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The D-Mercator method for the
multidimensional hyperbolic embedding
of real networks

Robert Jankowski1,2, Antoine Allard 3,4, Marián Boguñá 1,2 &
M. Ángeles Serrano 1,2,5

One of the pillars of the geometric approach to networks has been the
development of model-based mapping tools that embed real networks in its
latent geometry. In particular, the tool Mercator embeds networks into the
hyperbolic plane. However, some real networks are better described by the
multidimensional formulation of the underlying geometric model. Here, we
introduce D-Mercator, a model-based embedding method that produces
multidimensional maps of real networks into the (D + 1)-hyperbolic space,
where the similarity subspace is represented as a D-sphere. We used D-Mer-
cator to produce multidimensional hyperbolic maps of real networks and
estimated their intrinsic dimensionality in terms of navigability and commu-
nity structure. Multidimensional representations of real networks are instru-
mental in the identification of factors that determine connectivity and in
elucidating fundamental issues that hinge on dimensionality, such as the
presence of universality in critical behavior.

Geometry plays a fundamental role in our understanding of the world
and in formulating theories based on geometric principles. In any
scientific field, the ability to describe and visualize objects and phe-
nomena with precision is paramount, and geometry serves as a crucial
tool for scientific observation, enabling us to perceive, represent, and
interpret our surroundings accurately. This transformation of abstract
concepts into tangible visualizations facilitates analysis, prediction,
and effective communication of scientific ideas. Moreover, measure-
ment lies at the core of scientific inquiry, and geometry provides the
framework and necessary tools for precise quantification.

Within this context, the concept of dimension assumes particular
relevance as geometric properties associated withmeasurements on a
specific system depend on dimensionality. The physical world we
inhabit is three-dimensional, and our understanding is rooted in this
framework. However, when confronted with systems or phenomena
that exist in higher dimensions, we encounter challenges in making
sense of them. In such cases, dimensional reduction becomes

necessary. Yet, this process carries the risk of losing or distorting
information. Hence, it becomes crucial to carefully choose the
appropriate dimension for describing the system. The choice of
dimensionality plays a pivotal role in preserving the integrity and
accuracy of the information we seek to capture and analyze. By
selecting the correct dimension, we can ensure that our descriptions
and interpretations remain faithful to the complexities of the system
under investigation.

Complex networks are amenable to be described and modeled
using geometric postulates. They can be represented in a simplified
and comprehensible geometric framework1 and the dimensionality
question can then be addressed from first principles2. One might be
tempted to think that these principles could be rooted in explicit
geometries underlying real systems. For instance, airport networks,
urban networks, and power grids connect geographical locations, and
3-dimensional Euclidean space wraps the brain’s anatomy. However, in
these complex networks, explicit distances explain the tendencyof the
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elements to be linked to each other only to some extent, and a variety
of factors related to structural, functional, and evolutionary con-
straints are also at play.

A family of simple geometric network models—where distances
between nodes on a latent space with hyperbolic geometry integrate
the different factors that define the likelihood of interactions3,4—has
excelled in explaining many fundamental features of real networks.
These include the small-world property5–7, heterogeneous degree
distributions3,4,8, high levels of clustering4,8–11, self-similarity3,12,13, and
also properties of their spectra such as the spectral gap14. These
models have been extended to growing networks15, weighted
networks16, directed networks17, multilayer networks18,19, and networks
with community structure20–22.

The discovery of such hidden metric spaces and the under-
standing of their role have become a major research area leading to
network geometry23 as a new paradigm within network science. In this
context, one of the last achievements of hyperbolic network geometry
has been the discovery that real networks have ultra-low dimension-
ality and that networks from different domains show unexpected
regularities, including tissue-specific biomolecular networks being
extremely low dimensional, brain connectomes being close to the
three dimensions of their anatomical embedding, and social networks
and the Internet requiring slightly higher dimensionality2.

Nonetheless, previous embedding tools that map network
topologies in its latent hyperbolic geometry assumed that the simi-
larity subspace is one-dimensional24–33. Among them, Mercator33

embeds real networks into the hyperbolic plane on the basis of their
congruency with the S1 model34, also H2 in a purely geometric
formulation4, at the core of the network geometry paradigm. The
model explains connectivity in real networks by assuming a one-
dimensional spherical similarity space plus a popularity dimension
that together defines effective distances between nodes in the two-
dimensional hyperbolic plane. The likelihood that two nodes are
connected decreases with their hyperbolic distance. Mercator uses
statistical inference techniques to find the coordinates of the nodes
thatmaximize the congruencybetween the observed topology and the
S1 model33,35. Apart from its accuracy, Mercator has the advantage of
systematically inferring not only nodes coordinates but also global
model parameters, and has the ability to embed networks with arbi-
trary degree distributions in reasonable computational time, which
makes it competitive for real applications.

Beyond visualization, Mercator maps have been used in a multi-
tude of downstream tasks, including efficient navigation35–37, the
detection of modular organization21,38, the prediction of missing
links26,39, and the implementation of a renormalization group13,36,40 that
brings to light hidden symmetries in the multiscale nature of real
networks and enables scaled-down and scaled-up replicas. Other data-
driven techniques have been proposed to embed networks in a latent
space where connected nodes are kept close to each other41–47, but are
not comparable as long as distances are not defined in agreement with
the relational and connectivity structure of the network, even if the
hyperbolic plane was used in some of them as well48.

