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Deep learning of human polyadenylation
sites at nucleotide resolution reveals
molecular determinants of site usage and
relevance in disease

Emily Kunce Stroup1 & Zhe Ji 1,2

The genomic distributionof cleavage andpolyadenylation (polyA) sites should
be co-evolutionally optimized with the local gene structure. Otherwise, spur-
ious polyadenylation can cause premature transcription termination and
generate aberrant proteins. To obtain mechanistic insights into polyA site
optimization across the human genome, we develop deep/machine learning
models to identify genome-wide putative polyA sites at unprecedented
nucleotide-level resolution and calculate their strength and usage in the
genomic context. Our models quantitatively measure position-specific motif
importance and their crosstalk in polyA site formation and cleavage hetero-
geneity. The intronic site expression is governed by the surrounding splicing
landscape. The usage of alternative polyA sites in terminal exons is modulated
by their relative locations and distance to downstream genes. Finally, we apply
our models to reveal thousands of disease- and trait-associated genetic var-
iants altering polyadenylation activity. Altogether, our models represent a
valuable resource to dissect molecular mechanisms mediating genome-wide
polyA site expression and characterize their functional roles in human
diseases.

Cleavage and polyadenylation is an essential step ofmRNAmaturation
and comprises two steps: endonucleolytic cleavage of a nascent tran-
script followed by polyA tail synthesis. The process is crucial for
transcription termination, and the underlying regulatory mechanisms
are tightly coupled with gene transcription and RNA splicing1. One
gene can contain multiple polyA sites leading to alternative poly-
adenylation (APA) events that generate RNA isoforms with different 3’
untranslated regions (3’UTRs) or coding sequences. Transcript iso-
forms with the same coding sequence but different 3’UTRs can show
variable translation efficiency, stability, and subcellular localization.
APA plays important regulatory roles in gene expression during var-
ious physiological processes, such as oncogenesis, development, and
stress response2–7.

The mammalian polyadenylation complex is composed of ~20
core and 60 auxiliary proteins8,9. These RNA-binding proteins form
subcomplexes that recognize unique cis-regulatory elements (Sup-
plementary Fig. 1a)10. The polyadenylation signal (PAS; AAUAAA or
variants), located 10~30 nucleotides (nt) upstream of the cleavage site,
is recognized by the cleavage and polyadenylation specificity factor
(CPSF) complex. The U-rich and GU/CU-rich elements, located down-
stream of the cleavage site, are bound by the cleavage stimulation
factor (CstF) dimer. Several other motifs play regulatory roles,
includingUGUA (bound by cleavage factor I (CFI)) andU-rich elements
(recognized by FIP1) around the PAS, aswell asG-rich elements (bound
by hnRNPh/f) downstream of CstF binding. Although these motifs are
known to promote polyA site formation, there is still a lack of
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quantitative measurements of their position-specific importance and
the crosstalk among the motifs. Building a quantitative model would
be valuable to study the physiological roles of polyadenylation
because genetic variants altering these motifs can regulate human
gene expression and disease progression. For example, mutations of
the PAS AAUAAA in genes such as TP53 (associated with cancer sus-
ceptibility), HBA2 (linked to α-thalassemia), and INS (associated with
neonatal diabetes) can cause the downregulation of protein produc-
tion and lead to disease initiation11–14.

Besides the motif strength, polyadenylation activity is tightly
regulated by the local gene structure. During genome evolution, the
localization of putative polyA sites must be optimized within the
genomic context. Due to the competition with splicing, intronic
polyadenylation happens when the splicing activity is weak (e.g., weak
5’ splice sites (5’SSs))15,16. Efficient polyadenylation is essential for
proper transcription termination especially when the tandem inter-
gene distance is short17. Otherwise, the run-on of RNA polymerase II
can interfere with the downstream gene expression. Quantitative
modeling of polyA site expression which considers the genomic con-
textwouldprovidemolecular insights into site optimization across the
genome.

In this study, we aimed to develop a computational approach to
unbiasedly identify genome-wide putative polyA sites and then
examine the local genomic parameters determining their expression.
The deep learning approach is well suited to studying the motif
“grammar” underlying polyadenylation. Convolutional neural net-
works can quantitatively capture the dynamic interactions among cis-
regulatory motifs. Although previous studies have developed several
models to predict polyA site occurrence and strength, these models
have their limitations. For example, the DeepPASTAmodel18 calculates
the probability of a sequence being a polyA site, but it does not per-
form nucleotide-level cleavage site prediction. The APARENT19,20 and
PolyApredictors21 models predict the polyA site strength and cleavage
profile, but they were restricted to database-annotated polyA sites and
anchored with the predefined PAS (e.g. AAUAAA/AUUAAA) for the
prediction. To address these technical limitations, here we developed
the first deep learning model which performs unbiased identification
of putative polyA sites at nucleotide resolution across the human
genome and a separate model to calculate the site strength. The
models quantitatively revealed the crosstalk among cis-regulatory
motifs in determining polyA site formation and cleavage hetero-
geneity. Furthermore, using logistic regression, we examined genomic
parameters determining polyA site expression in introns and terminal
exons. Finally, we demonstrated that our models can be used to
characterize disease/trait-associated genetic variants regulating poly-
adenylation activity.

Results
Building a deep learningmodel namedPolyaID to identify polyA
sites at nucleotide resolution
To obtain expressed polyA sites for the model training, we analyzed a
large cohort of publicly available 3’ Region Extraction and Deep
Sequencing (3’READS) data22,23. We chose this method because it
resolved the internalpriming issue and its polyA site supporting (PASS)
reads reliably quantify genome-wide polyA site expression at nucleo-
tide resolution (Fig. 1a, see “Methods” for details). In total, we analyzed
1.5 billion sequencing reads from 103 human samples across 19 dif-
ferent tissue/cell types and selected 299million PASS reads tomap the
polyA sites (Supplementary Data 1). Out of 109,814 polyA sites iden-
tified, 44.2% used the canonical PAS AAUAAA, 14.9% had AUUAAA, and
the remaining 40.9% used other PAS types (Supplementary Fig. 1b-c,
Supplementary Data 2).

For the PolyaID model training, we used the 240 nt sequences
around the 3’READS-identified polyA sites as positive examples, and
we included the sequences from each position from −25 to +25 nt

surrounding the maximum cleavage site to augment the training
dataset. Our negative examples included random genomic sequences,
shuffled transcript sequences, and neighboring sequences 50–100 nt
distant from polyA sites that did not contain any PASS reads in the
middle 50 nt regions. Different from previously published models, we
includedmany site-adjacent sequences in the positive (<25 nt from the
cleavage site) and negative (50–100 nt away from the site) sets,
respectively. This design was important for our algorithm to robustly
identify polyA sequences showing cleavage in the middle region. And
the model is not biased to any predefined PAS types.

The sequencemodeling unit of our PolyaID model contained one
convolutional layer and one bidirectional long short-term memory
(LSTM) layer (Fig. 1b). The model has two output branches: one out-
puts the classification probability that a sequence represents a polyA
site; the other predicts the cleavage probability vector (50 nt long)
surrounding the center position (Fig. 1b). The 3’READS-measured
cleavage probabilities within the 50 nt region around polyA sites were
used for model training. Detailed model parameters are described in
SupplementaryData 3. This design allowedus tomodel the nucleotide-
resolution cleavage probability coupled to site identification,
accounting for the imprecision inherent to the cleavage and poly-
adenylation processes22.

Our PolyaIDmodel achieved an area under the receiver operating
characteristic curve (AUROC)of ~0.974on the split training, validation,
and testing datasets (Fig. 1c and Supplementary Fig. 2a). The area
under the precision-recall curve (AUPRC) was ~0.98 for all splits
(Supplementary Fig. 2a). PolyaID performed well to identify sites
expressed at different levels (Fig. 1d). Compared to published deep
learning models (i.e. DeepPASTA18, APARENT19, APARENT220, and
PolyApredictors21), PolyaID showedhigher AUROCvalues in classifying
polyA sequenceswith different PAS signals vs. randomnucleotides (i.e.
AAUAAA, AUUAAA, or others) (Supplementary Fig. 2b–c). Especially,
our PolyaID model is not restricted to predictions using sequences
centered at the maximum cleavage site or PAS. It outperformed other
algorithms when we used input sequences randomly shifted (−25 to
+25 nt) from the maximum cleavage site (ΔAUROC>0.1; Supplemen-
tary Fig. 2d–e). The trend is consistent when we evaluated model
performance in classifying defined polyA sites from published data-
bases (i.e. PolyA_DB24 and APADB25) vs. random nucleotide sequences
(Supplementary Fig. 2g–j). As detailed in later paragraphs, this unique
advantage allowed our model to unbiasedly scan the genomic
sequence and identify putative polyA sites.

We then assessed the quality of the cleavage vector predictions by
calculating the mean cleavage position, which accounts for the shape
of the cleavage probability vector and indicates the most likely clea-
vage site. In the holdout testing set, our model achieved a correlation
between observed 3’READS cleavage and predicted positions of 0.963
(Fig. 1e), which is comparable to the APARENT models and is better
than the PolyApredictors model (Supplementary Fig. 2f–h). Previous
studies have shown that cleavage events tend to happen after the CA-
dinucleotide or in genomic A-rich regions26. Our PolyaID predicts the
cleavage probability at genomic As while APARENT did not allow
cleavage happening at As (Supplementary Fig. 2k–l) (see “Methods” for
details).

