed out of local
fields ¢(x) will in general be unbounded and hence the Stinespring
dilation theorem does not hold. This problem is a common one in the
study of algebraic quantum field theory and we can get around it by
considering the case in which operators of interest are obtained by
smearing the local fields over bounded functionals F. For example, we
can first smear the local field fields over a smearing function
[, &= [dx@(x)fix) and then consider bounded functions of ¢ such as
F(¢p¢) =€t In doing this we can write a CQ version of the Stinespring
dilation theorem exactly and proceed along the lines of Oppenheim
to show that any completely positive CQ map can be written in the
form

p(2)= / dzdxdyN" (z|2';x,Y)L (X, 2,2 )o@ )L (9, 2,2'), (58)
where the positivity condition states
/ dzdxdyA,(x,z,2 )N (212, x,y)A, (¥, 2,2) 2 0. (59)

We shall assume that we deal with dynamics which can be written

in Lindblad form, as is usually assumed in the unbounded case'*°.

CQ Kramers-Moyal expansion for fields
Just as in the section “The CQ Kramers-Moyal expansion”, we can
formally introduce the moments of the transition amplitude

Mfl‘f’il___,."(wl, Wy X,Y,60) = / DzA"(2|2';x,,60) (z — 2),(wy) ... (z = 2); (wy,)
(60)

which we assume to exist; which might involve a smearing of the
operators z(x). Defining Ly(x)=6(x)I, we can define the coefficients

Dy, ;. implicitly via
My @ Wy, WX, Y, 60)= 8060+ 6Dy (Wy, ... WX, Y, 6F).

(1)

The characteristic function then takes the form
C"(u,2:x,y) = / Dzel | W@ Gw-z @I np 717 x ) (62)

and expanding out the exponential this takes the form

ww,)...u; (w")M“”

4 .
n! n,i]...i"(zlwlf "‘wmxryr&t)

C*(u,z';x,y)= i / dw, ...dw,
n=0"
(63)

performing the inverse Fourier transform, allows us to write the
transition amplitude in terms of functional derivatives of the delta
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function

M- (2w, .. Wy X, Y, 6E) §"
w iy iy n
ANY(z|12Z;x,y, 6t) = Z / dw, ...dw, o AT

Z;’,,(wn)

(64)
and we can use this to write a CQ master equation in the form

do(z,6t) _ "

3 dw, ... dw,(-1)' m/—————
o 1./ ! " )6z,-l(wl)..4 W,

Z W, )(D?.,Oi, @ wy, ...w”)q(z)) — i[H,0(2)]

" Q) 1 Q)
+ / dedyD 22X, DL ML) — 5 DX NLOIL0), o)

> [ dxdydu .. du-1r

n=0 j#00

6’2
.z; (wy) (Du" i

Sz, wy). 2, o5t

WX YL ).

(65)

Since we are interested in studying dynamics with local back-
reaction, we shall hereby take Di"(z,w;x,y)=D{"(x)6(x,y)6(x, w).
By the decoherence diffusion trade-off, which we derive in the
next subsection, this also means that the diffusion matrix

DYz, wl,wz,x y) is lower bounded by the matrix
D” (x)(D0 )ap s y)Dﬁ” 6(wy, x)6(w,,y). This can be seen more pre-
CISer, by taking Eq. (59) with A,(x)=6,a a(x)+fdwb’ (x, w)(z —
Z')(x, w) and applying the same methods as m the subsection “Trade-
off between diffusion and decoherence couplings in the presence of
fields”.  Without loss of generality we thus take
Dy(z, wy, wa, X, ) = Da(z, X, )6(x, w1)5(y, wy).

Trade-off between diffusion and decoherence couplings in the
presence of fields

In the field-theoretic case, the positivity condition is given by Eq. (59)
and we can find a trade-off between decoherence and diffusion by
considering A, (X) =8, a,(x) + [ dxb(x)(z — 2')(x). So that

/ dxdy2b, (DA, (6, B ) + B 00D x, y)as0) + @, 0D x, B )

+ aa(x)Dg (x,y)az(y)=0
(66)

where we use the shorthand notation D”” §ZXY) =
similarly D{%(z; x,y) := D{%(x, ).

Taking i €], ... n}ae {,...,ptand pef],...
this as a matrix positivity condition

2f’,.j(x, y) and

,p+1}, we can write

} >0 (67

[ dxdy[b’(x), a*(x)] {ZDz(X,)’) DY (x, y)} {b(y)

DY (x,y) Do(x,y) | La®)

where D,(x,y) is the (p+1)nx (p+1)n matrix-kernel with elements
D’z“’y(x, ), Dfr(x, y)isthe (p + 1)n x p matrix-kernel with rows labelled by
pi and columns labelled by § with elements D‘l"i(x, y) and Do(x, y) is the
p % p decoherence matrix-kernel with elements Dgﬁ(x, ). D'ff,- describes
the quantum back-reacting components of the drift.

Equation (67) is equivalent to the condition that the

((p+Dn+p)x((p+1n+p) matrix of operators

[202 Dﬁ“} o

(68)
DY Dy

be positive semi-definite. Here we are viewing the objects of
Eq. (68) as matrix-kernels, so that for any position-dependent
vector b, (x), (D,b)(x)= [ dyD’,(x, y)b. ().

6(z,2)

Since we know D, and Dy must be positive semi-definite, we know
from Schur decomposition that

2D, =D Dy DY (69)

and

(I = DoD,"DY" =0, (70)
where Dgl is the generalised inverse of Dg. Furthermore, from Equa-
tion (70), we see if Dg vanishes, then clearly D{” must also vanish in
order for (68) to be positive semi-definite.

Observational trade-off in the presence of fields

We can use the same methods to arrive at an observational trade-off
using the field-theoretic version of the Cauchy-Schwartz inequality in
Eq. (18). This arises from the positivity of

Tr{ / dzdz’dxdy/\“”(z|z’,x,y)0ﬂ(z,z’,x)p(z’)OI(z,z’,y) >0 (71

for any local vector of CQ operators O,(z, 2, x). We have to be careful,
since (71) is not in general well defined since O, may not be trace-class.
We hence assume that we consider states p(z) and operators 0,,(z, ', X)
for which Eq. (71) is well defined. Since we are interested in getting an
observational trade-off we expect this to always be the case for
physical classical-quantum states p(2).

We shall use Eq. (71) to arrive at a (pseudo) inner product on a
vector of operators Oy, via

(0y,0,) = / dzdz' dxdyTr [A“”(zlz’x, y)Olﬂ(x)Q(z’)OZU(y)] (72)

where ||0]| =/ (0, 0) > 0 due to Eq. (71). Technically this is not positive
definite, but again, this will not worry us. Hence, so long as ||0,||#0,
which holds due to the CQ inequality derived in the derivation of the
Pawula theorem®®, we again have a Cauchy-Schwartz inequality

1104112110, — (04, 0,)* 2 0. (73)

Choosing 0,,,(0)= 6 L,(x) and

0, ,0)=[ dx'b )z — 2)(x)L,(x), one ﬁnds

104 = [ dzdxdyTr D x DLax@LY0)] = 0o} (742

10217 =2 [ dzdxdyTe [B 0040 9L, 0L )] - (74b)

[0, 0,) ‘ / dzdxTr [b’ (OD(z; X)L g (X)e(2)L] (x) ‘ ‘< / dxb” (x)D'f’l(x)>‘
(74¢)

Taking the limit bi(x) — 6(x,)?)bi()?), we arrive at a local trade-
off between diffusion, drift and total decoherence. In particular,
using (74), the definitions of the expectation values of couplings
defined in Eq. (33) and the fact that for back-reaction the
expectation value of Dy cannot vanish, we arrive at the observa-
tional trade-off of Eq. (34)

B0 [2(0y, 5%, ) (D) — 11D} N2 )2 0 (75)
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which we write in matrix form as

2(D,(x%, %)) (Do) = (DX @)D () (76)
It then follows directly from Eq (76) that when the back-reaction
is sourced by either DO". or D“ components we can arrive at the

observational trade-off in terms of the total drift

8(D,(x, X)) (Do) = (D} () (D] (X)), (77)
where in Eq. (77) recall that the definition of (Df()'())T is given by Eq. (35)
in the main body.