The obtained representations are accurate enough in some cases
and for certain applications. However, many real complex networks,
despite having an ultra-low dimension, are better represented by
similarity subspaces of dimension higher than one2, often with
dimensions of D = 2 or D = 3. Therefore, embeddings in the most sui-
table dimension for each system have the potential to describe them
without the drawbacks of significant dimensional reduction. Here, we
introduce D-Mercator, a model-based embedding method that
leverages two different techniques,model-based Laplacian Eigenmaps
(LE) and Maximum Likelihood Estimation (MLE), combining them to
produce multidimensional maps of real networks into the (D + 1)-
hyperbolic space, where the similarity subspace is represented as a D-
dimensional sphere (D-sphere). We evaluated the quality of the

embedding method using synthetic SD networks. We also produced
multidimensional hyperbolic maps of real networks. These maps
provide more informative descriptions than their two-dimensional
counterparts and reproduce the structure ofmany real networksmore
faithfully. Multidimensional representations are instrumental in the
identification of factors that determine connectivity in real systems
and in addressing fundamental issues that hinge on dimensionality,
such as the presence of universality in critical behavior. This makes D-
Mercator a qualitative improvement and not a mere quantitative
refinement. D-Mercator also allows us to estimate the intrinsic
dimensionality of real networks in terms of navigability and commu-
nity structure, in good agreement with embedding-free estimations2.

Results
D-Mercator is based on the multidimensional formulation of the geo-
metric soft configuration model, the SD=HD+ 1 model2,49, which is a
multidimensional generalization of the S1 model34. Our approach
assumes that real networks are well described by the SD=HD+ 1 model
and can be reverse-engineered to infer the coordinates of the nodes
and the parameter β that give the highest congruency with the
observed topology.

In the SD model, a node i is assigned a hidden variable repre-
senting its popularity, influence, or importance, denoted κi and named
hidden degree. It is also assigned a position in the D-dimensional
similarity space chosen uniformly at random, and represented as a
point on a D-dimensional sphere. The D-sphere is defined as the set of
points in (D + 1)-dimensional Euclidean space that are situated at a
constant distance R from the origin; each node is therefore assigned a
vector vi 2 RD+ 1 with ∣∣vi∣∣ =R. The connection probability between a
node i and a node j takes the form of a gravity law:

pij =
1

1 + χβij
, with χ ij =

RΔθij

μκiκj

� �1=D : ð1Þ

The number of nodes in the network is N and, for convenience and
without loss of generality, we set the density of nodes in the D-sphere
to one so that

R=
N

2π
D + 1
2

Γ
D + 1
2

� �� � 1
D

: ð2Þ

The separation Δθij = arccosðvi �vj

R2 Þ represents the angular distance
between nodes i and j in the D-dimensional similarity space. The
parameter β >D, named inverse temperature, calibrates the coupling
of the network topologywith the underlyingmetric space and controls
the level of clustering, which grows with β and goes to zero, in the
thermodynamic limit, when β→D+. Finally, the parameter μ controls
the average degree of the network and is defined as

μ=
βΓ D

2

� 	
sin Dπ

β

2π1 + D
2hki

: ð3Þ

Hence, given the number of nodes N and the dimensionality D of
the similarity subspace, the model is determined by N(D + 1)+1 para-
meters: the hidden variables (κi, vi), i = 1,…,N, and the parameter β.
The hidden degrees can be generated randomly from an arbitrary
distribution or taken as a set of prescribed values. The model has the
property that the expected value of the degree of a node with hidden
variable κ is �kðκÞ= κ. An illustration of the SD model for D = 2 is given
in Fig. 1.

The SD model can be expressed as a purely geometric model in
the hyperbolic space, the HD+ 1 model49, by mapping the expected
degree of each node κi to a radial coordinate50, see details in the
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“Methods” section “Proof of the isomorphism between SD andHD+ 1 ”

whereweprove the isomorphismbetween theSD and theHD+ 1 model.

Multidimensional embedding method
Given a real network with adjacency matrix {aij}, the first step in the
embedding method requires estimating the nodes’ hidden degrees κi
and the inverse temperature β. This step corrects potential finite-size
effects that distort the theoretical correspondence between the
expected degree of a node in the SD model and its hidden degree.
Second, the angular coordinates of nodes are inferred using a model-
corrected version of LE. Third, the angular coordinates are refined
using MLE. Finally, hidden degrees are readjusted given the newly
inferred angular positions.

The estimation of hidden degrees and of the inverse temperature
β are implemented as an iterative process. The initial value of β was
chosen randomly between D and D + 1 so that the model is in the
geometric small-world regime. Note, however, that the quality of the
inferencemethoddoes not depend on the value of this initial guess. As
the initial values for the hidden degrees {κi, i = 1,…,N}, one can use the
observeddegrees {ki, i = 1,…,N} in the original network. Theparameter
μ is computed from Eq. (3) using the average of the observed degrees
hki. The estimation proceeds by adjusting the hidden degrees such
that the expected degree of each node in the model matches the
observed degree in the original network (see the “Methods” section
“Inferring the hidden degrees”). Once the hidden degrees are
obtained, the theoretical mean of the local clustering coefficient of
networks in the SD ensemble can be evaluated (see the “Methods”
section “Inferring the inverse temperature β”). If its value differs from
the one of the original network, �c, the value of β is adjusted and the
process is iterated using the current estimation of hiddendegrees until
a predetermined precision is reached.

To infer the angular positions of nodes—the vectors vi—we first
find a convenient initial guess using a SD model-corrected version of
LE. The LE method was originally designed for dimensional reduction

of data in Euclidean space51 to find the coordinates of points in Rm

given the known distances between pairs of points in Rn, with m≤n.
This is achieved by finding a mapping of the set of points f x!i 2 Rn !
y!i 2 Rmg that minimize a given loss function. In D-Mercator, the tar-
get Euclidean space of the model-corrected version of LE has dimen-
sion D + 1, and the points to be found vLE

i define the angular positions
of network nodes in RD+ 1. The loss function is

ϵloss =
X
ij

vLEi � vLE
j




 


2ωij , ð4Þ

where jvLEi � vLE
j j are Euclidean distances between points i and j in

RD+ 1, and the weights {ωij} are chosen so that the technique can be
applied to networks congruent with the SD model.