Next, we consolidated the classification and cleavage probability
predictions from PolyaID to achieve nucleotide-resolution identifica-
tion of the polyA sites across genomic regions. We used a scanning
window moving across the region of interest 1 nt per step and per-
formed a PolyaID prediction at each position using the 240 nt input
nascent RNA sequence. We retained only the positive predictions that
had a classification probability >0.5 and a middle cleavage probability
>0.05. We then averaged the overlapping cleavage profiles based on
these retained positive predictions. The position showing the max-
imum cleavage probability was used as the representative polyA site.
This process is illustrated by two example genes: the solo polyA site of
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the HBA2 gene (Fig. 1f) and multiple polyA sites in the GPATCH11 gene
(Supplementary Fig. 2m). While the PolyaID classification probability
predicted a broad positive region containing a polyA site, its combi-
nation with the cleavage probability distribution revealed the polyA
site location at nucleotide resolution.

Developing a deep learning model named PolyaStrength to
calculate polyA site strength
For APA genes, one major determinant of site usage is the sequence
motif strength.Whileour PolyaIDmodel distinguishes polyA sites from
negative sequences, it does nothave a gooddynamic range to separate
highly vs. lowly used sites. To address this, we developed a deep
learning model named PolyaStrength to calculate the polyA site
strength based on the surrounding sequence (Fig. 1g). We used the
relative usage levels of APA sites located in 3’ terminal exons as the
proxy measurement for site strength (see “Methods” for detail). We
reasoned that although one gene can contain multiple strong or weak

sites, their relative usage should capture the overall sequence strength
when considering the thousands of genes expressed andusingmerged
reads across cell/tissue types to calculate site expression.

Our PolyaStrength model used a similar sequence modeling unit
as PolyaID with a single output branch predicting the site strength
measured by the log-odds of polyA site usage levels (detailed para-
meters were described in Supplementary Data 3). The PolyaStrength
scores obtained from our model were correlated with terminal exonic
polyA site usage (Fig. 1h). These scores can effectively classify high vs.
low usage terminal exonic sites with an AUROC of 0.909 (Fig. 1i). The
performance is better than publishedmodels (Supplementary Fig. 3a).
Similar results were obtained when we performed similar analyses
using the polyA sites and their expression levels from PolyA_DB and
APADB (Supplementary Fig. 3b, c). Moreover, we analyzed the pub-
lished massively parallel reporter assay (MPRA) data19, which intro-
duced hundreds of thousands of randomly mutated polyA sequences
to cells and quantified the site expression levels using deep
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sequencing. This dataset was used to train the APARENT model. Our
PolyaStrength achieved nearly comparable AUROC and AUPRC values
classifying the highly vs. lowly expressed sites compared to APARENT
and APARENT2, and is better than PolyApredictors (Supplementary
Fig. 3d–f). The data indicated that although our PolyaStrengh model
was trained based on the 3’READS data, it can be robustly applied to
classify strong vs. weak sites measured by diverse methods.

Our models revealed position-specific motif crosstalk to the
polyA site definition
The convolutional network of our deep learning models extracts pre-
dictive sequence motifs and can be used to generate quantitative
measurements of motif importance and the effects of motif interac-
tions on the predictions. To obtain the positional importance of
motifs, we replaced each hexamer in the 240 nt surrounding a polyA
site with random hexamers and calculated the log-odds change (Δlog-
odds) in the PolyaID-predicted classification probability and the Poly-
aStrength score. To identify hexamers contributing significantly to the
genome-wide polyA sites, we calculated the importance score of a
hexamer in a location by summing their –(Δlog-odds) values (Sup-
plementary Fig. 4a). A higher importance score indicates that themotif
makes a stronger contribution to genome-wide polyA site formation.
The scores learned from PolyaID and PolyaStrength models were
highly correlated (Pearson correlation coefficient = 0.996; Supple-
mentary Fig. 4b). The data indicated that similar cis-regulatory motifs
drive both polyA site formation and strength.

To characterize themotifs regulating polyadenylation activity, we
used a 40 nt sliding window and identified the hexamers showing
higher importance scores than expected (Supplementary Fig. 4b, see
“Methods” for details). Our analyses revealed the positional impor-
tance of known cis-regulatory elements, such as the AAUAAA PAS and
variants, UGUA, U-rich, GU/CU-rich, and G-rich motifs (Fig. 2a, b,
Supplementary Fig. 4c–d, and Supplementary Data 4). AAUAAA and
other PAS variants showed maximum per-site importance at 21 nt
upstream of the cleavage site (Supplementary Fig. 4e). To quantify the
strength differences among the PAS types, we systematically mutated
AAUAAA and calculated the change in PolyaStrength scores. Mutating
AAUAAA to AUUAAA caused a threefold decrease in the strength
scores, whereas mutation to other PAS variants resulted in a 4.5- to 13-
fold decrease (Supplementary Fig. 4f). AUAAAA, AAAUAA, and
AGUAAA were the strongest among these variants (Supplemen-
tary Fig. 4f).

Upstream of the cleavage sites, the relative distance between a
UGUA motif and the AAUAAA signal sequence regulates the inter-
action efficiency between the CFI and CPSF complexes. We exam-
ined the UGUAmotif importance as a function of the distance to the
AAUAAA signal (Fig. 2c). UGUAs located upstream of AAUAAA
showed 2.0-fold higher importance than those located downstream.
The peak occurred when the UGUA was 10–20 nt upstream (Fig. 2c).
These results are consistent with a published study using bio-
chemical assays measuring the position-dependent interactions
between UGUA and AAUAAA27. Similarly, we examined the interac-
tions between AAUAAA and the U-rich elements located upstream of
the cleavage sites, which are bound by FIP1. The U-rich elements are
2.1-fold stronger when located downstream of AAUAAA compared
with those located upstream, and the optimal distance between the
two motifs was 1–6 nt (Fig. 2d).

Downstream of the cleavage sites, GU/CU- and U-rich motifs are
the binding sites of the CstF dimer. The GU/CU-rich elements showed
the maximum importance when they were located 10 nt downstream
of the cleavage site and 24 nt from the AAUAAA (Fig. 2b, e). The U-rich
elements were optimal when located immediately downstream (<8 nt)
of the GU/CU-rich elements (Fig. 2f, g). G-rich elements far down-
stream from cleavage sites promote polyadenylation activity through
the binding of hnRNPh/f28,29. These elements showed maximum per-

site importance when they were located 10–25 nt downstream of GU/
CU-rich elements (Fig. 2h, i).

Our above analyses revealed the optimal positions of six cis-reg-
ulatory motifs for the binding of cleavage and polyadenylation factors
(i.e. CPSF, CstF dimer, CFI, FIP1, and hnRNP) (Fig. 2j). Next, we exam-
ined whether individual genomic sites tend to use all or subset motifs.
We analyzed 13,876 highly expressed polyA sites (≥100 PASS reads and
usage level ≥5%) with the PAS AAUAAA (CPSF binding) and at least one
downstream U-rich or GU/CU-rich element (CstF binding). The motif
compositions of these polyA sites tend to be diverse (Supplementary
Fig. 5a–c). Besides the CPSF and one CstF motif, 44.9% of these sites
contained one additional optimally positioned motif, 17.4% of sites
contain two, 2.5% of sites have three, and very few sites (0.14%) have all
other four motifs (Supplementary Fig. 5a–c). Sites with more opti-
mized motifs are generally stronger and are likely to be the single or
distal sites of the genes (Supplementary Fig. 5d, e). But genes showing
different polyA site motif compositions are expressed at comparable
levels (Supplementary Fig. 5f). Indeed, besides the polyadenylation
activity, the gene expression levels are also determined by other reg-
ulatory layers such as transcription initiation. The gene ontology
analyses of genes with ≥5 optimized motifs showed that they are
enriched in the pathways such as “positive regulation of macro-
molecule metabolic process”, “cellular response to stress”, and “posi-
tive regulation of transcription, DNA-templated” (Supplementary
Fig. 5g). Altogether, we used our deep learning models to reveal the
crosstalk among the cis-regulatory motifs promoting polyA site for-
mation, and showed that genome-wide polyA sites tend to have
diverse motif configurations which potentially allow differential reg-
ulation of site usage during biological processes.

PolyaID revealed molecular mechanisms controlling cleavage
site heterogeneity
The cleavage profiles of different polyA sites can be quite variable. For
some sites, the cleavage events are heterogeneous and span a region
>15 nt, while for others, the cleavage site is quite precise <4 nt (Fig. 3a).
Currently, the molecular mechanisms regulating cleavage hetero-
geneity remainmostly uncharacterized. Here, we aimed to address this
question using our PolyaID model because it quantifies the cleavage
probabilities for a 50ntwindow surrounding themaximumprobability
cleavage site. We developed an entropy value to measure the cleavage
heterogeneity of a polyA site, and a higher entropy value indicates
more heterogeneous cleavage (Fig. 3a; see “Methods” for details). To
ensure reliable quantification, we only included highly expressed sites
with ≥100 PASS reads in the analyses. The entropy values calculated
basedonour PolyaID cleavage vectorswerecorrelatedwith those from
PASS reads (Fig. 3b).

