
Article https://doi.org/10.1038/s41467-023-43317-9

Bringing uncertainty quantification to the
extreme-edge with memristor-based
Bayesian neural networks

Djohan Bonnet1,2 , Tifenn Hirtzlin1, Atreya Majumdar2, Thomas Dalgaty 3,
Eduardo Esmanhotto1, Valentina Meli1, Niccolo Castellani1, Simon Martin1,
Jean-François Nodin1, Guillaume Bourgeois1, Jean-Michel Portal4,
Damien Querlioz 2 & Elisa Vianello 1

Safety-critical sensory applications, like medical diagnosis, demand accurate
decisions from limited, noisy data. Bayesian neural networks excel at such
tasks, offering predictive uncertainty assessment. However, because of their
probabilistic nature, they are computationally intensive. An innovative solu-
tion utilizes memristors’ inherent probabilistic nature to implement Bayesian
neural networks. However, when using memristors, statistical effects follow
the laws of device physics, whereas in Bayesian neural networks, those effects
can take arbitrary shapes. This work overcome this difficulty by adopting a
variational inference training augmented by a “technological loss”, incorpor-
ating memristor physics. This technique enabled programming a Bayesian
neural network on 75 crossbar arrays of 1,024 memristors, incorporating
CMOS periphery for in-memory computing. The experimental neural network
classified heartbeats with high accuracy, and estimated the certainty of its
predictions. The results reveal orders-of-magnitude improvement in inference
energy efficiency compared to a microcontroller or an embedded graphics
processing unit performing the same task.

Hardware neural networks based on emerging non-volatile memories
can bring intelligence to the edge at a very low energetic cost. In this
context, filamentary memristors and phase change memories can be
used in a very elegant and energy-efficient way. These devices can act
as analog synaptic weights enabling neural network multiply-and-
accumulate operations directly in memory by relying on Ohm’s law
and Kirchoff’s current law1–7. Low-power systems of this kind could
provide essential services: for example, medical devices could analyze
patient measurements and detect life-threatening emergencies or
automatically adjust treatment.

However, this vision comes with two major challenges. First,
neural networks need to be programmed with precise weight values.
Memristors and phase change memories are prone to conductance

variability, instability, and drift8–10, meaning that they act more as
randomvariables thanprecise real weights, requiring the development
of multiple program-and-verify and compensation techniques to cor-
rect their imperfection11,12. Second, conventional neural networks are
not well suited to safety-critical applications, as they are notoriously
bad at evaluating uncertainty13–15. When trained with small datasets, as
is typically the case in medical applications, conventional neural net-
works tend to “overfit” training data and to provide highly certain
answers in all situations16,17.

More importantly, uncertainty in a machine learning context
can have different origins, usually referred to as aleatoric
(ambivalence between several known situations) and epistemic
(unknown situation), which have different implications (see

Received: 9 January 2023

Accepted: 7 November 2023

Check for updates

1Université Grenoble Alpes, CEA, LETI, Grenoble, France. 2Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France.
3Université Grenoble Alpes, CEA, LIST, Grenoble, France. 4Aix-Marseille Université, CNRS, Institut Matériaux Microélectronique Nanosciences de Provence,
Marseille, France. e-mail: djohan.bonnet@cea.fr; damien.querlioz@c2n.upsaclay.fr; elisa.vianello@cea.fr

Nature Communications | (2023) 14:7530 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0326-2121
http://orcid.org/0000-0003-0326-2121
http://orcid.org/0000-0003-0326-2121
http://orcid.org/0000-0003-0326-2121
http://orcid.org/0000-0003-0326-2121
http://orcid.org/0000-0002-0295-1008
http://orcid.org/0000-0002-0295-1008
http://orcid.org/0000-0002-0295-1008
http://orcid.org/0000-0002-0295-1008
http://orcid.org/0000-0002-0295-1008
http://orcid.org/0000-0002-8868-9951
http://orcid.org/0000-0002-8868-9951
http://orcid.org/0000-0002-8868-9951
http://orcid.org/0000-0002-8868-9951
http://orcid.org/0000-0002-8868-9951
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43317-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43317-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43317-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43317-9&domain=pdf
mailto:djohan.bonnet@cea.fr
mailto:damien.querlioz@c2n.upsaclay.fr
mailto:elisa.vianello@cea.fr

“Results” section), and which conventional neural networks cannot
tell apart15,18.

Bayesian neural networks are an alternative class of neural net-
works, which have the potential to solve both challenges. In these
networks, synaptic weights do not take on unique values but are
instead represented by probability distributions19–21, tracking the
uncertainty about these weights. Bayesian neural networks are trained
so that if we sample a value for each weight based on their probability
distributions, we obtain a conventional neural network that con-
stitutes a plausible interpretation of the training data. This contrasts
with the training process of conventional networks, which solely fits
the data, making them susceptible to overfitting20. For inference, we
sample a pool of M conventional neural networks from the Bayesian
neural network and input the same data to all of them. Analyzing the
output statistics enables not only a prediction but also a robust esti-
mation of aleatoric and epistemic uncertainties15.

The intrinsic randomness ofmemory nanodevices aligns naturally
with the random variable nature of synapses in Bayesian neural net-
works. An implementation of Bayesian neural networks with memory
nanodevices can be achieved by programming a neural network M
times to reproduce the sampling operation necessary to derive M
conventional neural networks from the Bayesian one. However, a cri-
tical question remains: how can we train Bayesian neural networks to
align with the characteristics of memory nanodevices?

Synaptic weight probability distributions in Bayesian neural net-
works can take any shape19,22, but the statistical properties of mem-
ristors and phase change memories follow rigid physics rules23–25.
Filamentary memristors, for instance, demonstrate broader prob-
ability distributions at higher resistance states and narrower ones at
lower resistance states8,26, correlating resistance mean value and
standard deviation. To overcome this difficulty, two recent studies
proposed new devices with tunable inherent resistance probability
distributions, using two-dimensional materials27 and magnetic
devices28. These solutions, were validatedwith simulations of Bayesian
neural networks.

In the main contribution of our paper, we propose a dedicated
technique for Bayesian neural networks—variational inference aug-
mented by a “technological loss” that leads to networks readily
implementable with more conventional memory nanodevices. Stan-
dard variational inference trains the mean value and standard devia-
tion of each synapse via backpropagation to identify plausible
interpretations of the training data. During the training process, the
mean value and standard deviation of a synaptic weight evolve fol-
lowing different gradient values and become fully decorrelated. Our
added technological loss constrains these synaptic weights and stan-
dard deviations to domains implementable with the selected nano-
devices for a given technological implementation. We demonstrated
this technique’s effectiveness using standard nanodevices (filamentary
memristors) to accomplish the first complete nanodevice-based
Bayesian neural network implementation for a real-world task—classi-
fying types of arrhythmia recordings with precise aleatoric and epis-
temic uncertainty. Our system utilized 75 arrays of fabricated 32 × 32
memristor chips integrating hafnium oxide memristors and CMOS
peripheral circuitry for in-memory computations based on
Kirchoff’s laws.

In addition to the “technological loss”, used here for the first time
and critical for the success of our experiment, our work uses two
additional techniques to overcome the problems related to the cor-
relation of statistical properties ofmemristors already proposed in the
literature. The specific choice of variational inference20, also present
in27–29, ensures statistical independence between synapses. A prior
simulation study26 suggested Markov Chain Monte Carlo training,
leading to statistically-dependent synapses, which is extremely chal-
lenging to realize experimentally due to memristor imperfection (see
Supplementary Note 10). Second, each synaptic weight value is

implemented using two memristors that are programmed indepen-
dently, allowing the partial decorrelation of mean values and standard
deviations of synaptic weights (see Result section and Supplementary
Note 7). This idea was previously presented in several simulation
studies27,28,30. Supplementary Note 14 presents an in-depth comparison
of our work with the state of the art.

Moreover, our technological loss approach is generic. Using a
different expression for it, we show that the same technique can be
applied to phase changememory (by following a hybrid experimental-
simulationmethodology, employing a fabricated array of 16,384phase
change memories).

