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Cosmic-void observations reconciled with
primordial magnetogenesis

David N. Hosking 1,2,3,4 & Alexander A. Schekochihin3,5

It has been suggested that the weak magnetic field hosted by the intergalactic
medium in cosmic voids could be a relic from the early Universe. However,
accepted models of turbulent magnetohydrodynamic decay predict that the
present-day strength of fields originally generated at the electroweak phase
transition (EWPT) without parity violation would be too low to explain the
observed scattering of γ-rays from TeV blazars. Here, we propose that the
decay is mediated by magnetic reconnection and conserves the mean square
fluctuation level of magnetic helicity. We find that the relic fields would be
stronger by several orders of magnitude under this theory than was indicated
by previous treatments, which restores the consistency of the EWPT-relic
hypothesis with the observational constraints. Moreover, efficient EWPT
magnetogenesis would produce relics at the strength required to resolve the
Hubble tension via magnetic effects at recombination and seed galaxy-cluster
fields close to their present-day strength.

It is widely believed that cosmic voids host magnetic fields. Evi-
dence for this comes chiefly from γ-ray observations of blazars1–12

(see refs. 13–15 for reviews): extragalactic magnetic fields (EGMFs)
in voids would, if present, scatter the electrons produced in
electromagnetic cascades of TeV γ-rays emitted by blazars, thus
suppressing the number of secondary (GeV) γ-rays received at
Earth. Such suppression is indeed observed, and can be used to
constrain the root mean square strength B � hB2i1=2 and energy-
containing scale λB of the magnetic fields. Using spectra mea-
sured by the Fermi telescope, refs. 3,12 estimate that

B≳ 10�17 G
λB

1Mpc

� ��1=2

, ð1Þ

where 10−17 G can increase to 10−15 G depending on modelling
assumptions, including the effect of time delay due to the larger
distance travelled by scattered electrons3,16. Equation (1) may also
be subject to some modification due to the cooling of cascade
electrons by plasma instabilities17–20—what effect, if any, this has on
the constraint (1) is poorly understood—see refs. 21,22 for recent
discussions.

Where might fields in voids come from? A popular idea
(although not the only one, see ref. 23) is that they could be relics of
primordial magnetic fields (PMFs) generated in the early Universe24,
including, prominently, at the electroweak phase transition
(EWPT)25. If so, the physics of the early Universe could be con-
strained by observations of the fields in voids—a remarkable possi-
bility—provided the magnetohydrodynamic (MHD) decay of the
PMFs between their genesis and the present day were understood.
However, the conventional theory of the decay24 (see refs. 13–15 for
reviews) appears inconsistent with the EWPT-relic hypothesis:
ref. 26 argue that the lower bound (1) on B is too high to be con-
sistent with PMFs generated at the EWPT without magnetic helicity
(a topological quantity that quantifies the number of twists and
linkages in the field, which is conserved even as energy decays27).
Furthermore, they show that the amount of magnetic helicity
required for consistency with Equation (1) is greater than can be
generated by baryon asymmetry at the EWPT, as estimated by
ref. 28. In principle, other mechanisms of magnetic-helicity gen-
eration may have been present in the early Universe; one idea is
chiral MHD (see29 and references therein). Whether enough net
helicity can be generated via these mechanisms for PMFs to become
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maximally helical during their evolution remains an open
question30,31. On the other hand, ref. 26 note that their conclusions
could be subject tomodification by the contemporaneous discovery
of the inverse transfer of magnetic energy in simulations of non-
helical MHD turbulence32,33 (see refs. 30,34–36 for schemes for
modifying their conclusions based on decay laws obtained
numerically). The inverse transfer was discovered by ref. 37 to be a
consequence of local fluctuations in themagnetic helicity, which are
generically present even when the global helicity vanishes, and
whose mean square fluctuation level is conserved.

In this paper, we apply the theory of ref. 37 to the problem of
predicting the strength of the relics of PMFs. We find that the con-
straint imposed by magnetic-helicity conservation, when taken toge-
ther with the other key result of ref. 37, and of refs. 38–40, that the
decay timescale is the one on which magnetic fields reconnect,
restores consistency of the hypothesis of a non-helical EWPT-gener-
ated PMF with Equation (1). We also find that reasonably efficient
magnetogenesis of non-helical magnetic field at the EWPT could pro-
duce relics with around the 10−11 G comoving strength that, it has been
suggested, is sufficient to resolve the Hubble tension41,42. Relics of this
strength would also constitute seed fields for galaxy clusters that
would not require much amplification by turbulent dynamo after
structure formation to reach their observed present-day strength43

(although dynamo would still be required to maintain cluster fields at
present levels).

Results
We take the metric of the expanding Universe to be

ds2 =a2ðtÞð�dt2 + dxi dx
iÞ, ð2Þ

where a(t) is the scale factor, normalised to 1 at the present day, t is
conformal time (related to cosmic time t by aðtÞdt =dt), and xi are
comoving coordinates. The expanding Universe MHD equations can
be transformed to those for a static Universe by a simple rescaling44:
the scaled variables

~ρ=a4ρ, ~p=a4p, ~B=a2B, ~u=u,
~η= η=a, ~ν = ν=a,

ð3Þ

[where ρ, p, B, u, η, and ν are the physical values of the total (matter +
radiation) density, pressure, magnetic field, velocity, magnetic diffu-
sivity, and kinematic viscosity, respectively] evolve according to the
MHD equations in Minkowski spacetime. As in previous work (see
refs. 13–15), we consider the dynamics of the tilded variables in Min-
kowski spacetime and transform the result to the spacetime (2) of the
expanding Universe via Equation (3).

