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Bacterial genome size and gene functional
diversity negatively correlate with
taxonomic diversity along a pH gradient

Cong Wang 1,2, Qing-Yi Yu1,2, Niu-Niu Ji1,3, Yong Zheng 1,4, John W. Taylor 5,
Liang-Dong Guo 1,2 & Cheng Gao 1,2

Bacterial gene repertoires reflect adaptive strategies, contribute to ecosystem
functioning and are limited by genome size. However, gene functional diver-
sity does not necessarily correlate with taxonomic diversity because average
genome size may vary by community. Here, we analyse gene functional
diversity (by shotgun metagenomics) and taxonomic diversity (by 16S rRNA
gene amplicon sequencing) to investigate soil bacterial communities along a
natural pH gradient in 12 tropical, subtropical, and temperate forests. We find
that bacterial average genome size and gene functional diversity decrease,
whereas taxonomic diversity increases, as soil pH rises from acid to neutral; as
a result, bacterial taxonomic and functional diversity are negatively correlated.
The gene repertoire of acid-adapted oligotrophs is enriched in functions of
signal transduction, cell motility, secretion system, and degradation of com-
plex compounds, while that of neutral pH-adapted copiotrophs is enriched in
functions of energymetabolism andmembrane transport. Our results indicate
that a mismatch between taxonomic and functional diversity can arise when
environmental factors (such as pH) select for adaptive strategies that affect
genome size distributions.

For decades, the use of ribosomal RNA (16S rRNA) sequence to
identify bacteria, infer their phylogenies, and characterize their
communities has revolutionized our understanding of the biodi-
versity, biogeography, and ecology of microbiomes. One of the
most important discoveries made using the 16S rRNA gene as a
biomarker has been the observation that bacterial diversity peaks at
neutral pH as compared to acid pH1, and in many subsequent stu-
dies it has been proven to be one of the most consistent features of
microbial communities (Supplementary Table 1). However, this pH-
diversity relationship cannot be directly embedded into classic
ecological models such as the biodiversity-ecosystem functioning
framework, unless the relationship between taxonomic and func-
tional diversities is clarified.

Functional traits can reflect response and adaptation of microbes
to changes in resources and stress2. Soil pH has been recognized as the
essential driver of microbial structure and function3–5, and changes of
soil pH at regional and latitudinal scales are coupled with changes in
both resources and stress6,7. For example, acid soil of natural tropical
forests can be a harsh environment with low resource availability,
whereas neutral pH soil of natural temperate forests can be a benign
environment with high resource availability8,9. Bacteria adapted to
these different soils may share some functional traits, but show var-
iation in other traits, such as genome size, 16S rRNA gene copy num-
ber, GC content, and growth rate10. Variation in genome size can
involve gene diversity and functional versatility11–13, because the num-
ber of genes of a bacterial genome is strongly positively correlated
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with genome size14,15. Previous studies suggest that slow-growing oli-
gotrophs living in resource-scarce soil may carry large genomes16,17, as
do stress-tolerators found in harsh environments when compared to
non-tolerators in benign environments11,13. Slow-growing oligotrophs
in resource-poor habitats are often characterized by fewer copies of
16S rRNA genes than fast-growing copiotrophs found in high-carbon,
resource-rich habitats10. GC content also varies with environment, with
bacteriahaving lowerGCcontent beingmoreabundant in thenutrient-
deficient surface than in the nutrient-rich interior of the ocean18,19.
Guided by these studies, we hypothesize H1 that the oligotrophic,
stress-tolerators found in acid environments will have larger genomes
than the copiotrophic, non-tolerators found in neutral pH
environments.

Functional gene diversity of communities does not necessarily
reflect taxonomic diversity because community-level, functional
gene diversity is influenced by both taxonomic diversity and aver-
age genome size. An example where both taxonomic and functional
diversities of bacteria are positively correlated is provided by
Bahram et al.7, who researched soils along an environmental gra-
dient of increasing pH and latitude. Conversely, Kerfahi et al.20

found that the diversity of functional genes was negatively corre-
lated with pH of soils collected along a gradient of increasing alti-
tude. Explaining the negative correlation of functional gene
diversity and increasing environmental pH, given the consensus
that bacterial taxonomic diversity increases from acid to neutral
pH1 (Supplementary Table 1), may require consideration of genome
size. As suggested by our H1, small genomes are likely to be domi-
nated by indispensable, core genes21,22, whereas large genomes can
harbor the core genes as well as genes of diverse function10. As a
result, a relatively low diversity community of large genome taxa
can support a higher diversity of functional genes than a high
diversity community of small genome taxa. Therefore, we hypo-
thesize H2 that along a gradient of increasing pH, there will be a
mismatch between increasing bacterial taxonomic diversity and
decreasing functional diversity.