Our research is situated within a current trend of linking Bayesian
concepts and nanodevice characteristics. A number of studies have
identified connections between Bayesian models other than Bayesian
neural networks and nanodevices. The Bayesian machine of Ref. 31
uses memristors as memory for the model parameters and uses sto-
chastic computing to perform inference on a Bayesian network.
Bayesian networks differ from Bayesian neural networks. The former
are constructed using expert knowledge and are fully explainable,
which makes them ideal for tasks like sensor fusion. On the contrary,
Bayesian neural networks are trained from the ground up and excel on
more data-intensive tasks like electrocardiogram or electro-
encephalogram classification. From a circuit point of view, the Baye-
sianmachine also differs strongly from the present work: The Bayesian
machine is a digital system that tolerates memristor imperfections but
does not exploit them31. Several studies also suggested leveraging the
stochastic traits of nanodevices to facilitate Bayesian network
inference32–35. Moreover, Ref. 23 exploited the probabilistic nature of
memristors to perform Bayesian learning. This approach can only be
applied to small-scale tasks. Unlike Bayesian neural networks, it does
not suffer from the limitations imposed by the correlation of themean
value and standard deviation of memristors, which makes it more
straightforward to implement23. Finally, the work of Ref. 36 treats
memristors as Bayesian variables and uses them to program determi-
nistic, non-Bayesian neural networks in order to increase hardware
resilience.

In this paper, we introduce and describe the general architecture
of our Bayesian neural networks, which are based onmemory devices,
and our technique to match imperfections in nanodevices with the
probability distributions of a Bayesian neural network. We then show
the experimental classification of arrhythmiawith a proper uncertainty
evaluation, using 75 arrays of filamentary memristors.

Results
Memory devices-based Bayesian neural networks
For our experiments, we considered a two-layer Bayesian neural net-
work (Fig. 1a, b), trained to differentiate nine classes of heart
arrhythmia from electrocardiogram (ECG) recordings37. While in Arti-
ficial Neural Networks (ANNs), the synaptic weights are point esti-
mates, Bayesian neural networks replace them with probability
distributions. A natural way to implement a Bayesian neural network
with memristors or phase change memories is to use a collection ofM
distinct memory arrays to represent each layer of the neural network
(Fig. 1c, d). We sample M weight values for each synapse based on its
probability distribution in the Bayesian neural network, and we pro-
gram them to theMmemory array.Wewill see in the next sections that
the inherent probabilistic effects in memory devices allow us to per-
form the sampling and programming operations simultaneously,
transforming the largest drawback of emergingmemory devices, their
variability, into a feature. This approach leads to a collection of M
independent in-memory neural networks. By presenting the same
input to each of these arrays, we obtain a collection of M different
outputs representing the output distribution of these neural networks.

The benefit of using distributions, instead of deterministic values,
is that we can quantify the uncertainty of the neural network’s output.

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 2

Intuitively, each of the M independent neural networks constitutes a
reasonable hypothesis interpreting the data used to train the Bayesian
neural network. The spread of the output distributions captures the
certainty or lack of certainty in the model’s predictions. A unique
property of Bayesian neural networks is their ability to differentiate
between aleatoric and epistemic uncertainty. To understand the
appeal of this feature, we can use the example of a medical device
trained to recognize different types of arrhythmia (irregular heart-
beats) in a patient. Aleatoric uncertainty characterizes situationswhere
ameasurement could be consistent with different types of arrhythmia.
Epistemic uncertainty, on the other hand, arises when an arrhythmia
type that is significantly different from thedata used to train the device
appears. Recognizing and differentiating those two types of uncer-
tainty is essential, as they could be indicating that the patient’s con-
dition has evolved18,38.

Uncertainty can be quantified by analyzing both themean and the
variance values of the output neuron activations, as illustrated in
Fig. 1b–d. If anoutput is highly certain (clear classification), allMneural
networks will have the same active output neuron (value close to one),
and inactive output neurons (value close to zero), and both the alea-
toric and epistemic uncertainties will be low (see Methods for the
mathematical definitions of aleatoric and epistemic uncertainties). If
measurement imprecision causes ambivalence in the predictions

(unclear classification), e.g., the features allowing differentiation of the
arrhythmia types are lost in noise, none of the M neural networks will
provide a certain prediction: all of themwill hesitate between the same
classes, with non-zero outputs on these classes. The variance of the
output remains low, as all M networks have a consistent behavior:
aleatoric uncertainty increases, whereas epistemic uncertainty does
not. But what happens if a new arrhythmia type that was not present
during training appears, and the network has to classify it? This is an
example of out-of-distribution test data (case Unknown data in
Fig. 1b–d). All M neural networks sampled from the Bayesian neural
network will tend to make a different interpretation of this unknown
data resulting in a high variance in the distribution of output neurons.
Both aleatoric and epistemic uncertainty will be high. Classifying out-
of-distribution data, therefore, is possible by measuring output dis-
tributions. This is of fundamental importance for safety-critical appli-
cations like medical diagnoses or autonomous driving.

Performing inferencewith our approach requiresmassive parallel
Multiply-and-Accumulate (MAC) operations. These operations are
power-hungry when carried out on CMOS-based ASICs and field-
programmable gate arrays, due to the shuttling of data between pro-
cessor and memory. In this work, we use crossbars of memristors that
naturally implement the multiplication between the input voltage and
the probabilistic synaptic weight through Ohm’s law, and the

IN
+ So

ftm
ax

W1

Bit line

So
ur

ce
 li

ne

I1
+

I1
-

+

Input X
s = M

s = 1
s = 2

s = 3

Programming conditions
(weight transfer)

2
+

I -

I

2

I -

8

I8

1

2

8

1

2

31

32

1

2

16

Epistemic uncertainty

Aleatoric uncertainty

Clear classification Unclear classification Unknown data

High

High

High

Low

Low

Low

a

b

c d

so
ftm

ax
S=1

,2,
3,M

Current

S=1
,2,

3,M

Current

S=1
,2,

3,M

Current

I9+

I9
-

 9

M
ag

ni
tu

de
 (a

rb
. u

ni
ts

)

Fig. 1 | General architecture of the Bayesian neural network. a Schematic of the
Bayesian neural network used for heart disease (arrhythmia) classification. In
Bayesian neural networks, the weights are represented by probability distributions,
thus naturally including uncertainty in the model. The heart schematic has been
reproduced from the work of Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD,

cardiologist. https://creativecommons.org/licenses/by/2.5/. b Example of output
neuron activation distributions, obtained for certain output, uncertain output, due
tonoisy input data, and unknowndata (i.e. out-of-distributiondata). c Experimental
setup. d Hardware implementation of a Bayesian neural network by combining
multiple versions of ANNs.

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 3

https://creativecommons.org/licenses/by/2.5/

accumulation through Kirchhoff’s current law2,7,39,40, to significantly
lower power consumption.

Filamentary memristor and phase-change memory as normal
distributions
Among the non-volatile memories that can be integrated in advanced
commercial processes, phase-change memories (PCM) and filamen-
tarymemristors havebeenwidely studied for analog in-memory neural
network implementation, because of the possibility of adjusting the
conductance level of these devices. In our previous work, we demon-
strated that the intrinsic variability in filamentary memristors can be
leveraged to store the probabilistic weights of Bayesian neural
networks26. However, the conductance distribution follows strict rules
due to devicephysics: themean value, μ, and the standard deviation, σ,
are strongly correlated. Phase-change memories suffer from the same
limitation24. Bayesian neural networks require a larger space of normal
distribution with mean values that are uncorrelated with the standard

deviations. Here, we come up with a new synaptic circuit and the
associated programming strategy to obtain largely unrestricted μ and
σ values. To illustrate the practicality of the proposed solution, we
fabricated and tested arrays of hafnium-oxide-based filamentary
memristors and of germanium-antimony-tellurium phase-change
memories in a one-transistor-one-resistor (1T1R) configuration
(Fig. 2). Bothmemory technologies have been integrated into the back
end of line (BEOL) of a 130-nanometer foundry CMOS process with
fourmetal layers (seeMethods). Figure 3a, c shows the distributions of
2048 filamentary-based memristors and phase-change memories,
respectively, programmed in eight conductance levels.

In both cases, the standard deviation of the distribution is related
to its mean value and cannot be chosen independently. The resulting
domain of normal distributions that can be achieved by exploiting
device variability (σ) is thus bounded to a one-dimensional space for
both technologies (Fig. 3b). In filamentary memristors, σ decreases for
increasing conductance values due to the Poisson-like spread of the

Fig. 2 | Fabricated filamentary memristor and phase-change memory based
array die. a Transmission electron microscopy image of a phase-change memory
in the back end of line of our hybrid memristor/CMOS process. b Transmission
electron microscopy image of a phase-change memory. c Optical microscopy
photograph of the phase-change memory-based 1T1R array. d Transmission

electron microscopy image of a filamentary memristor in the back end of line of
our hybrid memristor/CMOS process. e Transmission electron microscopy image
of a filamentary memristor. f Optical microscopy photograph of the filamentary
memristor-based 1T1R array.

a

b

c

d

e

Fig. 3 | Filamentarymemristorandphase-changememoriesasphysical random
variables with normal distribution. a Probability densities of 2,048 filamentary
memristors programmed with eight different programming current values.
b Domain of the Gaussian distributions experimentally achieved exploiting differ-
ent programming conditions for filamentary memristors (blue) and phase-change
memories (green). Triangles represent one-shot programming, dots represent
iterative programming and the cross represents the low conductance state.

c Probability densities of 2,048 phase-change memories programmed with seven
different programming current values. d Schematic of the proposed synaptic cir-
cuit. Each sample of a Bayesian probabilistic weight is stored as the difference
between the conductance values of two adjacent memory cells. e Domain of the
normal distributions (Γ) that can be experimentally obtained exploiting the circuit
in d by storing samples on two memory cells.