Selective decay of small-scale structure
Historically, it has been believed that statistically isotropic MHD tur-
bulence decays while preserving the small-k asymptotic of the
magnetic-energy spectrum EMðkÞ (see refs. 13,14 and references
therein). This idea, sometimes called selective decay of small-scale
structure, amounts to a statement of the invariance in time of the
magnetic Loitsyansky integral,

ILM
� �

Z
d3r r2h~BðxÞ~Bðx + rÞi, ð4Þ

where angle brackets denote an ensemble average. For isotropic turbu-
lence without long-range spatial correlations, ILM

is related to EM ðkÞ by

EM ðk ! 0Þ= ILM
k4

24π2 +Oðk6Þ: ð5Þ

Invariance of ILM
implies

ILM
∼ ~B

2
λ5B ∼ const: ð6Þ

Here and inwhat follows, we use the symbol ~ to denote equality up to
a dimensionless number of order unity. In writing Equation (6), we
have assumed that the magnetic-energy spectrum is sufficiently
peaked around the energy-containing scale λB for the latter to be
equal to the correlation, or integral, scale of thefield. Thiswouldnot be
the case for a scale-invariant magnetic field (often conjectured to be
generated by inflationary mechanisms). We exclude such fields from
our analysis in this paper, in which we consider causal fields—the sort
that could be generated at a phase transition—exclusively.

Decay timescale
Equation (6) can be translated into a decay law formagnetic energy by
a suitable assumption about how the energy-decay timescale,

τ ð~B,λB,tÞ � � d log ~B
2

dt

 !�1

, ð7Þ

depends on ~B, λB and t. Regardless of this choice, Equations (6) and (7)
have the following important property. Suppose that, after some
intermediate time tc, τ(B, λB, t) canbe approximatedby someparticular
product of powersof its arguments. Then, for all t≫ τ(tc), ~B

2
decays as a

power law: ~B
2 / t�p, where p is a number of order unity. Substituting

this back into Equation (7), one finds

τ ð~B,λB,tÞ∼ t, ð8Þ

which is an implicit equation for ~B= ~BðλBÞ that can be solved simulta-
neously with Equation (6) for ~BðtÞ and λB(t). Equation (8) was first
suggested by ref. 24 on phenomenological grounds. Its great utility,
which has perhaps not been spelled out explicitly, is that it implies that
one need not know the functional form of τð~B,λB,tÞ during the early
stages of the decay in order to compute ~B and λB at later times. Thus,
the effect of early Universe physics (e.g., neutrino viscosity) on the
decay dynamics can be safely neglected.

Inconsistency with observations
Assuming that the decay satisfies Equation (6) and that its timescale is
Alfvénic, viz.,

τ ∼
λB
~vA

, ~vA =
~Bffiffiffiffiffiffiffiffiffiffiffi
4π~ρb

p , ð9Þ

when it terminates at the recombination time trecomb
14 [Equation (27) in

Methods], Equation (8) implies24

~BðtrecombÞ∼ 10�8:5G
λBðtrecombÞ
1Mpc

ð10Þ

[see Equation (31) in Methods]. In (9), ~ρb is the baryon density, which
appears because photons do not contribute to the fluid inertia at scale
λB at the time of recombination45 [see Equation (29) in Methods]. An
approximate upper bound, ILM ,max, on ILM

follows from assuming that
the magnetic-energy density ~ρB � ~B

2
=8π and the electromagnetic-

radiation density ~ργ were equal at the time t* of the EWPT while λB(t*)
was equal to the Hubble radius rH(t*). This corresponds to
~Bðt*Þ∼ 10�5:5 G and λB(t*) ~ rH(t*) ~ 10−10 Mpc13,26. As is shown in Fig. 1,
these values and Equation (10) together lead to values of ~B and λB at
trecomb that violate the observational constraint (1). Note that
λB(t*) ~ 10−2 rH(t*) is, in fact, a more popular estimate, corresponding
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to the typical coalescence size of bubbles of newphase that format the
phase transition46; for this initial correlation scale, the predicted value
of ~B is separated from the allowed values by around three orders of
magnitude. A similar calculation led ref. 26 to conclude that genesis of
EGMFs at the EWPT was unlikely (although we note that significant
modification of Equation (1) by inclusion of the effects of plasma
instabilities in the modelling of the electromagnetic cascade—see the
comment below Equation (1)—could alter this conclusion).

Saffman helicity invariant
We argue that the theory outlined above requires revision. First, the
idea of selective decay of small-scale structure is flawed. This is
because the kλB≪ 1 tail of the magnetic-energy spectrum EM ðkÞ cor-
responds not to physical structures (as in the Richardson-cascade
picture of inertial-range hydrodynamic turbulence) but to cumulative
statistical properties of the structures of size λB

47. Absent a physical
principle to support the invariance of ILM

(such as angular-momentum
conservation for its hydrodynamic equivalent47,48), there is, therefore,
no reason to suppose that the small-k asymptotic of EMðkÞ evolves on a
longer timescale than the dynamical one of λB-scale structures (if this is
long compared to the magnetic-diffusion timescale at scale λB, then
selective decay is valid, as the simulations of24,49 confirm, but this is not
the regime relevant to PMFs).