The traits responsible for the adaptations that underlie the
spectrum of adaptive strategies from oligotrophic communities to
copiotrophic communities include growth rate, carbon use effi-
ciency, biomass yield, enzyme production, genome size and 16S
rRNA gene copy number23–26. Recently, our understanding of bac-
terial adaptive strategy has been improved by the inclusion of
genome information, however, these improvements challenge
some assumptions about associations of traits with communities of
oligotrophic or copiotrophic bacteria10,25,27,28. Recognizing that our
understanding of the gene repertoire underpinning oligotrophy
and copiotrophy is in its infancy, we hypothesize, H3, that the gene
repertoire of oligotrophic and copiotrophic communities along an
environmental pH gradient will differ in traits of cell motility,
chemotaxis, secretion systems, resource transporters, and
defense.

To test the three hypotheses proposed here, we analyzed the
diversity of bacterial taxa using 16S rRNA gene amplicons and the
diversity of functional genes using shotgun metagenomes sequenced
from DNA extracted from 36 plots of 12 forests along a latitudinal
gradient (N21.6°–N50.9°) in China, where soil pH ranged from 3.68 to
7.22 (Fig. 1a). Our analysis supported H1 because genome size
decreased as soil pH rose from acid to neutral. Second, H2 was sup-
ported as taxonomic and functional gene diversities were significantly
negatively correlated. Finally, H3 was supported as the gene reper-
toires of acid-adapted, oligotrophic strategists were enriched in signal
transduction, cell motility, secretion system, and degradation of
complex compounds, while those of neutral pH-adapted, copiotrophic
strategists were enriched in functions of energy metabolism and
membrane transport.

Results
As a prelude to hypothesis testing, we explored the role of soil pH in
shaping the compositions of bacterial communities and functional
genes. First, principal coordinate (Pco) analysis showed that both
bacterial taxonomic and functional gene compositions were divergent
between forests with acid pH soils and forests with neutral pH soils,
and envfit analysis showed that soil pH correlated strongly with var-
iation in the composition of bacterial communities (R2 = 0.747,
P <0.001) and functional genes (R2 = 0.868, P < 0.001) (Fig. 1b, c,
Supplementary Fig. 1, and Supplementary Data 1). Furthermore, a loss
of Acidobacteria abundance as soil pH increased from acidic to neutral
was seen from sequence of both 16S rRNA gene amplicons (R = −0.674,
P = 3.925e-06) and metagenomes (R = −0.777, P = 1.52e-08) (Fig. 1d, e).

Testing H1: bacterial genome size will decrease from acid to
neutral pH
To test our H1, we estimated, from metagenomic data, community-
level average genome size using the MicrobeCensus pipeline29 and
estimated average 16S rRNA gene copy number using the method of
Pereira-Flores et al.15. These estimates showed that bacterial average
genome size was strongly negatively correlated with soil pH
(R2 = 0.423, P < 0.001; Fig. 2a), and that bacterial average 16S rRNA
gene copy number was not significantly correlated with soil pH
(R2 = 0.063, P =0.076; Fig. 2b).We then estimatedbacterial GCcontent
(GC%) using Quast software30 and found that it increased with soil pH
(R2 = 0.146, P =0.012; Fig. 2c); while bacterial growth rate as estimated
by gRodon27 was unrelated to soil pH (R2 = 0.014, P = 0.489; Fig. 2d).
Besides, both bacterial average genome size and GC% are correlated
with several biotic and abiotic variables leading by available Ca (Sup-
plementary Fig. 8).

The detected changes in bacterial genome size with soil pH
may be attributed to shifts in stress and resource, i.e., from an
acidic, resource-poor, harsh environment to a neutral, resource-
rich benign environment. The larger genome size seen in resource-
poor, acidic environments has been proposed to accommodate a
diversity of genes needed to cope with abiotic stress and resource
scarcity and diversity11,13,16,17. Small genome size and a high 16S rRNA
gene copy number can be linked to fast growth and high resource
turnover in resource-rich, benign environments10,12. The increase of
GC%with increasing pH is consistent with a copiotrophic lifestyle in
neutral soils, possibly because GC base pairs require more nitrogen
than AT base pairs18,19. In summary, our analysis supports H1

because the bacterial genome size decreases as the environment
becomes less acidic.

In order to challenge our finding that bacterial genome size,
calculated from the MicrobeCensus pipeline29, is larger in acidic
than in neutral pH environments (Fig. 2a), we additionally calcu-
lated the community-weighted genome size by referencing the 16S
rRNA gene amplicon dataset against the Genome Taxonomy
Database (GTDB)31. The results again showed that the average
genome size of the bacterial community was significantly, nega-
tively correlated with soil pH (Supplementary Fig. 2). The decrease
of bacterial genome size was largely caused by changes with
increasing soil pH of the most abundant bacterial taxa (Supple-
mentary Fig. 3), including the gain of a genus with a small genome,
DA101 (2.80Mb), and the loss of large-genome taxa of Ca. Soli-
bacter (5.52 Mb), Ca. Koribacter (5.65 Mb), Burkholderia (8.57 Mb),
and Salinispora (5.56Mb)31 (Supplementary Fig. 3). One of the
declining taxa, Xiphinematobacter, harbors a very small genome
(0.91 Mb, likely related to its parasitism of nematodes32), but was
far less abundant than DA101 and too rare to affect the trend
(Supplementary Fig. 3).