A spatially averaged observational trade-off

It is also useful to note that one can arrive at a spatially averaged
observational trade-off which can be used to bound all of the elements
of the diffusion matrix, not just its diagonals. Specifically, taking Eq.
(74) with bi(x) = b’ a constant, we arrive at the trade-off

¥
8 [ axdy0,0 3000 = ( [ axofeo)( [ @), 08)
where we define the expectation matrix
Oaey)y= [ e (8 @ L] G9)

For the Newtonian limit discussed in the main body this bounds
the diffusion in terms of the total mass of the particle

2

M
. / dxdy(D,(x,y)) = el (80)

We can also arrive at a trade-off in terms of the effective New-

tonian potential sourced by the masses by taking bx)= T X‘ In this
case, we find the trade-off
(Dy(x,9)) e Dl \'
S/dxdy%(Do» /dx Dy /dx Dy
X —xlIx —y| X —X| Ix — x|

(81)

which for the Newtonian limit gives a trade-off between the diffusion
matrix and the effective Newtonian potential of the particle as sourced
by its expectation value

. A 2 L
/ dxdy Dy, oy *:Y)) U dx <\§fn(—)§r)|> _ (D)) > (82)
Ix xlx -yl - 161 16G°A

where we have defined the effective Newtonian potential
as (®) = — G [ dx 2,
Newtonian limit of CQ theory
In this section we motivate the Newtonian limit of gravity used in
Section 'Physical constraints on the classicality of gravity”?. A fuller
treatment can be found in®'. We begin with classical General Relativity
in the ADM formulation®. To derive the Hamiltonian, we start from the
3+1 split of the four metric

ds?= — (Ncdt)’ +g; (dxi +Nic dt) (dxf +Nc dt), (83)
in which case, denoting ¢, m, as canonical variables for the
matter degrees of freedom, we can write the action for minimally

coupled matter

S= /d4 < lJ gU +]T a¢m ~NH - N1H> (84)

where we are ignoring the boundary contributions to the action. Here,

b

12p., 167G 1
2 g1/2

g (g,kgj,n ikl — %nzﬂ +H™,  (85)

l6mG

H; = Ve + 1™, (86)

8 Gg”
are the Hamiltonian and momentum constraints and 7¥ is defined in
terms of the extrinsic curvature tensor of constant ¢ surfaces, Kj;, via

m;=— (87)

oncs” (K"f - Kgff)'

It is useful to note that the matter densities #™,H\™ can be
related to the matter stress-energy 7 via

H™ = /gN* T, (88a)

H™ = JBNT?. (88b)
We here take the Newtonian limit of the gravitational field to be
given by

(o) 20 N e
N= <1+ )N’ 0, g;= (—C—Z>6y,n’1:—gnmé‘”,

with (D(x) corresponding to the Newtonian potential. The choice of
mi=— nq,é‘” is to ensure that mg, is canonically conjugate to ®. A
more detalled derivation starts from the full weak field metric, and
gauge fixing of the shift can be found in®. Here, we find the effective
action can be written

(89)

' oo 0
S= / d4x<n®§+nm g’tm*HNewt) (90)
where the Newtonian Hamiltonian is given by
HNewt:Hc+Hf:)m)+Hl (91)
with
3. 2Gmc? (VD)2
H.= / d>x ( 3+ e (92)
the pure gravity Hamiltonian, and
= / d*x®(0)m(x) (93)

is the interaction Hamiltonian, from which we see that non-relativistic
matter couples to the Newtonian potential through its mass density
m(x). In the case where we have the state of matter being described by a
point particle §(x—x(t)) of mass m the pure matter Hamiltonian would be

Hm = (94)

me +6p,p,.
2m
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The equations of motion for the gravitational degrees of freedom
reads

4rGc?

5 Mo (95)

b= —

2

. Ve 926)
o= 1nG ¢

— m(x),

which, for mg = 0 yields the Newtonian solution for a stationary mass
density. In a Louivile formulation the dynamics for the density
p(®, e, X, p)) is given by

op

% 97)

(m)
= (H +H™, p) — acb(x)a @ xm(x>5 =
where the Hamiltonian and momentum constraints tell us that
p(®, e, X, p;) should only have support over phase space degrees of
freedom which satisfy the constraint mr, p(®, 7g) = 0. From Eq. (97) we

can identify the classical drift associated to the back reaction of the
matter on the gravitational field from the m(x) 5” F term, so that

Dbl’

)= — m(x). 98)

In the classical-quantum case, we promote m(x) to an operator n.
In this case Eq. (93) is the interaction Hamiltonian used in ref. 24 to
study CQ gravity. We see from Eq. (97) that in any theory whose first

moment reproduces the Newtonian back-reaction on average

Tr[{H;, 0}] /d xTr {m(x)é, (D(x)} (99)
must have a DY, ~given by
(D () = — (m(x), (100)

from which the discussion at the beginning of the section “Physical
constraints on the classicality of gravity” follows.

Note that the present discussion is insensitive to the details of the
theory provided it satisfies Poisson’s equation on average. None-
theless, it’s interesting that when starting from the relativistic theories
of refs. 11,39, we find that the weak field limit resembles the models of
Tilloy and Di~osi*, which is discontinuous in ®, rather than the con-
tinuous model of Di”osi*. This is because? allows for non-zero con-
jugate momentum 1y with the kinetic energy of a different sign, while
inref. 81, the momentum is set to zero via the constraint equations and
gauge fixing of the lapse. The discontinuity then arises because we are
operating in the ¢ - « limit, while in ref. 33, the discontinuity arises due
to sourcing the Newtonian potential via a weak measurement process.
We refer the reader to ref. 81 for details.

Weak field CQ master equations

Although the trade-off we derive does not depend on the parti-
culars of the classical-quantum theory (provided it reproduces
Newtonian gravity in the classical limit), we give two concrete
examples for completeness. In ref. 30 we show that there are two
classes of classical-quantum dynamics, one which is continuous in
phase space, and one which has discrete jumps in phase space.
We will give examples of each. Although they are the weak field
limit of Oppenheim, it is worth stressing that taking the New-
tonian limit entails certain coordinate choices and restrictions on
the metric. For example, here, we have restricted ourselves to
metrics of the form of Eq. (89). Any gauge fixing of General
Relativity which is done before deriving the master equation, is

generally not equivalent to taking the master equations of
Oppenheim”, and then taking the appropriate limit®.

Continuous master equation
For the class of master equations with continuous back-reaction,
specifying that the first moment on average satisfies Eq. (100) is
enough (up to drift terms which vanish under trace) to ensure the
master Equation includes a term

aQ~ ) : 3 ~ 5
E~{Hc(®),@}—t[Ho ,Qlt / d X{m(x) 7 +Wm(x)

/ dSXd 5ﬂ¢(x)5ﬂq)(x/ (DZ((D ToiX ) (o

+ / Exd Do(®, X, X) ([(x), [o, MY)]]),

where H. is the purely classical gravity Hamiltonian. We have
taken the dynamics, i.e., the drift to be local in x, while we allow
for the decoherence and diffusion terms to have some range. In
this case, the evolution law is still local but correlations can be
created'”. One can also add extra diffusion and decoherence into
Eq. (101) which we do not consider here since it only leads to
worse experimental bounds. However, adding additional diffu-
sion in ® will generally be required in order to impose the con-
straint g ~0%. This master equation is close to the one
considered in ref. 24, where the decoherence and diffusion ker-
nels are chosen to be the ones discussed in the second example
of Examples of Kernels saturating the decoherence diffusion
coupling constants trade-off. This is the weak field limit of the
simplest realisation in ref. 11. The case where the diffusion is
spatially uncorrelated D,(x,y)=€(x —x’) a regulator which
approaches a scalar delta function corresponds to the Newtonian
limit of the diffusion term e(x —x){NX)\/gx), {/&(X"),a}}.
Another natural diffusion kernel is
D,(x,y)= — D,(1+®(x"))A,.6(x,y), which can be understood as the
Newtonian limit of the spatial diffeomorphism invariant kernel
discussed in the section “Diffeomorphism invariant kernel”.

One can supplement the kernel by some mechanism to control
the diffusion. For example, a friction term such as

F(Q)=Dr3 [ dxdx'dy{N(x)\/g(x), {/8(X)eX — x'), HW)}a}.  (102)

In the weak field limit, this would add a term proportional to

Fo)= / . dxdx’ (mp(xX)Q) (103)

o
ST (x)

to the master equation of Eq. (101). Such a term would break Lorentz
invariance since it sets a temperature scale, although this is not
necessarily a deal breaker, since it is believed by many that quantum
gravity is also likely to also have an anomaly. However, the friction
term is a modification to Dy(x), and if too large, could run afoul of
precision tests of General Relativity, such as the orbital decay of binary
pulsars.

Discrete master equation
An example of a discrete master equation satisfying Eq. (100) is

d . c
B0 = He(@).0) — TH o1+ - [ x

nr 200) 8 (104)
{eﬁf dy“"*”(“?‘”)m(l 2“’“”) POy — 5 mx), ol |,

with 7 a dimensionless constant, and f(x)= ¢ . We have here inclu-
ded #i and c to make it easier to compare with experiments. To
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leading order, we could drop terms proportional to ®(x)/c? in both the
exponential and in N,/g=1 — 2®/c? inside the integral over x. This
gives

a . (m c iz [ dye(x
B =M1~ 1+ 1 [ x| O gy @) 3 ma. ol
(105)

These dynamical equations are supplemented with modified
constraint equations as outlined in ref. 37. In any case, the trade-off in
Eq. (31) is a statement independent of constraints and constraint pre-
servation, at least in the weak field limit.

Examples of Kernels saturating the decoherence diffusion cou-
pling constants trade-off
In this section, we give examples of kernels satisfying the decoherence
diffusion coupling constant trade-off in Eq. (23). For any choice of
kernel, we can compute the degree of diffusion it induces in precision
mass measurements (see the section “Detecting gravitational diffu-
sion”) and decoherence experiments (see the section “Decoherence
rates”) which allows us to rule out certain kernels experimentally.
Diffeomorphism invariance may single out having both Dy(x,y) and
D,(x, y) approach delta functions at short distances®’, but other alter-
natives may be possible.