We next compared polyA sites with high vs. low entropy values.
The polyA sites showing higher heterogeneous cleavage tend to have
multiple AAUAAA sequences. 12% of high entropy polyA sites con-
tained ≥2 AAUAAA, while only 4.5% of low entropy sites did (Fig. 3c).
We did not observe significant differences in the number of other
regulatory motifs (e.g., U-rich and GU/CU-rich elements) (Supple-
mentary Fig. 6a–b). The data indicated that multiple sites for CPSF
binding can lead to heterogeneous cleavage.

But the vast majority of the polyA sites (83.1% of the low entropy
group and 77.6%of the high entropy group) contain only oneAAUAAA.
Next, we examined the differences between these sites. The high and
low entropy groups showed comparable PolyaID classification prob-
abilities (Fig. 3d), but the high entropy sites showed lower Poly-
aStrength scores (Fig. 3e). We divided the polyA site sequences into 4
subregions (i.e., −120/−31, −30/0, 0/+30, and +31/+120), and then
examined cis-element occurrence differences in these subregions,
comparing high vs. low entropy groups. For polyA sites showing high
heterogeneous cleavage, the AAUAAA PAS and downstream U-rich
elementsweremore likely to be located far away fromthe cleavage site
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elements). e The importance score of GU/CU-rich elements located downstreamof
the cleavage sites, grouped based on their relative distance from the AAUAAA
signal sequence (N = 15,011). The mean and standard error bars of per-site impor-
tance scores, aswell as themotif frequency, are shown. fSimilar to (e),weexamined
the per-site importance score of U-rich elements (N = 8892). g Similar to (c), we
studiedpositional localization effectsU-rich andGU/CU-rich elements downstream
of the cleavage sites (N = 1868 U-rich elements before and 3015 U-rich elements
after GU/CU-rich motifs). h Similar to (e), the relative distances between AAUAAA
and G-rich elements were examined (N = 2991). i Similar to (c), we studied posi-
tional localization effects G-rich and GU/CU-rich elements downstream of the
cleavage sites (N = 244 G-rich elements before and 2201 G-rich elements after GU/
CU-rich motifs). j Schematic showing the optimal configuration of motifs within
polyA sites based on the above analyses.
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(>30 nt) (Fig. 3f and Supplementary Fig. 6c–e). In addition, the dis-
tances between AAUAAA and downstream GU/CU- and U-rich ele-
ments were significantly longer in high vs. low entropy groups
(Wilcoxon Rank-sum test P < 10−21, Fig. 3g, h). These data indicate that
overly distant binding of the CPSF and CstF complexes can lead to
heterogeneous cleavage between them.

We recapitulated this regulation using our PolyaID model. When
we moved the PAS and downstream U-rich and GU/CU-rich elements
closer, the cleavage became more precise as indicated by decreased
entropy scores, and vice versa (Fig. 3i–l and Supplementary Fig. 6f–i).
To further validate the results, we reanalyzed the MPRA data19 and
found that polyA sites containing multiple AAUAAA and those with
longer distances between AAUAAA and downstream U-rich or GU/CU-
rich elements showed higher cleavage heterogeneity (Supplementary

Fig. 6j–l). Taken together, we showed that the number of PASs and the
distance between CPSF and CstF binding sites can both regulate the
cleavage heterogeneity of polyA sites (Fig. 3m).

The differential expression of putative polyA sites in sub-gene
regions
Using the PolyaID model, we comprehensively identified putative
polyA sites across RefSeq-defined gene regions and 5 kb 3’UTR-
extended regions using the nascent RNA sequences as the input for the
prediction. In total, we identified 3.6 million putative sites with
PolyaID-predicted classification probability >0.5 in 32,014 genes
(Fig. 4a and Supplementary Fig. 7a–b). On average, there were 112
putative polyA sites per gene and 2 sites per kb of genomic sequence
(Supplementary Fig. 7c). Out of these, only 3.0% of the sites were
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Fig. 3 | Examining the molecular determinants of cleavage site heterogeneity.
a Examples of the 3’READS distribution and normalized predicted cleavage vector
for a low entropy site (USP30, top) and high entropy site (RGMB, bottom). Calcu-
lated entropy values are shown. b The correlation between observed entropy
values calculated using 3’READS and the entropy scores calculated based on
PolyaID-predicted cleavage profile (N = 4226 for each group). The boxes are
bounded by the 25 and 75 percentiles and the center represents the median. The
whiskers extend from each edge of the box to indicate the 1.5× interquartile range
(IQR). c Fraction of sites in the low (blue, N = 2031) and high (orange, N = 1783)
entropy groups that contain multiple AAUAAA PAS. The P-value of the two-sided
hypothesis test comparing the two proportions is shown. d Log-odds PolyaID-
predicted classification probability comparing entropy groups (N = 2031 low
entropy sites and 1383 high entropy sites with a single AAUAAA signal). See (b) for
boxpot definition. The two-sidedWilcoxon rank sum test P-value is shown. e Similar
to (d), showing log-odds PolyaStrength scores. f Hexamer enrichment in different
polyA site regions comparing low vs. high entropy groups. The polyA sites with a

single AAUAAA were used (N = 1687 low and N = 1383 high entropy). The y-axis
shows the -log10(two-sided Chi-squared test P-value), and the x-axis indicates the
log2(odds ratio values).Motifs are highlighted in orange if enriched in high entropy
sites or blue if enriched in low entropy. g The AAUAAA – U-rich motif distance for
low and high entropy groups (N = 1178 and 1030, respectively). Distance is mea-
sured from the last upstreamAAUAAA to the first U-richmotif downstream. See (b)
for boxpot definition. The two-sided Wilcoxon rank sum test P-value is shown.
h Similar to (g), we show the AAUAAA—GU/CU-rich distance for low and high
entropy groups (N = 1528 and 1246, respectively). See (b) for boxpot definition.
i–l We moved the AAUAAA and U-rich (or GU/CU-rich) elements farther apart or
closer together (1 nt each per step), and then examined the fold change of entropy
values calculated by the PolyaIDmodel (N = 676 AAUAAA-U-richmotif pairsmoved
farther apart (i), 635moved closer (j), 949 AAUAAA-GU/CU-richmotif pairs moved
farther apart (k), and 658moved closer (l)). The mean and 95% confidence interval
of the fold change values are shown. (m) The two mechanisms regulating cleavage
heterogeneity.
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expressed (supported by ≥10 PASS reads), with an average of 5.0
expressed polyA sites per gene.

We further grouped these putative sites based on their genomic
locations (Fig. 4b). A total of 89.1% of the sites are located in introns,
while 3.2% are located in terminal exons, and 6.8% are located in
downstream extended regions (Fig. 4c). Only 1.5% of intronic sites are
expressed (Fig. 4d). By comparison, 39% of terminal exonic sites are
expressed, and 6.0% of sites located in the downstream extended
regions are expressed (Fig. 4d). Even when expressed, intronic sites
show significantly lower usage levels than terminal exonic sites (Fig. 4e
and Supplementary Fig. 7d). These data indicated that intronic poly-
adenylation is generally repressed due to competition with splicing.

Quantitative modeling of genomic features determining intro-
nic polyA site expression
We next examined genomic features distinguishing used vs. unused
intronic sites. Based on the local splicing structures, we classified the
putative intronic sites from the PolyaID model into composite and
skipped types (Fig. 5a, g). The skipped intronic sites showed splicing
between the upstream 5’ splice site and the polyA site, while the
composite sites did not. For both types, used intronic polyA sites are
significantly stronger than unused sites (Fig. 5b, h).

Furthermore, we controlled for strength and identified gene
structure features separating used vs. unused polyA sites (Fig. 5c,i; see
“Methods” for details). First, the introns containing used composite
sites have weaker 5’SS and 3’SS, and larger upstream and downstream
exons (Figs. 5c and S8a), indicating that intronic polyadenylation tends
to happenwhen the surrounding splicing efficiency is low. Second, the
used sites tend to be located close to the 5’SS (Fig. 5c), presumably
because the short distance allows more time for intronic poly-
adenylation to happen before splicing. Finally, used sites are enriched
in the last introns of genes (Fig. 5c). Basedon the exondefinitionmodel
of splicing in mammals30, the splicing activity of the last intron should
be weaker compared to the upstream introns.

For the skipped intronic sites, the introns containing used sites
had stronger upstream splicing activity including smaller upstream

exon sizes and stronger upstream 3’SS, and showed weaker down-
stream splicing strength including larger downstream exon and
weaker downstream 3’SS (Figs. 5i and S8b). These data indicated that
the competition between two alternative 3’ splice sites regulates the
intronic site usage. Similar to the composite type, expressed skipped
intronic sites were alsomore likely to be located close to the upstream
splice sites and in the last introns (Fig. 5i).

Then we built logistic regression models to classify the used vs.
unused intronic sites. The genomic features described above showed
significant contributions to the models and adding additional features
did not increase the classification accuracy (Fig. 5d, j). The classifiers
achieved an AUROC=0.916 for composite intronic sites, and an
AUROC=0.911 for skipped sites (Fig. 5e, k). We further confirmed the
accuracy of ourmodels by analyzing published RNA sequencing (RNA-
seq) data, and sites with higher usage probability showed a larger
decrease in read density after the polyA site (Fig. 5f, l). Taken together,
we showed that the genomic context of intronic polyA sites plays a
driving role in determining their expression. We developed quantita-
tive logistic regression models to reveal key genomic regulatory fea-
tures and to calculate the usage probability of PolyaID-identified
putative sites (Fig. 5m, n).

