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Dimension-agnostic and granularity-based
spatially variable gene identification
using BSP

Juexin Wang 1,2,9 , Jinpu Li 3,4,9, Skyler T. Kramer3,4, Li Su 3,4,
Yuzhou Chang5,6, Chunhui Xu3,4, Michael T. Eadon 7, Krzysztof Kiryluk 8,
Qin Ma 5,6 & Dong Xu 2,3,4

Identifying spatially variable genes (SVGs) is critical in linking molecular cell
functions with tissue phenotypes. Spatially resolved transcriptomics captures
cellular-level gene expressionwith corresponding spatial coordinates in twoor
three dimensions and can be used to infer SVGs effectively. However, current
computational methods may not achieve reliable results and often cannot
handle three-dimensional spatial transcriptomic data. Here we introduce BSP
(big-small patch), a non-parametric model by comparing gene expression
pattens at two spatial granularities to identify SVGs from two or three-
dimensional spatial transcriptomics data in a fast and robust manner. This
method has been extensively tested in simulations, demonstrating superior
accuracy, robustness, and high efficiency. BSP is further validated by sub-
stantiated biological discoveries in cancer, neural science, rheumatoid arthri-
tis, and kidney studies with various types of spatial transcriptomics
technologies.

Spatially resolved transcriptomics (SRT) have been rapidly developed
and widely used in biological and biomedical research over the past
decade1–3. Single-molecule fluorescence in situ hybridization (smFISH)
(e.g.,MERFISH and SeqFISH+ ) and sequencing-based approaches (e.g.,
10X Visium)2 are popular SRT technologies on sliced two-dimensional
(2D) samples. A shift has recently occurred towards retaining three-
dimensional (3D) positional anatomy at cellular resolution. Wang et al.
developed STARmap, which combined an efficient sequencing
approach with hydrogel-tissue chemistry for 3D intact tissue RNA
sequencing4, with a throughput of up to 1,000 genes or 10,000 genes5.
Vickovic et al. developed protocols on consecutive sections to get 3D
spatial profilingof rheumatoid arthritis (RA) synovia6. Existingworks on

3D imaging data construction have significant advantages over 2D data
for accurate quantitative interpretation7. In contrast to the 2D spatial
transcriptomics approach, which depends on sampling strategy (e.g.,
coronal or sagittal) on sliced samples, the 3D spatial transcriptomics
provides a more comprehensive and faithful representation of intact
organ structures and functions8. It overcomes the inherent 2D bias and
enables the visualization of gene expression in relation to the tissue
architecture in three dimensions. Such 3D views provide new oppor-
tunities in the identification of cell types and states, discovery of new
biomarkers, anddrugdesign9. However,most current analyticmethods
are developed and validated on 2D SRT data and cannot be directly
applied to diverse types of 3D analyses10.
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Spatially variable genes (SVGs) are biologically significant as they
exhibit variations in expression levels across different regions or cell
types within a tissue, indicating their involvement in specific biological
processes or functions unique to those regions or cell types2. Hence,
the inference of SVGs can help researchers gain a deeper under-
standing of howdifferent cell types and genes contribute to the overall
structures and functions of tissues in normal or disease states11.
Additionally, SVGs can be used as molecular markers to track devel-
opmental or disease-related changes in the spatial distribution of
specific cell types12. Identificationof SVGs also facilitates the dissection
of biological relationships between spatial organization andmolecular
cell function, providing critical information for biologists and pathol-
ogists. For example, in themouseolfactory bulb, Stahl et al. discovered
functional regions in the mouse brain by identifying SVGs13, while
Maynard et al. discovered laminar and nonlaminar genes in the human
dorsolateral prefrontal cortex14. The SRT technologies encode the key
clues of SVGs, whose expressions rely on the spatial locations of
cells15,16, and identifying SVGs from tens of thousands of genes is often
a critical step in analyzing spatial transcriptome data.

Compared to traditional RNA-seq and scRNA-seq analyses that
identify differentially expressed genes (DEGs), SVGs in SRT data
incorporate gene expression information and corresponding spatial
context in geometric coordinates. Similar to DEG identification,
SpatialDE15 and Trendsceek16 are the first two computational methods
for identifying SVGs in 2D SRT studies: SpatialDE utilizes Gaussian
process regression to quantify the spatial variance of expression for
each gene, while Trendsceek selects SVGs by testing the dependence
between the expression and the spatial location for each gene using a
permutation process. Afterward, a generalized linear spatial model
with Gaussian/periodic kernels, SPARK17, was proposed to capture the
spatial patterns and filter SVGs using the combined p-values from each
kernel. A simplified version, SPARK-X18, was later introduced to reduce
computational time andmemory usage. Recently, nnSVG19 proposed a
scalable approach to identifying SVGs based on nearest-neighbor
Gaussian processes. In addition to statistical methods, MERINGUE10

applied a Voronoi tessellation method to build an adjacency matrix
and calculate classical Moran’s I score20 for each gene based on the
constructed adjacent matrix to infer SVGs. SpaRTaCo21 identifies the
latent block structure by co-clustering spatial expression profiles of
genes. SpaGCN22

first identifies the spatial domain with graph neural
networks and then employs a statistical test to identify SVGs based on
the context of inferred spatial domains.