As a first example, we shall take the Lindbladian coupling to be
Gaussian, taking

a/i 3
(106)

D (x,y)= gN (x,9)
where g,/(x, ) is a normalised Gaussian distribution. The mass my is a
reference mass, and we shall take it equal to the mass of the nucleons
which were considered in the section “Physical constraints on the
classicality of gravity”, meanwhile A% is a coupling constant that
determines the strength of the Lindbladian.

It should be noted that with this choice of smearing function,
the pure Lindbladian evolution appearing in Eq. (101) can be taken
to resemble the Lindbladian part of spontaneous collapse
models®®?*1%71% except here, there is no need to think about any ad-
hoc field, nor think of the collapse as being a physical process. Rather,
one necessarily gets decoherence of the wave function for free, via
gravitationally induced decoherence'*33%12¢

We now find the diffusion kernel D,(x,y) using the coupling
constants trade-off in (23). For simplicity, we shall assume the trade-off
is saturated, and we will take the back-reaction to be local, so that
O™ (x, ) = (D) “ (0)6(x, ). In this case we find

” 1 w  m: - IO
Dy )= 3 OF); 00 &Y e, (107)
0
where g3 }(x,y) is the kernel inverse of a normalised Gaussian
distribution.
It is shown in ref. 127, that the inverse distribution takes the form

836, =F(x, )8\ (x, ), (108)
where
=T > enrotn (x i ) (109)
i=1n=0

and the limit N> « is taken. In Eq. (109) c,(ro) = %’0)2’” and d is the
spatial dimension, so that x = (x, X3, ..., Xg).

In total then, we arrive at the expression for the D, which saturates
the bound

Dy(x,y)= —<Dt"), ) 30 FOo g o0 ). (110)

If we further take the back-reaction that of the Newtonian limit in
the section “Newtonian limit of CcQ theory”
(ler)f.m(x, y)= %60'"6;’“’6()(, y) then we find the D, which saturates the
bound is

1m3
D,(x,y)= gﬁF V)8 (X, ). (111)
[0}

Another example of a Lindbladian coupling which is familiar in the
literature is,

aﬁ
X — yl

D¥(x,y)= 112)

For a single Lindblad operator, this is the coupling introduced in**
used to reproduce a CQ master equation of gravity with a decoherence
rate given by the Diosi-Penrose formula®™°. Here we consider the
special case where the x,y dependence of Dy(x, y) is the same for all
a, f which need not hold in general. The fact that it gives the same
decoherence rate as Diosi-Penrose can be seen by plugging Eq. (112)
into the classical-quantum master equation in Eq. (101).

To invert the kernel in Eq. (112) we use the fact that

1,0 1)\
“an ) =00

from which one can immediately read of the generalised inverse
Dy 1)al,(x, y) to be

(113)

= ) L6y, {4

(DgV)apx, 1) =

where (D(,l)aﬁ are the matrix elements of the generalised inverse of D.
As a consequence, we find for this specific choice of kernel that the
diffusion matrix saturating the coupling constants bound in Eq. (31) is

(D3)p (115)

v 1 v
D5'5x,y)= 5 D15(x) V360, )DE )
where we have also assumed the back-reaction is local. Taking the

back- reactlon to further be that of the Newtonian limit of Eq. (101)
D) (x)= 16°m 5T we find

1
Dy )= 100

V2 (5(x,)). (116)

This diffusion kernel is argued for on the grounds of having the
fluctuations satisfy a Poisson equation, in ref. 24.

Diffeomorphism invariant kernel

Attempts to derive the constraint algebra of a generally covariant CQ
theory” (and ). Oppenheim, “The constraints of a continuous realisa-
tion of post-quantum-classical gravity", manuscript in preparation),
motivates the spatial diffeomorphism invariant kernel

DI x,x')= — é D\/g)Nx)gg" A 6(x,x"), (117)
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where A, is the Laplace-Beltrami operator. One can also consider the
full 3 +1kernel, via A®6(x, x')8(t, t') along with the associated Green’s
function of A® but this is irrelevant for the Newtonian limit. It is
however useful in removing the apparent asymmetry in the expres-
sions below, since one must recall that the §(x, x’) is a scalar in the first
coordinate and a tensor density in the second, and likewise (¢, t') has
an implicit lapse N(x’) in the second position. This kernel’s weak field
limit is
DM (x,x')y= — 1 D&78" 1+ D(x))A S(x, x), (118)
which is close to that of Eq. (116), but with a correction term that turns
out to be important.
Using Dy(x,x')= —1N/g6(x,x’), the Lindbladian kernel in
dimension d which saturates the trade-off for this diffusion kernel is

1
Do, jri(x, X') = 2D VEBOON(X)g;(x)8u (x)G(x, X), 119)

with G(x,x") the Green’s function for —-A. It is a density in the x’ coor-
dinate and a scalar in x. In the weak field limit, and to Oth order in ®(x),
this gives the Diosi-Penrose kernel, Eq. (112).

One could also consider the kernel

DI, x')= — é D+\/g(x)gigk A N(X)S(x,x'), (120)
which in the weak field limit is
DM (x,x')= — 1 D&V AD(0)5(x, X'). (121)

A comment on divergences

The kernel examples given above give rise to divergent variance in the
classical degrees of freedom, since in both cases the diffusion coeffi-
cient diverges when evaluated at the same point D,(x, x). Though we
do not have a general proof, this seems to be a general feature of the
coupling constant trade-off: for the examples where we can compute
the kernel inverse, at least one of D,(x,x) and Dy(x,x) diverge. A
divergent D,(x,x) generally leads to a formally divergent classical
energy production, whilst a divergent Lindbladian coupling Do(x, x)
can lead to a divergent energy production in the matter degrees of
freedom. The latter is related to the BPS problem®® of anomalous
heating, although it isn’t necessarily equivalent since some kernels may
diverge and be well-behaved from the point of view of energy pro-
duction. This is not an issue from a conceptual point of view, since the
only reason we expect energy to be conserved is due to Noether’s
theorem, and Noether’s theorem doesn’t apply when the evolution
isn’t unitary.

In the standard BPS problem, energy production in open
quantum field theory can be made small by renormalizing the
Lindbladian coefficient Dy(x, y) appearing in the master equation.
Thus the problem is merely one akin to the hierarchy problem,
where we are required to introduce another energy scale. How-
ever, in the case of classical-quantum coupling, the coupling
constant trade-off tells us that we cannot re-normalise Dy(x,y)
without affecting D,(x,y). In particular, tuning the diagonals
Do(x,x) to be arbitrarily small (large) has the effect of tuning
D>(x, x) to be arbitrarily (large) small: heuristically, one trades
energy production in the classical system with energy production
in the quantum system, and the relationship is fixed by the trade-
off. On expectation, the total energy could be preserved, and the
back-reaction can even slow down the flow of energy, but it’'s
unclear if this is enough.

However, it is worth noting that while D,(x,x’) may appear
to diverge at a single point as x — x/, when integrated over
test functions, [ dxdx'D,(x,x")f(x)f(x’) is usually well-behaved.
The kernels discussed above have this property. When it comes
to physically relevant quantities, such as measuring the gravita-
tional diffusion in tabletop experiments, it is the smeared well-
behaved quantity that is physically relevant. However, in cos-
mology, we typically take the constraint equation of General
Relativity to be exactly satisfied at each point, and so one
might imagine that m3(x), and hence D,(x,x) is the relevant
quantity (see the discussion in the section “Detecting gravita-
tional diffusion”). However, one can set mp=0 via a gauge
freedom®. In GR, the counterpart to the m% kinetic term is
Gyium’m¥(x), and it’s perhaps worth noting that this quantity is not
positive definite. It is also important to note that here, we have
taken the weak field and ¢ - « limit of General Relativity. At short
distances when the diffusion becomes large, we expect this
approximation to break down. One possible method of studying
this problem rigorously would be through the regularisation
properties of the classical-quantum path integral which we
introduce in®%*,

Decoherence rates
In this section, we relate decoherence rates to Dy, and also to the
average (Dg)= [ dzTr[Dgﬂ(z;x, y)La(x)QL;(y)]. In particular, we shall
show that the decoherence rate of a mass in superposition, is given by
Eq. (131) in terms of the Lindblad operators and D?, and can be related
to the quantity (Dg).

We consider the case of a quantum mass initially in a partially
decohered superposition of state |L) and |R). We describe the
quantum state using creation and annihilation operators
¥(x), P'(x) on a Fock space, related to the usual momentum-based
Fock operators as g(x)= [ dpe"ﬁ'fa[,. The mass density operator is

defined via fm(x)=my’ ()p(x), where m is the mass of the particle.
We assume that the state remains well approximated by a state
with fixed particle number, and the superposition can be taken to
be distributions centred around x=x; and x=xi with total mass
M, ie. for a one-particle state we could take

IL/R)= [ d3fo/R(x)lp*(x)|0). We will take them to be well sepa-
rated so that f; (x)fr(x) = 0, and we take the separation distance to
be larger than the scale of the non-locality in Dy(x, y). Mathema-
tically this means that (L\D‘(‘,ﬂ(z;x,y)L;(y)La(x)\R)=O for any local
operators Lq(x) and Lg(y).