Examining genomic features regulating terminal exonic polyA
site usage
As cleavage and polyadenylation occur co-transcriptionally with RNA
polymerase II (Pol II) elongation, the order and spacing between tan-
dem polyA sites in terminal exons is expected to regulate their usage.
Here, we aimed to quantify the genomic parameters regulating term-
inal exonic site usage (Fig. 6a). Using 3’READS, we calculated the
relative usage levels of proximal and distal polyA site pairs. As expec-
ted, the high usage sites showed stronger PolyaStrength scores
(Fig. 6b–d)

Next, we selected proximal polyA sites with comparable absolute
and relative strength to the paired distal site and examined other
genomic features distinguishing the highly vs. lowly used ones
(Fig. 6e). First, when the distances between the two sites were longer,
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the proximal sites were more often used (Fig. 6f). This is presumably
because cleavage and polyadenylation have more time to happen at
the proximal site when the distance between two sites is large. Second,
the size of the last intron also affected polyA site choice, and a smaller
last intron size promoted the usage of the proximal polyA site (Fig. 6g).
These data suggest that efficient splicing of the last intron promotes
terminal exonic polyadenylation in proximity. Finally, when the

distance to the downstream antisense gene was short, the proximal
polyA site was more often used (Fig. 6h). A possible explanation for
this is that if two adjacent genes are located on opposite strands, the
Pol II from each strand can collide with each other in the 3’UTRs or
extended regions before termination, which results in the decreased
elongation rate of Pol II. In this case, the proximal polyA site is more
likely to be used31.
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We built a logistic regressionmodel to classify the highly vs. lowly
used proximal polyA sites. The features described above showed sig-
nificant contributions to the classification (P = 0; Fig. 6i). The model
had an AUROC=0.937 (Fig. 6j). We also validated the predicted usage
using RNA-seq, and higher usage sites showed larger decreases of
reads after the polyA sites (Fig. 6k). Taken together, we showed that
APA in terminal exons is regulated by local genomic parameters in
addition to the site strengths (Fig. 6l).

Our models revealed disease/trait-associated genetic variants
regulating polyadenylation activity
We next assessed the ability of our PolyaID and PolyaStrength
models to predict the effect of genetic variants altering poly-
adenylation signals. A previous study analyzed GTEx genetics and
RNA-seq data and revealed 330 functional PAS SNPs (called PAS pA-
QTLs) associated with significant differential usage of the sites

across human tissues32. We performed PolyaID and PolyaStrength
predictions using the reference and alternative allele sequences
(Supplementary Data 5). The predicted score changes correctly
captured polyA site strengthening when creating a PAS (AAUAAA or
AUUAAA) as well as the site weakening upon the PAS loss (Supple-
mentary Fig. 9a, b). We also used this set of PAS pA-QTLs to establish
a procedure for identifying variants significantly impacting poly-
adenylation activity. We required that at least one allele have a
PolyaID classification probability ≥ 0.9 and PolyaStrength score ≥ −9
and that the variant leads to a |ΔPolyaStrength | ≥ 1 (Supplementary
Fig. 9c–e). This conservative threshold captured nearly 70% of PAS
pA-QTLs as significant.

Using our deep learning models, we characterized the impact of
disease/trait-associated variants annotated by ClinVar33, the UK
BioBank34, and GWAS Catalog35 on polyadenylation activity. If a known
disease/trait-associated variant impacted any of the cis-regulatory

a b

i
Model feature Coefficient P-value
Difference in PolyaStrength score
Distance between sites
Upstream intron size
Downstream antisense gene distance

-3.11
+0.73
-0.18
-0.13 0.000

0.000
0.000
0.000

c

l

Increased 
proximal 
usage

Decreased 
distal 
usage

>  >  >  > <  <  <

Closer downstream
antisense genes

Proximal and distal
sites farther apart

Smaller
introns

Train logistic regression models to predict highly used 
proximal terminal exon sites using genomic context features:

1. Difference in PolyaStrength

>  >  >  > <  <  <

4. Downstream antisense
gene distance

2. Distance between sites

3. Upstream
intron size

j k

e f g

Proximal
site usage:

Low
High

Po
ly

aS
tre

ng
th

 o
f p

ro
xi

m
al

 s
ite

Po
ly

aS
tre

ng
th

 o
f p

ai
re

d 
di

st
al

 s
ite

D
iff

er
en

ce
 in

 P
ol

ya
St

re
ng

th
(d

is
ta

l-p
ro

xi
m

al
)Proximal

site usage:
Low
High

d
Po

ly
aS

tre
ng

th
 o

f p
ro

xi
m

al
 s

ite
af

te
r q

ua
nt

ile
 s

am
pl

in
g

D
iff

er
en

ce
 in

 P
ol

ya
St

re
ng

th
af

te
r q

ua
nt

ile
 s

am
pl

in
g

D
is

ta
nc

e 
be

tw
ee

n
si

te
s 

(lo
g1

0)

U
ps

tre
am

 in
tro

n
si

ze
 (l

og
10

)

D
ow

ns
tre

am
 a

nt
is

en
se

ge
ne

 d
is

ta
nc

e 
(lo

g1
0)

h

P = 0 P = 0 P = 0

P = 0.93 P = 0.08 P = 2.92e-30 P = 1.07e-8 P = 1.29e-6

−12

−8

−4

0

4

8

−12

−8

−4

0

4

8

−16

−8

0

8

16

1-Specificity

Se
ns

iti
vi

ty

AUROC = 0.937

0.0 0.5 1.0

0.0

0.5

1.0

Relative Position (nt)

R
el

at
iv

e 
R

N
A-

se
q

re
ad

 d
en

si
ty

 (l
og

2)

0.2 - 0.5
0.5 - 0.8

0.0 - 0.2

0.8 - 1.0

Predicted
usage:

−20 0 20
−1.0

−0.5

0.0

0.5

1.0

−10

−8

−6

−4

−2

0

2

−8
−6
−4
−2

0
2
4
6
8

2.0

2.5

3.0

3.5

4.0

4.5

2

3

4

5

1

2

3

4

5

6

7

Fig. 6 | Examining genomic features regulating terminal exonic site usage.
aDiagramshowing the genomic features of APAsites in terminal exons.b–d For the
paired terminal exonic sites, we calculated the usage level of a proximal site as the
ratio between the read number supporting the proximal site and the read number
supporting both proximal and distal sites. We grouped the proximal sites based on
their usage levels: high (top 50%, N = 4721), and low (bottom 50%, N = 4722). Then
we compared the PolyaStrength scores of highly and lowly used proximal sites. The
boxes are bounded by the 25 and 75 percentiles and the center represents the
median. The whiskers extend from each edge of the box to indicate the 1.5×
interquartile range (IQR). Outliers beyond the whiskers were excluded. The two-
sided Wilcoxon rank sum test P-values are shown. e–h We sampled the proximal

polyA siteswith comparable strengths aswell as the relative strengths vs. distal sites
(N = 1186 for each group) (e). Then we examined indicated genomic features dis-
tinguishing highly vs. lowly used proximal sites (f–h). See (b) for boxplot definition.
The two-sided Wilcoxon rank sum test P-values are shown. i We built a logistic
regression model to classify highly vs. lowly used proximal polyA sites. The table
shows themodeling features, their coefficients and P-values from two-sided t-tests.
j The ROC curve showing the performance of our logistic regression model clas-
sifying highly vs. lowly used proximal polyA sites. k The RNA-seq read density
around the proximal polyA sites grouped based on predicted probabilities in (j).
l The schema showing genomic features promoting the usage of proximal polyA
sites in terminal exons.
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elements that we identified (Fig. 2), we used the PolyaIDmodel to scan
the 240 nt region surrounding the variant and calculated the prob-
ability of the reference and alternative allele sequences being a polyA
site. If the variant induced changes in PolyaID classification probability
and PolyaStrength scores meeting the three criteria defined above, we
used the PolyaID cleavage profile to obtain the representative polyA
site location and calculated the PolyaStrength scores to measure the
change in strength caused by the mutation.

We first analyzed the genetic variants located in terminal exons.
Using the criteria we established above analyzing PAS pA-QTLs, we
found 1723 ClinVar, 1045 UK BioBank, 87 GWAS variants with altered
polyadenylation activity (Fig. 7a, b, Supplementary Fig. 11a–f, and
Supplementary Data 6). Half (48%) of the variants increased the site
strength, while the remaining half weakened the sites. 60% of ClinVar
variants were annotated as “uncertain significance” and their reg-
ulatory impacts on polyadenylation activity shown here could be the
molecular mechanism mediating their association with diseases/
traits (Fig. 7c).