The generality of our finding that bacterial genome size
decreased from acid to neutral pH in China was tested by
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re-analyzing the previously published global dataset of Bahram
et al.7. Using both the MicrobeCensus annotation of metagenomes
and the matching of 16S rRNA amplicons with GTDB, our reanalysis
of Bahram et al.7 again found that bacterial average genome size
was negatively correlated with soil pH (Supplementary Fig. 4).

Interestingly, for the datasets of both this study and that of
Bahram et al.7, average genome size significantly, negatively cor-
related with GC% based on analysis of the metagenome (Supple-
mentary Figs. 5 and 6); however, the average genome size
positively correlated with GC% when based on the matching of 16S
rRNA community with GTDB (Supplementary Figs. 5 and 6). This
obvious, methodological bias should stimulate research on the
causes and consequences of the different results in microbial traits
detected from the genomic-based and metagenomic-based
methods.

Testing H2: increasing bacterial taxonomic diversity correlates
negatively with decreasing functional diversity along a pH
gradient
We tested H2 by analyzing our 16S rRNA gene amplicon data using
the USEARCH pipeline33 and annotating our metagenome data with
the KO database34. We then calculated richness and the Shannon
diversity index for bacterial taxonomic and functional diversities in
each sample and plotted bacterial taxonomic and KO diversity
against soil pH. The results showed that bacterial taxonomic
diversity increased from acid to neutral pH (Fig. 3a and Supple-
mentary Figs. 7–10), as demonstrated frequently in previous studies
(Supplementary Table 1). However, we found that bacterial KO
diversity decreased from acid to neutral pH (Fig. 3b). The analysis of
the results, showing that taxonomic diversity increased as func-
tional diversity decreased with increasing soil pH, supported a
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Fig. 1 | Bacterial community structure along a pH gradient. a Distribution of 12
forests. Location of 12 forests in China along a latitudinal gradient. GH Genhe, LS
Liangshui, CBS Changbaishan, DLS Donglingshan, BTM Baotianman, TTS Tian-
tongshan, BDGS Badagongshan, GTS Gutianshan, HSD Heishiding, DHS Din-
ghushan, NG Nonggang, XSBN Xishuangbanna. Color codes for sites in (a–c, e) is
consistent with other figures of this paper. The data for map was download from
DATAV.GeoAltas (http://datav.aliyun.com/portal/school/atlas/area_selector) and
visualized by ggplot2 package (https://ggplot2.tidyverse.org/). b, c Bacterial
community composition in association with environmental variables. Principal
coordinate (PCo) analysis with environmental fitting (envfit) showing association
of 16S rRNA gene amplicon-based bacterial taxonomic composition (b) and
metagenome-based bacterial functional composition (c) with soil pH as well as
other biotic and abiotic variables (the arrowed lines). The strength and sig-
nificance of association between PCo vectors and variables are provided in Sup-
plementary Fig. 1. MAP mean annual precipitation, MAT mean annual
temperature, TC total carbon, TN total nitrogen, TP total phosphorus, ACa

available calcium, AMg available magnesium, AFe available iron, AK available
potassium, C_N carbon nitrogen ratio, C_P carbon phosphorus ratio, N_P nitrogen
phosphorus ratio. d Bacterial phylum composition along a pH gradient.
e Regression curve of detected bacterial phyla against soil pH. Linear regression
model with two-sided test was used for the statistical analysis, and adjusted
R-squared was used. Both the 16S rRNA gene amplicon (R = −0.674, P = 3.925e-06)
and metagenome (R = −0.777, P = 1.52e-08) showed the loss of Acidobacteria with
increasing soil pH along the horizontal axis. The relative abundance of Actino-
bacteria, Planctomycetes, Chloroflexi tends to increase with increasing pH. The
relative abundances of Verrucomicrobia, Bacteroidetes, Nitrospirae, Elusimicrobia
and Fibrobacteres peak at around pH 5.5. Note that estimates of 16S rRNA gene
amplicon and metagenome sequencing are not necessarily consistent. The rela-
tive abundance of Proteobacteria remains almost unchanged across the pH gra-
dient. n = 36 samples. The grey area around the smooth line indicates the 95%
confidence interval. Source data are provided as a Source Data file.
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significantly negative correlation between the two forms of diver-
sities (Fig. 3e). Therefore, H2 is supported because a positive asso-
ciation between taxonomic and functional diversities is not
detected along the pH gradient.

The mismatch between taxonomic and functional diversities may
be attributed to the changes in genome size along the pH gradient.
Finding that genome size decreased from acid to neutral pH, coupled
with previous findings that suggest a positive correlation between
bacterial genome size and gene number35, leads to the expectation of
more genes in communities in acid soil compared to those in neutral
pH soil. Given that all taxa should share the core of indispensable
genes21,22, a small community of large genome taxa could harbormore
genes than a large community of small genome taxa. Indeed, our
results showed that bacterial average genome size was positively
correlated with KO richness (Fig. 3f), but negatively correlated with
bacterial taxonomic diversity (Supplementary Fig. 11).