With this orthogonality condition, we can then (at least initially)
consider the joint quantum classical state restricted to the two-
dimensional Hilbert space of these two states so that the total
quantum-classical system can be written as

u (O, mg, t) a(®,my,t) >
PO, mq,, )= , 122
(P, 7o, ) <a*((D, M, t) UR(D, Ty, b) (122)
where u (D, g, t) and ur(P, e, ) correspond to some subnormalised
probability distribution over the classical states of the

gravitational field.
We define the total quantum state pq by integrating over the
classical degrees of freedom

Pq= / DOD 40(D, 1y, t), (123)

and we shall relate (Do) appearing in the trade-off to the
decoherence rate of the off diagonals of pq. Integrating over
the classical phase space in Eq. (9), one finds the following expression
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for the evolution of pq

0,
e / DODITy — i(H(®, M), oD, )]

/ DpDm g, / dxdy D“ (D, T; X, V)L 4 (X)Q(P, nm,t)L o)

- 503 (@, o X, LWL o(X), (D, gy, 1))

(124)

In particular, one finds that the off-diagonals (L| aQ IR) evolve in
part according to the commutator, and in part due to the Lindbladian
term

/ DD, / dxdy[(LIDE (@, T X, YL (0@, T, OLLYIR)
(125)

——Da (®, ;. X, Y)(LI{L (J’)La(x) AP, 7o, O}R) |-

Care must be taken however, because both the quantum Hamil-
tonian and the Lindbladian coupling constants depend on the classical
degrees of freedom which are affected by the quantum degrees of
freedom, and thus the evolution of the quantum system is non-
Markovian in general.

We shall now study the two terms appearing in Eq. (125) sepa-
rately, starting with the first term. Since we assume that the state is
well approximated by a state with fixed particle number then the
contributions to the first term in Eq. (125) only come from
terms where L,(x) and Lg(y) have the same number of creation and
annihilation operators. To compute the expression, one
commutes through the creation operators to act on the (L| bra, and
picks up a term fi(x). Similarly, one commutes the annihilation
operators to the act on the |R) ket, and picks up a term fz(y). As a
consequence

(LIDF(®, %, Yo ()QADP, T, OLLW)IR) ~ DI (®, 0 X, Y)f L (X} () = O,
(126)

where the last equality follows from the fact that we are taking the
masses to be well separated and the range of Dy(x, y) is assumed to be
much less than the separation between the masses.

Hence, the evolution of the off-diagonals comes from the
(off-diagonals) of the unitary evolution and the second term in Eq.
(125), the so-called no-event term. The off-diagonals of the no-event
term is

1 .
~3 | D#Dms [ dxdyDF®, Mo x NULILIOILA, o, o, ONIR)
127)

which is negative definite and acts to exponentially suppress the
coherence. To see this, note that expanding out o(®, g, t) in terms of
the approximate 2 dimensional Hilbert space

o(®, g, ) =u (O, gy, O)|L)(L| + ug(D, Mg, O)IR) (R

. (128)
+a(®,my, OILY (R +a (D, g, IR (L],

and using the fact that the range of Do(x,y) is much less than the
separation between the left and right masses, we can write the off-
diagonals of the no-event term as

Ly
-5 / DODIDL @, 16: %, 1) ((LILIOILL L) + (RILLOLGOIR) ) (LI(P, T IR):

(129)

Equation (129) already expresses the fact that the off-diagonal
terms will decay, and the particle will decohere at a rate determined by
the integrand of Eq. (129).

We can go slightly further when in the presence of a background
Newtonian potential which is dominant, such as the Earth’s ®,. The
Earth’s background potential dominates over small fluctuations in ®
due to the particles and we can approximate Eq. (129) by

1 4 .
— 5 D ILILLOILLOILEOIL) + RILFWLEWLOIR)LIPQIR),

(130)

where the coupling Dgﬁ(x, y) depends on the background Newtonian
potential, but is otherwise phase-space independent. The result is to
exponentially decrease the coherence (L|pg|R) with a rate A deter-
mined by

/ dxdyD§ (¢ YILILEOILL(OIL) + (RILLOLLMOIR).  (13D)

Let us now show that the (Do) term appearing in the trade-off (34)
is always less than (twice) this decoherence rate when in the presence
of a background potential. Specifically, we show that

(Do) = / DOD,, / dxdyTr [D"ﬁ(m e X, VLML ()@, nq,)] <21,
132)

where we assume that we are in the presence of a background
potential. To see this, we first expand out the CQ state in terms of
Eq. (128) and use the fact that Dy has a range less than the separation of
the masses. We then arrive at the following expression for the left-hand
side of Eq. (132)

/D®Dn® / dxdyD“ﬁ(CD Mg X, Y)({ L\L/](y)L OIL)uy (D, g, )+ (RIL (y)L,x(x)\R UR(D, Ty, 1)),
(133)

In the presence of a background potential, this dominates the
contribution to the decoherence and we are left with

/ dxdyDE (6, Y)(LILLOILIL) (LIpglL) + (RILEDILL IR (RIDgIR)).
(134)

Due to the positivity of the CQ density matrix (L|pq|L) and (R|pq|R)
must both be positive. Furthermore, they must sum to one due to
normalisation, from which Eq. (131) directly follows.

It is also important to note that though A is the decoherence rate
of a particle in superposition of L/R states, the bound (132) holds even
for fully decohered masses in any mixture of |L){L]|, |R)(R| states. This
can be seen directly from (133) which depends only on v, ug.

Decoherence rate examples

In this section, we give an explicit example of a decoherence rate
calculation. Importantly, we see that in general, the decoherence rate
can depend on the probability density. This suggests that the terms
appearing in the trade-off relation will need to depend on expectation
values such as the expectation value of the mass at a point x, rather
than a stronger bound in terms of the mass density. This is perhaps not
surprising, since the decoherence rate itself can be thought of as an
expectation value, being related to the average time it takes for off-
diagonal elements to decay. In conclusion, this motivates us to
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advocate for the volume of the wave packet to be included in the figure
of merit in future interference experiments.

We take the Newtonian limit master equation defined by Eq. (101).
We ignore the unitary part of the evolution, since it will not directly
contribute to the decoherence rate, and can be small for a free particle
in superposition. From Eq. (101) we find the relevant evolution for the
quantum state pq, obtained by integrating over the classical degrees of
freedom to be

apQ

B2 =3 | ExdaDye (e log o). 139

We now compute the off-diagonal elements for a particle in
superposition of orthogonal |L), |R) states

0,
< ﬂ‘ >— - / Pxd®yDo (6, ) (my () — M), () — Mg KLIPQIR).
136)

where m, (x) = (L|m(x)|L) and similarly for the right state. We see that
the off-diagonals decay exponentially with a rate determined by

A= / dPxd®yDo (x, y)m, () — mp@)m,0) — mg).  (137)

In the main body, and the previous subsection, we have assumed
that the superposition of the particle is much less than the typical scale
of Do(x,y). In this example, this means that we take the particles suf-
ficiently separated so that we can approximate Do(x, y)m (x)mg(y) =0,
in which case Eq. (137) is precisely the decoherence rate calculated in
Eq. (131) with L(x)=rm(x), as is to be expected.

The natural decoherence kernel from the point of view of dif-
feomorphism invariance is Do(x,y) = Do6(x,y), in which case for a
particle of mass M, and uniform wave-packet volume V, Eq. (137) gives
A=2DoMP/V.

As another example, we can take D, (x, x’) to be the Diosi-Penrose
decoherence kernel defined via Dy(x,y)= ‘XD%W so that the off-
diagonals decay exponentially with a rate proportional to the
Diosi-Penrose decoherence rate

A= / d3xd3 — my)). (138)

In this example, taking the superposition to be sufficiently sepa-
rated means that we are approximating ‘Xﬁ"le =0 in comparison with

the rest of the terms appearing in Eq. (138). We are then left with

(mL(X)mL(V) + MR (X)mMR(y)), 139)

A= / &xd’y Do
which for spherical distributions of radius R and total mass M is pro-
portional to the average gravitational self-energy of each mass
distribution A= "DOMZ.

For a composne particle of mass M, made up of N constituents
each of radius R, the mass density will be represented by a sum over all
of the particles m(x) = Y ;m;(x). The decoherence rate is given by

A= / d’xd’ yIX yl (Z my ;omy ;(y) + ka l(x)ij(.y)>
(140)
Since the cross terms involving i,j are suppressed by a factor of

inter-atomic scales, to leading order the contribution to the deco-
herence rate is lower bounded by the i = j component of the sums in Eq.

(140), which glves an extra factor of N relative to the single particle
case A= $2oM

Both Eqs. (138) and (139) depend on the probability density of the
mass. In particular, taking the probability density to be arbitrarily
peaked, one finds that the decoherence rate also diverges. This has to
be the case: recall from the section “A Trade-off between decoherence
and diffusion” that if one considers a particle in a superposition of two
arbitrarily peaked probability densities, then there can be an arbitrarily
large response in the Newtonian potential around those points. As a
consequence, for such states, the decoherence must occur arbitrarily
fast, or there must be an arbitrarily large amount of diffusion to cover
up the back-reaction and maintain coherence. For the continuous
master equation, such as that of Eq. (101) this diffusion must also occur
throughout space, although it can depend on the gravitational degrees
of freedom. Since divergent energy production throughout space is
clearly unphysical, it must be the case that the decoherence rate must
also depend on the expected mass density, as is the case for this
example. This argument allows us to rule out continuous master
equations that have pure Lindbladian terms that predict decoherence
rates which remain finite as the mass density becomes arbitrarily
peaked since the coupling constant trade-off will demand that an
infinite amount of diffusion is required to cover up the back-reaction
and maintain coherence. This is the case for the class of models with
CSL-type Lindbladian couplings which are phase space independent,
for example in Eq. (106).