Our models identified variants disrupting the AAUAAA signal
sequence and drastically weakening the polyadenylation activity in
genes such as these in TP53, BRCA1, NAA10, PNKP, HBA2, and INS
(Fig. 7d, Supplementary Fig. 10b–c and Supplementary Data 6). Some
of these variants were previously experimentally characterized to be
disease-causing12–14.We also revealed the genes showing PolyaStrength
changes by other regulatory elements. For example, the genes LRPPRC
and SCN4B contain variants affecting the UGUA motif which were
predicted to impact polyA site strength (Fig. 7e, f).

While previous genomic analyses of polyA site variants were lim-
ited to the expressed sites annotated by databases19,24,36,37, our model
can reveal de novo polyA sites caused by genetic mutations. For
example, the loss-of-function of the sodium voltage-gated channel
alpha subunit 2 (SCN2A) is a driver of neuronal disorders such as
epilepsy38, and the gene contained a synonymous variant (ClinVar ID:
196038, AAC>AAU) in the coding regionof the terminal exon (Fig. 7g).
This variant created an AAUAAA signal resulting in the generation of a
de novo downstream polyA site. The expression of this polyA site
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Fig. 7 | Identifying disease/trait-associated genetic variants regulating poly-
adenylation activity in 3’ terminal exons. a Effects of ClinVar variant on Poly-
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would generate RNA isoforms without producing full-length protein.
This could be a newmechanism causing the downregulation of SCN2A
protein in epilepsy patients.

Similarly, the gene PLEC (encoding the protein plectin) contains a
missense variant in the coding region (ClinVar ID: 1043148, AAG>AAU)
of its terminal exon and creates the PAS AAUAAA. This variant is
associated with multiple diseases, such as muscular dystrophy, nail
dystrophy, and skindisorders39–41. The expression of thede novopolyA
site would generate the non-stop codon RNA isoform, which cannot
produce the full-length protein (Fig. 7h). For the gene TNNT2, a
synonymous variant was located at the stop codon (ClinVar ID:
1106650, UAG>UAA) and created an AAUAAA PAS, which is predicted
to form a de novo polyA site downstream (Supplementary Fig. 10d).
Expression of this site would generate anmRNA isoformwith a shorter
3’UTR compared to thewild type. Finally, a variant (ClinVar ID: 344948,
UAGAGAA >U) in the gene ACVR2B created an AAUAAA sequence and
a downstream polyA site (Supplementary Fig. 10e).

We also performed predictions for the genetic variants located in
introns. As the intronic site expression is tightly controlled by the
splicing environment, we further required that the sites showed a
predicted expression probability ≥0.9 using the logistic regression
models we developed in Fig. 5. In total, we identified 700ClinVar, 1098
UK BioBank, 113 GWAS variants predicted to alter polyadenylation
activity and be expressed (Supplementary Fig. 12 and Supplementary
Data 6). Taken together, these results showed that our models can be
used to reveal genetic variants regulating polyadenylation activity,
which may contribute to human disease progression or trait
formation.

Discussion
In this study, we developed a series of deep/machine learning models
that can be applied in concert to study polyA site definition, strength,
cleavage, and usage in the genomic context. We first developed the
PolyaID model to classify the polyA site sequences vs. random
nucleotides. Due to our uniquemodel design, PolyaID is not restricted
to certain PAS types and can scan the genome sequence to unbiasedly
identify putative polyA sites at nucleotide-level resolution. This cannot
be achieved by previously publishedmethods. Next, we developed the
PolyaStrengthmodel to calculate the sequence strength of polyA sites.
Then we used logistic regression to reveal the local gene structure
parameters that determine site expression in introns and terminal
exons. The models provide a unique computational toolkit to char-
acterize genome-wide polyadenylation regulation.

Using the PolyaID and PolyaStrength models, we quantitatively
measured the positional interactions among cis-regulatorymotifs. Our
results revealed the optimal tandem motif positions for AAUAAA and
other signal variants recognized by the CPSF complex (−21 nt), UGUA
recognized byCFI (−37 nt), U-rich elements boundby FIP1 (−15 nt), GU/
CU-rich (+10 nt) and U-Rich motifs (+18 nt) bound by CstF, as well as
G-rich elements bound by hnRNPs (+37 nt). Small distance changes
between the motif pairs (<10 nt) can result in differential importance
scores, indicating that subtle variance in subcomplex configuration
regulates polyadenylation activity. A published biochemical study
focused on positional crosstalk between UGUA and AAUAAA
elements27 and showed that UGUA showed the strongest activity pro-
moting polyadenylation when it is located a short distance (20 nt)
upstream of AAUAAA. This finding confirms the accuracy of our ana-
lysis. Our modeling is not restricted by designed reporters but quan-
tifies all positional possibilities among the motifs without labor-
intensive biochemical assays. The characterization of positional effects
among motif pairs may enhance the structural understanding of
polyadenylation complex formation.

Studies showed that RNA isoforms generated by heterogeneous
cleavage at a polyA site can show quite variable stability levels due to
the regulation of RNA secondary structure formation, even when they

only have a few nucleotide differences at the 3’-end42,43. Here we
showed that the cleavage heterogeneity of the polyA sites is regulated
by two different mechanisms: (1) the number of PAS AAUAAA; and (2)
the relative distance between the PAS AAUAAA and downstream GU/
CU- or U-rich elements. A shorter distance between CPSF and CstF
binding can lead to a more uniform/stable complex configuration and
results inmore consistent cleavage by the endonucleaseCPSF7344. Our
PolyaIDmodel captured this regulatorymechanismand can be used to
predict and control the cleavage events when engineering polyA sites.

Importantly, our PolyaID model achieved unbiased identification
of genome-wide putative polyA sites at nucleotide resolution for the
first time. More than three million putative sites were identified across
gene regions based on the nascent RNA sequences with an average of
2 sites per kb. As introns are 30-fold longer than exons, 89.1% of
putative polyA sites are located in introns. 98.5% of these intronic sites
were not expressed, as aberrant expression of these sites could gen-
erate truncated proteins. The optimization of splicing signals is crucial
for suppressing intronic polyadenylation15. Previous studies showed
that disrupting the splice sites or using anti-sense oligonucleotides to
block U1 snRNP recruitment can increase intronic
polyadenylation16,45,46. These results are in line with our findings of the
competition between splicing and intronic polyadenylation. Here, we
developed quantitative models to capture the regulatory parameters
and calculate the probability of a site being used.

Although intronic polyadenylation is generally unfavored, some
genes express functional RNA isoforms using this mechanism47. For
example, the CSTF3 gene contains an intronic polyA site associated
with a weak 5’SS conserved across vertebrates, which plays fine-tuning
roles in full-length protein expression16. The immunoglobulin M gene
uses intronic polyadenylation to generate two RNA isoforms encoding
membrane-bound and secreted proteins with different C-terminal
domains48. It will be interesting to apply our models to examine the
coevolution of intronic polyadenylation and surrounding gene struc-
tures across species, whichmay distinguish the functionally conserved
vs. randomly occurring sites.

APA in 3’-terminal exons regulates the occurrence of cis-reg-
ulatory elements in 3’UTRs, such as binding sites for microRNAs and
RNA binding proteins. This regulation fine-tunes RNA stability and
translation efficiency across biological conditions. Besides polyA site
strength, our quantitative modeling showed that site usage is corre-
lated with the tandem site distance, the size of the last intron, and the
distance to the next downstream antisense gene. Our model achieved
the classification of highly vs. lowly used terminal exonic sites with an
AUROC=0.937. The small fraction of misclassification could be
attributed to the regulation of RNA stability or cell type-specific reg-
ulation. Our models were trained mostly based on mature RNA
expression, although a few 4sU-labeled nascent RNA libraries were
included. The principles we learned from this study represent general
polyadenylation regulation.

Future work integrating (nascent) RNA-seq data with our PolyaID/
PolyaStrengthmodels could comprehensively identify APA events and
reveal molecular mechanisms underlying biological process- or cell
type-specific regulation. Using the 3’READS data, we examined APA
regulation across five different cell types, including cerebellum tissue,
neuronal stem cells (NSCs), embryonic stem cells (ESCs), aswell as two
placental cell lines HTR8 and JEG3. Using principal component analysis
of sites showing significant APA regulation across the cells/tissues (see
“Methods” for details), we observed that cerebellum andNSCs (named
as neuronal-like cells) show similar APA profiles, while ESCs, HTR8, and
JEG3 cells (named as embryonic-like cells) were clustered together
(Supplementary Fig. 13a). Consistent with previous reports5,49, more
genes showed higher usage of proximal polyA sites in embryonic-like
cells than neuronal-like cells (1409 vs. 226 genes) (Supplementary
Fig. 13b). Proximal polyA sites showing higher usage in embryonic-like
cells tend to have lower PolyaStrength scores and be located far away
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from the distal sites, compared to those with higher usage in neuronal-
like cells (Supplementary Fig. 13c–e). These results showed that our
deep learningmodels can be useful for the future investigation of cell-
type specific APA regulation.

We applied our models to examine the impact of disease/trait-
associated genetic variants affecting polyadenylation activity. Most
published methods studying APA genetics were limited to annotated
polyA sites from curated databases. Our models are not restricted by
existing site annotation, PAS types, or repetitive genomic regions. They
can identify de novo polyA sites caused by the mutations and expand
our ability to tackle human genetics controlling polyA site usage. Our
analyses effectively identified known mutations driving disease pro-
gression, and also revealed variants causing de novo polyA site forma-
tion. Our catalog of polyadenylation-altering variants provides a useful
resource for future experimental characterization of polyadenylation
variants mediating human disease progression or trait formation.