Although some preliminary analysis4,6 has been conducted on
emerging 3DSRTdata, significant challenges remain in identifying SVGs
in both scales of 2D slices and 3D volume, i.e., the dimension-agnostic
SRTdata10,18. The limited spatial information capturedby2D tissue slices
may result in incomplete and biased representations of spatial char-
acteristics, potentially leading to inaccurate biological conclusions9,23.
Additionally, the existing SVG identification methods require user-
defined parameters that can vary across samples and lead to disparate
findings that are difficult to justify without prior knowledge of the
samples. Hence, a nonparameter method with adequate power is pre-
ferred even for 2D data in practical usage. Based on our preliminary
analysis, the expression distribution of SVGs tends to exhibit a con-
sistent and specific pattern invariant across different spatial resolutions
and views, whereas the expression distribution of non-SVGs has a ran-
dom pattern with varying characteristics across different views and
resolutions. These distributions can be effectively captured by granu-
larity, a concept underexplored in spatial transcriptomics studies.
Granularity refers to the extent or hierarchical level to which a material
or system comprises distinguishable pieces24. We propose that the
concept of granularity canbe leveraged to identify SVGs in adimension-
agnostic geometric manner. With appropriate quantitative measures,
granularity-based criteria can distinguish between biology-informed
spatially organized patterns and random patterns.

Here we introduce BSP (big-small patch), a spatial granularity-
guided and nonparametric model that enables efficient and robust
identification of SVGs from two/three-dimensional SRT data. For
each spot in the data, BSP selects a set of neighboring spots within a
certain distance to capture the regional means with different gran-
ularities. The variances of the expression mean across all spots are
then calculated under different scales, and genes with high ratios are
identified as the SVGs. One of the unique features of BSP is that it
does notmake any assumption regarding the distribution of the gene
expression levels or the spatial pattern of the spots. The model is
robust to fluorescence in situ hybridization (MERFISH, seqFISH + ,
and STARMap) and sequencing-based (10XVisium and slide-seq) SRT
without requiring pre-defined or well-tuned parameters. Compared
with existing methods, BSP outperforms other methods for 3D
simulations and delivers superior or comparable power and accuracy
as current methods for 2D data with a significantly reduced compu-
tational cost. In addition, the BSP algorithm is easily implementable,
making it versatile and conveniently integrated into various appli-
cations, including cancer, neural science, rheumatoid arthritis, and
kidney studies. In our experiments on kidney SRT data and 3D RA
synovia study, BSP identified several functional-related SVGs with
implications to disease mechanisms. In summary, BSP is an accurate,
fast, robust, and non-parametric method for identifying SVGs in 2D
and 3D SRT data.

Results
The big-small-patch algorithm
The proposed BSP algorithm is a granularity-guided approach for
identifying SVGs in dimension-agnostic SRT data (Fig. 1). BSP defines a
patch for each spot in the SRT data, which includes all neighboring
spots within a given radius centered on the spot (Fig. 1A). A pair of
patches is then defined, consisting of a small patch with a smaller
radius and a large patch with a larger radius (Fig. 1B). This paired big-
small patch captures the ambient local expression characteristics in
different granularities, delineating spatial patterns in various contexts.
Subsequently, the transcriptomic expression variance of the local
means is calculated across all pairs of patches, and the ratio between
the variancewith abigpatch and the variancewith a small patch is used
as the statistic score for each gene. This statistic score can be used
to quantify the conservation of SVGs’ spatial patterns in different
granularities. The distribution of this statistical score is fitted with
a lognormal distribution or beta distribution, and genes with statistical
significance (p <0.05) in the fitted distribution are defined as
SVGs (Fig. 1C).

BSP can accurately and efficiently identify SVGs in 2D
simulations
To demonstrate the effectiveness of the BSP model in analyzing 2D
transcriptomic data, we generated a set of simulations following the
SPARK17 framework. We then compared the performances of the BSP
model with a basic spatial statistic (Moran’s I20, which is also adopted by
MERINGUE10) and other established techniques, including SpatialDE15,
SPARK17, SPARK-X18, and nnSVG19. To ensure a fair comparison of the
model performances, we measured their statistical power based on
the false discovery rate (FDR), considering the differences between the
distribution of calibrated p values from eachmethod.We present three
SVG patterns from previous works on the ST mouse olfactory analysis
by SpatialDE and SPARK in Fig. 2A. Details of the simulations are out-
lined in the Methods section.

We evaluated the statistical power of different methods using
simulations generated with various signal strengths and noise levels.
Signal strengths were measured as the fold-change (FC) in cells’
expression levels between the pattern and non-pattern areas. To
compare the statistical power, we examined different signal-to-noise
ratios (FC = 3,4,5) with a moderate noise level (σ =0:5 as defined in
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SPARK) in Supplementary Fig. 1. Additionally, we compared the
methods’ performance under different noise levels (σ =0:2,0:5,0:8)
with a moderate signal-to-noise ratio (FC =4), as shown in Supple-
mentary Fig. 2. The BSP method consistently showed superior and
stable power across awide range of FDR cutoffs, signal strengths, and
noise levels when analyzing the first and third spatial patterns
(Fig. 2B). In the second pattern, although the weak and moderate
signal strength limits the performance, BSP exhibited better power
when the signal strength was high (4-fold) (Supplementary Fig. 2).
Compared to other existing approaches, BSP was more powerful,
particularly on samples with low signal strengths or high noise levels.