Detecting gravitational diffusion

In this section, we show how the diffusion induced on the Newtonian
potential can be measured experimentally. metric leads to observable
effects, such as variations in the accelerations involved in torsion
experiments and stochastic wave production in cosmology. As shown
in the main body of the text, in the non-relativistic limit, c > «, the CQ
dynamics can be approximated by sourcing the Newtonian potential
by a random mass term, and in order to maintain the coherence of any
mass is superposition, there must be noise in the Newtonian potential
such that we cannot tell which element of the superposition the par-
ticle will be in

V2O = 4nG[m(x, £) + u(d, i) J(x, t)], (141)

with

En[J(x, 6)]=0, Eglw/(x, Ow (@, t)]=2(D,(x,y, ®))6(¢, £),  (142)
where (D,(x,y, ®)) := Tr[D5"(x,y, (Db)L”(x)po,(y)] and p is the quan-
tum state for the decohered mass density. The diffusion coefficient in
Eq. (142) is chosen in order for the dynamics to have the same
moments as the CQ master equation (4). The solution to Eq. (141),
having absorbed u into J is given by
Ot x)= — G/ &x ,[m(x’, £) — u(®, my/(x', t)]

143
|x — x'| ! (143)

where the statistics of / are described by Eq. (142). A formal treatment
of solutions to non-linear stochastic integrals of the form Eq. (141) can
be found in ref. 82.

One can also verify this behaviour in specific cases. In the con-
tinuous model of the section “Continuous master equation”, the noise
is taken to be Gaussian, and this, as well as the evolution of the
quantum state, is what determines the diffusion in Eq. (143). For the
class of discrete models, the higher order moments such as
EnLU@x, eY, t')(z,t")] are suppressed by an order parameter***” and
whenever this is true we expect we can approximate the dynamics of
the Newtonian potential by a Gaussian process. Whether this is the
case or not, it is the second-order moment that enters into our
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discussion of the variance here. As such, for minimally coupled the-
ories, the Newtonian potential will appear to be sourced by a random
mass distribution.

In the discrete case, a precise understanding of the effects of the
diffusion beyond the Gaussian approximation involves solving the full
classical-quantum dynamics, perhaps using the methods of Oppen-
heim et al.?. In Eq. (141) we are also taking the time scale of the dif-
fusion to be faster than the dynamics of the matter distribution.
Likewise for the decoherence—we showed in the “Methods” subsection
“Decoherence rates” for continuous models the evolution of the
quantum state acts to decohere it into a mass density eigenbasis m(x).
One could of course also include the quantum state evolution in a
simulation of full CQ dynamics, but this is beyond the scope of the
current work.

Note that if the moments of the noise process are Galilean
invariant, then the theory given by Eq. (141) is Galilean invariant as we
would expect in the Newtonian limit. One can further derive Eq. (141)
from manifestly diffeomorphism invariant theories®, such as those of
refs. 39,131.

Table-top experiments
In this section we estimate the variation in force which would be seen
in table-top experiments which bounds the diffusion of classical the-
ories of gravity from above, giving a squeezed bound on D, due to
lower bounds on diffusion arising from coherence experiments. We do
this for dynamics in Eq. (141), but the methodology is general and
could also be used in a full simulation of CQ dynamics.

The variation in force induced on a composite mass is found via

F o= / EBxm)vo. (144)

Using the solution in Eq. (143), the total force can be written

ﬁ/
F wi=—G / d3xdx’ m(x)ixp[m(x t)—J(x', t)]. (145)
In reality, we measure time-averaged force by measuring time-
averaged accelerations over the time resolution of the experiment
AT & OAT dtF,,. The total variation in the force’s time-averaged mag-
nitude. The full covariance matrix for various kernels in the Newtonian
limit is glven in (J. Oppenhelm and A. Russo, manuscript in prepara-
tion), 0% := F ot * F ot Can be written as

X -
S5 DXy, O,

(146)

-%)-

2. 1 2/ Seddvdix
UF_ATZG, d’xd’yd’x dym(x)m(y) Py~

We shall use Eq. (146) to provide an upper bound on coupling
constants of CQ theories for different choices of kernels D,(x',y’, ®).
Given a choice of functional form of the kernel, all that remains is the
strength of the diffusion coupling, which for the translation invariant
kernels we consider here takes the form of a single coupling constant
D,. We take D, to be a dimension-full quantity with units kg? sm which
characterises the rate of diffusion for the conjugate momenta of the
Newtonian potential.

For a composite mass, we can approximate the mass density by
summing over N individual atoms of mass density m;(x), m(x) = Y;my(x).
The total force is the g_i)ven by F=>_;F; where F;is the force on
each individual atom F ;= — [, dxm; (x)V(D (x), and the total variation
of force is then o = E[ZyF Fil— B FT

In general, the squeeze WII] depend on the functional choice of
D5(x, y, ®) on the Newtonian potential. As mentioned in the main body,
in the presence of a large background potential ®y, such as that of the
Earth’s, we will often be able to approximate D,(x, y, ®) = D,(x, y, ®y).

This is true for the kernels with functional dependence of the form
D, ~®", D, ~V @, though the approximation does not hold for all ker-
nels, for example, D, ~ V*® which creates diffusion only where there is
the mass density. We hereby shall only consider diffusion kernels
D;(x, y, ®p) where the background potential is dominant, leaving more
general considerations for future work.

For local translation invariant dynamics for which the background
Newtonian potential is dominant, for example, D,~®", we have
(Da(x,y, Dp)) = (D2(Dy,))6(x, y) and we arrive at the expression for the
total variation in time-averaged force

_)/

X)

ok= Z / dxd’yd’x' m;x)m; (y) ) -
Yy

XXy —x] (Dy(x', Dp)).

(147)

To leading order, the integral in Eq. (147) is dominated by the self
variation term where i =j, since nuclear scales 10° m dominate over
inter-atomic scales 10~° m, so that L[S FiF i1~ ZI.E[F,-Z]. Approximat-
ing the mass density of the atoms as coming from their nucleus, and
taking them to be spheres of constant density p with radius ryand mass
my, we find that the integral in Eq. (147) is approximately

2
o2~ "’G/”N / X (Dy(®y)). (148)

For the class of continuous dynamics (D,(®y,)) = D,(®y,), since the
diffusion is not associated with any Lindblad operators. If there is noise
everywhere throughout space, then the integral in Eq. (148) diverges
and gives evidence that continuous CQ theories with noise everywhere
should be ruled out.

As such, we expect that continuous CQ theory must contain non-
linear terms proportional to the Newtonian potential appearing in Eq.
(141), in which case we can approximate [ dx'D, by Vy,D, where V, is
the volume of the region over which the background Newtonian
potential is significant. In total then, we find for continuous local CQ
dynamics

2 2.2
o2 DyNG pryVy (149)
F AT
From this, we can calculate D, in terms of the total variance of the
acceleration 02 = -t to get a lower bound
tot

2\
< JaNTNAT. (150)
VG

Standard Cavendish type classical torsion experiments measure
accelerations of the order 107 ms, and we can take the time over
which the acceleration is averaged to be that of minutes AT-10%s,so0 a
very conservative bound is g, ~107 m s, whilst N will be N-10%* and
ry~107" m. We take the background Newtonian potential to be that of
the Earth and we (conservatively) take Vj, to be Vy, ~r2h~10°m?
where rg is the Earth’s radius and A is the atmospheric height. We see
that this bounds D, from above by D, <10™* kg?sm™.

On the other hand, D, is bounded from below from interferometry
experiments which bound the decoherence rate. From Eq. (137) and the
coupling constant trade-off, for the kernel D,(x,y)=D,56(x,y) we see
(ignoring constant factors) that the decoherence rate is found to be

NaM;

A~ ViDy’

(151)

where M), is the mass of a composite particle in the interferometry
experiment, which is made up of N, particles, each with volume V,. This
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gives rise to the squeeze

OINFAAT

2
Vo e i
b

V/IA ’

(152)

Using the numbers from ref. 59, with M, ~10"*kg, N, -10% and
V3~1010107 m*=10"* m? 1-10's™ we find that D, >10"" kg?sm™.
This suggests that the D,(x, y) = D,6(x, y) kernel for classical gravity is
already ruled out by experiment.