Instead, we propose that the decay of PMFs is controlled by a
different integral invariant37:

IH =
Z

d3r hhðxÞhðx+ rÞi, ð11Þ

where h = ~A~B is the helicity density (~B=∇× ~A). Equation (11) is
equivalent to

IH = lim
V!1

1
V

Z
V
d3xhðxÞ

� �2* +
= lim

V!1
hH2

V i
V

, ð12Þ

where HV is the total magnetic helicity contained within the control
volume V. The invariance of IH can therefore be understood intuitively

as expressing the conservationof the netmean squarefluctuation level
of magnetic helicity per unit volume that arises in any finite volume of
non-helical MHD turbulence (see Fig. 2; we refer the reader concerned
about the existence of such fluctuations to Section B of the Supple-
mentary Information). Numerical evidence supporting the invariance
of IH has been presented by ref. 37 and independently by refs. 50–52.
From IH = const, we deduce

IH ∼ ~B
4
λ5B ∼ const: ð13Þ

We make two brief remarks. First, growth of ILM
, and, therefore,

the inverse transfer effect discovered by refs. 32,33,53, follows imme-
diately from Equation (13). This is because ILM

∼ ~B
2
λ5B ∼ IH=~B

2
under

self-similar evolution, so that EM ðk ! 0Þ / ILM
k4 [see Equation (5)]

grows while ~B decays. Second, the value of the large-scale spectral
exponent does not affect the late-time limit of the decay laws in our
theory (see Section C of the Supplementary Information), unlike in the
selective-decay paradigm.

Reconnection-controlled decay timescale
The second revision that we propose to the existing theory is that the
field’s decay timescale τ should be identified not with the Alfvénic
timescale (9), but with themagnetic-reconnection one. This is because
relaxation of stochastic magnetic fields via the generation of Alfvénic
motions is prohibited by topological constraints, which can only be
broken by reconnection. Refs. 37,40,50 have presented numerical
evidence for a reconnection-controlled timescale fordecays that occur
with a dominance of magnetic over kinetic energy (see refs. 38,39 for
the same in 2D).Magnetically dominated conditions are relevant to the
decay of PMFs because (i) the large neutrino and photon viscosities in
the early Universe favour them, and (ii) once established, they are
maintained, as reconnection is typically slow compared with the Alf-
vénic timescale. The identification of τ as the reconnection timescale
implies that a number of different decay regimes are possible, as we
now explain.

Fig. 2 | Slice of magnetic-helicity density from a simulation of decaying non-
helical MHD turbulence. The turbulence breaks up into patches of positive and
negative helicity h (computed in the Coulomb gauge; ∇~A=0), shown in red and
blue, respectively (in units of the product of the root-mean-square values of ~A and
~B, denoted ~Arms and ~Brms, respectively). The invariance of IH [Equation (11)] is a
manifestation of the conservation of the net magnetic-helicity fluctuation level
arising in large volumes. Because of the complexmagnetic-field topology, the rate-
setting process for the decay is magnetic reconnection: reconnection sites, indi-
cated in the figure by patches of large current density j~Jj= j∇× ~Bj (black; plotted
with a variable-opacity scale in units of the root-mean-square current density, Jrms),
typically formbetween the helical structures. See the Numerical Simulation section
of Methods for details of the numerical setup.

Fig. 1 | Inconsistency of the decay theory based on Equations (6) and (9) with
observational constraints for EWPT-generated PMFs. Purple regions denote
values of ~B and λB excluded on physical [~ρBðtÞ≲ ~ργðt*Þ] or observational [the two
forms of the constraint (1)] grounds. Under decays that conserve ILM

[Equation (4)],
~B and λB evolve along lines parallel to the ones shown in blue. The predicted values
of modern-day ~B and λB are given by the intersection of these lines with Equation
(10).We see that even PMFs generated with ~ρBðt*Þ∼ ~ργðt*Þ and λB(t*) ~ rH(t*) produce
modern-day relics that are inconsistent with Equation (1).
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Under resistive-MHD theory, reconnecting structures in a fluid
with large conductivity generate a hierarchy of current sheets at
increasingly small scales via the plasmoid instability54. The global
reconnection timescale is the one associatedwith the smallest of these
sheets (the so-called critical sheet), which is short enough to be mar-
ginally stable55,56 (see ref. 57 for a review). This timescale is

τrec = ð1 + PmÞ1=2 min S1=2,S1=2c

n o λB
~vA

, ð14Þ

where Pm= ~ν=~η is the magnetic Prandtl number, which appears
because viscosity can suppress the outflows that advect reconnected
field away from the reconnection site,

S=
~vAλB

~η ð1 + PmÞ1=2 ð15Þ

is the Lundquist number based on the reconnection outflow and
Sc ~ 104 is the critical value of S for the onset of the plasmoid instability.
Equation (14) is a straightforward theoretical generalisation57 to arbi-
trary Pm of a prediction for Pm= 155 that has been confirmed
numerically56,58. Pm is given by Spitzer’s theory59 [PmSp ~ 10

