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Competition and evolutionary selection
among core regulatory motifs in gene
expression control

Andras Gyorgy 1

Gene products that are beneficial in one environment may become burden-
some in another, prompting the emergenceof diverse regulatory schemes that
carry their own bioenergetic cost. By ensuring that regulators are only
expressed when needed, we demonstrate that autoregulation generally offers
an advantage in an environment combining mutation and time-varying
selection. Whether positive or negative feedback emerges as dominant
depends primarily on the demand for the target gene product, typically to
ensure that the detrimental impact of inevitablemutations isminimized.While
self-repression of the regulator curbs the spread of these loss-of-function
mutations, self-activation instead facilitates their propagation. By analyzing
the transcription network of multiple model organisms, we reveal that
reduced bioenergetic cost may contribute to the preferential selection of
autoregulation among transcription factors. Our results not only uncover how
seemingly equivalent regulatory motifs have fundamentally different impact
on population structure, growth dynamics, and evolutionary outcomes, but
they can also be leveraged to promote the design of evolutionarily robust
synthetic gene circuits.

Much effort has been devoted to uncovering organizing principles of
living cells in systemsbiology, and also to devising design guidelines to
ensure the predictable behavior of cellular dynamics in synthetic
biology1–3. As a result, we not only better understand the processes
underpinning bacterial chemotaxis perfected by evolution4, but also
how to implement integral feedback to ensure robust perfect
adaptation5–8. These results are generally made possible by interpret-
ing complex dynamical systems as a collection of core components
wired together, each realizing a well-defined and highly-optimized
information processing function9–11. While this view offers a powerful
reductionist approach to design and analyze networks of daunting
complexity, recent results also highlight its limits as recurring motifs
can exhibit a wide range of dynamical responses depending on their
biophysical parameters and context12–21.

Among common network motifs, activation and repression are
the most fundamental building blocks. They are functionally equiva-
lent (Fig. 1a), as the expression of a gene product can be regulated by

relying on an inducer that either activates an activator (positive con-
trol), or relieves the repression of a repressor (negative control).
Savageau proposed that according to the use-it-or-lose-it principle,
positive/negative control emerges when gene products are often/
rarely needed22–24, ensuring that cognate binding sites are occupied by
the transcription factors (TFs) most of the time, thus minimizing the
probability of fitness-reducing errors25. Conversely, as a mutated reg-
ulator represents a fitness cost only when it is needed, the wear-and-
tear principle suggests that it may be evolutionary advantageous to
insteadminimize theusageof regulators to reduce thenegative impact
of eventually inevitablemutations26, motivated by the well-established
population genetics concept of genetic robustness27–30.

While precise temporal control of a beneficial gene product may
result in an advantage, the expression of the required regulator carries
its own bioenergetic cost31. Crucially, for both positive and negative
control, the regulator is only required when the inducer is present,
otherwise its expression is gratuitous. Therefore, it may be
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advantageous to have the regulator under autoregulatory control to
ensure it is expressed only when needed (Fig. 1b). Understanding the
competition and evolutionary selection among the core regulatory
motifs in Fig. 1 could shed light on organizing principles of living
organisms as similar just-in-time regulation is a wide-spread feature in
natural systems32–36, as well as guide the design of synthetic gene cir-
cuits when selecting among alternative modes of regulation37–52.

Motivated by the central role of autoregulation in systems and
synthetic biology, we characterize how demand for a beneficial gene
product, mutation rate of its regulator, population size, selection
pressure, regulatory delay, and the timescale of environmental shifts
together determine the optimal choice among the motifs in Fig. 1. We
show that (i) autoregulation generally dominates, (ii) the dominant
strategy typically agrees with the wear-and-tear principle, and (iii)
while self-repression of the regulator curbs the spread of loss-of-
function mutations, self-activation instead facilitates their

propagation. We further demonstrate that the reduced bioenergetic
cost of autoregulation may contribute to its ubiquitous nature in gene
regulatory networks, and how our work could aid the design of evo-
lutionarily robust synthetic gene circuits.

Results
Mathematical model
Building on a quantitative framework26 inspired by demand theory22–24,
the mathematical model underpinning our analysis comprises the
changing environment, random mutations, and fitness-based selec-
tion. Typical values of the model parameters are discussed in the
“Methods”.

We consider an evolutionary scenario where cells are exposed to
environmental variations. This is modeled via the concentration of the
inducer I that varies periodically between high and low values (Fig. 2a).
Within each period T, these correspond to the induced and non-induced

Fig. 1 | Functionally equivalent core regulatory motifs in gene expression
control. The regulator R and the product P are expressed from their genes r and p,
respectively. Gray squares denote the inducer I. In the absence of the inducer, the
product (and the regulator for autoregulated motifs) may be synthesized at a low

basal level which is negligible compared to the concentration in the induced state
(Supplementary Section 1). The motifs may be embedded in complex regulatory
pathways (Supplementary Fig. 3). a Expression of R is non-autoregulated.
b Expression of R is autoregulated.