As in standard LE, each weight ωij is a decreasing function of the
known Euclidean distance between the nodes but, in contrast, only
connected pairs contribute to the loss. An approximation to the
“known”distances canbe inferred from the network structure by using
chord lengths in RD+ 1, so that the weights are set to

ωij =aije
�jvi�vj j2

t with jvi � vjj= 2 sin
hΔθiji
2

, ð5Þ

where hΔθiji is the expected angular distance between nodes i and j—
with hidden degrees κi and κj—in the SD model and t is a scaling factor
fixed as the variance of all the contributing distances. The set of
coordinates fvLEi ,i= 1, . . . ,Ng that minimize the loss function above
corresponds to the solution of the eigenvalue problemof theweighted
Laplacianmatrix Lij = Iij−ωij, where I is the diagonalmatrix with entries
Iii =∑jωij, so that vLE,ij is the i-th component of the j-th Laplacian
eigenvector with non-null eigenvalue (the eigenvectors are ordered
according to their eigenvalues). Fortunately, for sparse networks,
there exists very fast algorithms able to solve the eigenvalue problem
of weighted Laplacians52, so this step of the method is not
computationally expensive. Finally, the positions found by solving
the eigenvalue problem are then normalized so that all points lay on
theD-sphere of radiusR, i.e.,vi =Rv

LE
i =ðjjvLEi jjÞ. Note that, since degree-

one nodes do not add geometric information, we remove them from
the network and add them back once the coordinates of their
neighbors are found (see the “Methods” section “ SD model-
corrected Laplacian Eigenmaps”).

Using the coordinates inferred by LE as the initial condition, the
coordinates in the similarity subspace are fine-tuned by Maximum
Likelihood Estimation (MLE) to optimize the probability for the
observed network tobegeneratedby theSD model (see the “Methods”
section “Likelihoodmaximization”). Nodes are visited sequentially and
new positions are proposed in the vicinity of the mean vector of the
node’s neighbors. The most favorable proposed position, the one
maximizing the local log-likelihood in Eq. (23), is selected and the
process is repeated until the local log-likelihood function reaches a
plateau. Notice that the final angular coordinates could be improved
further by repeating the refining step taking as initial condition the
previous MLE inference.

The embeddingmethodends after the hiddendegrees arefinally
readjusted to compensate deviations from �kðκiÞ= ki, which might
have been introduced in the process of estimating the coordinates
of nodes in the similarity subspace (see the “Methods” section “Final
adjustment of hidden degrees”). An implementation of D-Mercator
is publicly available at https://github.com/networkgeometry/d-
mercator.

The complexity of Mercator is OðN2Þ for sparse networks with N
nodes. D-Mercator operates on the basis of the SD model for an arbi-
trary value of the dimension D, which requires general equations for
inferring hidden degrees and parameter β. Thismakes some equations
impossible to solve analytically, and numerical integrations are

Fig. 1 | Geometric soft configuration model SD. In D = 2, the similarity subspace
corresponds to the surface of a sphere embedded in three dimensions, such that it
can be represented visually. Nodes are placed in the two-dimensional sphere
representing the similarity subspace and the size of a node is proportional to its
expected degree. The angular distances between pairs of nodes A1 −A2 and B1 − B2
are highlighted. Light gray lines on the two-sphere represent connections pro-
duced according to the model.
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needed. Therefore, the time complexity of the method increases
slightly compared toMercator, but only affects pre-factors and not the
scaling with the system size. The detailed computational complexity
comparison between Mercator and D-Mercator is shown in Supple-
mentary Fig. S2.

Validation in synthetic networks
Quality of the embeddings. Themost stringent way to assesswhether
a map produced by D-Mercator is reliable consists of testing synthetic
networks generated with the SD model with different topological
properties and dimensions. The produced networks can then be
embedded with the same dimension used to generate them or with a
different dimension. In this case, the network’s ground-truth is known
and the accuracy of the embedding can be evaluated by implementing
quality measures of congruency. In Fig. 2, we show an example of the
capability ofD-Mercator to recover the correct coordinates of nodes in
synthetic S2 networks with different values of the exponent of the
scale-free power-law degree distribution γ and inverse temperature β.
Notice that the agreement between the original coordinates and the
inferred ones is excellent, with values for the corresponding Pearson
correlation coefficient above 0.96. Results for other values of β and γ
with dimension D = 3 are reported in Supplementary Fig. S3 with
similar accuracy.

We also checked the inference of the parameter β (see Supple-
mentary Fig. S4) as well as the agreement between the empirical and
the theoretical connection probabilities (left bottom panels of Sup-
plementary Figs. S5–S14), where the empirical connection probability
is measured as the fraction of connected pairs as a function of the
rescaled distance χij. Again, we found the inference of β to be very
precise for all the considered synthetic networks, and the theoretical
curve for the connection probability is well recovered. Altogether,
these results confirm that D-Mercator is not just a high-fidelity algo-
rithm in terms of the reconstruction of the similarity coordinates of
synthetic networks, but it also correctly determines all other model
parameters, including hidden degrees and inverse temperature, and it
does so independently of the dimensionality of the network.

Next, we show that D-Mercator is able to identify the correct
dimension used to generate SD synthetic networks without prior
knowledge of D.

Navigability. We studied the navigability of D-Mercator maps using
greedy routing (GR)53. In GR, messages are transferred on the network
from a source to a target destination by repeatedly forwarding the
message to the neighboring node that is the closest to the target in the
multidimensional hyperbolic map. In particular, we investigated whe-
ther the native dimension of the network gives the best result when
taken as the dimension of the embedding space as compared to other
values. Typically, hyperbolicmaps of real networks inD = 1 display high
navigability in the region of high clustering and heterogenous degree
distributions53. Hence, we generated synthetic networks with a specific
dimensionality and these topological characteristics and obtained
hyperbolic maps by embedding them using D-Mercator with different
values of the embedding dimension.