7 at
recombination, see Equation (37) in Methods] if the plasma is colli-
sional, i.e., if the Larmor radius of protons rL =micvth,i/aeB is large
compared to theirmean free path, λmfp (mi and vth,i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T=mi

p
are the

mass and thermal speed of protons respectively). If, on the other hand,
rL < λmfp, which happens if B >Biso ≡micvth,i/eaλmfp, then the compo-
nents of the viscosity tensor perpendicular to the magnetic field are
reduced by a factor ðrL=λmfpÞ2, because protons’ motions across ~B
are inhibited by their Larmor gyration60. These are the components
that limit reconnection outflows because velocity gradients in recon-
nection sheets are perpendicular to the mean magnetic field.
Therefore, Pm ! ðrL=λmfpÞ2PmSp = ð~Biso=

~BÞ2PmSp in Equation (14)
if ~B> ~Biso � a2Biso.

The validity of the resistive-MHD treatment that leads to Equation
(14) requires the fluid approximation to hold at the scale of the critical
sheet: its width

δc ∼
S1=2c

S
λB, ð16Þ

must be larger than either rL or the ion inertial length
di =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mic2=4πe2nia2

p
(ni is the proton number density)55,61. If δc < rL, di,

then the physics of the critical sheet is kinetic, not fluid, and the
reconnection timescale is

τrec ∼ 10
λB
~vA

, ð17Þ

rather than (14). Equation (17) is a robust numerical result whose
theoretical explanation is an active research topic (see ref. 62 for a
recent study,63,64 for reviews). We shall find in the next section that
(17) is not the limiting timescale at recombination for almost any
choice of initial condition consistent with EWPT magnetogenesis;
our conclusions therefore do not depend sensitively on the validity
of (17).

The decay timescale can also be limited by radiation drag due to
photons24; this imparts a force �~α~u per unit density of fluid [see
Equation (54) in Methods]. The drag is subdominant to magnetic
tension at sufficiently small scales (as it does not depend on gradients
of ~u), so does not contribute to Pm in Equation (14). However, it can
inhibit inflows to the reconnection layer. Balancing dragwithmagnetic
tension at the integral scale λB, we find an inflow speed ~u∼ ~v2A=~αλB, so

the timescale for magnetic flux to be processed by reconnection is

τα � ~αλ2B
~v2A

: ð18Þ

The timescale for energy decay depends on whether large-scale drag
or small-scale reconnection physics is most restrictive:

τ = maxfτrec,ταg: ð19Þ

Comparison with observations
The locus of possible PMF states for different values of IH ∼ ~B

4
λ5B under

the theory that we have described is represented by the blue-gold line
in Fig. 3. We denote the largest value of IH consistent with EWPT
magnetogenesis by IH,max; this corresponds to ~ρBðt*Þ= ~ργðt*Þ and
λB(t*) = rH(t*). For IH ≲ 10�29IH,max, decays terminate on line (i) in Fig. 3
[Equation (40) in Methods], which represents Equation (8) with τ = τrec
given by Equation (14) and Pm=PmSp. Use of Equation (14) is valid here
because δc ≳ rL, di [see Equations (41) and (42) in Methods]. The Spitzer
estimate of Pm is valid at recombination only if ~B≲~Biso ∼ 10�13 G
[Equation (44) in Methods], so decays with IH≳10

�29IH,max have a
shorter timescale at recombination—they terminate on line (ii) [Equa-
tion (45) in Methods], which represents Equation (8) with τ = τrec given
byEquation (14) andPm∼ ðrL=λmfpÞ2PmSp. For IH≳10

�2IH,max, the states
on line (ii) have δc < di, rL [see Equations (46) and (47) in Methods], so
Equation (14) is invalid for them. These decays pass through line (ii) at
some time before recombinationwith timescale given by Equation (17).
However, they do access the domain of validity of Equation (14) if,
before trecomb, ~B becomes small enough for δc to be comparable with
relevant kinetic scales. When that happens, their timescale becomes
much larger than trecomb so furtherdecay is prohibited—thesedecays all
terminate with ~B∼ 10�11G, which corresponds to δc ~ di at trecomb [see
Equation (46) inMethods]. Decays with IH≳10

8IH,max are radiation drag
limited at recombination [line (iv); Equation (55) in Methods]—such
decays are inconsistent with EWPT magnetogenesis, but could origi-
nate from magnetogenesis at the quantum-chromodynamic (QCD)
phase transition, when rH ~ 10−6 Mpc13,26.