Fig. 2 | The evolutionary setting combines environmental shifts, mutations,
and fitness-based selection. a Each period T comprises an induced phase Ti (P
should be expressed) and a non-induced phase Tni (P should not be expressed).
bNon-binders fail to synthesize the product despite the presenceof the inducer I in

case of positive control, and conversely, they continuously produce it in case of
negative control. Potential autoregulation of R is not shown. c Overall fitness
depends on the sum of the P-cost and the R-cost.
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phases lasting Ti andTni, respectively. During the former, expression of a
gene product P confers a fitness advantage, whereas during the latter its
unnecessary synthesis a fitness cost. The fraction D=Ti/T hence mea-
sures the demand for the beneficial gene product.

In this evolutionary setting, loss-of-function mutations that affect
the regulator R result in non-functional variants. The emergence of
these non-binders occurs at rate ν− from a functional binder, whereas
gain-of-functionmutations happen at rate ν+ (Fig. 2b). We assume that
these mutation rates are constant and independent of the mode of
gene regulation.We consider the population sizeN to remain constant
over time, and denote the size of the binder and non-binder sub-
populations with Nb(t) and Nnb(t), respectively.

Finally, each period alternates between selection and neutral
phases lasting Ts and Tn, respectively (Fig. 2c). During the former, non-
binders suffer the cost sp > 0 due to either the presence of P during Tni
for negative control, or its absence during Ti for positive control.
Additionally, cells incur the expense sr > 0 when the regulator R is
synthesized. Selection pressure hence stems from two sources:
expression of P not matching the environmental condition (P-cost),
and expression of R (R-cost). For non-autoregulated control, binders
andnon-binders suffer identical R-cost throughout the entirety of each
period, thus selection against non-binders occurs solely based on their
non-zero P-cost. Autoregulation of R reduces the time when the R-cost
is suffered (Fig. 2c), thus holding the potential to provide an evolu-
tionary advantage over non-autoregulated control (Supplementary
Figs. 1 and 2). Therefore, we next quantify the average fitness cost of
each core regulatory motif in Fig. 1 to compare their performance.

Fitness cost in large populations
We first quantify the performance of the control schemes in large
populations, when sampling fluctuations are negligible. The evolution
of the fraction x =Nnb/N of non-binders in the population is governed
by the deterministic dynamics (Supplementary Section 2)

_x = ν� � x ν + + ν� + s
� �

+ x2s, ð1Þ

where s(t) = snb(t) − sb(t) is the relative selection pressure against non-
binders, with sb(t) and snb(t) denoting the fitness cost encountered by
the binders and non-binders, respectively (Fig. 2c). Thus, over each
period the average fitness cost �s is

�s =
1
T

Z T

0
x tð Þsnb tð Þ+ 1� x tð Þð Þ sb tð Þ� �

d t: ð2Þ

Considering only non-autoregulated control, activation/repres-
sion dominates at low/high demand for weak selection (Fig. 3a). For
intermediate values of the demand (Supplementary Figs. 4–6), the two
control schemes offer comparable performance for short periods and
when control is expensive (sr ≈ sp). Selection pressure further amplifies
this effect (Supplementary Figs. 7–9), and we recover the results pre-
sented in ref. 26: when the fraction of non-binders does not appreci-
ably change as a result of frequent environmental shifts
(Supplementary Section 1), positive and negative control perform
similarly, otherwise activation/repression dominates for low/high
demand, matching the wear-and-tear principle.

When considering all motifs in Fig. 1, non-autoregulated control is
generally replaced by its autoregulated counterpart as the dominant
strategy (Fig. 3b). However, twomajor differences do emerge. First, for
low demand, while non-autoregulated activation and repression often
have comparableperformance (especially for strong selection, Fig. 3a),
the parameter region where self-activation emerges as a clear winner
expands significantly due to the elimination of the R-cost for non-
binders (Fig. 2c). Second, when demand is high, control is expensive
(sr ≈ sp), and the combined impact of mutations and selection is weak
(Supplementary Section 1), self-activation emerges as dominant (red
star in Fig. 3b). To understand this, consider the case when sr = sp = s0,
yielding the fitness cost Ds0 for self-activation (Fig. 2) and
Ds0 + 2x0(1 −D) >Ds0 for self-repression where x0 is the approximately
constant value of x throughout the period (Supplementary Section 2).
Thus, while the winner emerges according to the wear-and-tear prin-
ciple when only non-autoregulated control is considered (Fig. 3a), the
dominant strategymay be aligned with the use-it-or-lose-it principle in
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Fig. 3 | Evolutionary advantageous regulatorymotifs in large populations. Low
and high demand corresponds to D =0.05 and D =0.95, respectively. In all plots
ν− = 10