We assessed the computational time andmemory usage required
for detecting SVGs on 2D data. Compared to existing approaches, BSP
performs the SVG analysis with a feasible computational time and
memory consumption on personal computers in most scenarios.
Computational resource consumption was recorded on an Ubuntu
16.04.4 LTSworkstationwith Intel(R) Xeon(R)W-2125CPU@4.00GHz
and 32 GB memory in Supplementary Data 1. In analyzing a typical
spatial transcriptomic sample with 2,000 spots, BSP was much faster
than other existing methods, regardless of the number of genes
(Fig. 2C). Similarly, for a spatial transcriptomics sample with 10,000
genes, BSP had the lowest computational time among all methods,
despite the number of spots (Fig. 2D). Although not as low as SPARK-X,

the corresponding memory usage was also low, as shown in Supple-
mentary Fig. 3.

BSP accurately identifies SVGs in 2D space in biological studies
We applied BSP to four previously published 2D spatial transcriptomic
datasets, including mouse olfactory bulb13 and human breast cancer
obtained by ST sequencing13, hippocampus by SeqFISH25, and mouse
hypothalamus preoptic region by MERFISH26. We followed the metric
evaluation protocols proposed by SPARK and compared Identified
SVGs with the provided marker genes in their original research17. The
results were comparedwith SpatialDE, SPARK, nnSVG, and Spark-X. All
the methods were run with the default parameters.

The mouse olfactory bulb dataset contains 11,274 genes measured
on 260 spots using SRT sequencing. BSP detected 9 of 10marker genes
from the original study13, while SpatialDE detected 3, SPARKdetected 8,
nnSVG detected 6, and SPARK-X detected 0. Figure 3A and Supple-
mentary Fig. 4 showa comparisonbetweendifferentmethods. The only
marker gene BSP missed was Sv2b, with p values of 0.0518. We reason
this missed marker gene has expression variances confined to many
isolated, relatively small regions, which could result in the same var-
iances in both big and small patches (Supplementary Fig. 5). The human
Breast cancer dataset contains 5,262 genes measured on 250 spots by
SRT sequencing. BSP detected 13 of 14 marker genes identified as SVGs

Fig. 1 | SchemeofBSP.ADefinitionof thepatch inBSP. For spot i, a patch is defined
as the set of all its neighboring spots within distanceD. LocalMean X̂

ðjÞ
i is defined as

the average expression of gene j for all spots within the patch. B Identification of
SVGswith BSP. Gene g1 indicates an SVG (red), while gn is a representative non-SVG
gene (orange). Besides the original pattern as the left, we define a small patch of
spots with a smaller radiusD1 (blue) in themiddle column, and a big batch of spots
with a larger radius D2 (green) in the right column. C The ratio rð jÞD1D2

of the variance

of the localmeanbetween big batch σð jÞ
D2

and the paired small batch σðjÞ
D1

is chosen as
the statistical value r. Gene g1 (red bar) is statistically significant comparedwith the
background gene gn (orange bar) on the fitted distribution of r.wj is the weight to
normalize the intrinsic gene expression variancewithin the genewith themaximum
variance, i.e., wj =

σ2
j

maxk ðσ2
k
Þ, where σ2

j is the variance of expression levels of gene j of
all the spots in the sample, and 1≤ k ≤N. N is the total number of genes. SVG:
Spatially Variable Gene.
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from the original study, while SpatialDE detected 7, SPARK detected 10,
and SPARK-X detected 8. The result comparison is shown in Fig. 3B and
Supplementary Fig. 6. The marker gene BSP missed was PIP with p
values of 0.0850. The other two FISH-based datasets include the hip-
pocampus dataset, consisting of 249 genes on 131 cells obtained by
SeqFISH, and the mouse hypothalamus preoptic region composed of
160 genes on 257 cells by MERFISH. BSP identified most of the marker
genes reported in the original studies. Detailed results for mouse
olfactory bulb, human breast cancer, hippocampus, and hypothalamus
preoptic regions are provided in Supplementary Data 2-5.

We next extended the application of BSP to the study of Acute
Kidney Injury (AKI)27.We ranBSPon ahumankidneybiopsy samplewith

10X Visium data collected and processed by the Kidney Precision
Medicine Project28. The biopsywas performed on a 71-year-oldHispanic
man two weeks after his initial presentation with severe (stage 3) AKI in
the setting of rhabdomyolysis due to a heroin overdose. The biopsy
showed acute tubular injury with myoglobin casts (rhabdomyolysis-
associated) and diffuse tubular degenerative and regenerative changes,
mild interstitial fibrosis, and superimposed C3 mesangial deposits
suggestive of resolving infection-related glomerulonephritis.