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 4

number of defects injected during the programming operation41. In
phase-change memories, the trend is inverted: device variability
increases with the conductance values, moving from a full to a partial
amorphousmaterial24,25. For both technologies, the standarddeviation
can be reduced by adopting an iterative program-and-verify scheme
(seeMethods). To extend the domain of normal distributions, we store
each sample of a probabilistic weight as the difference between the
conductance values of two adjacent memory cells, as shown in
(Fig. 3d). This method is particularly useful, because the difference
between two normal distributions is still a normal distribution. Fig-
ure 3e illustrates the corresponding technologically-plausible domain
of normal distributions for bothfilamentarymemristors (Γmemristor) and
phase-change memories (ΓPCM). Both filamentary memristors and
phase changememories suffer fromconductance instability over time,
due to the local recombination of oxygen vacancies and structural
relaxation of the material, respectively11,42. However, the shape of the
technologically plausible domain of normal distributions is only
slightly altered by these effects (see Supplementary Notes 4, 5, 6).

Hardware-calibrated training
In Bayesian neural networks, the weights are probability distributions,
given by the posterior probability distributions, p(Ω∣D), whereD is the
training data. Themost popularmethods to approximate the posterior
distributions are Markov Chain Monte Carlo (MCMC) sampling43 and
variational inference (VI)44. We proposed the transfer of a Bayesian
neural network trained by MCMC, an algorithm that samples the
posterior exactly, in our previous work26. However, MCMC lacks scal-
ability and its training time is orders of magnitude longer than that of
variational inference14. MCMC methods typically require a huge num-
ber of samples to approximate the posterior, involving high memory
density to store it, rendering them area and energy inefficient. More-
over, the mapping of the software posterior on hardware causes a loss
in accuracy and estimation of both epistemic and aleatoric uncer-
tainties of several percentage points (see Supplementary Note 10).

Here, we use the variational inference method, which scales better
thanMCMC19. Rather than sampling from the exact posterior, the latter
is approximated with normal distributions, q(Ω∣θ), where θ represents
themean and standard deviation (μ,σ). The estimation is performedby
minimizing the loss function, the Kullback-Leibler divergence between
p(Ω∣D) and q(Ω∣θ):

LossVI =KL½qðΩjθÞjjpðΩjDÞ�: ð1Þ

During the training phase, for each weight, μ and σ are learned
using the backpropagation algorithm (see Methods). Figure 4a illus-
trates the domain of the normal distributions θ = (μ, σ) of the synaptic
weights obtained after software training our reference arrhythmia
classification task andmapping the softwarevalues to the conductance
range achievablewithfilamentarymemristors (blue) andphase-change
memories (green). The mapping operation is a linear scaling of θ = (μ,
σ) by a factor γ calculated to minimize the statistical distance between
the normal distributions calculated by software and the available
experimental ones (see Methods). However, this operation is not suf-
ficient to meet the technology requirements: the desired domain
exceeds the available experimental one for both filamentary memris-
tors (Γmemristor) and phase-change memories (ΓPCM). To compel the
learned normal distributions tomatchwith the hardware experimental
electrical characteristics, we imposed that θ belong to the experi-
mental Γ domain by adding the “technological loss” term to the loss
function during the training process:

Loss = LossVI � logðUΓðθÞÞ, ð2Þ

where UΓ(θ) is designed to approach uniform distribution over the
Γ = Γmemristor/γ or the Γ = ΓPCM/γ domain (see Methods). Figure 4b
illustrates the effectiveness of the proposed hardware-calibrated
training method: the normal distributions obtained by software
simulations perfectly map on both phase-change memories and

Fig. 4 | Domains of normal distribution obtained with classical Variational
Inference and the proposed technologically plausible method. a Domain of
normal distributions θ=(μ, σ) for the synaptic weights obtained after training our
reference arrhythmia classification task with the classical variational inference
method and mapping the software values to the conductance range achievable
with filamentary memristors, Γmemristor (blue) and phase-change memories, ΓPCM

(green). Weight values have been scaled to a conductance value (expressed in
microsiemens) using a factor calculated to minimize the statistical distance
between the normal distributions calculated by software and the available experi-
mental ones (see Methods). b Domain of normal distributions obtained after
training employing the new technologically calibrated method on filamentary
memristors (blue) and phase-change memory experimental data (green).

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 5

filamentary memristors experimental values. We, therefore, demon-
strated that by taking hardware physics into account while developing
the training algorithm, it is possible to make variational inference a
technologically plausible algorithm.

Experimental uncertainty estimation
To validate our approach, we programmed a Bayesian neural network,
trained to recognize arrhythmia, onto a collection of the filamentary
memristor dies (Fig. 2f). We classified ECG diagnosis beats using a two-
layer Bayesian neural network featuring 32 inputs, 16 hidden neurons
in the first layer, and nine output neurons in the second layer. We
trained the Bayesian neural network, using the filamentary memristor
technological loss, on nine classes: healthy beat and eight types of
arrhythmias. During testing, we added a tenth class corresponding to a
non-previously seen type of arrhythmia. Following the architecture
presented inFig. 1, we programmedM = 50 independent realizations of
model parameter vector θ, representing the learned posterior q(Ω∣θ),

i.e., we transferred eachmodel realization into an arrayof conductance
values. Each realization can fit in 1.5 dies presented in Fig. 2f (one die
for the first layer of the neural network, and a half die for the second
layer, seeMethods), and described in detail in Supplementary Note 13;
therefore, we needed to program a total of 75 dies. Multiply-and-
accumulate operations were performed directly in memory using
Ohm’s and Kirchoff’s law (see “Methods” and Supplementary Note 13).
Activation functions were calculated in software. The array performed
all the multiply and accumulate operations needed to classify 1000
beats in the test data set. Supplementary Note 16 recapitulates the
different steps of our experiment, from training to inference.

Figure 5 presents the electrical characterization results of the
memristor-based Bayesian neural network. To visualize the input data,
we used the t-distributed stochastic neighbor embedding (t-SNE) sta-
tistical method (Fig. 5a, b). This visualization technique represents
each high-dimensional input data by a point in a two-dimensional
space, in a way that similar data correspond to nearby points and

Data visualisation (tSNE) Uncertainty estimation
Experimental Bayesian NN (memristor)

Simulation Conventional NN (float32)

c

e

d

Simulation Bayesian NN (PCM)

Performance evaluation

f

g

hb

a

Fig. 5 | Measurements of the fabricated memristor-based Bayesian neural
network and simulations of a PCM-based Bayesian neural network. a tSNE
visualization of input data, different colors representing different classes (dis-
eases). Nearby points correspond to similar data and distant points to dissimilar
data. b tSNE visualization of experimental data classification. The different colors
represent points correctlyor incorrectlypredictedandunseendata.c Experimental
probability density distribution of the aleatoric uncertainty for correct predictions,
incorrect predictions and unseen diseases, using filamentary memristors.
d Experimental probability density distribution of the epistemic uncertainty for
correct predictions, incorrect predictions and unseen diseases, using filamentary
memristors. e Simulated probability density distribution of the aleatoric

uncertainty for correct predictions, incorrect predictions and unseen diseases for a
conventional neural network with the same architecture and using float32 encod-
ing for the synapses. f Simulated probability density distribution of the aleatoric
uncertainty for correct predictions, incorrect predictions and unseen diseases,
using PCMs. g Simulated probability density distribution of the epistemic uncer-
tainty for correct predictions, incorrect predictions and unseen diseases, using
PCMs. h Measured (memristor) and simulated (PCM) accuracy, epistemic uncer-
tainty, and aleatoric uncertainty performance (calculated as the area of the ROC
curves presented in Suppl. Note 1) as a function of the number of pair of devices per
synapse.