Methods
Genome-wide polyA site identification and annotation using
3’READS data
To quantify genome-wide polyA site expression, we analyzed the
3’READS data from 103 human samples (Supplementary Data 1),
including 19 primary tissues and cell line types. We first trimmed the
leading Ts from the sequencing reads and recorded the number of Ts.
Trimmed reads were then aligned to hg38 using TopHat v2.1.050 with
the gene structure annotation from the GENCODE database51. The
uniquelymapped readswith≥2non-genomicAswere considered PASS
reads. The PASS reads revealed cleavage activity at the nucleotide
resolution.

To account for the imprecision inherent in cleavage and poly-
adenylation, we clustered individual sites within 24 nt and selected the
positionwithmaximumPASS reads as the representative site. Terminal
exonic polyA sites can be located downstream of annotated 3’ ends.
We extended the 3’ end by a maximum of 5 kb, but not overlapping
with the downstream gene transcription start site on the same strand.
Becausewemergedmany samples for these analyses, tominimize false
positives, we required that retained polyA sites should be supported
by ≥10 PASS reads and that their expression relative to the total PASS
reads in the samegene should be >2% in at least one cell/tissue lineage.
In total, we analyzed 1.5 billion sequencing reads and identified 109,814
polyA sites (Supplementary Data 2).

Developing the PolyaID model
Input datasets. To generate positive polyA site sequences for the
model training, we randomly sampled 20,000 sites weighted by the
number of supporting reads across the genome. For each site, we
included the 240 nt sequences centered at each position between −25
and +25 nt surrounding the representative cleavage site as positive
examples. For negative control sequences (240 nt), we used random
intergenic sequences, shuffled transcript sequences, and neighboring
sequences 50–100 nt distant from a polyA site that did not contain any
PASS reads in the middle 50 nt regions. With these site-neighboring
sequences in the negative examples, our algorithm only predicts
positive polyA sequences showing cleavage in the middle region.

Our PolyaID model contains two output branches: the classifica-
tion probability and the cleavage probability profile. For model train-
ing, the classification score for positive sequenceswas 1, whilenegative
sequences used the score 0. We used 3’READS within +/−25 nt of the
positive site to represent the cleavage vector (length = 50). This vector
sum is normalized to 1 to show the cleavage probability at each posi-
tion. Negative controls were assigned a constant cleavage probability
vector at a background value of 0.02.

Model architecture and training. For the input to the PolyaIDmodel,
we converted the 240 nt sequences (positive and negative examples)

into a (4 × 240) matrix using one-hot encoding. Each column of the
matrix represented a position in the sequence, and each row corre-
sponded to the nucleotide A, C, G or U. A 1 was marked if the
nucleotide was present in the sequence position, and all others were
marked with 0. This creates a numerical representation of the
sequence fed to the model. Our sequence-modeling unit was com-
posed of a convolutional layer and a bidirectional LSTM layer. The
window size for learning the sequence composition was set to 8. The
output layer contains two units: the classification probability calcu-
lating the likelihood a sequence is a polyA site, and the cleavage
probability vector (length = 50). Details of the layers used in thismodel
are described in Supplementary Data 3.

Weuse thebinary cross-entropy loss function for the classification
branch (Eq. 1):

LossClassif ication = � 1
N

XN

i = 1

yi
�

* log p yi
� �� �

+ 1� yi
� �

* log 1� p yi
� �� �

where yi is the label for the sequence i (1 for positive site and 0 for
negative sequence) and p yi

� �
is the predicted probability of a

sequence i being a polyA site.
We used the Kullback-Leibler divergence loss function for the

cleavage branch (Eq. 2):

LossCleavage =
X50

j = 1

cj* log
cj
oj

 ! !

where cj and oj are the predicted and observed cleavage probabilities,
respectively, for each position j across the 50 nt window vector.

The loss functions were implemented out-of-box in TensorFlow2.
Data were fed into the model in batch sizes of 100 with a learning rate
of 0.001 and optimized using the Adam optimizer with Nesterov
momentum.

The dataset was randomly partitioned into 80% training, 10%
validation, and 10% holdout test splits, with positive and negative
controls balanced. The loss functions for each of the output branches
were equally weighted during training. Training was monitored using
the loss function values and the accuracy of predictions. Several
models were trained in replicate with different random initializations,
and the most representative model was chosen. The final model was
trained for four epochs, after which it attained the minimum loss on
the validation set.

Model evaluation. We assessed the quality of our trainedmodel using
theperformance on a holdout test set. BasedonPolyaIDprediction,we
calculated the classification probability as well as the cleavage prob-
ability for each site. Classification performance was shown using the
AUROC and AUPRC from the Python library scikit-learn.

The PASS reads from 3’READS data revealed near single-
nucleotide resolution of cleavage sites with one limitation. We can-
not distinguish the last nucleotide As from genome sequences vs.
those generated by polyadenylation. Actually, many cleavage events
tend to happen within A-rich regions or after a CA dinucleotide26. If
there are multiple genomic As at the end of mapped reads, here we
assigned the reads to the first A. Our approach is different from the
APARENT model where they assigned the reads to the last non-A site.
As a result, the cleavage site predicted by the APARENT model does
not happen at the As, while our PolyaID model predicts the cleavage
probability among the As.

For the cleavage probability vector, we subtracted the back-
ground probability of 0.02 from the predicted vector and then
renormalized the distribution to the sum of 1. The performance of
cleavage probability vector prediction was assessed by comparing the
observed and predicted mean cleavage positions (MCP), which were
calculated from the following dot product.
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For position i from a vector (length = 50), suppose the cleavage
probability is pi. The MCP m was calculated as follows (Eq. 3).

m=
X50

i= 1

ðpi × iÞ

The MCP metric determines the most likely cleavage position
weightedby the cleavage probabilities in that region and quantifies the
agreement between the shape of observed probabilities from the
3’READS data and predicted probabilities from our model.

Predicting genome-wide putative polyA sites using PolyaID at
single-nucleotide resolution
Using a scanning window across the genome with one nucleotide per
step, we performed a PolyaID prediction using the 240 nt nascent RNA
sequence. As shown in Fig. 1f and Supplementary Fig. 2g, around a
polyA site, we generally obtained a broad region (~60 nt) considering
high classification probability scores alone. To achieve the nucleotide-
resolution prediction, we consolidated the PolyaID-predicted classifi-
cation probability and the cleavage probability vector to infer the
locations of putative polyA sites.We required classification probability
>0.5 and the center of the cleavage probability vector >0.05 to create a
subset of positive sequences showing cleavage in the middle. We
overlayed the cleavage probability vectors from these positive pre-
dictions and took the position-wisemean. The location withmaximum
cleavage probability within a positive cluster was used to represent the
putative cleavage and polyadenylation site.

We further grouped the putative polyA site based on their geno-
mic locations: intronic, upstream exonic, terminal exonic, and exten-
ded terminal exonic sites. We examined whether these polyA sites are
expressed (supported by ≥10 PASS reads). To compare the relative
usage levels of the site types, we selected genes showing ≥2 expressed
sites in terminal exons or extended regions and calculated the usage
level of a site as the ratio between the number of PASS reads sup-
porting the site vs. the sum read counts of the top two expressed sites
in the (extended) terminal exons.

Developing the PolyaStrength model
Input dataset. We used the relative expression of APA sites located in
terminal exons to represent their usage levels. The relative usage of a
polyA site is calculated as the ratio (log-odds transformed) between
the number of reads supporting the site and the summed reads from
the highest and second-highest expressed sites in the same gene. We
did not use the total read number from a gene as the denominator
because there are different numbers of expressed polyA sites
across genes.

Supposing the supporting read number for site i is ni, its relative
usage ui and the log-odds transformed value oi were calculated as (Eq.
4):

ui =
ni

nmax site +nsecondmax site

� �

oi = log 2 ui
1�ui

� �

Model architecture and training. The polyA sequences (240 nt) were
converted into a (4 × 240) matrix using one-hot encoding, the same as
for the PolyaIDmodel. For the Sequence-Modeling unit, we also used a
convolutional layer followed with a bidirectional LSTM layer, but their
parameters are different from those of PolyaID and are described in
(Supplementary Data 3). The output layer predicts the log-odds
transformed usage levels. We used the mean squared error

implemented in TensorFlow2 as the loss function for model training
(Eq. 5):

Lossusage =
1
n

Xn

i = 1

ðui � viÞ2

where ui and vi are predicted and observed usage level for the polyA
site i. Datawas fed into themodel during training in a batch size of 100,
with a learning rate of 0.001, and optimized using the Adamoptimizer
with Nesterov momentum.

53,105 terminal exonic polyA sites were used to build the model.
And we required that the selected genes should contain ≥2 polyA sites
in terminal exons. The sites were randomly separated into 80% train-
ing, 10% validation, and 10% holdout test splits. Training was mon-
itored using the loss function and the accuracy of predictions. The
model was trained for 9 epochs, after which it attained the minimum
loss on the validation set. Severalmodelswere trained in replicate, and
a representative model was chosen.