BSP identified 285 SVGs (p value <0.05) consisting of 317 spots and
14,988genes. Annotatedby clusterProfiler29, the resultswere supported
by gene ontology (GO) enrichment analysis (Fig. 3C), including relevant
enrichments in humoral immune response (q-value 1.09e-11), and

Fig. 2 | Power analysis for 2D simulation. A Spatial expression patterns I-III (left to
right) as defined in SpatialDE and SPARK.B Power comparison among the different
methodswithmoderate noise level (σ=0.5), andmoderate signal strengths (3-folds)
for the spatial expression patterns I, II, and III (left to right). All simulations were
generated based on the mouse olfactory bulb data with 260 spots of cells. Each
simulation replicate contains 1000 SVGs and 9000 non-SVGs. C Computational

timewith an increasing number of genes and fixed 2000 spots. The y-axis indicates
the logarithmic of the running time in seconds. D Computational time with an
increasing number of spots and fixed 10,000 genes. The y-axis indicates the loga-
rithmic of the running time in seconds. The timegreater than48 hours is not shown
in the figure. Source data are provided as a Source Data file.
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humoral immune responsemediatedby circulating immunoglobulin (q-
value 1.63e-10). A Reactome enrichment analysis30 identified eukaryotic
translation elongation (q-value 2.77e-13) and influenza infection (q-value
5.59e-09), both indicative of the translational shutdown phase of AKI31

(Supplementary Fig. 7). As innate and adaptive immune responses
spatially and temporally correspond with damage to renal tubular
cells and recovery from AKI32,33, these results are consistent with

disease enrichment analysis34. Notably, the disease enrichment analysis
revealed highly significant terms related to urinary system disease
(q-value 9.30e-11) and kidney disease (q-value 1.36e-10). Supplementary
Data 6 lists all the SVG results obtained by BSP. Supplementary Data 7
details the results from GO enrichment analysis, Supplementary Data 8
describes the results fromReactome, and Supplementary Data 9 details
the results from Disease Ontology enrichment analysis.
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To further investigate the functionalities of SVGs, hierarchical
clustering identified two spatial patterns from the kidney sample in
Fig. 3D. Pattern 1 includes 235 genes. GO enrichment analysis indi-
cated genes with this expression pattern participated in aerobic
respiration (q-value 1.04e-09) and oxidative phosphorylation (q-
value 4.69e-09), consistent with the main pathologic diagnosis of
acute tubular necrosis. Pathways of early recovery were also enri-
ched, including kidney development (q-value 8.56e-07) and meta-
nephric nephron epithelium development (q-value 2.30e-06), which
included genes like PAX8. Pattern 2 included 50 genes. A GO
enrichment analysis indicated genes with this expression pattern
were related to humoral immune response (q-value 5.15e-05) and
tissue homeostasis (q-value 5.15e-05). Several immune responses
were activated (q-value 3.51e-04), including the B cell receptor sig-
naling pathway (q-value 4.72e-07). The immune-related pathways are
potentially consistent with an inflammatory response to acute tub-
ular injury and potentially resolving infection-related glomerulone-
phritis. Acute tubular necrosis is characterized by stages of injury,
including a transitional stage of translational shutdown, followed by
recovery. Both of these pathways were identified in separate loca-
lized regions of the kidney biopsy samples and may provide prog-
nostic significance as to the potential for recovery. Thus, our results
demonstrate that BSP is able to identify relevant transcripts corre-
sponding to a specific AKI subtype and provide information on the
severity (active necrosis and inflammation) and the temporal stage of
AKI (evidence of recovery in this case). SupplementaryData 10-13 and
Supplementary Figs. 8-11 detail the results from the GO enrichment
and KEGG pathway analyses for both patterns. By demonstrating
BSP’s utility in kidney research, our study highlights the potential for
BSP to differentiate the underlying complex disease subtypes in
diverse tissue samples.

BSP identifies SVGs on large-scale spatial transcriptomic studies
using feasible computational resources
BSP was tested on three large-scale SRT datasets, including Slide-seq
data on mouse cerebellum consisting of 18,671 genes on 25,551 beads,
Slide-seq V2 data on mouse cerebellum consisting of 23,096 genes on
39,496beads, andHDSTolfactory bulbdata consistingof 19,950genes
measured on 181,367 spots. BSP was successful on these large-scale
datasets with a reasonable computational time. On the Ubuntu work-
station described in Section 2.2, BSP took 7 and 18minutes to process
the Slide-seq mouse cerebellum and Slide-seq V2 mouse cerebellum
data, respectively. The memory costs were around 19GB and 32GB,
respectively. For the HDST olfactory bulb data, BSP took 4 hours and
90GB of memory on a High-Performance Computer equipped with
Intel Xeon(R) CPU E5-2699 v4 @ 2.20GHz. The running details are
listed in Supplementary Data 14.

BSP detected SVGs with a p value less than or equal to 0.05
(n = 842, 1156, and 909 in Slide-seq V1 mouse cerebellum data, Slide-
seq V2 mouse cerebellum data, and HDST olfactory bulb data,
respectively), and we queried PanglaoDB35 with these detected SVGs.
For each of the three implicated datasets, BSP returned numerous
neuron-specific and non-neuron-specific genes. Detailed results of
detected SVGs from each dataset are listed in Supplementary Data 15-

17. Specifically, in addition to the SVGs corresponding to known cell
type composition, many identified genes (30%) were not identified as
any cell type markers with PanglaoDB annotations based on the
knowledge from previous studies (Fig. 3E).