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 6

distant points represent dissimilar data. Figure 5a illustrates the two-
dimensional projections of the input data used during inferenceon the
test dataset. The data belonging to a given class (disease) display a
cluster. The unseen diseases (i.e., beats that do not belong to a class
learned in the training phase) are the red points. Figure 5b uses the
same representation, where the colors represent data points correctly
(blue) or incorrectly (orange) classified by our experiment, while the
unseen disease data points are plotted in red. Our experiment recog-
nizes 75% of the data points correctly. Most errors concern points that
lie at the border between several clusters in the t-SNE plot, suggesting
that they might be ambivalent (high aleatoric uncertainty cases). To
investigate this idea further, Fig. 5c shows the measured probability
density distributions of the measured aleatoric uncertainty, which
provides a measure of the confidence of network prediction. The dif-
ferent colors represent correct predictions (blue), incorrect predic-
tions (orange), and unseen data (red). The aleatoric uncertainty is
lower than 0.5 for 62% of all correctly classified data points, while it is
higher than 0.5 for 97% of all incorrectly classified data points and
unseen disease data points. This result means that our experiment
correctly determined as uncertain all of its errors and the unseen
disease. It also flagged as uncertain some of its correct predictions,
which is expected, as some of them might be ambivalent cases.

The situation is quite different when we look at the measured
epistemic uncertainty (Fig. 5d). In total, 97% of all correctly and
incorrectly classified data points have an epistemic uncertainty lower
than 0.5. Conversely, 98% of the unseen disease data points have
epistemic uncertainty higher than 0.5. These results mean that
experiments can differentiate ambivalence between classes from the
presentation of new unknown inputs.

These results come in sharp contrast with those of a simulated
conventional neural network with the same architecture. This type of
neural network, by construction, has no epistemic uncertainty, and the
aleatoric uncertainty tends to be extremely low whatever the input
(Fig. 5g). This overconfidence is due to the small size of our dataset,
making conventional neural networks particularly prone to overfitting.

The dies that we used for phase-change memory characterization
(Fig. 2c) are conventional memory arrays that do not allow in-memory
computing and cannot be implemented as a full in-memory Bayesian
neural network, unlike what we achieved for filamentary memristors.
Therefore, we used our extensive statistical measurements of phase
change memories (Fig. 4) to simulate such a network, using the
simulator validated in Supplementary Note 2. Figure 5e, f, plotted
using the same methodology as Fig. 5c, d, shows the same features as
observed in the experimental memristor-based system.

The selection of the threshold value for uncertainty quantification
depends on the specific application and context. To push the inter-
pretation of our experimental results further and make an in-depth
assessmentof the capability of our experiment to evaluateuncertainty,
we used receiver operating characteristic (ROC) curves, a widely used
metric for diagnostic ability, obtained by plotting the true positive rate
as a function of the false positive rate for various threshold settings. A
perfect classifier would yield the (0, 1) point, i.e., an area under the
curve (AUC) of one, corresponding to no false negatives and no false

positives. The ROC curve of a random classifier approaches the diag-
onal line, i.e., an area under the curve of 0.5.We first compute the ROC
curve corresponding to the differentiation between correct predic-
tions and incorrect predictions, based on aleatoric uncertainty. Its area
under curve provides a measure of the performance of a network in
terms of aleatoric uncertainty evaluation. We also compute the ROC
curve corresponding to the differentiation between known and
unknown data, based on epistemic uncertainty. Its area under curve
provides a measure of the performance of a network in terms of
epistemic uncertainty evaluation. Table 1 lists the rawaccuracy and the
aleatoric and epistemic evaluation performance for our experiment, a
purely software version of the Bayesian neural network programmed
in our experiment, and a conventional neural network with the same
architecture. For all simulated results, the training process was repe-
ated ten times and we reported both the mean and best performance.
Corresponding ROC curves, as well as methodological details, are
presented in Supplementary Note 1. We should remark that an area
under the curve of one is not expected in the case of aleatoric uncer-
tainty: predictions with low aleatoric certainty are sometimes correct.

Our experiment nearly matches the best performances obtained
by a software neural network in terms of both aleatoric (area under the
curve of 0.91) and epistemic uncertainty evaluation (area under the
curve of 0.99), with a small reduction in terms of raw accuracy. This
result shows the impressive robustness of our approach, which fully
embraces the imperfections of experimental results. The conventional,
non-Bayesian neural network exhibited no capacity to recognize
unknown data and has the minimum epistemic uncertainty evaluation
performance (0.5). In terms of aleatoric evaluation, it has, on average,
reduced performance with regard to Bayesian networks, highlighting
again the overconfidence of such networks. Still, the best one
approaches the performance of Bayesian networks on our arrhythmia
detection task. Table. 1 also includes results for a simulated Bayesian
neural network based on phase change memories. They suggest that
this network would function equivalently to the filamentary memris-
tor-one, with a slight reduction in terms of accuracy and uncertainty
evaluation (expressed by the area under the two ROC curves).

A drawback of our approach with regard to conventional neural
networks is that we need several (M) versions of the neural networks.
This number, however, does not necessarily need to be high. Figure 5h
shows its effect on the Bayesian neural network accuracy and on its
capability to evaluate uncertainty, measured by the area under the
curve of the two ROC curves mentioned above, obtained using alea-
toric and epistemic uncertainty. The accuracy and aleatoric area under
the curve approach their saturation values with ten neural networks.
The epistemic area under the curve takes a higher number of imple-
mentations to converge; however, with ten neural networks, it reaches
0.96, close to its maximum value (0.99).

Discussion
This work demonstrates experimentally a simple and energy-efficient
realization of a Bayesian neural network by directly storing the prob-
abilistic weights into resistive memory-based crossbar arrays. The
device variability in both filamentary-based memristors and phase-

Table 1 | Comparison of accuracy and uncertainty prediction performances

Conventional
ANN (float32)

Bayesian
(float32)

Bayesian Hardware (filamen-
tarymemristor experimental)

Bayesian Hardware (filamentary
memristor simulation)

Bayesian Hardware (phase-
change memory simulation)

Accuracy classification best: 81%
mean: 80%

best: 80%
mean: 79%

75% best: 76% mean: 76% best:73% mean: 73%

Prediction confidence
(aleatoric) [AUC]

best: 0.90
mean: 0.79

best: 0.92
mean: 0.90

0.91 best:0.91 mean: 0.89 best:0.85 mean: 0.87

Anomaly detection
(epistemic) [AUC]

0.5 best: 1
mean: 0.95

0.99 best: 0.96 mean: 0.92 best: 0.96 mean: 0.82

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 7

change memories is used to store physical random variables that
sample analog conductance values from normal distributions with re-
configurable mean and standard deviation. The Bayesian neural net-
works are trained following a special variational inference approach,
incorporating a “technological loss” to overcome the hardware lim-
itations linked to the device physics.We implemented awholenetwork
using a collection of filamentarymemristor arrays allowing in-memory
computing. The resulting Bayesian neural network matches software
simulations in terms of accuracy, and in terms of aleatoric and epis-
temic uncertainty evaluations, as evidenced by ROC curves for the
identification of misclassified heartbeats and unknown data
heartbeats.

The critical element for this approach to succeed was the inclu-
sion of the technological loss in the training process to correct for the
constraints of technology. Supplementary Note 9 shows that without
using the use of this loss, the memristor-based Bayesian neural net-
works would have performed poorly. The fact that Bayesian neural
networks based on phase change memory still achieve almost
matching performance and uncertainty evaluations with the memris-
tor case also demonstrates the power of the technological loss term.
Figure 4 shows that the mean value/standard deviation space that can
be programmed on phase change memories is more skewed than that
of filamentary memristors: it is impossible to program synapses with
low standard deviation and high mean weight magnitude on phase
change memories. The technological loss ensures that the resulting
Bayesian neural network still performs well.

Another important aspect is the use of two devices per weight
value to decorrelate mean value and standard variation of weights.
Supplementary Note 7 shows that our approach would not have been
successful using a single device per weight sample. Using more than
two devices can decorrelate the statistical properties of the synapses
further; however, Supplementary Note 7 shows that using four devices
instead of two brings limited benefits in terms of Bayesian neural
network performance, despite the high hardware cost.

In ourwork,we employed twoprogramming techniques (with and
without iterative properties) to extend the domain of possible statis-
tical properties of the synapses when using filamentary memristors.
Supplementary Note 8 confirms that this choice improved the per-
formance of the programmed Bayesian neural network, but that
acceptable performance could have been obtained using a single
programming technique. For phase change memory, iterative pro-
gramming is fundamental to programming the devices and is used in
all cases.