The EGMF parameters represented by the blue-gold line are
consistent with Equation (1) for IH≳10

�23IH,max, i.e.,

~Bðt*Þ
10�5:5G

" #4
λBðt*Þ

10�10Mpc

" #5
≳10�23: ð20Þ

The relic of a field with λB(t*) ~ 10−2 rH(t*) ~ 10−10Mpc at the EWPT would
therefore be consistent with Equation (1)—modulo any modifications
for plasma instabilities in voids17–22—if ~ρBðt*Þ≳10�6:5~ργðt*Þ. This confirms
the assertion in the title of this paper. Intriguingly, if instead
~ρBðt*Þ∼ ~ργðt*Þ and λB(t*) ≳ 10−2rH(t*), then we find ~B∼ 10�11 G at recom-
bination. PMFs of this strength would provide a seed for magnetic
fields in galaxy clusters thatwould not require significant amplification
by turbulent dynamo after structure formation to reach their present
day strength of ~μG43, although dynamo would still be required to
maintain cluster fields at present levels. We emphasise that a cluster
field so maintained by dynamo need not (and, in all likelihood, would
not) retain memory of its primordial seed. We also note that PMFs of
10−11 G strength are considered a promising candidate to resolve the
Hubble tension, by modifying the local rate of recombination41,42.

As an aside, we note that the relevance of reconnection physics is
not restricted to non-helical decay37. Some analogues for maximally
helical PMFs of the results of this section (relevant formagnetogenesis
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mechanisms capable of parity violation) are presented in Section A of
the Supplementary Information.

Role of plasma microinstabilities
Finally, we note that, for ~B>~Biso, the effective values of ~ν and ~ηmight
be dictated by plasma microinstabilities rather than by collisions
between protons65 (this is conjectured to happen in galaxy
clusters66). In Methods, we show that the decay of the integral-scale
magnetic energy is too slow to excite the firehose instability that is
important in the cluster context [see Equation (60)]. Nonetheless,
we cannot rule out other microinstabilities—for example, the exci-
tation of the mirror instability by reconnection has been studied by
ref. 67, although its effect on the rate of reconnection remains
unclear. The most dramatic effect that microinstabilities in general
could plausibly have would be to reduce the effective value of Pm to
≲ 1 if ~B> ~Biso (see refs. 68,69). This corresponds to the red-gold line
in Fig. 3, which remains consistent with Equation (1) for
IH ≳ 10�20IH,max. Compatibility between the EWPT-magnetogenesis
scenario and the observational constraints on EGMFs therefore
appears robust.

Methods
Post-recombination evolution
In the matter-dominated Universe after recombination, the transfor-
mation that maps Minkowski spacetime MHD onto its expanding
Universe equivalent is not Equation (3), but24

~ρ =a3ρ, ~p=a4p, ~B=a2B, ~u =a1=2u,
~η =η=a1=2, ~ν = ν=a1=2, d~t =dt=a1=2:

ð21Þ

As a∝ t2 in the matter-dominated Universe, ~t / log t, so a power-law
decay in rescaled variables corresponds to only a logarithmic decay in
comoving variables14. Thus, in computing the expected present-day

strength of EGMFs, one may assume the decay of ~B to terminate at
recombination with negligible error.

Derivation of Equation 10
In order to apply Equation (8), we require an expression for the con-
formal time at recombination, trecomb. From the Friedmann equation,

1
a4

da
dt

� �2

=
8πGρ
3

, ð22Þ

where G is the gravitational constant, the entropy equation

gT3a3 = const, ð23Þ

where g is the number of degrees of freedom of the radiation field and
T is the temperature, and Stefan’s law for the radiation density

ρ= 3χgT4, ð24Þ

where χ =π2/90c5ℏ3 (we work in energy units for temperature, with
Boltzmann constant kB = 1), it can be shown that

dT
dt

� �2

= 8πGg0χT
4T2

0
g
g0

� �1=3

, ð25Þ

where the subscript 0 refers to quantities evaluated at the present day.
Because ðg=g0Þ1=6 ’ 1, one may solve Equation (25) to give an
expression for the cosmic temperature as a function of conformal
time,

T =
1

tT0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8πGg0χ

s
: ð26Þ

Fig. 3 | Reconnection-controlled decay of non-helical PMFs. As in Fig. 1, purple
regions denote values of ~B and λB excluded on physical or observational grounds
[Equation (1)]. Under decays that conserve IH [Equation (11)], ~B and λB evolve along
lines parallel to the ones shown in blue. The predicted values of modern-day ~B and
λB are given by the intersection of these lines with Equation (8) evaluated at
recombination [represented by lines (i–v), which are derived in Methods], with τ

the prevailing decay timescale. The blue-gold line shows the locus of possible
present-day states resulting from reconnection-controlled decays on the time-
scales explained in the main text, assuming that the microscopic viscosity of the

primordial plasma was controlled by collisions between protons. The effective
value of Pm in Equation (14) might have been heavily suppressed when ~B> ~Biso if
viscosity were then instead governed by plasma microinstabilities—the red-gold
line shows the locus ofmodern-day states corresponding to the extreme choice of
Pm≲ 1 for ~B>~Biso. In either case, we see that PMFs generated at the EWPT with a
wide range of values of IH produce modern-day relics that are consistent with
Equation (1), and even with the stronger version of this constraint [see text below
Equation (1)] which is indicated by the pale purple region.
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With g0 = 2 (for the two photon-polarisation states), one obtains

t ∼ 1016:5s
T

0:3eV

� ��1

: ð27Þ

Therefore, Equation (8) becomes

τ ∼ 1016:5s
T

0:3eV

� ��1

: ð28Þ

Thus, trecomb ~ 10
16.5 s. Equation (28) can be used to relate ~B and λBunder

the assumption that the decay occurs on the Alfvénic timescale
τ ∼ λB=~vA [Equation (9)]. As noted in the main text, ~vA should be com-
putedusing thebaryondensity ~ρb, because thephotonmean freepath13