The performance of greedy routing is evaluated by the fraction of
successful attempts—when messages reach their destination—, and by
their stretch defined as a ratio between the hop-lengths of successful
greedy paths and the corresponding shortest paths in the network. In
Fig. 3a–d, we show the success rate as a function of the embedding
dimension for networks generated in S1 to S4. In all cases, the fraction
of successful paths varies across D. The corresponding stretch values
always remain low and vary consistently, although only slightly, with
the success rate, such that the highest success corresponds to the
lowest stretch (see Supplementary Fig. S16). This means that D does
not need to be optimized across the two dimensions of success rate
and stretch, but one can only focus on the success rate. Strikingly, the
success rate is markedly higher when networks are embedded in their
native dimension, meaning that geodesics and shortest paths are the
most congruent in the native dimension. For instance, S2 networks
have the highest successwhen embedded inD = 2, forwhich the lowest
stretch is also observed. This implies that the performance of greedy
routing, and in particular of the success rate, in maps produced by D-
Mercator for different values of the embedding dimension D can help
identify the intrinsic dimensionality of real networks.

Geometric community concentration. Multidimensional hyperbolic
maps of networks are especially convenient to explore their commu-
nity structure54–56. In Mercator maps, geometric communities are
defined as regions of the similarity subspace densely populated with
richly interconnected nodes20,21. Real networks in a variety of domains
were found to display geometric communities that correlate well with
metadata not informed to the algorithm, for instance, world regions in
Internet35 or WTW maps38, biological pathways in metabolic
networks57, and anatomic brain regions in human connectomes37.

In synthetic networks, we found that embeddings in dimensions
higher than that of the original network are still informative of geo-
metric communities while the opposite is not true, especially when
clustering is moderate or low (see Supplementary Fig. S17). The
intuitive explanation is that it is always possible to find an isometry

Fig. 2 | Validation of D-Mercator on synthetic networks. Relationship between
coordinates of the synthetic S2 networks (original) and its embeddings
(inferred) with parameters: a, c, e β= 3,γ = 2:5,N = 2000, hki= 8 and b, d, f
β= 5, γ = 2:7,N = 2000, hki=9. In the top left corner of each figure, the value of the
Pearson correlation coefficient between the inferred and original coordinates is
reported. Since the coordinates from the embedding might be rotated, we trans-
form them to minimize the average angular distance between the original and
inferred coordinates (see Section III in Supplementary Information).
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between a set of points in a metric space and a space of higher
dimensionality, whereas the opposite is, in general, not true. Specifi-
cally, we generated networks in S1 with four geometrically localized
communities and in S2 with six geometrically localized communities
and obtained D-Mercator maps using different embedding dimen-
sions. To generate the synthetic communities, we defined spherical
caps with the apices evenly distributed on the surface of the D-sphere
and polar angle ΔθT = 0.7. Finally, nodes in each community were
distributed homogeneously within the corresponding cap. The selec-
ted value of ΔθT organizes nodes into non-overlapping communities.
Once the ΔθT >π/4, the communities become mixed and overlap
increases, as shown in Supplementary Fig. S18.

To measure how the communities remained clustered, we mea-
sured the geometric concentration of a community l arounda node i as

ρi,l =
ni,l

ni,g

N
Nl

ð6Þ

where ni,l is the number of nodes in community l out of ni,g considered
nodes, and Nl is the total number of nodes in the community l. The
denominator ni,g can be determined in different ways. Here, we take
ni,g as the top geometrically closest neighbors. Notice that with this
definition, the limit ni,g→N implies that ρi,l goes to 1. To obtain the
community concentration for a given networkmapas a single scalar,ρ,
we restricted the computation to the community to which each node
belongs and averagedover all nodes in thenetwork. Notice thatni,g→N
implies that ρ→ ρran = 1/NC, where NC is the number of communities.
Finally, we calculated the community concentration as cC = ρ(ni,g =N/
10), i.e., the geometric concentration at 10% of top geometrically
closest nodes.

The results reported in Fig. 3g show that embeddings in D = 1 and
D = 2 of the clustered S1 synthetic networks display similar geometric
concentration of communities, and are clearly visually discernible in the
maps for both dimensions, as shown in Fig. 3e, f. In contrast, when the
clustered networks are produced in D = 2, the concentration of com-
munities in one-dimensional maps is clearly worse (see Fig. 3j), with
some communities separated in different chunks and scattered all over

the circle, as shown in Fig. 3h. This result illustrates the importance of
choosing themost appropriate dimension. Indeed, in this case, the one-
dimensional embedding would result in a very inaccurate quantitative
description of the system. Despite this result, interestingly, the valida-
tion of the topological properties of the graphs shows that embeddings
in both dimensions can largely replicate the properties of the network,
such as degree distribution, clustering spectrum or average nearest
neighbors degree (Supplementary Figs. S20 and S21). These results
explain why one-dimensional embeddings have been quite good for
many real networks, even if their natural dimension is greater than 1.
However, while one-dimensional maps provide information about the
community organization of the network, two-dimensional maps offer a
much richer and more accurate representation. Finally, when we
increase the value of ΔθT, thus introducing the mixing of communities,
the findings remain consistent (see Supplementary Fig. S19). Therefore
embedding in the higher dimension is needed to uncover the com-
munity structure of the networks.

The analysis above shows that there is a strong congruency
between ground-truth communities and embeddings obtained by D-
Mercator when the appropriate dimension is selected, as nodes are
surrounded mainly by other nodes in the same community. In turn,
this result implies that such embeddings can be used to detect
similarity-based communities even when the metadata defining
groups is not available.