Our result, including all types of genes, is in line with a recent
report by Kerfahi et al.20, who found that microbial functional gene
diversity was negatively correlated with soil pH along a gradient of
increasing altitude. Our result is also in line with a previous study
focusing on a specific gene group, antibiotic resistance (AR) genes.
With AR genes, Delgado-Baquerizo et al.36 found a negative correlation
between soil pH and AR gene diversity for 1012 soil samples collected
globally. To compare our approach to these results, we annotated AR
genes from our metagenome data using the Resfams database37, and
used these data to show that soil pH was significantly negatively cor-
related with diversity of AR genes (Fig. 3c and Supplementary Fig. 7).
We then extended our analyses of specific gene groups to genes
encoding carbohydrate-active enzymes (CAZy genes)38, again found
that soil pH significantly negatively correlated with the diversity of
CAZy genes (Fig. 3d and Supplementary Fig. 7). Moreover, diversities
of both AR and CAZy genes were also positively correlated with aver-
age genome size (Fig. 3g, h and Supplementary Fig. 7).

Testing H3: gene repertoire reflects functional trait differences
betweenoligotrophic bacteria adapted to acid pHenvironments
and copiotrophic bacteria adapted to neutral pH environments
To investigate the distribution of bacterial specific functional traits
across the gradient from acidic to neutral pH, we used the co-
occurrence network to investigate relationships among KOs. Firstly,
we annotated our metagenome data using the KO database to find
11,065 KOs (Supplementary Fig. 12). We then filtered for KOs that
occurred in >18 of all 36 samples, yielding 7717 KOs. Co-occurrence
among annotated KOs was detected using pairwise Spearman’s cor-
relations. These correlations were filtered by Spearman’s rho >0.6 and
FDR P <0.05 and used to construct a co-occurrence network

composed of 7481 vertices and 1,359,406 edges (Fig. 4a). The most
startling features of the co-occurrence network are two, large mod-
ules: module 1 (M1) containing 2777 vertices, and module 2 (M2)
containing4309 vertices (Fig. 4a). Having detected these twomodules,
we then investigated the relationships between soil pH and KOs in
them, finding that soil pH negatively correlatedwith the largermodule
(M2, 4309 vertices, conditional R2 = 0.953, F1,150814 = 1825, P < 0.001)
and positively correlated with the smaller module (M1, 2777 vertices,
conditional R2 = 0.930, F1,97194 = 8169, P <0.001) (Fig. 4b, c).

We then searched within the modules for enriched functions,
finding that the acid module (M2) was enriched many key functions:
bacterial secretion system, cell motility, xenobiotics biodegradation
and metabolism, signal transduction (two component system), meta-
bolism of terpenoids and polyketides, glycan biosynthesis and meta-
bolism,porphyrinmetabolism, synthesis of siderophore, and synthesis
of lipopolysaccharide (Fig. 4d, e). Correlating specific genes annotated
to these functions with environmental variables showed, as expected,
that a remarkably large number of genes were negatively correlated
with soil pH (Supplementary Figs. 13–15). These genes are involved
with essential functions such as motility, bacterial secretion system,
and xenobiotics biodegradation and metabolism, a finding largely in
line with that of Ramoneda et al.3 (Supplementary Table 2 and Sup-
plementary Data 2). These results are also consistent with the recent
finding that extracellular enzyme investment in substrate acquisition is
higher in acid than in neutral soils39.

Turning to the neutral model (M1), we found enriched functions
of energy metabolism, membrane transport, citrate cycle, glyoxylate
and dicarboxylate metabolism, and metabolism of amino acids
(Fig. 4d, e). Analysis of specific genes for these functions again
revealed, as expected, a prevalence of positive correlations with soil
pH (Figs. 4 and 5 and Supplementary Figs. 16–18). Our detection of
positive associations of pH with essential functions such as carbon
metabolism and membrane transport is, again, largely consistent with
the findings of Ramoneda et al.3 and Malik et al.24 (Supplementary
Table 2 and Supplementary Data 2). These results are also in line with
the recent findings of higher microbial turnover rate and carbon use
efficiency in neutral soil24,26,39.

The detection of differentially enriched functions in the acid (M2)
and neutral (M1) modules enables us to speculate about the adaptive
strategy ofmicrobiomes along pH gradients. Our speculations follow a
perspective by Malik et al.25, who suggested that microbes in less
stressful, resource-abundant, neutral pH environments would be
characterized by functions of carbon metabolism, while those in
resource-limited (e.g., acid) environments would have more microbial
transporters. As predicted by these authors, we found that microbes
adapted to neutral pH environments were enriched for energy
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Fig. 2 | Metagenomic traits along a pH gradient. a Bacterial average genome size
(AGS) decreased as pH changed from acid to neutral.Bacterial AGS are detected by
analyzing shotgunmetagenome usingMicrobeCensus pipeline.b Bacterial average
16S rRNA gene copy number (ACN) not significantly associated with soil pH. Bac-
terial ACN are detected by analyzing shotgunmetagenome using themethod from
ref. 15. c Bacterial GC content (GC%) increased as pH changed from acid to neutral.
Bacterial GC% are detected by analyzing shotgun metagenome using Quast