λmfp,γ =
1

aσTne
∼ 1Mpc

T
0:3eV

� ��2

ð29Þ

(where σT is the Thompson-scattering cross-section) is large compared
with λB at the time of recombination, indicating that photons are not
strongly coupled to thefluid45. However, because ~ρb ’ ~ργ at the timeof
recombination, the decoupling of photons does not affect Equation
(10). The Alfvén speed is

~vA =
~Bffiffiffiffiffiffiffiffiffiffiffi
4π~ρb

p ’ 1016cms�1
~B
1G

T
0:3MeV

� �1=2

, ð30Þ

where we have used ~ρb =a
4ρb ’ a4minb, withmi the proton mass and

nb the WMAP value for the baryon number density
nb≃ 2.5 × 10−7 cm−3a−370, and taken a≃ T0/T [Equation (23)]. Comparing
Equation (9) and Equation (28), and substituting Equation (30), we have

~B∼ 10�8:5 G
λB

1Mpc

� �
T

0:3eV

� �1=2

: ð31Þ

Evaluated at T = T(trecomb) = 0.3 eV, this is Equation (10).

Derivation of line (i) of Fig. 3
Line (i) represents Equation (14) evaluated at the time of recombina-
tion trecomb, with Pm=PmSp � ~νSp=~ηSp, where ~νSp and ~ηSp are the
comoving Spitzer values of kinematic viscosity and magnetic diffu-
sivity respectively59. We first evaluate PmSp.

Under Spitzer theory, the dominant component of the plasma
viscosity at the scale of the rate-determining current sheet is due to
ion-ion (i.e., proton–proton) collisions. The collision frequency is59

νii ∼
e4ni lnΛii

m1=2
i T i

3=2
, ð32Þ

where e is the elementary charge, ni the ion number density,mi the ion
mass,Ti the ion temperature, and lnΛii the Coulomb logarithm for ion-
ion collisions. Neglecting any anisotropising effect of the magnetic
field (see main text), the comoving isotropic kinematic viscosity is71

~νSp ∼
v2th,i
aνii

∼
T5=2
i

am1=2
i e4ni lnΛii

∼ 1018cm2s�1 T
0:3eV

� �1=2

, ð33Þ

where vth,i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=mi

p
is the thermal speed of ions, and we have

assumed Ti≃ T, used a ≃T0/T [Equation (23)], taken ni to be equal to
the WMAP value for the baryon number density
nb≃ 2.5 × 10−7 cm−3a−370, and estimated the Coulomb logarithm lnΛii by

lnΛii ’ ln
T3=2
i

e3n1=2
i

’ 20: ð34Þ

Similarly, the electron-ion collision frequency is71

νei ∼
e4ne lnΛei

m1=2
e Te

3=2
, ð35Þ

where ne≃ ni is the electron number density, Te the electron tem-
perature, and lnΛei the Coulomb logarithm for electron-ion collisions.
Equation (35) leads to the Spitzer59 value for the magnetic diffusivity

~ηSp ∼
νeimec

2

4πnee2a
∼ 1010:5cm2s�1 T

0:3eV

� ��1=2

, ð36Þ

where we have used lnΛei ’ lnΛii ’ 20, assumed the electron tem-
perature Te≃ T, and again neglected any anisotropy resulting from the
magnetic field. From Equations (33) and (36), we have

PmSp =
~νSp
~ηSp

∼
T4

m1=2
e m1=2

i e6ni lnΛii lnΛei

∼ 107 T
0:3 eV

� �
: ð37Þ

Let us nowevaluate the Lundquist number, Equation (15), in order
to compare itwith Sc, as Equation (14) requires.Note that, as above, it is
the Alfvén speed based on baryon inertia that appears in Equation (15);
photons are even more weakly coupled to the cosmic fluid at recon-
nection scales than at scale λB as the former are typically small com-
pared with the latter. Using Equations (13), (30), and (37), we find the
Lundquist number

S=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + PmSp

q ~vAðt*ÞλBðt*Þ
~η

λBðt*Þ
λB

� �1=4
∼ 109

~Bðt*Þ
10�5:5 G

" #
λBðt*Þ

10�12 Mpc

" #

×
T

0:3eV

� �1=2 λBðt*Þ
λB

� �1=4
:

ð38Þ

Equation (38) shows that S≫ Sc ~ 104 [unless ~Bðt*Þ or λB(t*) are very
small, in which case their evolution is inconsistent with the observa-
tional constraint (1), so we neglect this possibility for simplicity].
Substituting Equation (37), we find that the decay timescale (14) is

τ ∼ 105:5 T
0:3eV

� �1=2 λB
~vA

: ð39Þ

Comparing Equations (28) and (39), and again substituting Equation
(30), we find

~B∼ 10�3G
λB

1Mpc

� �
T

0:3 eV

� �
: ð40Þ

Evaluated at T = T(trecomb) = 0.3 eV, this is line (i) of Fig. 3.
Finally, we note that when reconnection occurs under large-Pm

conditions with isotropic Spitzer viscosity, the ratio of δc [Equation
(16)] to rL [defined below Equation (15)] prior to recombination is
independent of the magnetic-field strength, temperature and density:

δc

rL
∼ S1=2c

me

mi

� �1=4

∼ 10, ð41Þ

where we have used Eqs (36), (37) and (30). Thus, δc > rL always. Fur-
thermore, we find from Equations (15), (16), (30), (36), (37) and the
definition of di [see below Equation (16)] that

δc

di
∼ S1=2c

me

mi

� �1=4 vth,i
~vA

∼
~B

10�9G

 !�1

: ð42Þ
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Therefore, δc > di, rL at recombination for all relevant field strengths, so
we are justified in using fluid theory to describe decays with ~B<~Biso

[evaluated in Equation (44)].
As described in the main text, Equation (40) is valid when ~B is

small enough for the Larmor radius of ions rL to be larger than their
mean free path

λmfp ∼
vth,i
νiia

∼ 1012cm: ð43Þ

The critical magnetic field strength above which this condition is no
longer satisfied is

~Biso ∼
micνiia

2

e
∼ 10�13 G

T
0:3eV

� ��1=2

: ð44Þ

Derivation of line (ii) of Fig. 3
Line (ii) represents Equation (14) evaluated at the time of recombina-
tion trecomb, with magnetic Prandtl number
Pm∼ ðrL=λmfpÞ2PmSp = ð~Biso=

~BÞ2PmSp. Note that this suppression of Pm
relative to PmSp increases the value of S at any given ~vA and λB relative
to the value (38) of S that corresponds to Pm=PmSp. We therefore
expect this family of decays also to have S≫ Sc ~ 104.

The inclusion of the factor of ð~Biso=
~BÞ2 in Pm modifies Equation

(40) straightforwardly: it becomes

~B∼ 10�3G
~Biso
~B

� �
λB

1Mpc

� �
T

0:3 eV

	 

:

) ~B∼ 10�8G λB
1Mpc

� �1=2
T

0:3eV

	 
1=4
:

ð45Þ

Evaluated at T = T(trecomb) = 0.3 eV, this is line (iv) of Fig. 3.
The analogue of Equation (42) for Pm∼ ð~Biso=

~BÞ2PmSp is

δc

di
∼ S1=2c

me

mi

� �1=4 vth,i
~vA

~Biso
~B

∼ ~B
�

10�11G
T

0:3eV

� ��1=4
" #( )�2

, ð46Þ

while the corresponding analogue of Equation (41) is

δc

rL
∼ S1=2c

me

mi

� �1=4 ~Biso
~B

∼ ~B
�

10�12G
T

0:3eV

� ��1=2
" #( )�1

: ð47Þ

Equation (46) shows that δc ≳ di at trecomb if ~B≲ 10�11G, while Equation
(47) indicates that δc ≳ rL if ~B≲ 10�12G. Following the prescription
described in55, we use the former condition on ~B as the domain of
validity of Equation (14) in Fig. 3, though we note that our results do
not depend strongly on this choice—the order-of-magnitude differ-
ence between the two critical values of ~B is comparable to the degree
of accuracy to which our scaling arguments are valid.

We also note that the temperature dependence of Equation (46)
means that a decaying field that developed δc ≳ di before recombina-
tion would have done so at a field strength ~B< 10�11G; strictly, there-
fore, thedecayof primordialfields should terminate somewherebelow
the horizontal part of the blue-gold curve in Fig. 3, not directly on it.
However, the difference is order unity and thus negligible for the
purposes of our order-of-magnitude estimates. This is because mag-
netic decay was strongly suppressed by radiative drag at early times [a
consequence of the strong temperature dependence of Equation (55)]
—i.e.,when temperatures exceeded around 102 × 0.3 eV. For all relevant
values of IH, the magnetic-field strength would therefore have greatly
exceeded the critical value required for δc ~ di until the time that cor-
responds to this temperature, and by that time the critical field

strength indicatedby Equation (46)was alreadywithin a small factor of
its value at recombination.

Derivation of line (iii) of Fig. 3
Line (iii) represents Equation (14) at the time of recombination trecomb,
with Pm≲ 1. With Pm≲ 1, Equation (38) should be replaced by

S∼ 1012:5
~Bðt*Þ

10�5:5 G

" #
λBðt*Þ

10�12 Mpc

" #
×

T
0:3 eV

� �
λBðt*Þ
λB

� �1=4
, ð48Þ

so that S≫ Sc ~ 104 for all decays of interest. The decay timescale (14)
therefore becomes

τ ’ 102 λB
~vA

: ð49Þ

Comparing Equations (28) and (39), and substituting Equation (30), we
find

~B∼ 10�6:5G
λB

1Mpc

� �
T

0:3eV

� �1=2

: ð50Þ

Evaluated at T = T(trecomb) = 0.3 eV, this is line (iii) of Fig. 3.
The analogues of Equations (42) and (41) for Pm≲ 1 (but ~η∼ ~ηSp)

are

δc

rL
∼ S1=2c

c
vth,e

lnΛei

Λii
∼ 10�2:5 T

0:3eV

� ��1=2

, ð51Þ

and

δc

di
∼ S1=2c

c
~vA

me

mi

� �1=2 lnΛei

Λii
∼ ~B

�
10�13G

T
0:3eV

� ��1=2
" #( )�1

: ð52Þ

Note that the field strength at which δc ~ di is approximately equal to
~Biso at recombination (both are ~10−13 G), whileδc≪ rL. The red-gold line
in Fig. 3 therefore extends past line (iii) to line (iv) along the
line ~B∼ ~Biso.