On 1156 identified SVGs in Slide-seq V2 (Supplementary Data 18),
the GO enrichment analysis shows significant enrichments in synapse
organization (q-value 8.60e-51) (Fig. 3F, Supplementary Data 19). The
expression patterns of five representative genes, Calb1, Malat1, Nsg1,
Ttc3, andMeg3, were missed by SPARK-X and annotated as ‘unknown’
due to the low human brain regional specificity by the Human Protein
Atlas36. Calb1 gene (BSP p value 2.73e-14, SPARK-X p value 0.13, Fig. 3G)
is a Ca2+ buffering protein found to increase during postnatal devel-
opment and decrease with aging and neurodegenerative disorders37.
Malat1 (BSP p value 2.73e-14, SPARK-X p value 0.63, Supplementary
Fig. 12) is a highly conserved nuclear-retained lncRNA shown to play a
role in regulating genes at both the transcriptional and post-
transcriptional levels in a context-dependent manner38. Malat1 is
shown to be dispensable for normal development and viability in
mice39. Ttc3 gene (BSP p value 2.73e-14, SPARK-X p value 0.30, Sup-
plementary Fig. 13) is known to play a role in cognitive impairment
through protein quality control, which is a common phenotype of
Down’s syndrome and Alzheimer’s disease40. Another representative
geneNsg1 (BSP p value 2.73e-14, SPARK-X p value 1.00, Supplementary
Fig. 14), is known to be implicated in regulating endosomal recycling
and sorting of several important neuronal receptors41. In addition, the
Meg3 gene (BSP p value 2.73e-14, SPARK-Xp value 1.00, Supplementary
Fig. 15) modulates AMPA receptor surface expression in primary cor-
tical neurons, and it is in the intricate regulation of the PTEN/PI3K/AKT
signaling cascade during synaptic plasticity in neurons42. Besides Slide-
seq V2, the spatial patterns of Calb1, Ttc3, Nsg1, and Meg3 were vali-
dated by expression (Fig. 3H) and ISH (Fig. 3I) from Allen Brain Atlas43.
Overall, the structural and functional compartmentalization in the
cerebellum revealed by cell type annotation analysis highlights the
utility of BSP.

BSP accurately and robustly identifies SVGs in 3D simulations
We extended the simulation framework in Trendsceek and SPARK
further to demonstrate the power of BSP on 3D transcriptomic data.
We compared the detection accuracy of SVGs using BSP with that of
SPARK-X. The spatial patterns were constructed by a set of center
points generated from a randomwalk with a fixed step length, and any
spots within a certain distance from any of the center points were
included as the marked cells. We created three continuous 3D pat-
terns, namely, curved stick (Pattern I), thin plate (Pattern II), and irre-
gular lump (Pattern III), controlled by different directions of random
walks, as shown in Fig. 4A.

We performed the power analysis based on the FDR, considering
the differences in the distribution of calibrated p-values. Compared to
SPARK-X, BSP demonstrated superior and stable power under a wide
range of FDR cutoffs with fixed moderate pattern sizes (r =2:0),
moderate signal strength (FC =2:5), and moderate noise level (σ = 1)
for the spatial expression patterns I, II, and III (Fig. 4B). We also varied
the pattern sizes, signal strengths, and noise levels while holding
the other two parameters constant and found that BSP consistently

Fig. 3 | SVGs identified by BSP in biological analysis. A Number of marker genes
identified with different methods in the mouse olfactory bulb study (the original
study identified ten marker genes). B Number of marker genes identified with
differentmethods in humanbreast cancer research (the original study identified 14
marker genes). For A and B, intersections between genes identified from different
methods were included in the analyses. C Gene enrichment analysis on SVGs
identified by BSP onmouse cerebellum data using Slide-seq V2. q-values are FDR of
gene set enrichment analysis. D Hierarchical clustering identified two spatial pat-
terns of SVGs. The left branch (Orange) is Pattern 1, represented by MT1G gene in
the kidney sample using 10X Visium. The right branch (Green) is Pattern 2,

represented by IGKC gene in the kidney sample using 10X Visium. E Distribution of
cell type marker annotations from PanglaoDB on identified SVGs in mouse cere-
bellum study using Slide-seq V2. F Gene ontology enrichment analysis on SVGs
identified in acute kidney injury studies. q-values are FDR of gene set enrichment
analysis.G Calb1 gene expression in themouse cerebellum data using Slide-seq V2.
The expression values were log-transformed, and those greater than 1.0 were
normalized to 1.0. H Expression and I ISH of Calb1 gene in an adult mouse brain,
http://mouse.brain-map.org/experiment/show/75457491. Sourcedata areprovided
as a Source Data file.
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demonstrated greater power in every scenario tested. Supplementary
Figure 16 shows the power analysis in different pattern sizes using a
fixed moderate signal strength (2.5-fold) and low noise level (τ =0).
Simulations with pattern sizes as small (r = 1:5), moderate (r = 2:0), and
large (r =2:5) are tested on continuous patterns I, II, and III. Supple-
mentary Figure 17 demonstrates the results on different signal
strengths using a fixed moderate pattern size (radius of 3) and low