The most important limitation of our approach is that it requires
the use of multiple pairs of devices per synapse to represent a dis-
tribution of its synaptic weight. The results of Fig. 5h show that the
number of samples per synapse does not need to be large. Bayesian
neural networks excel in relatively small-data regimes, where strong
uncertainty is present: they are not large networks, making device
overhead bearable. Currently-developed resistive memories inte-
grated in three dimensions may be particularly suitable to our archi-
tecture, which features multiple devices per synapse45.

Long-term drift and instability effects in the conductance of
memory devices is a major limitation of analog neural networks based
on nanodevices, particularly phase change memories. Supplementary
Notes 5 and 6 reveal an impressive resilience of our approach to these
effects, which can be tied to the fact that it does not require a precise
value for device conductance, but rather values representative of a
probability distribution.

This study is based on a relatively simple arrhythmia classification
dataset, small enough to be implementable on our in-memory com-
puting memristor arrays. We intentionally chose a dataset with high
ambivalence, leading to a relatively low accuracy and uncertainty. On
the similar but clearer dataset of ref. 46, the simulator validated in
Supplementary Note 2 suggested that our approach would reach an

accuracy of 94%. Finally, Supplementary Notes 11 and 12 show that our
approach can be applied to evaluate uncertainty in situations with
larger machine-learning data sets (MNIST handwritten digit recogni-
tion and CIFAR image recognition).

Two principal methods exist for estimating uncertainty in non-
Bayesian artificial neural networks (ANNs). The first, deep ensembles,
trains multiple identical ANNs, creating a prediction distribution but
offering no energy or hardware benefits47. Moreover, implementation
challenges arise when transferring high-precision parameters into the
imprecise conductance states of resistive memory in memristor-
equipped ANNs. In contrast, Bayesian neural networks adeptly exploit
memristor variability to store random variables, making them ideal
for resistive memory-based hardware. The second method, Monte
Carlo dropout, generates a prediction distribution by randomly dis-
abling nodes within the model48,49. However, the requirement for
multiple forward passes precludes any reduction in energy con-
sumption, and it is not natural to implement in a memristor-based
circuit. Besides these general techniques, some task-specific approa-
ches have also been proposed. In particular, some models use artifi-
cial neural networks representing Gaussian distributions, where one
neuron represents the mean and another the standard deviation of a
distribution. This approach has proven useful in tasks such as
detecting out-of-distribution data in video surveillance or improving
the accuracy of bounding box regression50–53. Bayesian neural net-
works constitue amore general solution to the uncertainty evaluation
challenge.

Our in-memory computing chip embeds only parts of the per-
ipheral circuits to implement a full neural network (see Supple-
mentary Note 13), with the remaining functions implemented on
printed circuit board. In particular, analog-to-digital-converters,
typically the largest source of energy consumption in analog
compute-in-memory systems3,7,39 are implemented off-chip in our
experiments. For this reason, to estimate the inference energy
consumption of a final in-memory Bayesian neural network, we
relied on numbers obtained in industrial in-memory computing
platforms platform3,7,39. We found a cost ranging between 0.7 and
2.5 nanojoules per inference (see Supplementary Note 15). We do
not expect a significant difference between filamentary memristors
and phase change memory-based systems, as analog-to-digital-
converters and word line charging, the two most power-consuming
operations analog compute-in-memory systems, have an energy
consumption that is independent of the resistance of the memory
elements. As a comparison, following a methodology introduced in
ref. 31 we implemented the computation of our reference Bayesian
neural networks on amicrocontroller unit typically used for edge AI
applications. (The Methods sections provide the details and the
limitations of this comparison between an emerging and an estab-
lished technology.) This control experiment consumed 170 micro-
joules per inference. We also implemented the same computations
on a low-power embedded graphics processing unit (GPU) board
(NVIDIA Jetson Nano), widely used for edge AI applications requir-
ing more computational power. GPUs excel at parallel computing:
they can compute the inference on all samples corresponding to the
same input simultaneously. They can also process multiple inputs
simultaneously (batching). We found experimentally (see Methods)
that the energy consumption depends quite dramatically on the
degree of batching, which, depending on the embedded applica-
tion, may or not be exploitable. When processing a single input, the
GPU uses an energy of 80 microjoules (1300 microjoules for the
entire board). When processing 100 inputs simultaneously, the GPU
uses an energy of 9 microjoules per input (35 microjoules for the
entire board). The efficiency of our approach suggests that Bayesian
neural networks can be used at the edge in extremely energy-
constrained systems, such as medical devices, where reliable deci-
sions are needed.

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 8

Methods
Filamentary and phase changememory technology and circuits
The circuits described in the Results section were fabricated using a
low-power foundry 130-nanometers process with four metal layers.
Both phase-change memories and filamentary memristors were fabri-
cated on tungsten vias in metal layer four. The filamentary memristors
consist of a 5-nanometer thick metallic bottom electrode, a
5-nanometer thick HfOx active layer deposited by atomic layer
deposition, and a 10-nanometer thick Ti top electrode. The memory
element is fabricated as a mesa structure with a 200-nanometer dia-
meter. The phase-change memory architecture is characterized by a
strip of chalcogenide material lying on top of a TiN heater element,
with a thickness of five nanometers and a width of 100 nanometers.
The chalcogenide layer is a germanium-antimony-tellurium alloy
deposited by sputtering deposition and is 50-nanometer thick. A fifth
layer ofmetal is deposited on top of both phase-changememories and
filamentary memristors.

Twodifferent integrated circuitswereused in this article, onewith
filamentary-based memristors and the other phase-change memories
(Fig. 2). In both architectures, each memory cell is accessed by a
transistor, giving rise to a one-transistor-one-resistor (1T1R) unit cell.
The transistor, used as a selector, was essential to control the pro-
gramming current allowing multi-level programming of filamentary
memristors. The phase-change memory chip was an array of 16,384
1T1R structures, only individually accessible. The filamentary-based
memristor chip was an array of 1,024 1T1R cells arranged in a 32 × 32
configuration. This array enabled the selection of multiple memory
points capable of performing parallel multiply and accumulate
operations. Digital drivers were used to select multiple cells in parallel
controlling the word lines (WLs), source lines (SLs), and bit lines (BLs).
This array is described in detail in Supplementary Note 13.

Iterative programming
The iterative programming methods adopted for filamentary-based
andphase-changememories are different. Forfilamentarymemristors,
each device is re-programmed multiple times, with the same condi-
tions, until its conductance reaches the target value (Algorithm 1). For
the phase-change memories the programming voltage is increased or
decreased at each cycle depending on the conductance value obtained
in the previous cycle (Algorithm 2).

Algorithm 1. Iterative programming for filamentary memristors
1: Gmax : Target conductance max
2: Gmin : Target conductance min
3: Icc : Compliance current for target distribution
4: imax : Maximum number of iteration
5: G : filamentary memristor conductance
6: G← RESET
7: i←0
8: while i < imax:
9: G0← SET(Icc)
10: i← i + 1
11: if Gmin<G <Gmax:
12: end
13: else:
14: G0←RESET
15: end

Algorithm 2. Iterative programming for phase change memories
1: Gmax : Target conductance max
2: Gmin : Target conductance min
3: Vs : Applied voltage
4: Vmax : Maximum voltage
5: δV : Voltage increment
6: G : phase change memory conductance

7: G← RESET
8: Vs← Vinit
9: while Vs <Vmax and G <Gmin:
10: G← SET(Vs)
11: Vs← Vs + δV
12: while Vs <Vmax and G >Gmax:
13: G←RESET(Vs)
14: Vs← Vs − δV
15: end
Before the filamentary based memristors chip can be used, it is

necessary to form all the devices. The forming operation consist in the
following conditions: Vsl =0 V, Vwl = 1.6 V, Vbl∈ [1.6, 4] V. The standard
SET conditions are as follows: Vsl = 0 V, Vwl∈ [1.4, 2.2] V, Vbl = 1.8 V. The
standard RESET conditions used are as follows: Vsl = 2.6 V, Vwl= 4.8 V,
Vbl = 0 V. The off-chip generated voltage programming pulses have a
pulse width of 1 μs for the SET and 100 ns for the RESET.

For the phase change memory chip, the standard SET conditions
are as follows: Vsl =0 V, Vwl∈ [2, 3] V and Vbl = 4 V. The standard RESET
conditions used are as follows: Vsl = 0 V, Vwl∈ [0.9, 4] V and Vbl = 4.8 V.
The off-chip generated voltage programming pulses have a pulse
width of 300 ns and a rise time of 20 ns. The fall time is 1500 ns for the
SET and 20 ns for the RESET.