For the local discrete models, such as that of Eq. (104), the theory
is less constrained due to the dependence of the diffusion on the mass
density. In this case (D,(®y)) = ,L—P‘,Dz(d)b)m(x), where the factors of
Planck length and Planck mass are to ensure that D(®y) has the
required units. We arrive at the upper bound for D,

O2Nr{ATm,

2D,.
my Gl 2

(153)

Meanwhile, from Eq. (131), and coupling constant trade-off (30)

the decoherence rate for local discreet jumping models goes as

A~ "IQE’)"", which gives rise to the lower bound for D,. From this, we
P2

arrive at the squeeze

M > 113’& > % (154)
mN62 mp A
and plugging in the numbers we find the bound given by Eq. (46) which
gives rise to the squeeze for local discrete mod-
els 10~ kgs > ;£ D, 210> kgs.
We can also consider other diffusion kernels, for example, that of
Eq. (118). In this case, for continuous dynamics, we have that
(Dy(x,y)) = — lﬁDz((Db)Vz(S(x, ). The Lindbladian kernel saturating the
coupling constants trade-off at zeroeth order in ®(x), is the
Diosi-Penrose kernel Dy(x,y, ®,)= Dlg‘f';ﬁ), as we saw in the section
“Examples of Kernels saturating the decoherence diffusion coupling
constants trade-off”. Approximating the masses as spheres of constant
density we find from a substitution of the kernel into Eq. (146) that the
variation in time-averaged force is given by

2,2 2
o2 ~ PO MiND, (155)
ATry
We therefore find a lower bound for D, in terms of the variation in
acceleration

2
_ATLoNT,

D= 2125 (156)

’

which for classical torsion experiments o, ~107 ms2, T~10?s, N -10*
and ry-10"m gives D,[> <10~’kgm~1. On the other hand, for this
kernel the decoherence rate can be calculated via Eq. (139)

2
ML (157)
[:D,R,
which gives the squeeze on D,
ATo2Nr3 N M?

N >1D,> Igﬂ > (158)
For the numbers used in the main body of the
text®My ~102 kg, Ny ~10%, R, - V2 =10"2m,A~10's,  this yields

D,[3>10"3 kgm™" and so this model is not ruled out by experiment.

In general then, we expect that by simulating full CQ dynamics
satisfying the decoherence diffusion trade-off we will be able to
squeeze D, from above and below. We bound D, from above by
studying the effects of diffusion on gravitational experiments, and we
bound D, from below using the coupling constant trade-off and
coherence experiments lower bounding the decoherence rate. As we
have seen in this section, it appears that classes of continuous CQ
hybrid theories of gravity, including models without spatial correla-
tions, are already experimentally ruled out, whilst others, such as the
kernels in subsection “Diffeomorphism invariant kernel” require
stronger bounds from both gravitational and coherence experiments.
We have been very conservative in our estimates, and so we expect a
more thourough analysis will tighten the bounds by orders of
magnitute.

References

1. DeWitt, C. M. & Rickles, D. The Role of Gravitation in Physics: Report
from the 1957 Chapel Hill Conference, Vol. 5 (epubli, 2011).

2. Feynman, R. P. In Feynman Lectures on Gravitation (eds Morinigo,
F. B., Wagner, W. G. & Hatfield, B.) 10-11 (1996).

3. Aharonov, Y. & Rohrlich, D. Quantum Paradoxes: Quantum Theory
for the Perplexed 212-213 (Wiley-VCH, 2003).

4. Eppley, K. & Hannah, E. The necessity of quantizing the gravita-
tional field. Found. Phys. 7, 51 (1977).

5. Unruh, W. G. Steps towards a quantum theory of gravity. In
Quantum Theory of Gravity: Essays in honor of the 60th birthday
of Bryce S. DeWitt (ed Christensen, S. M.) (Adam Hilger Ltd., 1984).

6. Carlip, S. Is quantum gravity necessary? Class. Quantum Gravity
25, 154010 (2008).

7. Mari, A., De Palma, G. & Giovannetti, V. Experiments testing
macroscopic quantum superpositions must be slow. Sci. Rep. 6,
22777 (2016).

8. Baym, G. & Ozawa, T. Two-slit diffraction with highly charged
particles: Niels Bohr’s consistency argument that the electro-
magnetic field must be quantized. Proc. Natl Acad. Sci. USA 106,
3035 (2009).

9. Belenchia, A. et al. Quantum superposition of massive objects and
the quantization of gravity. Phys. Rev. D 98, (2018) https://doi.org/
10.1103/physrevd.98.126009.

10. Kent, A. Simple refutation of the Eppleyhannah argument. Class.
Quantum Gravity 35, 245008 (2018).

1.  Oppenheim, J. A post-quantum theory of classical gravity?.
arXiv:1811.03116 [hep-th] (2018).

12. Rydving, E., Aurell, E. & Pikovski, I. Do gedanken experiments
compel quantization of gravity? Phys. Rev. D 104, 086024
(2021).

13.  Aleksandrov, |. & Naturf, Z. 36a, 902 (1981); a. anderson. Phys. Rev.
Lett 74, 621 (1995).

14. Kapral, R. Progress in the theory of mixed quantum-classical
dynamics. Annu. Rev. Phys. Chem. 57, 129-157 (2006).

15.  Boucher, W. & Traschen, J. Semiclassical physics and quantum
fluctuations. Phys. Rev. D 37, 3522 (1988).

16. Diosi, L., Gisin, N. & Strunz, W. T. Quantum approach to
coupling classical and quantum dynamics. Phys. Rev. A 61,
022108 (2000).

17.  Sato, I. An attempt to unite the quantum theory of wave field with
the theory of general relativity. Sci. Rep. Tohoku Univ. 1st ser. Phys.
Chem. Astron. 33, 30 (1950).

18. Mgller, C. et al. Les théories relativistes de la gravitation. In Col-
loques Internationaux CNRS Vol. 91 (1962).

19. Rosenfeld, L. On quantization of fields. Nucl. Phys. 40, 353 (1963).

20. Page, D. N. & Geilker, C. Indirect evidence for quantum gravity.
Phys. Rev. Lett. 47, 979 (1981).

21.  Blanchard, P. & Jadczyk, A. Event-enhanced quantum theory and
piecewise deterministic dynamics. Ann. Phys. 507, 583 (1995).

Nature Communications | (2023)14:7910

2


https://doi.org/10.1103/physrevd.98.126009
https://doi.org/10.1103/physrevd.98.126009

Article

https://doi.org/10.1038/s41467-023-43348-2

22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Diosi, L. Quantum dynamics with two Planck constants and the
semiclassical limit. arXiv:quant-ph/9503023 [quant-ph] (1995).
Alicki, R. & Kryszewski, S. Completely positive Bloch-Boltzmann
equations. Phys. Rev. A 68, 013809 (2003).

Diosi, L. The gravity-related decoherence master equation from
hybrid dynamics. J. Phys.-Conf. Ser. 306, 012006 (2011).

Poulin, D. & Preskill, J. Information loss in quantum field theories.
Front. Quantum Inf. Phys. KITP https://online.kitp.ucsb.edu/
online/ginfo_c17/poulin/ (2017).

Oppenheim, J., Sparaciari, C., Soda, B., & Weller-Davies, Z.
Objective trajectories in hybrid classical-quantum dynamics.
Quantum 7, 891 (2023).

Layton, I., Oppenheim, J. & Weller-Davies, Z. A healthier
semi-classical dynamics. arxiv2208.11722 (2022).

Gorini, V., Kossakowski, A. & Sudarshan, E. C. G. Completely
positive dynamical semigroups of N-level systems. J. Math. Phys.
17, 821 (1976).

Lindblad, G. On the generators of quantum dynamical semi-
groups. Commun. Math. Phys. 48, 119 (1976).

Oppenheim, J., Sparaciari, C., Soda, B. & Weller-Davies, Z. The two
classes of hybrid classical-quantum dynamics. arXiv:2203.01332
[quant-ph] (2022).

Kafri, D., Taylor, J. M. & Milburn, G. A classical channel model for
gravitational decoherence. New J. Phys. 16, 065020 (2014).
Kafri, D., Milburn, G. J. & Taylor, J. M. Bounds on quantum
communication via Newtonian gravity. N. J. Phys. 17, 015006
(2015).

Tilloy, A. & Didsi, L. Sourcing semiclassical gravity from sponta-
neously localized quantum matter. Phys. Rev. D 93, 024026
(2016).

Tilloy, A. & Didsi, L. On gkls dynamics for local operations and
classical communication. Open Syst. Inf. Dyn. 24, 1740020
(2017).

Tilloy, A. & Diosi, L. Principle of least decoherence for Newtonian
semiclassical gravity. Phys. Rev. D 96, 104045 (2017).

Arnowitt, R., Deser, S. & Misner, C. W. Republication of: the
dynamics of general relativity. Gen. Relativ. Gravit. 40, 1997
(2008).

Oppenheim, J., Weller-Davies, Z. The constraints of post-quantum
classical gravity. JHEP. 2022, 80 (2022).

Oppenheim, J. & Weller-Davies, Z. Path integrals for classical-
quantum dynamics. arXiv:2301.04677 (2023).

Oppenheim, J. & Weller-Davies, Z. Covariant path integrals

for quantum fields back-reacting on classical space-time.
arXiv:2302.07283 (2023).

Bohr, N. & Rosenfeld, L. On the question of the measurability of
electromagnetic field quantities. In Quantum Theory and Mea-
surement (eds Wheeler, J. A. & Wojciech H. Zurek, W. H.). Trans-
lated by Aage Petersen. Originally published as “Zur Frage der
Messbarkeit der Elektromagnetischen Feldgr6ssen" 479-522
(Mat.-fys. Medd Dan. Vid Selsk. 12). (Princeton University Press,
Princeton, [1933]

1983).