noise level (τ =0). Simulations with signal strengths as low (2-fold),
moderate (2.5-fold), and large (3-fold) are tested on continuous pat-
terns I, II, and III. Supplementary Figure 18 shows the results on various
noise levels using a fixed moderate pattern size (radius of 3) and
moderate signal strength (3-fold). Simulations with high (τ =2), mod-
erate (τ = 1), and low (τ =0) noise levels are tested on continuous
patterns I, II, and III.
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We further investigated the capability of BSP on SRT in the
presence of dropout issues44, where only a subset of the tran-
scriptome is captured by sequencing due to technical limitations.
Dropout effects were simulated by randomly assigning zero-
values to a certain proportion (10%, 20%, and 30%) of cells in con-
tinuous patterns I, II, and III with moderate pattern size, signal
strength, and noise level. The power analysis (Supplementary Fig. 19)
indicates the robustness of BSP in handling SRT with a reasonable
dropout rate.

To demonstrate the advantages of utilizing 3D SRT, we compared
SVGs identification performances between direct detection from 3D
data and detection through meta-analysis, which combined individual
analyses on each 2D slice using various combined probability tests.We
performed simulations on all continuous patterns I, II, and III with
moderate pattern size, signal strength, and noise level (Fig. 4C). Our
findings indicate that employing the BSP model on the 3D data yields
superior power than the meta-analysis conducted on the results from
2D slices.

In addition to examining continuous patterns with global influ-
ence (depictedby the three 3Dpatterns in Fig. 4A), we also evaluate the
model performances on local discrete spatial patterns (Fig. 4D). These
patterns often manifest in isolated, small tissue domains in practical
scenarios. Power analysis shows that the BSP model can accurately
identify SVGs associated with these local discrete spatial patterns
(Fig. 4E). Supplementary Figure 20 represents a comprehensive power
analysis for simulations involving varyingpattern sizes, signal strength,
and noise levels.

In current 3D SRT, especially with data obtained fromFISH-based
sequencing techniques, it is common for the inter-plane spatial
resolution (z-axis) to be considerably lower than the within-plane
resolution (x- and y-axes)4,6. To further assess the model’s perfor-
mance when the assumption of similar or equivalent spatial resolu-
tions across all three dimensions is violated, we generated 3D
simulations with varying scales of spatial resolutions between the
within-plane (x- and y-axes) and inter-plane (z-axis) dimensions.
Power analysis indicates that the BSPmodel accurately identifies SVGs
in 3D SRT, even in scenarios with discrepancies between the inter-
plane spatial and within-plane resolutions (Fig. 4F). Supplementary
Figure 21 details a comprehensive power analysis on simulations with
varying pattern sizes, signal strength, and noise levels.

Specially, BSP consistently identifies SVGs regardless of select-
ing different radius values on the scale of the big patch (D2) in con-
trast to the small patch (D1). Following co-clustering strategies21,
we set the small patch as the reference unit with a fixed value one,
power analysis reveals slight differences when D2 ranges from 2.0 to
5.0. The same trends can be observed in all three 3D continuous
patterns presented in Supplementary Fig. 22. By making reasonable
choices (D2≤ 5:0), BSP exhibits insensitivity to parameter selection,
enabling its application across a wide range of SRT platforms and
datasets.

Overall, the BSP model demonstrates superior performance in
identifying SVGs accurately and robustly in these comprehensive
scenarios.

BSP identifies more meaningful SVGs in the 3D study than
stacking results on the 2D analysis
We utilized BSP on two publicly available 3D transcriptomics datasets,
mouse visual cortex through STARmap sequencing4 and human RA
synovium using stacking SRT6. The STARmap dataset contains 28
known SVGs (23 cell-type markers and 5 activity-regulated genes)
measured in 33,598 spots. For these low throughput SRT with few
genes, BSP adopted the generated null gene approach proposed by
SPARK, and identified all these 28 genes as SVGs.

A study on human RA synovium contains 3D spatial tran-
scriptomic sequencing from six RA patients by stacking 2D slices. Each
sample consisted of approximately 13,000 genes on three to seven 2D
slices with approximately 1,200 spots in each slice. To evaluate the
power of 3D transcriptomics, BSPwasfirst applied to each2D slice, and
then to the stacked 3D volume. Taking the first sample (patient RA1) as
an example, we identified 260genes as the SVGsby intersecting results
from four independent analyses on each2D slice. However, 1,257genes
were detected as the SVGs by analyzing the stacked 3D SRT. All 260
genes from the 2D analysis were included in the gene list detected in
3D space,while 997 additional geneswere discoveredonly in 3D space.
We further examined these 997 genes neglected by 2D analysis with
the DAVID functional annotations45 and found significant enrichments
in host-virus interaction (Benjamini: p-value 4.3e-23), respiratory chain
(Benjamini: p-value 3.4e-08), innate immunity (Benjamini: p-value 2.5e-
06), neutrophil degranulation (Benjamini: p-value 7.1e-31), and viral
process (Benjamini: 7.7e-17) among biological processes.