−7, ν+ = ν−/10, weak and strong selection indicates sp = 10ν− and sp = 100ν−,
respectively. Colors indicate the control scheme(s) with the lowest fitness cost �s: in
case of a single winner, the second best is dominated by at least 1%; in case of
multiple winners, their difference is less than 1% and all other variants are at least 1%
worse. Star indicates where the unique dominant strategy matches the use-it-or-

lose-it principle. For detailed simulation data, see Supplementary Figs. 4–15. aOnly
non-autoregulated control is considered. In the light red/blue regions activation/
repression dominates, in the white regions they offer comparable performance.
b Both non-autoregulated and autoregulated control are considered. Dominant
strategies: self-activation (dark red), self-repression (dark blue), non-autoregulated
and autoregulated repression (light blue), self-activation and self-
repression (white).
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the presence of autoregulation (Fig. 3b). The region where this occurs
shrinks with increasing demand (Supplementary Figs. 10–15).

Fitness cost in small populations
The impact of sampling fluctuations (genetic drift) becomes more
pronounced as the population size decreases, thus we next char-
acterize performance in the presence of stochastic effects. To this end,
we first consider the standard Wright-Fisher model with constant
population size N53,54, then its diffusion approximation55 as it sig-
nificantly accelerates the computation of the fitness cost without
compromising accuracy (Supplementary Fig. 16).

Focusing on non-autoregulated control first, it was previously
reported that while the wear-and-tear principle dominates in large
populations, it is replaced by the use-it-or-lose-it principle as N
decreases26. Although this can happen, it only occurs when selection
pressure is strong (sp≫ ν−), and there is a reversal as the population
size further decreases (Fig. 4a), which is not discussed in ref. 26. The
source of these two transitions is the varying frequency of non-binders
occasionally taking over during neutral periods due to sampling fluc-
tuations (unlike in large populations). The prevalence of such events is
inversely proportional to the population size, the duration of the

selection phase, and the selection pressure, and they carry a significant
penalty as binders only slowly re-emerge as a result of rare gain-of-
function mutations.

To better understand this phenomenon, consider the low
demand case (the high demand case can be analyzed similarly, with
positive and negative regulation swapped). As population size starts
to decrease, non-binders take over more frequently for activation
than for repression due to the shorter selection period (Supple-
mentary Fig. 18), giving rise to the region where the dominant
strategy is consistent with the use-it-or-lose-it principle (blue star in
Fig. 4a). A similar shift occurs for negative control as well, only at
lower population size due to the longer selection phase, and the
corresponding substantial fitness cost increase is what drives the
reversal to positive control re-emerging as the dominant strategy,
this time at the small population limit (Fig. 4a). These transitions
happen only when selection pressure is sufficiently strong to ensure
that non-binders are eliminated in large populations.

When considering all core motifs featured in Fig. 1, the picture
that emerges in Fig. 4b is qualitatively similar when environmental
shifts happen frequently (T≪ 1/ν−) and when they occur rarely
(T≫ 1/ν−). For low demand, the trend echoes our previous findings in
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Fig. 4 | Evolutionary advantageous regulatory motifs in small populations.
Colors indicate the control scheme(s) with the lowest fitness cost �s: in case of a
single winner, the second best is dominated by at least 1%; in case of multiple
winners, their difference is less than 1% and all other variants are at least 1% worse.
Star indicates where the unique dominant strategy matches the use-it-or-lose-it
principle. a Dominant strategy considering only non-autoregulated control.
Simulation parameters are ν− = 10

−3, ν+ = ν−/10, Ti = 100, Tni = 5000. For detailed
simulation data, see Supplementary Fig. 17. Light red/blue indicates the regions
where activation/repression dominates. Data obtained using the stochastic sam-
pling algorithm described in the “Methods”. b In all plots ν− = 10−3, ν+ = ν−/10, weak

and strong selection indicates sp = 10ν− and sp = 100ν−, respectively. Low and high
demand corresponds to D =0.05 and D =0.95, respectively, together with T = 102