Correspondence between weight and conductance
The mapping between the mean and standard deviation of the normal
distributions obtained after software training, θs= (μs, σs), and the cor-
responding experimental conductance distributions θe = (μe, σe),
expressed in micro siemens, is a critical step. The normal distributions
for weights chosen by the training algorithm and reported in Fig. 4 are
mapped to conductance values inmicro siemensusing a scaling factor γ

μe = γ � μs σe = γ � σs: ð3Þ

We obtained the value of this scaling factor by performing a grid
search to minimize the Kullback-Leibler divergence between the
experimental and simulated normal distributions:

γ = argmin
γ2R

X
j2½1,S�

min
i2½1,E�

KLðθei
, γ ×θsj

Þ, ð4Þ

where S is the number of the software normal distributions and E is the
number of available experimental normal distributions. This operation
was performed at the end of the training process.

Training using Bayes by Backprop and technological loss
The training of a Bayesian neural network consists of computing the
most likely models (i.e. the posterior distribution, p(Ω∣D)) underlying
the training dataset, D, and the prior belief, p(Ω):

pðΩjDÞ= pðDjΩÞpðΩÞ
pðDÞ : ð5Þ

Here Ω represents the neural network parameters, p(D∣Ω) is the
likelihood, and p(D) is the evidence. This equation is unfortunately
intractable. Variational Inference approximates the posterior dis-
tribution, p(Ω∣D), with a simpler variational distribution, q(Ω∣θ), which
structure is easier to evaluate44. Typically the variational distributions
are normal distributions, where the variational parameters θ = (μ, σ)
represent their mean and standard deviation. The approximation of
the θ parameters, θ*, are calculated minimizing the Kullback-Leibler
(KL) divergence between the variational distribution, q(Ω∣θ), and the
posterior, p(Ω∣D), as shown in Eq. (6). The KL divergence is a measure
of the similarity between the two distributions. The calculation of the
θ* 2 R parameters is achieved by backpropagation19. This combina-
tion of variational inference and backpropagation is called Bayes by

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 9

Backprop and has been proved to be efficient for complex
applications15. It identifies

θ* = argmin
θ2R

ðKL½qðΩjθÞjjpðΩjDÞ�ÞÞ: ð6Þ

As illustrated in Fig. 4, resistive memories cannot implement all
possible normal distributions, nomatter the chosen technology flavor.
The search of θ* should be limited inside Γ, where Γ represents the
ensemble of experimental normal distributions that can be built with a
given technology. To impose that θ belongs to Γ, a “technological loss”
term has been added to Eq. (6). The “technological loss” term is
defined as � logðUΓðθÞÞ and Eq. (6) becomes:

θ* = argmin
θ2Γ

ðKL½qðΩjθÞjjpðΩjDÞ�Þ

= argmin
θ2R

KL½qðΩjθÞjjpðΩjDÞ� � logðUΓðθÞÞ
�

:
ð7Þ

We construct the function UΓ, using the experimental data points
of Fig. 3e, with the aim of approximating a uniform function over Γ,
while ensuring differentiability at the boundary

UΓðθÞ= tanhðβf ðθÞÞ, ð8Þ

with f(θ) defined as

f ðθÞ= 1

δ
ffiffiffiffiffiffi
2π

p e�
ðθ�θexp Þ2

2δ2 , ð9Þ

whereθ = (μ, σ) and θexp is the nearest experimental point to θ achieved
in hardware (i.e., presented in Fig. 3e). The parameters δ and β control
the rate of increase of the technological loss outside Γ and the speed at
which the technological loss approaches aminimum value close to the
experimental points, respectively. In our training, we selected the
values δ =0.1 and β = 10. When the value of θ = (μ, σ) is significantly
different from the closest experimental value θexp, f(θ) approaches
zero, resulting in a large value for the technological loss. This has the
effect of penalizing such values of θ and encourages the network to
decrease the overall loss by bringing θ closer to θexp. Conversely, when
θ is sufficiently close to θexp, f(θ) is large enough to causeUΓ to saturate
to 1, thereby resulting in a null technological loss. In such cases, the
network is rewarded for such values of θ and can reduce the overall
loss according to the standard rules of Bayes By Backprop. This bal-
ance between the use of Bayes By Backprop and the incorporation of
the technological loss is achieved in a continuous and smoothmanner,
ensuring that the network can effectively learn and optimize while
taking into account the technological constraints. Note that the
experimental points θexp correspond to measurements of the devices,
but six seconds after programming, in the case of filamentary mem-
ristors, and one day after programming, in the case of phase change
memories. This choice ensures the stability of the programmed
Bayesian neural network (see Supplementary Notes 4, 5, and 6).

The cost function resulting from Eq. (7) can be denoted as:

FðD,θÞ=KL½qðΩjθÞjjpðΩÞ� �EqðΩjθÞ½logðpðDjΩÞÞ� � logðUΓðθÞÞ ð10Þ

This cost function can be minimized with classical Bayes by Backprop,
and it ensures that the θ*∈ Γ.

To compare the computational effort of the proposed hardware-
calibrated training with the classical Bayes by Backprop method, we
conducted a series of experiments to measure the time required for
100 epochs on a batch of 100 images using each approach. Our find-
ings indicate that the network trained with the classical Bayes by
Backpropmethod completed the training process in 22 seconds, while
the hardware-calibrated training algorithm took 120 seconds. This

implies that our model’s training process is approximately six times
more computationally demanding than the classical Bayes by Back-
prop approach. However, it is crucial to emphasize that this training
phase is a one-time requirement for the model. Once the model is
trained, it can be deployed on any chip for inference at the edge.

Mapping synaptic weights to memory arrays
After the training process, synaptic weights can be programmed to the
memory arrays. The training process gives, for each synapse a mean
weight value μ and a weight standard deviation σ. To convert these
Gaussian distribution parameters into microsiemens, the scaling fac-
tor, γ, is utilized (see section Correspondence between weight and
conductance). Second, each Gaussian is associated with the closest
experimental data point obtained by programming two memory cells
(Figure 4e). Themetric used for this association is the Kullback-Leibler
divergence. Third, each Gaussian is transferred ontoM crossbar arrays,
where M corresponds to the number of samples of a Bayesian prob-
abilisticweight. It is important to note that each sample corresponds to
two memory cells, representing one positive and one negative weight.

Experimental setup for arrhythmia classification
The considered Bayesian neural network featured 32 inputs, 16 hidden
neurons in the first layer and nine output neurons, corresponding to
the nine different diseases (classes), in the second layer. Since we use
conductance subtractionbetween twofilamentarymemristors to store
one weight, our 32 × 32 crossbar array could take 32 inputs and pro-
duce 16 outputs. To realize one sampleof our two-layer neural network
one and a half crossbar arrays are required (32 × 32 cells for the first
layer and 16 × 18 cells for the secondone). A Bayesianneural network is
the collection of several (M) samples, so when using 32 × 32 crossbar
arrays, 1.5M arrays are needed. We fully characterized 15 crossbar
arrays to implement aBayesianneural networkwithM = 10 samples. To
reproduce a Bayesian neural network with more thanM = 10 samples,
we recycled the 15 crossbar arrays exploiting the fact that the cycle-to-
cycle and device-to-device variability are similar in filamentary
memristors26 (see Supplementary Note 3). Therefore, by reprogram-
ming the 15 arrays 5 times, which is equivalent to using 75 arrays, we
obtain a Bayesian Neural Network with M = 50 samples. The arrays
were programmed using the mapping technique described in the
previous section.

The inputdata areECG recordings37. A single heartbeat is a 700ms
recording, and it is converted into 32 features through a Fast-Fourier
Transform (FFT). The 32 extracted features are the input of the M
samples of the Bayesian neural network. Since the digital drivers
generate only a single read voltage level, Vread (see Supplementary
Note 13), each feature is converted into three-bit binary values, (Xjwith
j = 0,…, 2). The three bits are applied sequentially to the input of the
first layer of each s sample, with s = 1,…,M. Each input voltage vectorXj

is applied on the bit lines of the 32 × 32 crossbar array to generate
output current vector (Vread, is applied to the selected bit lines, which
correspond to an input one, the unselected bit lines are floating, which
correspond to an input zero). The measured output current at the
source lines, is the dot product operation through the first layer,
Ws ⋅Xj, whereWs are the conductance values of a given sample (model
realization) s. The output current for a given three-bit binary input is

Ii,s =
Ws � X0 + 2×Ws � X1 +4×Ws � X2

7
: ð11Þ

Using these experimental values, we calculate the activation
functions of the hidden neurons

ai,s =
I +i,s � I�i,s
γ � Vread

, ð12Þ

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 10

where γ is the scaling factor calculated with Eq. (4). Each activation
function is converted to three-bit binary values. This operation is
equivalent to the calculation of a clipped rectified linear unit (ReLu)
activation function. The samemethod is applied to the second layer, in
which the calculated activations are the new input. Theprobability that
the input dataX belongs to a given output class c for a given sampleWs

using a softmax function is

pðy= cjX ,WsÞ=
eac,sPN

j = 1 e
ðaj,s Þ

: ð13Þ

The disease classification (i.e., the probability that the input data
belong to a specific class of disease) is the average of the probability
values calculated with Eq. (13) over the number of samples. The pre-
dicted class is calculated as the argmax of the disease classifications.
The aleatoric and epistemic uncertainty are calculated with Eqs. (14),
(15) and (16).