Model evaluation. We grouped polyA sites in the testing set based on
their relative usage levels and examined whether they showed differ-
ential strengths. As one gene can express multiple stronger/weaker
sites, we did not expect their usage levels to be perfectly correlated
with the predicted strengths. To further examine the accuracy of our
model, we selected 8,167 pairs of APA sites in terminal exons showing
>8-fold usage level difference. We calculated the AUROC using the
PolyaStrength score to distinguish highly vs. lowly used sites, as shown
in Fig. 1i.

Comparison with published models
We compared the performance of PolyaID vs. previously published
models (i.e. DeepPASTA18, APARENT19, APARENT220, and
PolyApredictors21) in classifying polyA sequences vs. random nucleo-
tides.We split the sites from the PolyaID holdout test dataset based on
their PAS types: AAUAAA, AUUAAA, or other variants, respectively.
And we randomly sampled an equal number of negative controls to
balance. The same positive and negative datasets were used to com-
pare the performance among the models. We calculated the AUROC
and AUPRC values using the predicted PolyaID classification prob-
ability, DeepPASTA classification probability, APARENT/APARENT2
isoform abundance, and PolyApredictors expression to compare
classification performance. In Supplementary Fig. 2b–c, the polyA
sequences were centered around the highest probability cleavage site
to make predictions. In Supplementary Fig. 2d–e, we randomly selec-
ted 10,000 polyA sites with each PAS, shifted these sites from −25 to
+25 nt around the maximum cleavage sites and used the shifted
sequences tomake the predictions. To assess themodel predictions of
cleavage probabilities, we calculated the Pearson correlation between
the observed and predictedmean cleavage position for positive polyA
sites from PolyaID, APARENT, APARENT2, and PolyApredictors, shown
in Supplementary Fig. 2f. Individual examples were shown in Supple-
mentary Fig. 2k–l.

To compare models to distinguish highly vs. lowly used sites, we
made predictions using the sequences surrounding the set of 8167
pairs of APA sites in terminal exons showing >8-fold usage level dif-
ference. We then calculated the AUROC and AUPRC using the Poly-
aStrength score, APARENT and APARENT2 isoform abundance, and
PolyApredictors expression predictions, which are shown in Supple-
mentary Fig. 3a–c.

Our above analyses were based on the polyA sites defined in this
study. We also evaluated the model performance using polyA sites
defined in published databases including PolyA_DB v324 and APADB
v225, as well as the site expression from a massively parallel reporter
assay (MPRA)19. PolyA_DB sites were also defined by 3’READS. We
selected 36,701 sites supported bymean reads permillion (RPM) ≥ 3 as

Article https://doi.org/10.1038/s41467-023-43266-3

Nature Communications |         (2023) 14:7378 13



positive examples and the same number of random nucleotide
sequences as negative examples to evaluate the performance of site
classification using PolyaID, DeepPASTA, APARENT, APARENT2, and
PolyApredictors. We picked 6,871 terminal exonic polyA site pairs with
baseline expression RPM ≥ 1.5, with ≥8-fold expression difference, and
≥100 nt apart to evaluate the performance of PolyaID, APARENT,
APARENT2, and PolyApredictors in classifying the strong vs weak
polyA sites. For the APADB model, the polyA sites were defined by
massive analysis of cDNA ends sequencing (MACE reads). We selected
48,860 sites supported by ≥10 MACE reads as the positive examples
for evaluate the site classification, and used 8,000 paired terminal
exonic polyA sites with baseline expression ≥5 MACE reads, with ≥8-
fold expression difference, and ≥100 nt apart to evaluate the perfor-
mance of classifying strong vs. weak sites.

We also analyzed a published MPRA dataset19 in which they
introduced hundred thousands of random nucleotides into the
polyA site sequence, and quantify the site expression using deep
sequencing. The relative transcript expression levels can be used to
measure the relative strength of the polyA sites. We analyzed the
“HSPE1” library which was used for their model evaluation in the
published paper. To remove the false-positive sites from oligo(dT)
internal priming, we only retained sequenceswith PolyaID-predicted
classification probability ≥0.5 for further analyses. We grouped
337,044 sequences into 5 bins based on their supporting read
numbers, and evaluated the performance of the algorithms to clas-
sify the top highly vs. lowly expressed (group 5 vs. group 1) polyA
site sequences.

Characterizing cis-regulatory elements mediating polyA site
identification and strength
We employed a motif disruption approach to systematically quantify
the importance of a hexamer to the PolyaID and PolyaStrength pre-
diction for a polyA site sequence. For each hexamer occurrence in a
polyA site sequence, we replaced it with randomized nucleotides 100
timeswhile keeping the remaining sequences the same.We performed
predictions for both the original and modified sequences. Then the
effect of motif disruption was quantified using the median change in
the log-odds of the PolyaID-predicted classification probability or
PolyaStrength score from the 100 replacements.

To identify motifs driving genome-wide polyA site formation, we
performed the above-described analyses for 32,682 well-expressed
polyA sites with ≥100 PASS reads and usage levels ≥5%. The usage level
of a polyA site was calculated as the ratio of PASS reads supporting the
site vs. the total PASS reads assigned to the gene. For each position
from −120 nt to +114 nt surrounding polyA sites, we calculated the sum
importance score of a hexamer in that position as the sum change in
log-odds classification probability or strength. We also calculated per
site importance score for each hexamer by dividing the sum score by
the frequency.

We next analyzed cis-regulatory elements contributing to
genome-wide polyA site identification, including AAUAAA and PAS
variants22, UGUA, U-rich, GU/CU-rich, and G-rich motifs. U-rich ele-
ments were defined as those with 5 Us in a hexamer, with a U required
in thefirst position. G-richelementsweredefined as thosewith 5Gs in a
hexamer, with a G required in the first position. GU/CU-rich hexamers
contained GUGU, UGUG, GUCU, UGUC, CUGU, or UCUG.We reasoned
that the vast majority of motifs located >40 nt upstream or down-
stream of polyA sites are not important for polyA site formation. We
used the sum importance scores from these regions as the background
values. The 99.99th percentile score from this background distribution
was used as the false discovery rate threshold. The hexamers passing
this cutoff in any 40 nt window using either PolyaID or PolyaStrength
importance were considered important for genome-wide polyA site
formation. We merged motifs recognized by components of the
polyadenylation machinery into families for further analysis.

We next examined the differential compositions of cis-elements
around genomic polyA sites. To this end, we focused on analyzing
13,876 well-expressed polyA sites (supported by ≥100 reads and usage
level ≥5%) with an AAUAAA 10-30 nt upstream and either a U-rich or
GU/CU-rich motif within 30 nt downstream of the max cleavage site.
For these sites, we then determined if they contained any optimally
positioned motifs: UGUA bound by CFI 0-40 nt upstream of AAUAAA,
U-rich motifs bound by FIP1 between the cleavage site and AAUAAA,
G-rich elements recognized by hnRNP F/H within 50 nt downstreamof
the CstF binding site, or a second CstF motif. We analyzed the fre-
quency of motif combinations, their PolyaStrength scores, the corre-
sponding gene expression calculated by summed 3’READS of the
genes, and their site type (i.e. first, middle, last site of APA genes, or
single site of a gene). We performed gene ontology analyses using the
genes containing sites with ≥5 optimally positioned motifs using the
DAVID program52.

Characterizing the polyA site cleavage heterogeneity
We used the entropy value to quantify the 3’READS-observed and
PolyaID-predicted cleavage heterogeneity. For the polyA sites identi-
fied by 3’READS, we selected highly expressed sites supported by≥100
reads in order to reliably quantify their cleavage distribution. We
obtained the 3’READS distribution from the −25 to +24 nt surrounding
the representative cleavage site. Supposing the total read number
from the polyA region is n and the read count in position i is mi, we
calculated the fraction of reads pi=mi/n. For the PolyaID prediction, we
used the predicted cleavage probability pi for position i. We then cal-
culated the entropy value E using the cleavage vector distribution as
follows (Eq. 6):

E = �
X50

i = 1

pi � logðpiÞ

The entropy values were used to separate sites with very clear
cleavage sites (more “spike”-like, low entropy) and those with hetero-
geneous cleavage (more nonzero probability sites, high entropy).

We next examined the regulatory motifs driving the differences
between high vs. low entropy sites. The entropy values calculated
using 3’READS data and PolyaID-predicted cleavage were well corre-
lated.We selected sites thatwere in the top andbottom20%of entropy
values for both the observed and predicted cleavage profile for the
downstream analyses. We divided the polyA sequences into four dif-
ferent regions: −120 ~ −31 nt; −30 ~ 0 nt; 1 ~ 30 nt; and 31 ~ 120 nt. For
each region, we compared cis-regulatory element occurrence differ-
ences between the low vs. high entropy groups using the Chi-squared
test. We also examined the motif enrichment by comparing the frac-
tion of sites containing the motif of interest in each region using the
two-sided two proportions test in the low vs. high entropy groups.