andT = 104 forwhenT≪ 1/ν− andT≫ 1/ν−, respectively. For detailed simulationdata,
see Supplementary Fig. 21. Dark red/blue indicates regions where self-activation/
self-repression dominates, light blue corresponds to regions where non-
autoregulated and autoregulated repression dominate together, in the white
regions autoregulated activation and repression have comparable performance
dominating their non-autoregulated counterparts, gray encompasses all other
outcomes. Data obtained using the diffusion approximation described in the
“Methods”.
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Fig. 4a when considering only non-autoregulated control. The region
where the dominant strategy is underpinned by the use-it-or-lose-it
principle expands with selection pressure, and it is sandwiched
between population sizes where it is replaced by the wear-and-tear
principle from both below (Fig. 4b) and above (Fig. 3b), only this time
self-activation and self-repression dominate instead of their non-
autoregulated counterparts due to their reducedR-cost (Fig. 2c).While
in the high demand case the situation is similar (with self-activation
and self-repression swapped), one crucial difference does emerge: in
the small population limit non-autoregulated and autoregulated
repression have comparable performance. To understand this, note
that unlike for activation where autoregulation decreases the fitness
cost by sr throughout the entire period, for repression there is no
reduction in case of non-binders (Fig. 2c), yielding comparable per-
formance for non-autoregulated and autoregulated control. This
effect becomes more pronounced with decreasing selection pressure
(Fig. 4b), which increases the probability of non-binders taking over
the population due to stochastic fluctuations (Supplementary Figs. 19
and 20).

In summary, the presence of sampling fluctuations largely pre-
serves the wear-and-tear principle behind the dominant strategy con-
sidering both non-autoregulated and autoregulated control. The use-
it-or-lose-it principle emerges only in a narrow slice of the parameter
space (which further decreases with selection pressure), for instance,
within a confined range of the population size. Thus, in addition to
providing amore complete picture about the competitionbetween the
two non-autoregulated motifs by revealing the reversal to the wear-
and-tear principle in the small population limit, our results also sig-
nificantly expand prior work26 by comparing the performance of all

four core regulatory motifs featured in Fig. 1 in the presence of
genetic drift.

Autoregulation can result in unwanted selection pressure
By eliminating the gratuitous expression of the regulator during the
non-induced phase (Fig. 2c), autoregulation generally outperforms its
non-autoregulated counterpart for both activation and repression
(Figs. 3 and 4). For positive and negative control, however, auto-
regulation has drastically different impact on the population compo-
sition, as well as on how rapidly it changes.

To illustrate the differential impact of autoregulation on the
fraction of non-binders x, consider first non-autoregulated control.
Increasing sr represents anadditional and identicalfitness cost for both
binders and non-binders (Fig. 2c), hence the population-level compo-
sition remains unaffected, since the evolution of x according to (1)
dependson thedifference s = snb − sb. Conversely,while autoregulation
yields s = 0 during the neutral phase, it results in s = sw with
sw = sp − sr < sp and sw = sp + sr > sp during selection for self-activation
and self-repression, respectively (Fig. 5), compared to sw = sp for non-
autoregulated control. This change in selection pressure thus means
(i) more stringent elimination of the non-binders when relying on self-
repression, and (ii) the accumulation of loss-of-function mutations in
case of self-activation (Fig. 5). The latter is especially concerning con-
sidering the fitness gain of self-activation relative to its non-
autoregulated counterpart: should these two variants compete, the
former would eventually take over the population, however, it could
easily result in one dominated by non-binders (unlike in the case of
self-repression where the R-cost instead promotes the elimination of
deleterious mutations).
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Feedback also has a differential impact on how rapidly non-
binders emerge and disappear in case of positive and negative
autoregulation. To illustrate this, we define T� = maxðTb,TwÞ where
Tb = 1/ν− and Tw = 1/(sw + ν+) are the timescales for the build-up and
wipe-out of non-binders due to mutations and selection. For short
periods (T≪ T *), the fraction of non-binders remains approximately
constant throughout the entire period: non-binders are eliminated if
Tw < Tb, otherwise they take over the population (Supplementary
Fig. 24). For long periods (T≫ T *), if Tw < Tb then build-up of non-
binders during Tn is wiped out during Ts, otherwise non-binders
persist throughout the entire period as loss-of-function mutations
dominate the combined impact of selection and gain-of-function
mutations during Ts (Supplementary Fig. 24). Considering the typical
range of model parameters (“Methods”), for all four regulatory
schemes featured in Fig. 1 we have T * = Tb (Supplementary Section 4).
Importantly, while Tw decreases with sr in case of self-repression,
autoregulation has the opposite impact for positive control, further
hindering the elimination of non-binders from the population.