software. d Bacterial estimated growth rate was unaffected by soil pH. Bacterial
growth rate (minimal doubling time) was detected by analyzing shotgun meta-
genome using the gRodon pipeline. Linear regression model with two-sided test
was used for the statistical analysis, and adjusted R-squared was used.
n = 36 samples. The grey area around the smooth line indicates the 95% confidence
interval. Source data are provided as a Source Data file.
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generation. In neutral pH environments, we also found enrichments
for functions related to fast growth, such as resource importation and
energy metabolism, indicative of copiotrophic communities. Several
previous studies based on rRNA gene copy number estimation also
supported a copiotrophic strategy for microbiomes in resource-
abundant environments40,41. However, not all of our findings are in
agreement with previous reports, for example, Malik et al.25 suggested
that there would be more microbial transporters in resource-limited
environments, whereas we found more transporters in the resource-
abundant environment.

Turning tomodule 2, our results indicate thatmicrobes adapted to
more stressful, resource-limited, acid pH, environments are oligo-
trophic strategists, based on the enrichments of functions related to
resource scavenging and stress tolerance, such as, signal transduction,
cell motility, secretion system, and degradation of complex com-
pounds. Two of these traits, motility and degradation of complex sub-
strates, were suggested for microbes in resource-limited environments
by Malik et al.25, as well as in the publication on trait dimensions of
Westoby et al.10, which highlighted the importance of signal transduc-
tion in functional versatility. Considering the functions enriched at acid
pH, signal transduction is essential to perceive the gradients of
resources and stress in the environment. Secretion enablesmicrobes to
produce and excrete extracellular enzymes that support degradation of
complex compounds in resource-limited environment. Lastly, motility
may benefit microbes in terms of resource acquisition and stress
defense/avoidance42–44. To summarize, ourH3 is supported because pH-
driven copiotroph- and oligotroph-strategists differ in gene repertoires
involving energy metabolism, membrane transport, chemotaxis, moti-
lity, secretion system, signal transduction, and defense (Fig. 4).

Discussion
Our study shows that decoupling between taxonomic and functional
diversity can happen when environmental factors (such as pH) select

for life history strategies that influence genome size distributions. The
detected changes to genome size at the community-level derive from
taxonomic changes along the pH gradient, i.e., a gain of small genome
taxa and a loss of large genome taxa from acid to neutral pH. This
taxonomic change showed responses to specific functional adapta-
tions along a pH gradient, where bacterial taxa in acid pH soils are
enriched in functions of signal transduction, cell motility, secretion
system, and degradation of complex compounds, but bacterial taxa in
neutral pH soils are enriched in functions of energy metabolism and
membrane transport.

Our results challenge the longstanding paradigm that bacterial
diversity peaks at neutral pH1 by going beyond taxonomic diversity to
also consider bacterial functional gene diversity which is closely linked
to genome size. Finding that taxonomic and functional diversities
exhibited contrasting patterns along the pH gradient, our result raises
serious questions about the relative contribution of these different
types of bacterial diversity to ecosystem function. We found that
variation in genome size influenced the relationship between taxo-
nomic and functional diversity in systems where resource availability
was poor, as in acid pH soil, or rich, as in neutral pH soil. However, it is
known that resource availability can be low in neutral pH soil and high
in acid pH soil6, showing that studies combining taxonomic diversity
with functional diversity should be extended to additional ecosystems
and additionalmicrobial communities. Thus, our understanding of the
structure and function of soil microbiomes would be advanced by a
thorough investigation of the functional traits, diversity and adaptive
strategy of microbiomes that represent the four quadrants defined by
the axes of resource and stress (Fig. 6). A group ofmicrobes in need of
such studies is fungi. It is reported that the genome size of fungi also
varies by ecosystem45, but fungal gene numbers may be less pre-
dictable due to the existence of non-coding regions.

Expanding the characterization of microbial communities by
adding functional gene diversity to taxonomic diversity opens the
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Fig. 3 | Contrasting distribution patterns for diversities of bacterial taxonomy
and functional genes along a pH gradient. Diversities shown are measured by
richness (S), and diversities measured by Shannon’s index (H’) are provided in
Supplementary Fig. 7. a Bacterial taxonomic diversity (S.16S) increased as soil pH
changed from acid to neutral. Bacterial operational taxonomic units (OTUs) are
detected by 16S rRNA gene amplicon metabarcoding sequencing. b Bacterial
functional diversity (S.KO) decreased as pH changed from acid to neutral. Bacterial
functions are determined from the shotgun metagenome, as annotated by Kyoto
Encyclopedia of Genes andGenomes (KEGG)Ontology (KO). cBacterial diversity of
antibiotic resistance genes (S.ARG) decreased as pH changed from acid to neutral.
Bacterial antibiotic resistance genes are detected based on shotgun metagenome