Uncertainty calculation
Unlike conventional artificial neural networks, where the output values
for predictions are point estimates, Bayesian neural networks provide
predictive distributions. The total uncertainty in the prediction, i.e.,
the predictive uncertainty, can be calculated based on the softmax of
the predictive distributions calculated according to Eq. (13):

Up = �
XN
c= 1

1
M

XM
s = 1

pðy= cjX ,WsÞ
 !

log
1
M

XM
s = 1

pðy= cjX ,WsÞ
 !

: ð14Þ

The predictive uncertainty (Eq.(14)) is the sum of epistemic and
aleatoric uncertainties

Up =Ua +Ue: ð15Þ

Decomposing the predictive uncertainty is important, as epis-
temic and aleatoric uncertainties give us different information. High
epistemic uncertainty suggests that the input data is an outlier relative
to the training data set. More training data near can therefore reduce
epistemic uncertainty, but does not help aleatoric uncertainty. Alea-
toric uncertainty is uncertainty in data, to reduce itmore refined input
data are required (e.g., more powerful sensors). The aleatoric uncer-
tainty can be obtained as:

Ua = � 1
M

XM
s = 1

XN
c= 1

pðy= cjX ,WsÞ logpðy= cjX ,WsÞ: ð16Þ

Inference energy consumption estimates
To estimate the energy consumption of the Bayesian neural network
we first calculated the number of dot product operations for one
inference:

Operations =4 � Il � Hl +4 � Hl � Ol : ð17Þ

Here Il is the input length, Hl is the hidden layer length, and Ol is
the output length. The factor four is due to fact that each sample of a
Bayesian probabilistic weight is stored as the difference between the
conductance values stored in twomemory cells and that a dot product
contains addition and multiplication. One inference costs 2,624
operations. The cost of a single analog Multiply-and-Accumulate
(MAC) operation in a resistive memory-based analog in-memory
computing circuit depends on the input and output size and on the
weight precision, and can varyconsiderably dependingon thememory
technology, CMOS node, array size, and design choices. We relied on
energy per operation number of three industrial platforms employing
resistive memory3, magnetoelectric memory (MRAM)39, and phase

change memory7. The results are reported in Supplementary Note 15.
We found a cost ranging between 0.7 and 2.5 nanojoules per inference.
Note that these estimates consider only the Multiply-and-Accumulate,
which we expect to dominate. Still, additional circuitry will be needed,
e.g., to present the input, analyze the outputs, and transfer data
between arrays of the neural network.

To gain a perspective on the energy efficiency of the proposed
approach compared to conventional hardware, we benchmarked this
figure to the energy required for running the operations to perform
inferenceof the sameBayesian neural network on an STM32F746ZGT6
MCU (integrated on a test Nucleo-F746ZG board), which is typically
used for edge AI applications. These operations coded in the C lan-
guage using the ST Microelectronics STM32 Cube integrated devel-
opment environment and compiled and built without debugging
options and using the strongest optimizations for speed (-Ofast
option). To provide a fair comparison with our in-memory-computing
platform, our C code includes only the multiply-and-accumulate
operation. (We controlled that multiply-and-accumulate operations
representedmore than 99%of the execution time of our program.)We
timed our program, and measured the current consumption of the
MCU using an Ampere meter (we measured the current solely con-
sumedby theMCU, excluding any other component of the board). The
STM32 MCU is fabricated in a 90-nanometer CMOS node. We found a
consumption of 170microjoules per inference (with ten samples of the
Bayesian neural network).

We have included another benchmark using an NVIDIA Jetson
Nano, an edge-computing board widely used for edge AI applications
equipped with an NVIDIA Tegra X1 system on chip, featuring a GPU
and a multicore CPU. This chip-based system is manufactured in a
moremodern 20-nanometer CMOS node. In our benchmarch test, we
perform the multiply-and-accumulate operations of our system on
the GPU. Our benchmark code is written using Pytorch 1.10 with
NVIDIA Jetpack 4.6 and NVIDIA CUDA 10.2. All the multiply-and-
accumulate operations for the different output samples are per-
formed with a single tensor multiplication using the Pytorch torch.-
matmul function, ensuring a fully parallel operation and an optimal
use of the GPU. Additionnally, our code allows batching, i.e., the
processing of several inputs simultaneously within the same torch.-
matmul call. As described in the Discussion section of the paper,
higher batching allows a better use of the resources of the GPU and
reduces the energy consumption per input. To obtain a reliable esti-
mate of energy consumption, with repeated the multiply-and-
accumulate operations multiple times and timed the process using
the repeat function from the Python 1.10 timeit library. We chose the
number of repetitions to reach a total computation time of a minute,
allowing the power consumption of the board to stabilize. During
these measurements, we monitored the power consumption of both
the NVIDIA Jetson Nano GPU and the whole system, using the built-in
power monitoring feature of the board. The energy consumption is
obtained bymultipliying the computation time of a torch.matmul call
by the power consumption.

Data availability
All the measured data are available upon request.

Code availability
All software programs used in the presentation of the Article are
available upon request.

References
1. Prezioso, M. et al. Training and operation of an integrated neuro-

morphic network based on metal-oxide memristors. Nature 521,
61 (2015).

2. Ambrogio, S. et al. Equivalent-accuracy accelerated neural-
network training using analogue memory. Nature 558, 60 (2018).

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 11

3. Xue, C.-X. et al. A cmos-integrated compute-in-memory macro
based on resistive random-accessmemory for ai edge devices.Nat.
Electr. 4, 81–90 (2021).

4. Yao, P. et al. Fully hardware-implementedmemristor convolutional
neural network. Nature 577, 641–646 (2020).

5. Wan,W. et al. 33.1 a 74 tmacs/w cmos-rram neurosynaptic core with
dynamically reconfigurable dataflow and in-situ transposable
weights for probabilistic graphicalmodels. In2020 IEEE International
Solid-State Circuits Conference-(ISSCC), 498–500 (IEEE, 2020).

6. Jung, S. et al. A crossbar array ofmagnetoresistivememorydevices
for in-memory computing. Nature 601, 211–216 (2022).

7. Khaddam-Aljameh, R. et al. Hermes-core—a 1.59-tops/mm 2 pcm
on 14-nm cmos in-memory compute core using 300-ps/lsb linear-
ized cco-based adcs. IEEE J. Solid-State Circuits 57, 1027–1038
(2022).

8. Esmanhotto, E. et al. High-density 3d monolithically integrated
multiple 1t1r multi-level-cell for neural networks. In 2020 IEEE
International Electron Devices Meeting (IEDM), 36–5 (IEEE, 2020).

9. Boniardi, M. et al. Statistics of resistance drift due to structural
relaxation in phase-change memory arrays. IEEE Trans. Electron
Devices 57, 2690–2696 (2010).

10. Gallo, M. L., Krebs, D., Zipoli, F., Salinga, M. & Sebastian, A. Col-
lective structural relaxation in phase-changememory devices. Adv.
Electron.Mater. 4, 1700627 (2018).

11. Esmanhotto, E. et al. Experimental demonstration of multilevel
resistive random access memory programming for up to two
months stable neural networks inference accuracy.Adv. Intell. Syst.
4, 2200145 (2022).

12. Mackin, C. et al. Optimised weight programming for analogue
memory-based deep neural networks. Nat. Commun. 3765 (2022).

13. Kabir, H. D., Khosravi, A., Hosen, M. A. & Nahavandi, S. Neural
network-based uncertainty quantification: A survey of methodolo-
gies and applications. IEEE Access 6, 36218–36234 (2018).

14. Jospin, L. V., Buntine, W., Boussaid, F., Laga, H. & Bennamoun, M.
Hands-on bayesian neural networks–a tutorial for deep learning
users. arXiv preprint arXiv:2007.06823 (2020).