Multidimensional maps of real-world networks
We compiled data for several real-world complex networks from dif-
ferent domains and embedded them in different dimensions. More
specifically, we generated results for six real networks for which
metadata reporting categories are available: a sample of the Add-
Health study, where adolescent students in six grades are linked by
social interactions58; the network of international trade in apples from
the Food and Agricultural Organization (FAO) of the United Nations59

(see Supplementary Fig. S22); the neural network of the C. elegans
worm, where communities are the different neurons’ classes60 (see
Supplementary Fig. S23); the network OpenFlights for flights between
airports around the world61; Foxglove (Digitalis purpurea) network62

Fig. 3 | Detecting the dimensionality of synthetic networks. a–dGreedy routing
in multidimensional hyperbolic maps of synthetic networks. The probability of
successful paths (ps) as a function of the embedding dimension for SD synthetic
networks generated in dimensions a D = 1, b D = 2, c D = 3 and d D = 4. The black
dashed lines show themaximumvalue of ps for each dimension computed from the
generated synthetic networks using the real coordinates. The box ranges from the
first quartile to the third quartile. A horizontal line goes through the box at the
median. The whiskers go from each quartile to the minimum or maximum. Results
obtained by averaging over 100 realizations with β = 2.5D, γ = 2.7 and N = 2000.

e–j Community concentration in multidimensional hyperbolic maps of synthetic
networks with modular structure. The community concentration cC for g the S1

model with 4 communities and j the S2 model with 6 communities embedded in
different dimensions. Visualization of the embedding of S1 model with 4 commu-
nities in e D = 1 and f D = 2. Visualization of the embedding of S2 model with 6
communities in h D = 1 and i D = 2. Nodes are colored based on their communities,
and their size in (f) and (i) is proportional to their expected degree. Results
obtained by averaging over 50 realizations with β = 1.5D, γ = 2.7 and N = 2000.
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which describes the global organ-wide cellular connectivity of plant
hypocotyls (see Supplementary Fig. S25). The links between cells were
identified by detecting common surfaces using 3D cellularmeshes that
represent the intercellular association; and Polbooks network (see
Supplementary Fig. S26)63 where nodes represent the books aboutU.S.
politics published close to the 2004U.S. presidential election, and sold
by Amazon.com. Edges between books represent frequent copurch-
asing of those books by the same buyers. The nodes’ attributes indi-
cate the political leaning: liberal, conservative or moderate. In the
geographical networks, we took continents as categories. We report
global statistics of thenetworks inTable 1 and Supplementary Table S1.

Results validating the embeddings in terms of topological con-
gruency between the network and the inferred model can be found in
Supplementary Figs. S27–S32, where we show the degree distribution,
the average nearest neighbors degree, the number of triangles, and the
clustering distribution. The probability of connection and other local
properties are well reproduced in all dimensions. However, as dis-
played in the bottom panels of Fig. 4, and taking the Add-health net-
work as a case example, not all dimensions provide the same efficiency
in terms of GR success rate ps, community concentration cC, and per-
formance of community detection. To detect the communities, we
employed the hierarchical clustering algorithm to cluster nodes in the
D-dimensional similarity space for the detection of communities. One
popular method, called the agglomerative clustering algorithm from
the scikit-learn library64, merges successive nodes close to each other
in the similarity space, i.e., when they are separated by a small angular
distance. The approach can be applied to real networks with a pre-
defined number of clusters, for instance as given in the metadata. To
assess the performance of the community detection algorithm, we
measured the modularity of the network54, Q, and also computed the
Normalized Mutual Information (NMI) between the predicted com-
munities and the metadata labels. We compared the geometry-based
agglomerative clustering method with several topology-based alter-
natives (see Section XIII in Supplementary Information). Overall, the
geometric community detection method exhibits comparable out-
comes regarding modularity and NMI.

For the networks analyzed in this work, the four metrics provide
coinciding information and each network has a specific dimension that
is clearly better. Hence, we propose that the dimension of a network is
the consensus value of D among the analyzed structural features
including congruency with metadata. Following this prescription, the
hyperbolic dimension of Add-health displayed in Fig. 4 isD + 1 = 3, such
that the similarity subspace can be easily visualized as a 2-sphere, as
shown in Fig. 4b. Interestingly, performing a one-dimensional
embedding results in some of the communities mixed up see Fig. 4a.
This is the case of the 7th and 8th grades, which appear completely
mixed up in the one-dimensional embedding whereas in the two-
dimensional one both grades are well separated. Again, this result
clarifies the importance of using the most appropriate dimension for
the description of the system.

For OpenFlights, we found that the best hyperbolic dimension is
D + 1 = 2, see Supplementary Fig. S24, which indicates that the topol-
ogy of the airports network is 1-dimensional in the Euclidean similarity
space whereas one could have naively expected D = 2. This last result
highlights the distinction between the geometry of the Earth and that
of the topology of the airports network, where long-range flights
between hubs reduce the effective geometry of the planet. The
embedding of Foxglove revealed that the greedy routing and com-
munity concentration achieve the highest values in D + 1 = 4. This
finding is consistent with the fact that the network is a 3D geometric
graph of intercellular associations. Furthermore, our analysis revealed
that the Polbooks network can be most accurately represented in
D + 1 = 3 dimensions. Although the highest community concentrations
are found at both D + 1 = 2 and D + 1 = 3, the performance of greedy
routing makes it evident that D + 1 = 3 captures better the network
topology.

In all the networks analyzed in this work, the community con-
centration at the optimal dimension is significantly larger than the
random case N�1

C , thereby validating the quality of embeddings found
by D-Mercator.