annotated by the Resfam database. d Bacterial diversity of carbohydrate-active
enzymes (S.Cazy) genes decreased as pH changed from acid to neutral. Bacterial
carbohydrate-active enzymes genes are detected based on shotgun metagenome
annotated by database of CAZy. e Bacterial taxonomic richness (S.16S) negatively
correlated with functional gene diversity (S.KO). f–h Bacterial average genome size
(AGS) positively correlated with functional diversities as measured by f S.KO,
g S.ARG and h S.Cazy. Linear regressionmodel with two-sided test was used for the
statistical analysis, and adjusted R-squared was used. n = 36 samples. The grey area
around the smooth line indicates the 95% confidence interval. Source data are
provided as a Source Data file.
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possibility of using genome size to study the ecological processes of
community assembly and ecological networking46. Microbial commu-
nity biodiversity occupies a central role in ecology, as the driver of
ecosystem function and stability, and as the force behind emergent
properties of microbial communities47,48. Given the central role of
microbial communities in ecosystems, we hope that our research will
stimulate additional research and debates over the characterization of
microbial communities and the integration of taxonomic and func-
tional diversity, which can deepen our understanding of processes of
community assembly and ecosystem function.

Methods
Sites and soil sampling
This study sampled soils from 12 forest sites covering temperate,
subtropical, and tropical climatic zones (Fig. 1a). Soil samples in the
forest of Genhe (GH) were collected in long-term observation plots. In
the other 11 forests, the Chinese Forest Biodiversity Monitoring Net-
work (CForBio) had established a permanent plot (15–25 ha) consisting
of hundreds of 20m× 20m quadrats (375–625 quadrats)49. Three
quadrats in each site were randomly selected for soil sampling in this
study. In eachquadrat, ten soil cores (10 cm indepth, 5 cm indiameter)
were evenly collected and mixed to make one composite sample,
resulting in a total of 36 soil samples (3 quadrats × 12 forests). The soil
samples were immediately sealed in plastic bags and transported to
laboratory on ice. After removing stones and plant debris, fresh soil
samples were sieved to 2mm mesh size. Then, each sample was divi-
ded into two subsamples. One subsample was stored at −80 °C until
DNA extraction, and another subsample was air-dried and used to
measure soil abiotic properties.

Soil properties and climatic factors
Soil pH was measured in a 1:2.5 soil/water suspension. Soil total
carbon (TC) and total nitrogen (TN) were measured with an Ele-
mentar Vario EL III (Elementar Analysensysteme GmbH, Germany),

and soil total phosphorus (TP) was measured by an Inductively
Coupled Plasma-Atomic Emission Spectrometer (iCAP 6300,
Thermo Jarrell Ash Co.). Soil available calcium,magnesium, iron and
potassium were extracted by Mehlich-III solution and measured
with Atomic Emission-Inductively Coupled Plasma (ICP-AES, Avio
500, PerkinElmer)50. Latitude, longitude, soil bulk density, soil
available cations and plant data (abundance, richness and basal
area) of the study sites were provided by plot founders and the
CForBio organization. Latitude and longitude were recorded by GPS
device. Soil bulk density was calculated as the dry weight of soil
divided by its volume. Plant community data were surveyed by
manual. The mean annual temperature (MAT) and mean annual
precipitation (MAP) were obtained from the WorldClim database
(www.worldclim.org) with a resolution of 2.5 min51.

DNA extraction and sequencing
The soil DNAofeach samplewas extractedbyusing the PowerSoil DNA
isolation Kit (MoBio, Carlsbad, CA, USA). The concentration and purity
of each DNA sample was determined by a Qubit 2.0 Flurometer (Life
Technologies, CA, USA) and a NanoDrop2000 (Thermo Fisher Scien-
tific,Waltham,MA, USA), respectively. The quality of DNA extracts was
checked by electrophoresis in 1% agarose gels. Shotgun metagenomic
sequencing of each DNA sample was sequenced on an Illumina HiSeq
2500 instrument (San Diego, CA, USA) with the PE125 run mode at
Novogene, Inc. Beijing, China. Before sequencing, the DNA was frag-
mented into small components, and paired-end libraries were con-
structed using NEXTflexTM Rapid DNA-Seq (Bioo Scientific, Austin,
TX, USA). Adapters containing the full complement of sequencing
primer hybridization sites were ligated to the blunt end of DNA frag-
ments. The raw sequencedata underwent the following quality control
process: paired reads were discarded if either read contained adapter
contamination, or if more than 10% of bases were uncertain in either
read, or if the proportion of low quality (Phred quality <5) bases was
over 50% in either read. After data quality control, we had 509.64 GB
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Fig. 6 | Conceptual model on the adaptive strategy of soil microbiome along a
latitudinal pH gradient across 12 forests. Oligotrophs characterized by larger
genome are adapted to the acidic, resource-poor soil, with an enrichment on
functions of cell motility, bacterial chemotaxis, secretion system, signal transduc-
tion and complex matter degradation. The copiotrophs characterized by smaller
genome are adapted to the neutral, resource-rich soil, with an enrichment on the

functions of energymetabolism,membrane transport and amino acidmetabolism.
Note in our study system the resource availability was poor in acid pH soil, and rich
in neutral pH soil. However, resources availability is known to be low in some
neutral pH soil and high in some acid pH soil and microbial functional traits and
adaptive strategies in these two conditions remain unresolved.
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data of clean sequence for the 36 samples with average of 14GB per
sample.