Delay can cause non-autoregulated motifs to outperform
autoregulation
For autoregulatedmotifs, the inducer also triggers the appearance and
disappearance of the regulator. Since its synthesis and decaymay take
time, considerable delays could be introduced56, resulting in an
increased fitness cost when compared to the idealized scenario out-
lined in Fig. 2c, especially when feedback is realized in the form of
regulatory cascades57. The negative impact of delay on the perfor-
mance of autoregulation is illustrated in Fig. 6.

For short periods (T≪ T *), both selection and mutation play a
negligible role throughout each period, thus the fraction of non-
binders x remains approximately constant. Hence, in this case delay
has no impact on the performance of autoregulated motifs: the
dominant strategy in Fig. 6 remains unchanged when compared to the
case without delay (Fig. 3b).

For long periods (T≫ T *), the combined impact of mutation and
selection can impact x, whichmay result in non-autoregulated control

outperforming autoregulation. For instance, in case of low demand,
the fitness cost of non-autoregulated and autoregulated activation is
approximately sr and Dsp, respectively (Supplementary Fig. 24).
Therefore, while self-activation offers superior performance when
regulation is expensive (sr ≈ sp), non-autoregulated activation can
dominate if control is instead affordable (sr≪ sp). These results hold for
both weak and strong selection (Fig. 6), and also in the presence of
stochastic fluctuations due to small population size (Supplementary
Fig. 25). The high demand case can be analyzed similarly.

In the special casewhen T ≈ T *, autoregulation consistent with the
use-it-or-lose-it principle emerges as dominant when selection pres-
sure is sufficiently strong (stars in Fig. 6). To understand why this
happens, here we focus on the low demand case when regulation is
affordable (sr≪ sp), other scenarios can be analyzed similarly. For self-
repression, non-binders are eliminated (x ≈0) during the entire period
(Supplementary Fig. 26) as a result of strong and long selection (due to
low demand), yielding the average fitness cost �s ≈Dsr (Fig. 2c). Con-
versely, for self-activation there is alternating build-up and wipe-out
during Tn and Ts due to the shorter selection phase, resulting in
�s ≈ �xsDsp where �xs denotes the average of x during Ts (Supplementary
Fig. 26). Crucially, �xs increaseswith the delay, which is the driving force
behind self-repression offering superior performance compared to
self-activation, and eventually emerging as the dominant strategy for
sufficiently strong selection (blue star in Fig. 6). Delay thus has the
greatest impact in the special case when T ≈ T * by triggering the
emergence of regions where the dominant strategy is underpinned by
the use-it-or-lose-it principle (marked by stars in Fig. 6). These regions
expandwith increasing selection pressure sp, and they canappear even
in the presence of brief delays (Supplementary Fig. 31).

Feedback cost can cause non-autoregulated motifs to outper-
form autoregulation
In addition to introducing delay, autoregulation can also result in
additional burden due to the increased expression of the regulator R
that may be required to control its own expression14,15. To capture this,
we next assume that while the R-cost for non-autoregulated control
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remains sr, for autoregulation it instead increases to asr with
a ≥ 1 (Fig. 7a).

To understand how this change impacts the dominant strategy,
wefirst focus on the casewhenmutations haveminimal impact, so that
the population consists entirely of binders. As a result, the P-cost is
zero for all four schemes. Furthermore, positive and negative control
have identical R-cost, both when considering non-autoregulated and
autoregulated motifs (Fig. 2c). While autoregulation reduces the time
when the R-cost is suffered as demand decreases, non-autoregulated
strategies outperformtheir autoregulated counterparts once feedback
becomes too expensive (Fig. 7a). These results hold even when
mutations are considered. In particular, data in Supplementary
Figs. 32–34 confirm that (i) the pattern of how the use-it-or-lose-it and
the wear-and-tear principles emerge behind the dominant strategies
remains largely unaffected, (ii) non-autoregulated strategies can out-
perform their autoregulated counterparts as a increases, and (iii) this
transition happens at lower values of a as the demand increases.

As the R-cost for autoregulation increases with the duration of the
induced phase Ti =DT (Fig. 2c), we expect that the sensitivity of the
dominant autoregulated strategy to changes in a also increases with
the demandD, confirmed in Fig. 7b. In particular, while the fitness cost
of self-activation increases only slightly when compared to its non-
autoregulated counterpart in the low demand case, performance of
self-repression in the high demand limit quickly degrades. Further-
more, the results in Fig. 7b echo our finding in Fig. 5 about increasing
the R-cost (this time via a instead of sr), giving rise to a differential
impact on population composition: more stringent selection against
non-binders when relying on self-repression, and the spread of loss-of-
function mutations in case of self-activation. This also reveals a trade-
off between the fraction of non-binders x and the margin in a for
preserving thedominant strategy. For instance,when it is underpinned
by the wear-and-tear principle, in the low demand case a can be
increased substantially and self-activation would still emerge as
dominant (e.g., it remains only about 15% as expensive as non-
autoregulated positive control when a = 2 in Fig. 7b), although at the
price of increased prevalence of non-binders. Conversely, in the high

demand case negative autoregulation promotes the elimination of
deleterious mutations, however, the margin in a is considerably
smaller to preserve the dominance of self-repression (e.g., non-
autoregulated negative control dominates its autoregulated counter-
part once a > 1.07 in Fig. 7b).