We also performed a classical meta-analysis by combining four
individual analyses on each 2D slice using Fisher’s combined prob-
ability testwith SciPy packages. Themeta-analysis identified804 genes
as statistically significant (p value < 0.05). Compared to the 1257 SVGs
identified by the 3D analysis, 724 genes were detected as SVGs by both
the 2D meta-analysis and 3D settings (Supplementary Data 20), 532
geneswereonly significant in 3D settings (SupplementaryData 21), and
80 genes were only significant in the 2D meta-analysis setting (Sup-
plementary Data 22). Figure 5A shows the Venn diagramof differences
between meta-analysis and 3D analysis. Figure 5B shows GO enrich-
ment analysis on all SVGs identified in 3D settings (Supplementary
Data 23). Several immune-related gene ontologies are highlighted in
RA studies, including response to interferon-gamma (q-value 2.25e-
11)46, myeloid leukocyte migration (q-value 3.39e-09), leukocyte
migration (q-value 3.45e-12), leukocyte chemotaxis (q-value 2.29e-09),
and regulation of leukocyte migration (q-value 5.11e-09)47. Supple-
mentary Figure 23 and Supplementary Data 24 show GO enrichment
results on 724 genes, both identified by 2D meta-analysis and 3D set-
tings. The same GO enrichment analysis proceeded on 532 genes
uniquely identified by 3D settings in Supplementary Fig. 24 and

Fig. 4 | Power analysis for 3d simulation. AContinuous 3D spatial patterns I-III are
controlled by the direction of random walks. Left: Pattern I (curved stick): the
movements of randomwalk aremonotonic in twodirections (x- and z- coordinates,
or y- and z-coordinates).Middle: Pattern II (thin plate): the movements of the
random walk are monotonic in one direction (z-coordinates). Right: Pattern III
(irregular lump): the movements of the random walk are non-monotonic in any
direction.B Power comparison of the differentmethods under varied pattern sizes.
Power charts show the averaged true positive rates (y-axis) across ten replicates
against the false discovery rates (x-axis) for the detected SVGs using each method.
Simulations were performedusing fixedmoderate pattern sizes (r = 2:0), moderate
signal strength (FC = 2:5), moderate noise level (σ = 1), and three spatial expression
patterns I-III (left to right). All simulations were generated based on the seqFISH
datawith ten segments (z-coordinate) and 225 spots of cells oneachpiece (x- and y-
coordinates). Each simulation replicate contains 1,000 SVGs and 9,000 non-SVGs.

C Power comparisons between 3D SRT andmeta-analysis on 2D slices. Simulations
were performed using a fixedmoderate pattern size, moderate signal strength, and
moderate noise level. The red line represents the p-value fromBSPmodeling the 3D
SRT. Other colored lines depict p-values from various meta-analysis provided by
the SciPy package, including Fisher, Pearson, Tippett, Stouffer, and Mudholkar,
applied to BSP on 2D slices. Simulations using the 3D pattern I (curved stick),
pattern II (thin plate), and pattern III (irregular lump) are shown in the left, middle,
and right columns, respectively.D Example of simulateddiscrete spatial patterns in
isolated locate domains. E Power analysis for identifying SVGs with mixed discrete
and continuous patterns. This simulation contains 500 SVGswith discrete patterns,
500 SVGs with continuous patterns, and 9,000 non-SVGs. F Power analysis for
identifying SVGs in 3D simulations with inconsistent within-plane and inter-plane
resolution. FDR: False Discovery Rate. Source data are provided as a Source
Data file.
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Fig. 5 | BSP identifies much more meaningful SVGs in the 3D study than
stacking results on 2D analysis. A Venn diagram of SVGs identified by 2D meta-
analysis and 3D analysis, including representative genes MAN1A2, SEMA4D, and
RAC2 in C, D, and E. B Gene ontology analysis on SVGs identified in patient RA1 in a
3D setting. CMAN1A2 gene, significant in 2D analysis but not an SVG in 3D setting.

D SEMA4D gene identified as SVGs in 3D transcriptomics butmissed by 2D analysis.
E RAC2 gene, a very significant SVGs in 3D transcriptomics but missed by 2D ana-
lysis. FUpset plot of enriched gene ontology terms on all six individual RA patients.
SVG: Spatially VariableGene. RA: RheumatoidArthritis. Source data are provided as
a Source Data file.
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Supplementary Data 25. These highlighted GO terms indicate key
immune responses in immunizations in RA progression48.