The similarity maps in the 2-sphere show interesting information
about the spatial distribution of communities and their relation with
categories as defined by metadata. In the Add-Health network, there
are six categories corresponding to the grades the students belong to.
One can observe that students in lower grades (classes 7 and 8) are
clearly separable in theD = 2 similarity map and aremixed in the lower
dimension. In contrast, nodes’ positions of adolescents in the 10th to
12th grades are mixed, indicating that friendships were formed
between members of the different classes. The countries in the FAO-
Apples embedding are quite clearly grouped into continents. The
European countries are placed in one similarity region, whereas nodes
from Asia and Oceania are positioned on the opposite side of the
sphere, thereby outlining the interconnectivity of trades of apples
within Europe and largely not between different continents. Finally,
the neurons in C. elegans are divided into five categories including
motor, sensor, interneurons, neurons in the pharynx, and sex-specific
neurons. Again, the different categories are clearly separated.

Discussion
Throughout history, maps have been at the center of political, eco-
nomic, and geostrategic decisions to become a critical piece in our
everyday lives, serving as an integral, accurate, and relevant informa-
tion source. Their appeal is not only visual, they provide a way of
storing and presenting information and communicating findings, they
let us recognize locational distributions and spatial patterns and rela-
tionships, and they make it possible for us to conceptualize processes
that operate through space. Our overarching goal is to map real-world
complex systems in an embedding metric space that ought not to be
geographical or spatially obvious, but thatmay be a condensate of the
different intrinsic attributes that determine how distant, conversely
similar, the elements of the system are.

Maps in the hyperbolic plane obtained by S1 model-based opti-
mization are meaningful representations that explain the observed
regularities in the interaction fabric of real networks and have been
used in a multitude of downstream tasks. In some cases, networks are
intrinsically one-dimensional, and, in general, D = 1 maps offer a good
approximation. But, in most cases, multidimensional hyperbolic
embeddings of real networks with D > 1 provide more accurate
descriptions and will help to discern the role of the different attributes
that determine the connectivity in complex systems—such as, for
instance, the specific role of geographic and cultural factors in eco-
nomic and social networks.

Community detection will also benefit from multidimensional
hyperbolic embeddings, which facilitate the application of the large

Table 1 | Properties of the real networks used in this work

Network N hki --
c NC β μ D

Add-health 1996 8.49 0.15 6 2.60 0.0104 2

FAO-apples 152 15.99 0.56 6 3.98 0.0126 2

C. elegans 559 16.1 0.32 5 3.16 0.0091 2

OpenFlights 2905 10.77 0.59 6 1.85 0.0272 1

Foxglove 2916 11.21 0.43 8 10.23 0.0184 3

Polbooks 105 8.4 0.49 3 4.75 0.0278 2

Theβ andμ values arepresented for thebest dimensionof the embeddings. TheNC indicates the
number of ground-truth communities, while D is the inferred dimension as determined by the
performance of greedy routing, community concentration, and community detection.
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family of methods based on geometric information and spatial
distances65–67. We found here that the embedding of a real network in
the proper dimension yields the partition of nodes with the highest
modularity using a hierarchical clustering algorithm in the similarity
subspace. However, the interplay of dimensionality with geometric
community detection algorithms is not obvious and this issue will
require future investigations. In relation to this, it is also worth men-
tioning that the interplay between the hyperbolic community struc-
ture in higher dimensions and the performance of a variety of tasks is
not fully understood yet50. A further step would be to scrutinize the
effect of the coupling between the dimensionality and performance of
greedy routing when the conformation of communities is being
changed.

From a technical point of view, the problem of producing geo-
metric networkembeddings isNP hard, as themajority of optimization
and network inference problems, and the solution can be trapped in
some local optima. This is what makes particularly important a proper
validationprotocol on the basis of synthetic networks producedby the
model such that the ground truth is known and the results can be
compared against it. We believe that machine learning techniques will
provide complementary tools in the future for inferring nodes’ coor-
dinates and model parameters that canmore accurately approach the
global optimum. This will maximize even more the likelihood of the
hyperbolic model reproducing the original network. This approach
could also be helpful for the optimization of the algorithm to deal with
larger networks.

Other lines of research for futurework refer to the extension ofD-
Mercator to embed networks with weak geometric structure11. Appli-
cations such as geometric renormalization12, link prediction26, com-
munity detection55,56, studying geometric temporal networks68 and
bipartite networks69, and the analysis of geometric Turing patterns70,
will definitely benefit from the representation of complex networks in
their optimal dimension. Beyond network science, our low dimen-
sional representation can impact fields like machine learning in the
short term, where it can be used to improve the relational structure
that determines the aggregation and message-passing steps of graph
neural networks71.

Methods
Proof of the isomorphism between SD and HD+ 1

The SD model can be expressed as a purely geometric model in the
hyperbolic space, theHD+ 1 model49, by mapping the expected degree
of each node κi to a radial coordinate as50

ri = R̂� 2
D
ln

κi

κ0
, with R̂ = 2 ln

2R

ðμκ2
0Þ

1=D

 !
: ð7Þ

Using this transformation, the connection probability of the SD model
given in Eq. (1) can be rewritten in the form

pij =
1

1 + eβ½lnðRΔθij Þ�
1
D lnðμκiκj Þ�

� 1
1 + eA

: ð8Þ

Hidden degrees κi and κj can then be transformed into radial coordi-
nates using Eq. (7), such that κi = κ0e

D
2ðR̂�riÞ. Skipping intermediate

steps, the term A is

A=β½lnðRΔθijÞ �
1
D
lnðμκiκjÞ� ð9Þ

=
β
2
½ri + rj + 2 ln

Δθij
2

� �
� R̂� ð10Þ

=
β
2
½xij � R̂�: ð11Þ

Thus, we finally obtain

pij =
1

1 + e
β
2ðxij�R̂Þ

, with xij = ri + rj + 2 ln
Δθij

2
, ð12Þ

which is the connection probability in theHD+ 1 model. The quantity xij
is a goodapproximationof thehyperbolic distancebetween twonodes
with radial coordinates ri and rj separated by an angular distance Δθij.
This approximation is very accurate for pairs of nodes separated by