Reduced bioenergetic cost may contribute to the prevalence of
autoregulation in model organisms
Wenext turnour attention to the transcriptional regulatory networkof
B. subtilis, C. glutamicum, and E. coli, model organisms with the most
comprehensive data availability58,59 (Supplementary Fig. 35). Our
results suggest that self-activation and self-repression should be pro-
minently featured among regulators, hence in what follows we con-
centrate on whether the reduced bioenergetic cost of autoregulated
control schemes could indeed confer an evolutionary advantage, and
thus contribute to their high prevalence60,61.

To this end, we first note that autoregulation is preferentially
selected by evolution when choosing regulators. While the average
prevalence of autoregulation is only 27% among TFs (each TF is only
counted once), it is instead 35% among all regulators (each TF is
counted as many times as it appears as an activator/repressor), with
the overrepresentation ranging between 2–16 percentage points
(Fig. 8a). This is not surprising, as autoregulated TFs offer a multitude
of beneficial properties62–67. Importantly, if R-cost reduction was a
negligible factor, we would expect identical prevalence among all
regulators and among the subset that control gene targets synergis-
tically (Fig. 8b), otherwise the frequency in the latter should be greater
(Supplementary Section 7). Thus, for each organism our two samples
of interest comprise regulators of genes that are either positively or
negatively controlled, focusing on 86%, 50%, and 40% of target genes
in B. subtilis, C. glutamicum, and E. coli, respectively (Supplementary
Table 2).

Using the frequency of autoregulation among TFs as a baseline,
the overrepresentation of this motif is greater among synergistic
regulators (Fig. 8c) than among all regulators (Fig. 8a): the mean dif-
ference is 25 percentage points, with the overrepresentation ranging
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between 18–42percentage points (SupplementaryTable 2). Therefore,
beneficial properties of autoregulation yield their preferential selec-
tion for regulators (Fig. 8a), but crucially, the frequency of auto-
regulation among synergistic regulators further exceeds this modified
and elevated baseline by 17 percentage points on average (Fig. 8d),
with the overrepresentation ranging between 6–28 percentage points
(Supplementary Table 2). To quantify the significance of the differ-
ences, we performed standard two-sample location tests across all
datasets to compute the probability of the modified baseline (auto-
regulation among all regulators) and the samples of interest (auto-
regulation among synergistic regulators) coming from the same
distribution (leveraging not only the frequencies but also the sample
sizes). The resulting p-values are all smaller than0.001, suggesting that
the differences are statistically significant across all three organisms
for both self-activation and self-repression, and that the underlying
distributions are likely different.

In summary, autoregulated motifs are overrepresented among
synergistic regulators compared to their frequency among all reg-
ulators. This suggests that autoregulation likely offers additional
beneficial properties in the former case, leading to their even stronger
preferential selection. Our results highlight that reduced R-cost offers
an appealing explanation as one of the factors that contribute to
establishing the prominent role of autoregulation.

Discussion
Given the prevalenceof autoregulation in transcription networks60,61, it
is not surprising that this network motif offers numerous advantages.
For instance, self-repression can accelerate temporal responses62,63

and reduce stochastic fluctuations64,65, whereas self-activation under-
pins cellular memory66 and helps cell populations to maintain a mixed
phenotype to assure optimal performance in stochastic
environments67. As autoregulation ensures that a TF is only expressed
when needed, our results highlight that the abundance of this motif
may also stem from its reduced bioenergetic and fitness cost relative
to non-autoregulated control.

We confirm this both in small and large populations by demon-
strating thatnon-autoregulated regulationpractically never dominates
its autoregulated counterpart except when the additional cost of
feedback is substantial or in the presence of regulatory delays. The
dominant strategy is generally in accordance with the wear-and-tear
principle, the use-it-or-lose it principle emerges only in a narrow region
of population size and timescale of environmental shifts. Our work
thus further highlights that demand for a beneficial gene product and
whether positive or negative regulation offers superior performance
are tightly coupled. These results considerably expand our prior

understanding focusing only on non-autoregulated control26, andmay
explain why self-activation and self-repression show strong clustering
and preferential localization across functional subsystems (Supple-
mentary Fig. 38) with different temporal demand profiles68.