DeWitt, B. S. Definition of commutators via the uncertainty
principle. J. Math. Phys. 3, 619 (1962).

Gisin, N. Stochastic quantum dynamics and relativity. Helv. Phys.
Acta 62, 363 (1989).

Caro, J. & Salcedo, L. Impediments to mixing classical and quan-
tum dynamics. Phys. Rev. A 60, 842 (1999).

Salcedo, L. Absence of classical and quantum mixing. Phys. Rev. A
54, 3657 (1996).

Sahoo, D. Mixing quantum and classical mechanics and unique-
ness of Planck’s constant. J. Phys. A: Math. Gen. 37, 997 (2004).
Terno, D. R. Inconsistency of quantumclassical dynamics, and
what it implies. Found. Phys. 36, 102 (2006).

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

50.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

7.

Barcelo, C., Carballo-Rubio, R., Garay, L. J. & Gémez-Escalante, R.
Hybrid classical-quantum formulations ask for hybrid notions.
Phys. Rev. A 86, 042120 (2012).

Marletto, C. & Vedral, V. Why we need to quantise everything,
including gravity. npj Quantum Inf. 3, 29 (2017).

Cavendish, H. Xxi experiments to determine the density of the
earth. Philos.Trans. R. Soc. Lond. 88, 469-526 (1798).

Luther, G. G. & Towler, W. R. Redetermination of the Newtonian
gravitational constant g. Phys. Rev. Lett. 48, 121 (1982).
Gundlach, J. H. & Merkowitz, S. M. Measurement of Newton’s
constant using a torsion balance with angular acceleration feed-
back. Phys. Rev. Lett. 85, 2869 (2000).

Quinn, T. Measuring big g. Nature 408, 919 (2000).

Gillies, G. & Unnikrishnan, C. The attracting masses in measure-
ments of g: an overview of physical characteristics and perfor-
mance. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 372,
20140022 (2014).

Rothleitner, C. & Schlamminger, S. Invited review article: mea-
surements of the Newtonian constant of gravitation, g. Rev. Sci.
Instrum. 88, 111101 (2017).

Arndt, M. et al. Wave-particle duality of c60 molecules. Nature
401, 680 (1999).

Nimmrichter, S., Hornberger, K., Haslinger, P. & Arndt, M. Testing
spontaneous localization theories with matter-wave inter-
ferometry. Phys. Rev. A 83, 043621 (2011).

Juffmann, T. et al. Real-time single-molecule imaging of quantum
interference. Nat. Nanotechnol. 7, 297 (2012).

Juffmann, T., Nimmrichter, S., Arndt, M., Gleiter, H. & Hornberger,
K. New prospects for de Broglie interferometry. Found. Phys. 42,
98 (2012).

Gerlich, S. et al. Quantum interference of large organic molecules.
Nat. Commun. 2, 263 (2011).

Bassi, A. & Ghirardi, G. Dynamical reduction models. Phys. Rep.
379, 257-426 (2003).

Westphal, T., Hepach, H., Pfaff, J. et al. Measurement of gravita-
tional coupling between millimetre-sized masses. Nature 591,
225-228 (2021).

Schmodle, J., Dragosits, M., Hepach, H. & Aspelmeyer, M. A
micromechanical proof-of-principle experiment for measuring the
gravitational force of milligram masses. Class. Quantum Gravity
33, 125031 (2016).

Lee, J. G., Adelberger, E. G., Cook, T. S., Fleischer, S. M. & Heckel,
B. R. New test of the gravitational 1/r* law at separations down to
52 um. Phys. Rev. Lett. 124, 101101 (2020).

Kafri, D. & Taylor, J. M. A noise inequality for classical forces.
arXiv:1311.4558 [quant-ph] (2013).

Kafri, D., Milburn, G. & Taylor, J. Bounds on quantum commu-
nication via Newtonian gravity. N. J. Phys. 17, 015006 (2015).
Bose, S. et al. Spin entanglement witness for quantum gravity.
Phys. Rev. Lett. 119, 240401 (2017).

Marletto, C. & Vedral, V. Gravitationally induced entanglement
between two massive particles is sufficient evidence of quantum
effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).

Marshman, R. J., Mazumdar, A. & Bose, S. Locality and entangle-
ment in table-top testing of the quantum nature of linearized
gravity. Phys. Rev. A 101, https://doi.org/10.1103/physreva.101.
052110 (2020).

Pedernales, J. S., Streltsov, K., & Plenio, M. B. (2022). Enhancing
Gravitational Interaction between Quantum Systems by a Massive
Mediator. Phys. Rev. Lett. 128, 110401 (2022).

Carney, D., Mdller, H., & Taylor, J. M. Using an Atom Interferometer
to Infer Gravitational Entanglement Generation. PRX Quantum 2,
030330 (2021).

Kent, A. & Pitala-Garca, D. Testing the nonclassicality of space-
time: What can we learn from Bellbose et al.-Marletto-Vedral

Nature Communications | (2023)14:7910


https://online.kitp.ucsb.edu/online/qinfo_c17/poulin/
https://online.kitp.ucsb.edu/online/qinfo_c17/poulin/
https://doi.org/10.1103/physreva.101.052110
https://doi.org/10.1103/physreva.101.052110

Article

https://doi.org/10.1038/s41467-023-43348-2

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

experiments? Phys. Rev. D 104, https://doi.org/10.1103/physrevd.
104.126030 (2021).

Christodoulou, M. et al. Locally mediated entanglement through
gravity from first principles. Phys. Rev. Lett. 130, 100202 (2023).
Danielson, D. L., Satishchandran, G. & Wald, R. M. gravitationally
mediated entanglement: Newtonian field vs. gravitons. Phys. Rev.
D 105, 086001 (2022).

Lami, L., Pedernales, J. S. & Plenio, M. B. Testing the quantumness
of gravity without entanglement. arXiv:2302.03075 (2023).
Kraus, K. Complementary observables and uncertainty relations.
Phys. Rev. D 35, 3070 (1987).

Kramers, H. A. Brownian motion in a field of force and the diffusion
model of chemical reactions. Physica 7, 284 (1940).

Moyal, J. Stochastic processes and statistical physics. J. R. Stat.
Soc. Ser. B (Methodological) 11, 150 (1949).

Layton, I., Oppenheim, J. & Weller-Davies, Z. A healthier semi-
classical dynamics. arXiv:2208.11722 [quant-ph] (2022).
Feynman, R. & Vernon, F. The theory of a general quantum system
interacting with a linear dissipative system. Ann. Phys. 281,

547 (2000).

Breuer, H.-P. & Petruccione, F. et al. The Theory of Open Quantum
Systems (Oxford University Press on Demand, 2002).

Layton, I., Oppenheim, J., Russo, A. & Weller-Davies, Z. The weak
field limit of quantum matter back-reacting on classical space-
time. J. High Energy Phys. 2023, 1 (2023).

Conus, D. & Dalang, R. The non-linear stochastic wave equation in
high dimensions. Electron. J. Probab. 13, 629 (2008).

Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of
wave-function collapse, underlying theories, and experimental
tests. Rev. Mod. Phys. 85, 471 (2013).

Chevalier, H., Paige, A. J. & Kim, M. S. Witnessing the nonclassical
nature of gravity in the presence of unknown interactions. Phys.
Rev. A 102, https://doi.org/10.1103/physreva.102.022428 (2020).
van de Kamp, T. W., Marshman, R. J., Bose, S. & Mazumdar, A.
Quantum gravity witness via entanglement of masses: Casimir
screening. Phys. Rev. A 102, 062807 (2020).

Toros, M. et al. Relative acceleration noise mitigation for
nanocrystal matter-wave interferometry: Applications to
entangling masses via quantum gravity. Phys. Rev. Research 3,
023178 (2021).

Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical
clocks and relativity. Science 329, 1630 (2010).

Asenbaum, P. et al. Phase shift in an atom interferometer due to
spacetime curvature across its wave function. Phys. Rev. Lett. 118,
183602 (2017).

Overstreet, C., Asenbaum, P., Curti, J., Kim, M. & Kasevich, M. A.
Observation of a gravitational Aharonov-Bohm effect. Science
375, 226 (2022).

Abbott, B. P. et al. Prospects for observing and localizing
gravitational-wave transients with advanced ligo, advanced Virgo
and Kagra. Living Rev. Relativ. 23, 1 (2020).

McCuller, L. Single-photon signal sideband detection for high-
power Michelson interferometers. arXiv preprint
arXiv:2211.04016 (2022).

Galley, T. D., Giacomini, F., & Selby, J. H. A no-go theorem on the
nature of the gravitational field beyond quantum theory. Quantum
6, 779 (2022).

Mattingly, D. Modern tests of Lorentz invariance. Living Rev.
Relativ. 8, 1 (2005).

Abbott, P. J. & Kubarych, Z. Mass calibration at NIST in the revised
Sl. Metrolologist 21, 1 (2019).

Chao, L. et al. The design and development of a tabletop kibble
balance at NIST. IEEE Trans. Instrum. Meas. 68, 2176 (2019).
Peters, A., Chung, K. Y. & Chu, S. High-precision gravity mea-
surements using atom interferometry. Metrologia 38, 25 (2001).