From the same DNA, the bacterial 16S rRNA gene was amplified
with the primer pair, 515 F/806R52, in the following PCR amplification
solution: 2.5μl 10 × buffer, 1.5mM MgSO4, 200μM of each dNTP,
0.75μMof each primer, 0.5 U KOD-plus-Neo Polymerase (Toyobo Co.,
Ltd., Osaka, Japan), and ~10 ng template DNA. A 12-base pair barcode,
which is unique for each sample, was on the forward primer 515 F. The
thermal cycling consisted of an initial denaturation at 95 °C for 3min,
followed by 30 cycles of denaturation at 95 °C for 50 s, annealing at
56 °C for 1min, and extension at 68 °C for 1min, followed by a final
extension at 68 °C for 10min. The PCR products were purified using a
gel purification kit (Axygen), and 50ng of DNA from each sample was
pooled and adjusted to 10 ngμl−1. After adding sequencing adapter to
the PCR products using an Illumina TruSeq DNA PCR-Free Library
Preparation Kit (Illumina) following the manufacturer’s instructions,
the librarywas then sequenced on an IlluminaMiSeq PE250 instrument
(San Diego, CA, USA) at Chengdu Institute of Biology, Chinese Acad-
emy of Sciences.

Metabarcoding analyses
Sequences of 16S rRNA gene amplicon were aligned to each sample
according to the unique barcode at the 5’-end of the forward primer
515 F. Overall sequencing quality was evaluated using FastQC v0.11.553.
Forward and reverse reads were merged using the fastq_mergepairs
command in USEARCH v8.033. Primers were removed using cutadapt
v1.9.154. Quality control was carried out using the fastq_filter command
(-fastq_maxee 1.0-fastq_minlen 200) in USEARCH33. Chimeras were
detected and removed in USEARCH with -uchime_ref command33.
High-quality non-chimeric sequences were subjected to de-replication
and de-singleton, and then clustered into operational taxonomic units
(OTUs) at a 97% sequence similarity level using the cluster_otus com-
mand in USEARCH33. OTUs were identified by a BLAST search of the
most abundant sequence representing that OTU against the Green-
genes database for bacteria55.

Metagenomic analyses
To analyzemicrobial genomic traits based onmetagenomes, the clean
sequences returned from the sequencing facility were assembled into
contigs for each sample using MEGAHIT v1.2.9 with --k-list 21, 29, 39,
59, 79, 99, 119, 14156. To focus on bacteria13, we detected and removed
potential eukaryotic contigs using EukRep v0.6.757, and detected and
removed potential viral contigs using VIBRANT v1.2.158 and BBMap
v39.01 (https://github.com/BioInfoTools/BBMap/). Average genome
size of each sample was evaluated by using MicrobeCensus pipeline29.
In brief, the pipeline evaluates genome size based on sequence cov-
erage of 30 core single-copy genes which were found to universally
present in bacteria and archaea. These essential genes can be
sequenced at a higher rate, i.e., higher coverage, when average gen-
ome size of community is smaller, as these genes should make up a
higher fraction in a small genome size. Overall, higher sequence cov-
erage of these 30 genes indicates smaller average genome size. Aver-
age 16S rRNA gene copy number was evaluated by following method
from ref. 15. In brief, average 16S rRNA gene copy number was esti-
mated by dividing coverage of 16S rRNA gene by number of genomes
in ametagenome. GC%was calculated by usingQuast v5.2.030.Minimal
doubling time was estimated by gRodon v2.3.027 which analyzed
codon usage bias and calculated minimal doubling time based on the
tight relationship between codon usage bias and bacterial maximum
growth rate59. GC% was calculated based on all assembled contigs,
while average genome size, average 16S rRNA gene copy number and
minimal doubling time were calculated based on contigs >500 bp as
length could affect the accuracy of estimation methods.

We also calculated bacterial average genome size, protein counts
and GC% by relating annotated 16S rRNA gene sequence to the

Genome TaxonomyDatabase (GTDB)31. Metadata file and FASTA file of
16S rRNA gene sequences of bacterial representative genomes were
download from GTDB (https://gtdb.ecogenomic.org/downloads). The
FASTA file was made as a reference database by using makeblastdb
v2.13.060. Then, we annotated our 16S rRNA gene amplicon against the
reference database by using BLAST v2.13.060 to get genome accession
ID. Data of genome size, protein counts and GC% were acquired by
matching accession ID to the metadata file. Bacterial average genome
size, protein counts and CG% of each sample were calculated with
weighing reads counts.