Fig. 4 | Case study: the Add-health dataset. Top panels show the embeddings in
a D = 1 and b two perspectives of the D = 2 similarity space of D-Mercator embed-
dings of the network. The size of a node is proportional to its expected degree, and
its color indicates the community it belongs to. For the sake of clarity, only the

connections with probability pij>0.5 given by Eq. (1) are shown. Bottom panels
show the performance of c community concentration (cC), d community detection
(NMI), e modularity (Q), and f the success rate of GR (ps).
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Δθij ≫ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2ri + e�2rj

p
4, the fraction of which converges to one in the

thermodynamic limit1.

D-Mercator in details
Inferring the hidden degrees. Given a value of β and the corre-
sponding value of μ from Eq. (3),
1. Initialize the hidden degrees by setting κi = ki, ∀i=1,…,N, where ki is

the observed degree of node i in the real network.
2. Compute the expected degree for each node i according to the SD

model as

�kðκiÞ=
Γ D+ 1

2

� 	
ffiffiffiffi
π

p
Γ D

2

� 	X
j≠i

Zπ
0

sinD�1θdθ

1 + Rθ
ðμκiκj Þ1=D

� �β
: ð13Þ

3. Adjust the hidden degrees. Let ϵmax =maxifj�kðκiÞ � kijg be the
maximal difference between the actual degrees and the expected
degrees, and ϵ a tolerance parameter.
If ϵmax > ϵ, the set of hidden degrees needs to be corrected. To do
so, we set jκi + ½ki � �kðκiÞ�uj ! κi for every class of degree ki,
where u ~U(0, 1). The random variable u prevents the process
from getting trapped in a local minimum. Next, go to step 2 to
compute the expected degrees corresponding to the new set of
hidden degrees.
Otherwise, if ϵmax ≤ ϵ, the hidden degrees have been correctly
inferred for the current global parameters. The tolerance para-
meter used in this work was set to ϵ =0.01.

Inferring the inverse temperature β. Inferring β requires computing
the expected local mean clustering �c, given the current values of the
global parameters as well as the hidden degrees κ(k) computed in the
“Methods” section “Inferring the hidden degrees”.

The method D-Mercator uses is based on the following. Suppose
that we want to estimate the expected clustering �c of some node of
degree k. According to the definition of mean local clustering, this
quantity is the probability for two randomly chosen neighbors of the
node to be connected, which can be computed by following these two
steps. First, we randomly choose two of its neighbors and draw their
distances to the node from the distribution of distances between con-
nected nodes in the model. Second, we compute the distance between
the twoneighbors and,with it, theprobability for themtobeconnected.

Two important points require further clarification.
• The model is uncorrelated at the hidden level. Thus, we can

draw two neighbors from the uncorrelated distribution
Pðkjk0Þ= kPðkÞ=hki.

• The distribution of angular distance Δθ between two connected
nodes with hidden degrees κ and κ0 reads

ρðΔθjaκκ0 = 1Þ= pðaκκ0 = 1jΔθÞρðΔθÞ
pðaκκ0 = 1Þ , ð14Þ

wherepðaκκ0 = 1jΔθÞ is theprobability that twonodeswith hidden
degrees κ and κ0 separatedby adistanceΔθ and inD-dimensional
space are connected given by Eq. (1). This probability is

pðaκκ0 = 1jΔθÞ= 1

1 + RΔθ
ðμκ0κÞ1=D
� �β : ð15Þ

The distribution of distances in the SD model is

ρðΔθÞ= Γ D+ 1
2

� 	
sinD�1Δθ

Γ D
2

� 	 ffiffiffiffi
π

p ð16Þ

which becomes increasingly peaked around Δθ =π/2 as D→∞.
Finally, pðaκκ0 = 1Þ is the connection probability between two

nodes with hidden degrees κ and κ0 and is given by

pðaκκ0 = 1Þ=
Z π

0

sinD�1ΔθdΔθ

1 + RΔθ
ðμκ 0κÞ1=D
� �β ð17Þ

Equation (14) therefore reads

ρðΔθjaκκ0 = 1Þ=

sinD�1Δθ

1 + RΔθ
ðμκ0κÞ1=D

� �β

R π
0

sinD�1ΔθdΔθ

1 + RΔθ
ðμκ0κÞ1=D

� �β

ð18Þ

With these tools in hand, the expected mean clustering is esti-
mated as follows.

1. Initialize mean local clustering: Let �cðkÞ represent the expected
mean local clustering of degree class k. Set �cðkÞ=0 for all k.

2. Compute the expected mean local clustering spectrum: For every
degree class k, repeatm times:

(a) Draw two variables ki from P(ki∣k), i = 1, 2.
(b) Draw the corresponding random variable Δθi from the dis-

tribution ρðΔθijaκðkÞκðkiÞ = 1Þ, i= 1, 2 given in Eq. (14).
(c) Generate two random vectors vi, i = 1, 2 with a given angular

separation Δθi, i = 1, 2 and compute the angular dis-
tance: Δθ12 = arccosðv1 � v2Þ.

(d) Set �cðkÞ+p12=m ! �cðkÞ, where p12 =
1

1 +
RΔθ12

ðμκðk1 Þκðk2 ÞÞ1=D

� �β is a prob-

ability for nodes 1 and 2 to be connected.
3. Compute the expected mean local clustering as �c =

P
k�cðkÞNk=N.