Radiation drag and the derivation of line (iv) of Fig. 3
As well as by viscosity arising from collisions between ions, the kinetic
energy of primordial plasma flows (after neutrino decoupling) can be
dissipated by electron–photon collisions (Thompson scattering).
Around the time of recombination, the comoving mean free path of
photons, Equation (29), ismuch larger than the anticipated correlation
scale of the magnetic field (and, therefore, of any magnetically driven
flows). Under these conditions, the effect of Thompson scattering is to
induce a drag on electrons. Owing to the collisional coupling between
ions and electrons, this drag can dissipate bulk plasma flows.

The comoving drag force on the fluid per unit baryon density is

~FD = � ~α~u, ð53Þ

where24

~α∼
c

λmfp,γ

ργ

ρb
∼ 10�13:5s�1 T

0:3eV

� �3

: ð54Þ

As explained in the main text, the effect of drag is most important at
the scale λB (it becomes increasingly subdominant tomagnetic tension
at smaller scales) where it inhibits inflows to the reconnection layer.
When the timescale τα � ~αλ2B=~v

2
A on which flux can be delivered to the

layer by strongly dragged inflows is larger than the reconnection
timescale of the critical sheet τrec [see Equation (19)], τα gives the
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timescale for energy decay. Equation (28) with τ = τα yields, after sub-
stitution of Equations (30) and Equation (54)

~B∼ 10�7G
λB

1Mpc

� �
T

0:3eV

� �3=2

: ð55Þ

Evaluated at T = T(trecomb) = 0.3 eV, this is line (iv) of Fig. 3.

Non-excitation of the firehose instability
Plasma with an anisotropic viscosity tensor can, in principle, be
unstable to a variety of instabilities that develop at kinetic scales. For
a decaying magnetic field, an instability of particular importance is
the firehose, which can generate the growth of small-scale magnetic
fields in response to the decay of large-scale ones65,72. This happens if
the size of the (negative) pressure anisotropy Δ exceeds a critical
value:

Δ � p? � pk
pk

≤ � 2
βi

ð56Þ

where p∥ and p⊥ are the thermal pressures parallel and perpendicular
to the magnetic field, and

βi �
pk

B2=8π
ð57Þ

is the plasma beta. Δ can be estimated as65

Δ∼
1
νii

1
B
dB
d�t

∼ � 1
aνiiτ

∼ � 10�11 T
0:3eV

� �1=2

, ð58Þ

where �t is cosmic time [defined below Equation (2)]. Naturally, the
value of βi at any given T depends on the evolution of the magnetic
field. A lower bound on the value of ~B at any given time for a
given initial condition is the one that would develop from a decay on
the kinetic reconnection timescale, τ ∼ 10λB=~vA [Equation (17)].
Solving Equations (13), (17), (28), and (30) simultaneously, we find
that this is

~BðtÞ∼ 10�13 G
T

0:3eV

� �5=18

×
λBðt*Þ

10�12Mpc

" #5=9
~Bðt*Þ

10�5:5G

" #4=9
: ð59Þ

Using this lower bound on ~B, we can obtain an upper limit on ∣βiΔ∣:

jβiΔj≲10�6 T
0:3eV

� ��1=18

×
λBðt*Þ

10�12Mpc

" #�10=9
~Bðt*Þ

10�5:5G

" #�8=9

: ð60Þ

Equation (60) suggests that the threshold for instability (56) is never
met, unless λB(t*) and/or ~Bðt*Þ are so small as to be inconsistentwith the
observational constraint (1).

Numerical simulation
The numerical simulations visualised in Fig. 2 and described in Sec-
tion B of the Supplementary Information were conducted using the
spectral MHD code Snoopy73. The code solves the equations of
incompressibleMHD inMinkowski spacetimewith hyper-viscosity and
hyper-resistivity both of order n, viz.,

∂u
∂t

+u∇u= � ∇p+ ð∇×BÞ×B� ð�1Þn=2νn∇nu,

∂B
∂t

=∇× ðu×BÞ � ð�1Þn=2ηn∇
nB,

ð61Þ

where p, the thermal pressure, is determined via the incompressibility
condition

∇u =0: ð62Þ

Snoopy uses a pseudo-spectral algorithm with a 2/3 dealiasing rule. It
performs time integration of non-dissipative terms using a low-
storage, third-order, Runge-Kutta scheme,while solving thedissipative
terms using an implicit method that preserves the overall third-order
accuracy of the numerical scheme. In all runs presented here, we
employ νn = ηn = 10−12, n = 6 and use a resolution of 5123. The size of the
periodic simulation domain is Lbox = 2π.

Data availability
Source data for Fig. 2 and Supplementary Fig. 2 are provided in this
paper. The datasets generated during and/or analyzed during the
current study are available from the corresponding author upon
request. Source data are provided with this paper.

Code availability
The simulations presented in this paper were conducted using the
publicly available code Snoopy73. The codes thatwere used to generate
the figures in the paper are available from the corresponding author
upon request.
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