To analyze specific genes, all assembled contigs were combined.
Then, the redundans pipeline (https://github.com/lpryszcz/
redundans) was used to detect and selectively remove redundant
contigs with the settings --overlap 80 and identity 0.9061. Prodigal
v2.6.3 was used to predict protein-coding genes62, resulting in
20,817,601 genes. These gene sequences were clustered by using CD-
HIT v4.8.1 with sequence identity threshold 0.95 and alignment cov-
erage 0.963, resulting in a non-redundant gene catalog with 20,038,815
genes. Salmon v1.6.0 was used to estimate gene abundance in each
sample by mapping raw reads to the non-redundant gene catalog,
considering reads counts and gene length64. The non-redundant gene
catalog was annotated by using EggNOG-mapper tool through against
eggNOG database (http://eggnog5.embl.de)65 that integrated data-
bases of Clusters of Orthologous Groups of proteins (COGs)66, Kyoto
Encyclopedia of Genes and Genomes (KEGG) Orthology (KO)34 and the
carbohydrate-active enzymes (CAZy)67. In addition, antibiotic resis-
tance (AR) genes were annotated against Resfams database37 by using
DIAMOND tool (https://github.com/bbuchfink/diamond)68. Besides
functional annotations, taxonomic classification based on sequences
ofmetagenomewasdonebyKaiju (https://kaiju.binf.ku.dk/),which is a
program for fast taxonomic classification based on sequence com-
parison to a reference database of microbial proteins69.

Statistical analyses
To check if soil pH drives bacterial taxonomic and function distribu-
tion along the pH gradient across 12 forests, principal coordinate (Pco)
analysis in the “stats” package was used to visualize bacterial taxo-
nomic and functional composition, and envfit analysis in the “vegan”
package was used to analyzed the relationship between bacterial
taxonomic and functional composition and plant, soil, climate and
geography variables70. The linear regression model in the “stats”
package was used to test if the relative abundance of Acidobacteria
decreased with increasing soil pH.

To analyze the distribution pattern of bacterial genome traits
across the pH gradient, the linear regression model in the “stats”
package was used to analyze the relationships between soil pH and
average genome size, average 16S rRNA gene copy number, GC%, and
minimal doubling time. Relationships between these genome traits
and plant, soil, climate and geographic variables were tested by
Spearman’s correlation analysis, using corr.test function in the “psych”
package71.

To check previous findings that bacterial taxonomic diversity of
16S rRNA gene amplicon increases from acid to neutral pH (Supple-
mentary Table 1), we used our 16S rRNA gene amplicon dataset to
calculate richness (S.16S) and the Shannon diversity index (H’.16 S)
using the diversity function in the “vegan” package70. These para-
meters were subsequently regressed against soil pH. To explore if
bacterial functional diversity decreases from acid to neutral pH, for
KEGG-annotated metagenomic results we calculated the richness
(S.KO) and Shannon diversity index (H’.KO), which were subsequently
regressed against soil pH. Similarly, regression was carried out to
explore the relationshipbetween soil pHand the richness andShannon
diversity of specific functions of carbohydrate-active enzymes (anno-
tated by CAZy databse) and antibiotic resistance genes (annotated by
Resfams database). Relationships between bacterial taxonomic
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diversity and functional diversity were analyzed by a linear regression
model in the “stats” package. Furthermore, to test if functional diver-
sity positively correlated with average genome size, regression was
carried out between functional diversity indices and average
genome size.

To explore the distribution of abundance of functional genes
along the pH gradient, we employed co-occurrence network analysis
to demonstrate the associations among all KEGG Orthology terms
(KOs). First, only KOs that occurred in >18 of all 36 samples were kept
for network analysis, yielding 7717 KOs. Then, co-occurrence among
annotated KOswas detected using pairwise Spearman’s correlations in
the “psych” package71; the correlations were used to construct co-
occurrence by the “igraph” package72 if its Spearman’s rho >0.6 and
FDR P <0.05. The co-occurrence network was composed of 7481 ver-
tices (KOs) and 1,359,406 edges, and clustered into two big modules:
module 1 (M1) containing 2,777 vertices andmodule 2 (M2) containing
4309 vertices. Regression analysis in the “nlme” package73 was used to
test the relationship between soil pH and vertices in the two biggest
modules, M1 and M2.

To explore functional difference of KOs between these two
modules, from these KOswe reconstructed KEGGpathwaymaps using
KEGG Mapper (https://www.kegg.jp/kegg/mapper/). Then, KEGG
pathways with significantly different KO counts between M1 and M2
(FDR <0.05 and |logFC | >= 0.5) were explored using differential ana-
lysis implemented in the “edgeR” package74.

In addition, Mantel analysis in the “linkET” package75 was used
to analyse the relationships between genome traits, diversity indi-
ces and taxonomic and functional compositions. Spearman’s cor-
relation analysis in the “psych” package71 was further used to test the
relationship between relative abundance of functional genes and
plant, soil, climate and geographic variables. Threshold indicator
taxa analysis (TITAN) was used to explore pH preference of KO,
using the “TITAN2” package76. Data were log- or sqrt-transformed to
meet homogeneity of variance when necessary. All statistical ana-
lyses were conducted on R statistical programming language ver-
sion 4.2.1 if else stated77.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All metabarcoding and metagenomics sequences in this study have
been deposited in the National Center for Biotechnology Information
database (PRJNA986291). TheWorldClimdatabase is available through
https://www.worldclim.org. Source data are provided with this paper.

Code availability
The source code implementing the analyses in this manuscript is
available on Github (https://github.com/FunCongWang/CForBio.
metagenome) or Zenodo78 (https://zenodo.org/records/10017052).
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