If the error in the expected mean local clustering is j�c� �cempj<ϵ�c,
where �cemp is the mean local clustering of the network to be embed-
ded, we can accept the current values of β and proceed to the infer-
ence of angular coordinates. Otherwise, β needs to be corrected and
the hidden degrees must be recomputed. Since the expected mean
local clustering coefficient is a monotonic function of β, the process
can be efficiently evaluated using the bisection method. More speci-
fically, we start with a value of β chosen randomly betweenD andD + 1.
Then, while the expected clustering is lower than the observed one, we
multiply β by 1.5. We start the bisection method when we reach the
value forwhich the observed clustering is surpassed.We found that for
ϵ�c =0:01, m = 600 is enough. To gain higher precision, one must
increasem to ensure that the required precision is satisfied.

SD model-corrected Laplacian Eigenmaps. The expected angular
distance betweennodes i and j in theSD model, conditioned to the fact
that they are connected, can be computed as

hΔθiji=
Zπ
0

ΔθijρðΔθijjaij = 1ÞdΔθij ð19Þ

=

R π
0

ΔθsinD�1ΔθdΔθ

1 + RΔθ
ðμκðki Þκðkj ÞÞ1=D

� �β

R π
0

sinD�1ΔθdΔθ

1 + RΔθ
ðμκðki Þκðkj ÞÞ1=D

� �β

: ð20Þ

Since degree-one nodes do not add geometric information, we first
obtain the positions for nodes with k > 1, and subsequently
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reincorporate the nodes with degree of one. For each node iwith ki = 1
and its neighbor j, we draw an angular distance Δθij from Eq. (14) given
that the two connected nodes have hidden degrees κi and κj. Then, the
position of node i, vi, is generated with a given angular separation to
the node j.

Likelihood maximization. Given initial positions for the nodes on the
D-sphere, the steps tomaximize the congruencybetween theobserved
network and the SD model are:
1. Define an ordering of nodes: The nodes are visited in the order

defined by the networks’ onion decomposition72. In the sequence,
the ordering of nodes belonging to the same layer in the
decomposition is random.

2. Find new optimal coordinates: For every node i, we select the
optimal coordinates among candidates’ positions generated in
the vicinity of themean vector of its neighbors. This is achieved in
three steps:

(a) Compute the mean coordinates of node i’s neighbors. Let node i
have ki neighbors, which are now labeled with index
j = 1,…, ki. Since the nodes are situated on the D-sphere we
have to compute their mean vector �vi, which is given by

�vi =
X
j

1
κ2
j

vj ð21Þ

where the hidden degrees in the above expression weight the
contribution of every neighbor’s positioning vector, as proposed
in ref. 25.

(b) Propose new positions around�vi: We generate 100maxðlnN,1Þ
candidate vectors from themultivariate normal distribution
with mean �vi and standard deviation σ given by

σ = max
π
2
,
Δθmax

2

� �
, ð22Þ

where Δθmax is the angular distance between vector �vi and the most
distant neighbor of node i.

(c) Select themost likely candidate position: Compute the local log-
likelihood of every candidate position as well as of node i’s
current position according to

lnLi =
X
i≠j

aij lnpij + ð1� aijÞ lnð1� pijÞ ð23Þ

Locate node i at the position maximizing the local log-likelihood.

Final adjustment of hiddendegrees. The process of adjusting hidden
degrees, given the positions of the nodes in the similarity subspace,
such that �kðκiÞ= ki is similar to the initial inference of hidden degrees:
1. Compute the expected degrees: For every node i, set

�kðκiÞ=
X
i≠j

1

1 +
RΔθij

ðμκiκj Þ1=D

� �β
: ð24Þ

2. Correct hidden degrees: Let εmax = maxifj�kðκiÞ � kig be the max-
imal deviation between degrees and expected degrees. If
εmax> ε, the set of the hidden degrees needs to be corrected.
Then set jκi � ½ki � �kðκiÞ�uj ! κi for every node i, where
u ~U(0, 1). Again, the random variable u prevents the process
from getting trapped in the local minimum. Next, go to step 1
and compute the expected degrees corresponding to the new
set of hidden degrees. Otherwise, if εmax< ε, the hidden degrees
have been inferred for the current global parameters and nodes’
positions.

Generating synthetic networks with the SD model

1. The distribution of hidden degrees can be of any form. For the
experiments in Figs. 2 and 3, we used a power-law hidden
degree distribution of the form ρðκÞ= ðγ � 1Þκγ�1

0 κ�γ, with
κ > κ0 = ðγ � 2Þ=ðγ � 1Þhki and different values of the character-
istic exponent 2 < γ < 3. Hidden degrees are also cut off from
above by the natural cut-off κc = κ0N

1
γ�173. This choice avoids the

extreme fluctuations of the maximum hidden degrees for γ < 3
that would result, for some network realizations, in expected
degrees larger than N. For every node i in the simulated
network, we generated the hidden degree κi as a random value
from this distribution.

2. To assignnodes’positionson the similarity subspace, eachnode is
assigned a vector vi 2 RD+ 1 with D + 1 independent and standard
normally distributed entries. These entries are subsequently
normalized to lie on the sphere with ∣∣vi∣∣=R, where R is given in
Eq. (2).

3. The hidden degrees and the coordinates in the D-dimensional
similarity subspace are used in Eq. (1) to calculate the probability
of connection between any pair of nodes. For any given value of β,
the value of μ is evaluated from Eq. (3) depending on the target
average degree hki, β, and D.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The network datasets used in this study are available from the sources
referenced in the manuscript and the supplementary materials. The
coordinates and the parameters of the multidimensional hyperbolic
embeddings of the real networks are available via the Zenodoplatform
at https://doi.org/10.5281/zenodo.10027084.

Code availability
The code of the D-Mercator embedding tool is publicly available at
https://github.com/networkgeometry/d-mercator.
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