97.

98.

99.

100.

101.

102.

1083.

104.

105.

106.

107.

108.

109.

10.

.

12.

13.

1n4.

115.

116.

17.

8.

19.

120.

Ménoret, V. et al. Gravity measurements below 10-9g

with a transportable absolute quantum gravimeter. Sci. Rep. 8,
1(2018).

Banks, T., Peskin, M. E. & Susskind, L. Difficulties for the evolution
of pure states into mixed states. Nucl. Phys. B 244, 125 (1984).
Ghirardi, G. C., Rimini, A. & Weber, T. Unified dynamics for
microscopic and macroscopic systems. Phys. Rev. D 34,

470 (1986).

Ballentine, L. Failure of some theories of state reduction. Phys. Rev.
A 43, 9 (1991).

Pearle, P., Ring, J., Collar, J. I. & Avignone, F. T. The CSL collapse
model and spontaneous radiation: an update. Found. Phys. 29,
465 (1999).

Bassi, A., Ippoliti, E. & Vacchini, B. On the energy increase in space-
collapse models. J. Phys. A: Math. Gen. 38, 8017 (2005).

Adler, S. L. Lower and upper bounds on CSL parameters from
latent image formation and IgM heating. J. Phys. A: Math. Theor.
40, 2935 (2007).

Lochan, K., Das, S. & Bassi, A. Constraining continuous sponta-
neous localization strength parameter A from standard cosmology
and spectral distortions of cosmic microwave background radia-
tion. Phys. Rev. D 86, 065016 (2012).

Nimmrichter, S., Hornberger, K. & Hammerer, K. Optomechanical
sensing of spontaneous wave-function collapse. Phys. Rev. Lett.
113, 020405 (2014).

Bahrami, M., Bassi, A. & Ulbricht, H. Testing the quantum super-
position principle in the frequency domain. Phys. Rev. A 89,
032127 (2014).

Lalog, F., Mullin, W. J. & Pearle, P. Heating of trapped ultracold
atoms by collapse dynamics. Phys. Rev. A 90, 052119 (2014).
Bahrami, M., Paternostro, M., Bassi, A. & Ulbricht, H. Proposal for a
noninterferometric test of collapse models in optomechanical
systems. Phys. Rev. Lett. 112, 210404 (2014).

Goldwater, D., Paternostro, M. & Barker, P. Testing wave-function-
collapse models using parametric heating of a trapped nano-
sphere. Phys. Rev. A 94, 010104 (2016).

Tilloy, A. & Stace, T. M. Neutron star heating constraints on wave-
function collapse models. Phys. Rev. Lett. 123, 080402 (2019).
Donadi, S. et al. Underground test of gravity-related wave function
collapse. Nat. Phys.17, 74-78 (2021).

Unruh, W. G. & Wald, R. M. Evolution laws taking pure states to
mixed states in quantum field theory. Phys. Rev. D 52, 2176 (1995).
Ellis, J., Mavromatos, N. & Nanopoulos, D. V. Quantum-
gravitational diffusion and stochastic fluctuations in the velocity of
light. Gen. Relativ. Gravit. 32, 127 (2000).

Parikh, M., Wilczek, F. & Zahariade, G. Signatures of the quanti-
zation of gravity at gravitational wave detectors. Phys. Rev. D 104,
046021 (2021).

Verlinde, E. P. & Zurek, K. M. Observational signatures of
quantum gravity in interferometers. Phys. Lett. B 822,

136663 (2021).

Unruh, W. G. False loss of coherence. In Relativistic Quantum
Measurement and Decoherence: Lectures of a Workshop Held at
the Istituto Italiano per gli Studi Filosofici Naples, (eds Breuer, H.-P.
& Petruccione, F.) April 9-10, 1999, 125-140 (Springer, 2000).
Hall, M. J. W., Cresser, J. D., Li, L. & Andersson, E. Canonical form of
master equations and characterization of non-Markovianity. Phys.
Rev. A 89, https://doi.org/10.1103/physreva.89.042120 (2014).
Breuer, H.-P., Laine, E.-M., Piilo, J. & Vacchini, B. Colloquium: non-
Markovian dynamics in open quantum systems. Rev. Mod. Phys.
88, https://doi.org/10.1103/revmodphys.88.021002 (2016).
Layton, |. & Oppenheim, J. The classical-quantum limit.
arXiv:2310.18271 (2022).

Siemon, I., Holevo, A. S. & Werner, R. F. Unbounded generators of
dynamical semigroups. Open Syst. Inf. Dyn. 24, 1740015 (2017).

Nature Communications | (2023)14:7910

23


https://doi.org/10.1103/physrevd.104.126030
https://doi.org/10.1103/physrevd.104.126030
https://doi.org/10.1103/physreva.102.022428
https://doi.org/10.1103/physreva.89.042120
https://doi.org/10.1103/revmodphys.88.021002

Article

https://doi.org/10.1038/s41467-023-43348-2

121.  Schéfer, G. & Jaranowski, P. Hamiltonian formulation of general
relativity and post-Newtonian dynamics of compact binaries. Liv-
ing Rev. Relativ. 21, 7 (2018).

122. Oppenheim, J. & Reznik, B. Fundamental destruction of informa-
tion and conservation laws. arXiv:0902.2361 [hep-th] (2009) (the
manuscript was never submitted to a journal, but an updated
version is available upon request).

128. Ghirardi, G., Rimini, A. & Weber, T. A model for a unified quantum
description of macroscopic and microscopic systems. In Quan-
tum Probability and Applications (eds Accardi, L. et al.) (Springer,
Berlin, 1985).

124. Pearle, P. M. Combining stochastic dynamical state vector reduc-

tion with spontaneous localization. Phys. Rev. A 39, 2277 (1989).

125. Ghirardi, G. C., Pearle, P. & Rimini, A. Markov processes in Hilbert

space and continuous spontaneous localization of systems of

identical particles. Phys. Rev. A 42, 78 (1990).

Hall, M. J. & Reginatto, M. Interacting classical and quantum

ensembles. Phys. Rev. A 72, 062109 (2005).

127.  Ulmer, W. Deconvolution of a linear combination of Gaussian
kernels by an inhomogeneous Fredholm integral equation of
second kind and applications to image processing.
arXiv:1105.3401 [physics.data-an] (2011).

126.

128. Karolyhazy, F. Gravitation and quantum mechanics of macro-
scopic objects. Il Nuovo Cimento A (1965-1970) 42, 390 (1966).

129. Didsi, L. Models for universal reduction of macroscopic quantum
fluctuations. Phys. Rev. A 40, 1165 (1989).

130. Penrose, R. On gravity’s role in quantum state reduction. Gen.

Relativ. Gravit. 28, 581 (1996).

131.  Oppenheim, J., Russo, A. & Weller-Davies, Z. Diffeomorphism
invariant classical-quantum path integrals for Nordstrom gravity.
To appear (2023).

Acknowledgements

We would like thank Sougato Bose, Joan Camps, Matt Headrick, Isaac
Layton, Juan Maldacena, Andrea Russo, Andy Svesko and Bill Unruh for
valuable discussions and Lajos Didsi and Antoine Tilloy for their very
helpful comments on an earlier draft of this manuscript. J.O. is sup-
ported by an EPSRC Established Career Fellowship, and a Royal Society
Wolfson Merit Award, C.S. and Z.W.D. acknowledges financial support
from EPSRC. This research was supported by the National Science
Foundation under Grant No. NSF PHY11-25915 and by the Simons
Foundation It from Qubit Network. Research at Perimeter Institute is
supported in part by the Government of Canada through the Depart-
ment of Innovation, Science and Economic Development Canada and by

the Province of Ontario through the Ministry of Economic Development,
Job Creation and Trade.

Author contributions
J.0., C.S., B.S. and Z.W.D. contributed to this work.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43348-2.

Correspondence and requests for materials should be addressed to
Jonathan Oppenheim.

Peer review information Nature Communications thanks Michele
Arzano, Frank Saueressig and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. A peer review file is avail-
able.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Nature Communications | (2023)14:7910

24


https://doi.org/10.1038/s41467-023-43348-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity
	Results
	Classical–quantum dynamics
	The CQ Kramers–Moyal expansion
	Physical interpretation of the moments
	A trade-off between decoherence and diffusion
	Trade-off in the presence of�fields
	Physical constraints on the classicality of gravity

	Discussion
	Methods
	Positivity conditions and the trade-off between decoherence and diffusion
	General trade-off between decoherence and diffusion coefficients
	Classical-quantum dynamics with�fields
	CQ Kramers–Moyal expansion for�fields
	Trade-off between diffusion and decoherence couplings in the presence of�fields
	Observational trade-off in the presence of�fields
	A spatially averaged observational trade-off
	Newtonian limit of CQ�theory
	Weak field CQ master equations
	Continuous master equation
	Discrete master equation
	Examples of Kernels saturating the decoherence diffusion coupling constants trade-off
	Diffeomorphism invariant�kernel
	A comment on divergences
	Decoherence�rates
	Decoherence rate examples
	Detecting gravitational diffusion
	Table-top experiments

	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