As the performance of autoregulation degrades with delay, it is
understandable that the transcription network of E. coli has an essen-
tially feedforward structure, where feedback occurs primarily in the
form of autoregulation69,70. Further strengthening the connection
between evolutionary selection and autoregulation, the latter most
likely emerged as a result of gene duplication71, a core factor in the
origin of mutational robustness72 resulting in the accumulation of
phenotypically cryptic genetic variation73 promoting evolvability74.
This link between autoregulation and mutational robustness was
confirmed by recent experimental advances, suggesting that reg-
ulatory feedback may be an important element of the network archi-
tectures that confer mutational robustness across biology75.

The results presented in this paper focus on the impact of auto-
regulation by putting the spotlight on fitness advantage, as this factor
plays a pivotal role in establishing the dominant strategies that emerge
as a result of competition and selection. In synthetic biology applica-
tions, however, while the fitness cost can be crucial in certain scenar-
ios, e.g., when studying the cost of plasmid acquisition and
maintenance76, often the rate at which non-binders emerge is instead
of primary concern to avoid compromising the genetic stability of
engineered synthetic circuits77. Importantly, our approach can be
applied to characterize how autoregulation impacts the proliferation
of deleterious mutations considering timescales and population sizes
typical in synthetic biology applications (Supplementary Section 8)
ranging from microfluidics experiments to bioreactor-based
contexts78–82. Crucially, our work reveals that while self-activation
facilitates the spread of non-binders, self-repression acts against this
phenomenon, and these effects are amplified as the cost of regulation
increases. Thus, our results not only uncover how genetic design
choices alter population structure, growth dynamics, and evolutionary
outcomes, but they can also be leveraged to minimize the prevalence
of cells that harbor non-functional genetic modules to design evolu-
tionarily robust synthetic gene circuits83,84.

Our model-based analysis raises several experimentally testable
hypotheses. Does the wear-and-tear principle emerge in small popu-
lations and at the critical timescale of environmental shifts in case of
sufficiently strong selection? Is it true that while negative autoregula-
tion curbs the emergence of detrimental mutations, self-activation
instead facilitates their spread? To test these predictions, all regulatory
schemes featured here can be constructed using existing synthetic
biology toolkits and parts85–88, and key variables can be conveniently
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tuned to reveal their role in establishing the dominant control scheme.
Demand and period length can be varied by creating defined envir-
onments to control when the gene product is needed89,90 using auto-
mated cell culture systems81,82. Mutation rates can be adjusted by using
UV radiation or CRISPR-guided mutagenesis91,92. The P-cost can be
tuned by modulating selection pressure, for instance, via the compo-
sition of the growth media93–96, whereas the R-cost can be altered
through codon (de)optimization97. Finally, delay can be modulated
leveraging regulatory cascades57. By ensuring that experiments with
maximal information content are selected98, it is possible to efficiently
test whether the predicted regulatory mechanisms actually emerge as
dominant strategies in each environment, thus to promote the design
of biosystems that operate robustly under inevitable evolutionary
forces99.

Biology has evolved powerful and creative solutions to control
gene expression by selecting the optimal variant(s) among awide array
of competing control mechanisms. Our results reveal how the inter-
play of biophysical parameters and environmental factors together
shape the emergence of dominant regulatory strategies. This can be
leveraged both to shed light on evolutionary organizing principles
underpinning the transcription networks of living organisms, and also
to guide the design of synthetic gene circuits, for instance, when
selecting among alternative modes of regulation to implement bio-
molecular controllers and insulation devices37–52 to facilitate the
modular design of complex synthetic gene circuits.

Methods
Parameters
Wild-type E. coli grown under optimal conditions typically has
mutation rates on the order of 10−3 mutations per genome per
generation100. Considering the typical genome size of bacteria, this
corresponds to approximately 10−9–10−8 mutations per base per
generation101–103, though this rate may depend on population size104

and expression levels105. Furthermore, hypermutators with up to 104-
fold greater mutation rates can occur under laboratory conditions,
and more frequently in natural bacterial populations100. Assuming
roughly 100 sensitive nucleotide positions, we thus estimate the rate
of loss-of-function mutations to span the range ν− ≈ 10−7–10−3 per
generation. Since gain-of-function mutations are assumed to be less
probable, we consider ν+ = ν−/10 throughout the paper matching
experimental estimates106. Selection intensity is notoriously hard to
measure107–110, however, based on estimates for codon bias111, we
consider sp/ν− = 10 and sp/ν− = 100 in case of weak and strong selec-
tion, respectively. Finally, we assume that sr < sp for a typical target
gene, otherwise there would be no evolutionary selection pressure to
regulate the expression of the product. Throughout the paper, the
period T is measured in number of generations, whereas the muta-
tion rates ν− and ν+ as well as the selection intensities sp and sr are all
given in 1/generation.