Our above motif analyses showed that the distance between
upstream AAUAAA (CPSF binding) and downstream U-rich or GUCU-
rich elements (CstF binding) regulates the cleavage heterogeneity. We
examinedwhether the PolyaIDmodel could capture this regulation. To
this end, we moved AAUAAA and U-rich or GU/CU-rich motifs farther
apart or closer together by sliding them through the surrounding
sequence, which was unchanged, and predicted the change in polyA
site classification probability and cleavage profile. From sites con-
taining AAUAAA upstreamof the cleavage site and either U-rich or GU/
CU-rich motifs downstream of the cleavage site, we selected those
sites in the low entropy group where the motifs were close together
(20–40 nt) or in the high entropy group where the motifs were farther
apart (40–100 nt). The number of polyA sites in the analyses: moving
AAUAAA–U-rich farther N = 676, moving AAUAAA–U-rich closer
N = 635, moving AAUAAA–GU/CU-rich farther N = 949, and moving
AAUAAA–GU/CU-rich closer N = 658. The increase of AAUAAA and
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U-rich (or GU/CU-rich) element distances resulted in higher entropy
values, and the decrease of distances resulted in lower entropy values.

To validate the genomic parameters regulating polyA site
cleavage heterogeneity, we analyzed the MPRA data19. As the study
reported the sequencing reads supporting each cleavage position of
a sequence, we used the distribution of these reads to calculate the
entropy value to quantify the cleavage heterogeneity based on the
method we used for the 3’READS analyses. We required the sites
should be supported by ≥10 reads and retained only the sequences
with PolyaID classification probability ≥0.5 to remove false positives
from the Oligo(dT) internal priming. To examine the effect of mul-
tiple PAS regulating cleavage heterogeneity, we compared the
entropy values of sequences with 1 AAUAAA vs. 2 located upstream
of the maximum cleavage sites. Because there are many more
sequences with only 1 AAUAAA vs. 2, we randomly sampled an equal
number of sites with 1 AAUAAA to balance the data for comparison.
To examine the impact of the distance between PAS and the CstF
binding site in regulating cleavage heterogeneity, we analyzed the
sites from the “Simple” and “AARS” libraries with only 1 AAUAAA.We
selected these two libraries for analyses because they contain ran-
domly located downstream U-rich or GU/CU-rich elements, while
the distance between the PAS and CstF was fixed in other libraries.
We grouped the sites based on the distance between the AAUAAA
PAS and the first downstream U-rich or GU/CU-rich elements for
comparisons.

Developing logistic regression models to calculate the usage
probability of intronic polyA sites
Intronic polyadenylation is generally suppressed because of its com-
petition with splicing. We developed a logistic regression model to
determine whether an intronic site would be used based on the sur-
rounding genomic context. Based on the gene structure, we classified
intronic sites into two categories: composite and skipped types. The
skipped intronic sites show splicingbetween theupstream5’SS and the
polyA site, while the composite sites do not. For each polyA site, we
annotated the following features: polyA site strength, distances to
nearby splice sites, surrounding 5’SS and 3’SS strengths, sizes of
upstream exon, downstream exon and intron, or whether the site is
located in the last intron. The detailed calculation is shown in Sup-
plementary Table 1.

To characterize the impact of genomic features other than site
strength regulating intronic site expression, we controlled for site
strength using quantile sampling. PolyA sites were split into equally
sized bins based on their PolyaStrength scores and then the same
number of used and unused sites were sampled from each bin. This
equalizes the variance in PolyaStrength between used and unused
sites, removing the influenceof strength on other genomic featureswe
are investigating.

To train the logistic regression model, we used the genome-wide
identified intronic polyA sites as positive examples, and an equal
number of negative sites with no supporting reads were randomly
selected. For composite and skipped intronic sites, we split the data
into training (90%) and testing (10%) sets and then fit independent
logistic regressionmodelswith thenoted features.Weused the Python
package “scikit-learn” to train the model. The models were evaluated
using the AUROC for the testing set to assess the accuracy of the
predictions. We tried to incorporate other genomic features into the
models (e.g., intron order and strength of splice sites located further
away), but those features did not improve the prediction. Our final
models only included genomic features contributing significantly to
the model with P-value < 0.05. We also further validated these results
using RNA-seq density of surrounding sites, binned by predicted usage
probability, using data from the ENCODE Project39,40 (https://www.
ncbi.nlm.nih.gov/bioproject/PRJNA30709). We showed the repre-
sentative results using the RNA-seq from A172 cells, and we obtained

the consistent results from other cell types (i.e. K562, A673, and
MCF10A).

Developing a logistic regression model to examine the relative
usage of terminal exonic polyA sites
To learn the genomic features determining the relative usage of
terminal exonic polyA sites, we focused on genes with multiple polyA
sites in the 3’-most exon.We selected the strongest polyA site per gene
and randomly picked another site in the same gene showing ≥8-fold
lower usage than the strongest one. Two sites in each gene were
categorized as proximal (upstream) and distal (downstream) based on
their relative position. In total, we selected the 9,443 site pairs. For
terminal exonic APA sites, we annotated the following features: polyA
site strength, distance between two sites, distance to the downstream
gene in the opposite strand, and size of the last intron. The detailed
calculation is shown in Supplementary Table 2.

Based on the above-described features, we developed a logistic
regression model to predict whether the proximal or distal polyA site
would show higher usage. We split the data into training (90%) and
testing (10%) sets. Thesemodels classified the individual proximal sites
in each pair to determine if it is themore highly used one based on the
features described above. We use the Python package “scikit-learn” to
train the model. We assessed the performance of these models by
plotting the AUROC for the testing set. We only included significant
features (P <0.05) in our final models. We also validated our usage
predictions by comparing the RNA-seq read density of surrounding
the sites, grouped by the predicted usage probability, using data
from the ENCODE Project (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA30709). We showed the representative results using the A172
RNA-seq data and obtained consistent results fromother cell types (i.e.
K562, A673, and MCF10A).

Analyses of PAS pA-QTL variants
To evaluate the performance of our models in identifying functional
genetic variants, we performed the PolyaID and PolyaStrength predic-
tions of a set of 330PASpA-QTLs32. These variantswere shown to lead to
APA regulation by analyzing GTEx RNA-seq data across human tissues.
For each site, we obtained its surrounding 240 nt sequences based on
the annotation and anchored the PAS motif at −20 nt. We made pre-
dictions for both the reference and alternate allele sequences. We
grouped the variants based on their effects of creating or disrupting the
AAUAAA or AUUAAA signals. We found that 64 sites contain multiple
AAUAAA or AUUAAA signals, and the associated genetic variants can
have complicated effects on site strength. We showed the predicted
values of these variants in Supplementary Data 5, but not Fig. S9.

Identifying genetic variants regulating polyadenylation activity
using deep/machine learning models
We applied the deep/machine learning models we developed to
examine the genetic variants impacting polyadenylation activity. We
analyzed the disease/trait-associated variants annotated by the Clin-
Var, UK BioBank, and GWAS Catalog,databases. To narrow down
potentially impactful variants, we examined whether they affected the
important cis-regulatory motifs we detected in Fig. 2. If a variant
changed an important hexamer, we used a scanningwindow (step size:
1 nt) within +/−120 nt surrounding the variant, obtained the flanking
240 nt long sequence at each position, and performed the PolyaID and
PolyStrength predictions. If the sequence showed PolyaID-predicted
classification probability ≥0.9 for the wild-type or mutated sequence,
we examined the variant’s effect on polyA site usage, calculated using
the PolyaStrength model. We showed the results centered around the
maximum predicted cleavage site. One variant can be evaluated mul-
tiple times if it is associated with different genes encoded by the two
opposite strands. If a site was located in the extended terminal exon
region, we required that it be no more than 1 kb downstream RefSeq-
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defined 3’-end, in order to limit this analysis to include only variants
most likely to be functional. If a site was located in an intron, we used
the logistic regressionmodels wedeveloped in Fig. 5 to predict the site
expression probability. We required that the site should show
expression probability ≥0.9 for either the wild-type or mutated
sequence.

Examine the APA regulation across human tissues/cells
We selected five different cell/tissue types to use to analyze tissue-
specific APA regulation, including cerebellum, NSCs, ESCs, HTR8, and
JEG3. We picked these cell types because they were generated by the
same 3’READS protocol. We focused on analyzing the APA genes
showing universal expression across the five cells/tissues. For each
gene, we picked the top 2 expressed 3’ terminal exonic sites supported
by 3’READS to study.We examined the APA regulation using the Fisher
Exact test comparing the proximal vs. distal site expression in each
tissue vs. all other tissues. We found 3,297 genes showing APA reg-
ulation using the cutoff Benjamini-Hochberg adjusted P-values < 0.05,
and an absolute usage change relative to the mean ≥0.1. Based on the
unbiased principal component analyses of samples, we found cere-
bellum and NSCs (neuronal-like cells) were clustered together, while
ESCs, HTR8, and JEG3 (embryonic-like cells) were grouped. We then
identified proximal sites showing higher expression in neuronal-like
cells, using the cutoff≥10% relative usage difference in all neuronal-like
cells vs. embryonic-like cells. Likewise, we also defined the sites
showing higher usage across embryonic-like cells, and further divided
them into two groups based on their relative higher usage levels
(10–20% and >20%, respectively).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available from the
corresponding authors upon request. The sequencing datasets ana-
lyzed in this study are available in the Gene ExpressionOmnibus (GEO)
repository with the accession number GSE111134, GSE78657,
GSE187694, GSE175163, and GSE219794.

Code availability
The source codes were deposited in GitHub: https://github.com/
zhejilab/PolyaModelsHuman and also from Zenodo53.
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