15. Kendall, A. & Gal, Y. What uncertainties do we need in bayesian
deep learning for computer vision? In Proceedings of the 31st
International Conference on Neural Information Processing Sys-
tems, NIPS’17, 5580–5590 (Curran Associates Inc., Red Hook, NY,
USA, 2017)

16. Szegedy, C. et al. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199 (2013).

17. Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y.Deep learning,
vol. 1 (MIT press Cambridge, 2016).

18. Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? does it
matter? Structural safety 31, 105–112 (2009).

19. Blundell, C., Cornebise, J., Kavukcuoglu, K. & Wierstra, D. Weight
uncertainty in neural network. In International conference on
machine learning, 1613–1622 (PMLR, 2015).

20. Neal, R. M.Bayesian learning for neural networks, vol. 118 (Springer
Science & Business Media, 2012).

21. Gal. Uncertainty in deep learning. PhD thesis, University of Cam-
bridge (2016).

22. Fortunato, M., Blundell, C. & Vinyals, O. Bayesian recurrent neural
networks. arXiv preprint arXiv:1704.02798 (2017).

23. Dalgaty, T. et al. In situ learning using intrinsic memristor variability
viamarkov chainmonte carlo sampling.Nat. Electr.4, 151–161 (2021).

24. Joshi, V. et al. Accurate deep neural network inference using
computational phase-change memory. Nat. Commun. 11,
1–13 (2020).

25. Tsai, H. et al. Inference of long-short term memory networks at
software-equivalent accuracy using 2.5 m analog phase change
memory devices. In 2019 Symposium on VLSI Technology, T82–T83
(IEEE, 2019).

26. Dalgaty, T., Esmanhotto, E., Castellani, N., Querlioz, D. & Vianello,
E. Ex situ transfer of bayesian neural networks to resistive
memory-based inference hardware. Adv. Intell. Syst. 3, 2000103
(2021).

27. Sebastian, A. et al. Two-dimensional materials-based probabilistic
synapses and reconfigurable neurons for measuring inference
uncertainty using bayesian neural networks. Nat. Commun. 13,
1–10 (2022).

28. Liu, S. et al. Bayesian neural networks using magnetic tunnel
junction-based probabilistic in-memory computing. Front. Nano-
technol. 4, 1021943 (2022).

29. Lin, Y. et al. Bayesian neural network realization by exploiting
inherent stochastic characteristics of analog rram. In 2019 IEEE
International Electron Devices Meeting (IEDM), 14–6 (IEEE, 2019).

30. Li, X. et al. Enabling high-quality uncertainty quantification in a pim
designed for bayesian neural network. In 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA),
1043–1055 (IEEE, 2022).

31. Harabi, K.-E. et al. Amemristor-basedbayesianmachine.Nat. Electr.
1–12 (2022).

32. Faria, R., Camsari, K. Y. & Datta, S. Implementing bayesian networks
with embedded stochastic mram. AIP Adv. 8, 045101 (2018).

33. Vodenicarevic, D. et al. Low-energy truly random number genera-
tion with superparamagnetic tunnel junctions for unconventional
computing. Phys. Rev. Appl. 8, 054045 (2017).

34. Friedman, J. S., Calvet, L. E., Bessière, P., Droulez, J. & Querlioz, D.
Bayesian inferencewithmuller c-elements. IEEE Trans. Circuits Syst.
I: Regul. Pap. 63, 895–904 (2016).

35. Zheng, Y. et al. Hardware implementation of bayesian network
based on two-dimensional memtransistors. Nat. Commun. 13,
1–11 (2022).

36. Gao, D. et al. Bayesian inference based robust computing on
memristor crossbar. In 2021 58th ACM/IEEE Design Automation
Conference (DAC), 121–126 (IEEE, 2021).

37. Moody, G. B., Mark, R. G. & Goldberger, A. L. Physionet: a web-
based resource for the study of physiologic signals. IEEE Eng. Med.
Biol. Mag. 20, 70–75 (2001).

38. Ghahramani, Z. Probabilistic machine learning and artificial intelli-
gence. Nature 521, 452–9 (2015).

39. Wan, W. et al. A compute-in-memory chip based on resistive
random-access memory. Nature 608, 504–512 (2022).

40. Prezioso, M., Merrikh-Bayat, F., Hoskins, B. et al. Training and
operation of an integrated neuromorphic network based on metal-
oxide memristors. Nature 521, 61–64 (2015).

41. Balatti, S., Ambrogio, S., Gilmer, D.C. & Ielmini, D. Set variability and
failure induced by complementary switching in bipolar rram. IEEE
Electr. Device Lett. 34, 861–863 (2013).

42. Le Gallo, M. et al. Precision of bit slicingwith in-memory computing
based on analog phase-change memory crossbars. Neuromorphic
Comput. Eng. 2, 014009 (2022).

43. Hoffman, M. D. & Gelman, A. The no-u-turn sampler: adaptively
settingpath lengths in hamiltonianmonte carlo. J.Mach. Learn. Res.
15, 1593–1623 (2014).

44. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: A
review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

45. Ezzadeen, M. et al. Ultrahigh-density 3-d vertical rram with stacked
junctionless nanowires for in-memory-computing applications.
IEEE Trans. Electron Dev. 67, 4626–4630 (2020).

46. Liu, Z. et al. Neural signal analysis with memristor arrays towards
high-efficiency brain–machine interfaces. Nat. Commun. 11,
4234 (2020).

47. Lakshminarayanan, B., Pritzel, A. & Blundell, C. Simple and scalable
predictive uncertainty estimation using deep ensembles. In
Advances in Neural Information Processing Systems 30 (NIPS
2017) (2017).

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 12

48. Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation:
Representingmodel uncertainty in deep learning. In Proceedings of
The 33rd International Conference on Machine Learning, PMLR
48:1050-1059, 2016 (2016).

49. Sida Wang, a. M. Fast dropout training. In Proceedings of the 30th
International Conference on Machine Learning, PMLR 28(2):118-126,
2013 (2013).

50. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114 (2013).

51. Choi, J., Chun, D., Kim, H. & Lee, H.-J. Gaussian yolov3: An accurate
and fast object detector using localization uncertainty for autono-
mous driving. In Proceedings of the IEEE/CVF International con-
ference on computer vision, 502–511 (2019).

52. He, Y., Zhu, C., Wang, J., Savvides, M. & Zhang, X. Bounding box
regression with uncertainty for accurate object detection. In Pro-
ceedings of the ieee/cvf conference on computer vision and pattern
recognition, 2888–2897 (2019).

53. Fan, Y. et al. Video anomaly detection and localization via gaussian
mixture fully convolutional variational autoencoder.Comput. Vision
Image Understanding 195, 102920 (2020).

Acknowledgements
This work was supported by European Research Council consolidator
grant DIVERSE (reference: 101043854) and by European Research
Council starting grant NANOINFER (reference: 715872). It also benefits
from a France 2030 government grant managed by the French National
Research Agency (ANR-22-PEEL-0010). In addition, we thank L. Hutin, S.
Bonnetier, F. Andrieu, J. Arcamone, J. Grollier, P. Bessière and J. Droulez
for discussing various aspects of the article.

Author contributions
D.B. and T.H. proposed the initial idea of the hardware-calibrated train-
ing algorithm. D.B, T.H. D.Q, and E.V. conceived the experiments. D.B.
and V.M. performed the experiments with the phase-change memory
array. D.B., S.M., and N.C. performed the inference measurements on
the two-layer Bayesian neural network. D.B. and T.H. conducted the
software experiments and analysed the data. T.D. and A.M. performed
preliminary studies concerning Bayesian neural networks and uncer-
tainty evaluation. E.E. designed the circuits, under the supervision of
J.M.P. The circuits were fabricated at CEA-Leti under the supervision of

J.F.N. and G.B. D.Q. and E.V. supervised the work and wrote the initial
version of the manuscript. All authors discussed the results and
reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43317-9.

Correspondence and requests for materials should be addressed to
Djohan Bonnet, Damien Querlioz or Elisa Vianello.

Peer review information Nature Communications thanksHuaqiangWu,
and the other, anonymous, reviewers for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43317-9

Nature Communications | (2023) 14:7530 13

https://doi.org/10.1038/s41467-023-43317-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian�neural networks
	Results
	Memory devices-based Bayesian neural networks
	Filamentary memristor and phase-change memory as normal distributions
	Hardware-calibrated training
	Experimental uncertainty estimation

	Discussion
	Methods
	Filamentary and phase change memory technology and circuits
	Iterative programming
	Correspondence between weight and conductance
	Training using Bayes by Backprop and technological�loss
	Mapping synaptic weights to memory�arrays
	Experimental setup for arrhythmia classification
	Uncertainty calculation
	Inference energy consumption estimates

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