Stochastic simulation of the evolutionary dynamics
The standardWright-Fishermodel assumes the following: discrete and
non-overlapping generations with a constant population size N, with
each member replaced in every generation53,54. Introduce s = snb − sb
where snb and sb are the fitness cost incurred by the non-binders and
binders, respectively, and let nt denote number of non-binders in the
population in generation t (i.e., nt =0, 1, 2,…,N). We first generate the
number of gain-of-function and loss-of-function mutationsm+ andm−

fromPoisson distributionswithmeans ntν+ and (N − nt)ν−, respectively,
so that the fraction of non-binders in the population becomes
x = (nt +m− −m+)/N. The number of non-binders nt+1 in the next gen-
eration is drawn from a Binomial distribution with success probability
x0 = x � sxð1� xÞ=ð1� sxÞ to account for the fitness difference s (thus
the number of offsprings produced) between non-binders and
binders26.

Periodic steady state distribution
Considering the periodic selection pressure in the evolutionary
dynamics depicted in Fig. 2, the distribution P(x, t) of x approaches a
periodic steady state distribution (subsequent to a transient that
depends on the initial condition). This can be estimated for 0 < x < 1

considering ∂Pðx,tÞ
∂t = � ∂jðx,tÞ

∂x with jðx,tÞ= � 1
2N

∂
∂x ½xð1� xÞP�+ ½ν� �

ðν + + ν� + sÞx + sx2�P using the diffusion approximation26. To compute
the probabilities P(0, t) and P(1, t) at the boundaries x =0 and x = 1, we

consider the flux conditions dPð0,tÞ
d t

= � jð0,tÞ and dPð1,tÞ
d t

= jð1,tÞ. After
estimating the steady state distribution of P(x, t) using the algorithm
developed in ref. 55 implementing the above steps, the average fitness
cost �s during one period can be computed as in (2) with x(t) replaced

by x0ðtÞ= Pð1,tÞ+ R 10 xðtÞPðx,tÞd x, following the approach in ref. 26.

Statistical analysis
We perform two-sample location tests comparing the success rate
(presence of positive/negative autoregulation) observed in a reference
(regulators of genes) and our samples of interest (regulators of
synergistically controlled genes). We assume that the underlying dis-
tributions are Binomial with nr and n trials (sample size) and θr and θ
success rates in the reference and in the sample of interest, respec-
tively. Therefore, the number of successes are given by
Xr ~ Binom(nr, θr) and X ~ Binom(n, θ), respectively.With this, θ̂r =Xr=nr

and θ̂=X=n are non-biased estimators of the unknown success rates.
With the null hypothesis H0 : θ = θr of identical success rates, we

are interested in the probability p=P Ω≥ω jH0

� �
of observing the

value ω of the test statistic Ω (number of positively/negatively auto-
regulated regulators) at least as extreme as if the null hypothesis was
true. As nr θ̂r ,nrð1� θ̂rÞ,nθ̂,nð1� θ̂Þ>5 for all datasets we consider,
from the Central Limit Theorem it follows that

θ̂� θ̂r ∼N θ� θr ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θð1� θÞ

n
+
θrð1� θr Þ

nr

s !
:

Since θr and θ are unknown, and there are infinitely many choices
that satisfy the null hypothesis, we follow the standard choice of using

the pooled proportion θ̂0 = ðXr +X Þ=ðnr +nÞ in place of both, as it
satisfies the null hypothesis and it is consistent with our data. With
this, we obtain that p ≈ 1 −Φ(z) where Φ( ⋅ ) is the cumulative dis-
tribution function of the standard normal distribution, together

with z = ðθ̂� θ̂r Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ̂0ð1� θ̂0Þðn�1

r +n�1Þ
q

.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
CoryneRegNet 7.0 data were downloaded from https://exbio.wzw.
tum.de/coryneregnet/processToDownalod.htm58. PRODORIC data can
be accessed using the API at https://www.prodoric.de/api/59. Data on
the functional organization of the transcription regulatory network of
E. coli were downloaded from https://www.pnas.org/doi/full/10.1073/
pnas.1702581114112. Source data are provided with this paper.

Code availability
The manuscript does not rely on custom mathematical algorithms or
software. Simulationdatawere generated and analyzed as described in
the “Methods” using built-in MATLAB (version R2023a) functions. The
MATLAB scripts used to obtain the results featured in the paper are
publicly available at https://github.com/qbionet/evolutionary-
selection. Additional information is available from the corresponding
author upon request.
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