2D meta-analysis may lead to some misleading results. Among
these genes,MAN1A2 (Fig. 5C) gets Fisher’s combined p value 7.56e-08
with four individual 2D p values 0.8755, 6.83e-06, 0.0129, and 3.6e-04.
However, the p-value of MAN1A2 in 3D settings is 0.3648, making it
unlikely as an SVG in 3D space when considering all the slices as a
volume. Gene MAN1A2 is further confirmed by spatial stratified het-
erogeneity analysis49 (p values 0.2163 for x-coordinates and 0.3189 for
y-coordinates), which indicates the absence of statistically significant
stratified heterogeneity. On the other hand, among SVGs only sig-
nificant in 3D analysis, SEMA4D plays a role in the immune system,
induces B-cells to be aggregated and improves their viability (in
vitro)50. Although the individual 2D p values of SEMA4D are 0.9505,
0.9495, 0.9616, and 0.9735, its Fisher’s combined p value in meta-
analysis is 1.0, which has the least possibility of being an SVG in all
individuals and meta-analysis on biased 2D analysis. However, the BSP
test results of gene SEMA4D is 0.0482 on the 3D volume, making it
stand out from the genes (Fig. 5D). A spatial stratified heterogeneity
analysis further confirmed SEMA4D is statistically significant stratified
heterogeneous (p values 0.0019 for x-coordinates and 0.0004 for y-
coordinates). Another example that fails in the 2D analysis is RAC2
(Fig. 5E), which encodes a member of the Ras superfamily of small
guanosine triphosphate (GTP)-metabolizing proteins involved in gen-
erating reactive oxygen species. Although Fisher’s combined p value is
0.0942with four individuals as0.1173, 0.0846, 0.3286, and0.3500, it is
very significant with a p value of 4.4929e-15 in the 3D setting.

To explore the functionalities of SVGs further, we performed
hierarchical clustering on the RA1 sample, resulting in the identifica-
tion of four distinguishable spatial patterns (Supplementary Fig. 25).
Pattern 1 consisted of 91 SVGs and exhibited enrichment in ribosome
genes associated with biogenesis pathways (q-value 3.10e-16). This
pattern suggests a general biosynthetic functionality supporting RA
tissue across the highlighted regions51. Pattern 2 comprised 774 SVGs,
showing enrichment in lymphocyte proliferation (q-value 2.22e-07)
and activation of the immune response (q-value 1.69e-06), indicating
an immune activation region. Notably, the presence of CXCL13 and
MS4A1 in this pattern suggests the onset of inflammation in RA52. Pat-
tern 3 consisted of 120 SVGs and enrichment in apoptosis activity (q-
value 7.31e-06) and complement activation process in the pathogen-
esis of RA (q-value 1.96e-05), supported by genes such as C1S, C1R,
C1QC, S100A8, and S100A953. Similarly, Pattern 4 included 233 SVGs
and showed enrichment in apoptosis (q-value 4.33e-05) and regulation
of leukocyte migration (q-value 1.11e-03), indicating the formation of
chronic inflammation and autoimmunity in RA development through
recruiting leukocytes54. Supplementary Data 26-33 and Supplementary
Figs. 26-33 provide detailed results from the GO enrichment and KEGG
pathway analyses for all four patterns. This analysis underscores the
opportunities afforded by BSP analysis on intact 3D volumes in iden-
tifying SVGs compared to potentially biased 2D analysis.

The same analyses were conducted on each of the six RA patients
individually. The enriched GO terms of 3D SVGs identified in each
patient were presented in Fig. 5B and Supplementary Figs. 34-38. We
observed that most GO terms were consistently enriched in all the
patients (Fig. 5F), indicating that BSP robustly identified 3D SVGs
across various samples.

Discussion
Advances in spatial transcriptomics have facilitated the measurement
of high-throughput multi-cellular- or cellular-level gene expression in
the spatial context. This fast-growing 3D technology is critical for
understanding the relationship between tissue structure and under-
lying biological function, posing new challenges in identifying SVGs
vital in linking individual genes to spatial expression variance. The
proposed BSP provides a dimension-agnostic and utilizes a big-small

patch algorithm to identify SVGs at varying levels of granularity. The
performance of BSP has been validated in both simulations and real
studies using 2D and 3D data.While there is still a debate over the gold
standard for the definition of SVGs in biological studies, we follow
the protocol adopted by SPARK for power analysis and biological
annotation. Notably, simulations provide an alternative benchmark for
methods development. In the 2D simulation, BSP outperformed
existing methods in most scenarios with different signal-to-noise
ratios. In the 3D simulations, BSP demonstrated its superiority com-
pared tootherwell-known criteria, such asMoran’s-I.Meanwhile, these
3D simulations can serve as benchmarks for developing newmethods.
In biological studies using 2D and 3D data, BSP identified more con-
vincing SVGs than existing methods with good control of false posi-
tives. For instance, in a human RA study, BSP revealed that analyzing
SVGs as a volume in 3D data outperformed stacking results on indivi-
dual 2D slices.

The innovation of BSP lies in its dimension-agnostic and
granularity-guided approach, which utilizes paired big-small patches.
Intuitively, the big patch provides a global view of the spatial pattern
with a lower resolution, while the small patch focuses on the local
details with a higher resolution. Using ratios between variances of the
paired patches, BSP can accurately delineate the spatial patterns in a
quantitative manner. Specifically, BSP operates by assessing how
rapidly the variances of localmeans change as the radius of the patch is
adjusted. Theprimary source of thesevariancefluctuations arises from
neighboring regions that exhibit distinct expression levels, where the
local means within such regions change more gradually as the patch
radius varies than between neighboring cells or spots. Consequently,
the velocity of changes in the variances of local means for a gene with
global spatial patterns is comparatively slower than for the genes that
lack discernible spatial patterns. This behavior becomes notably pro-
minent when the patch radius is chosen within a reasonable range.
Although the patch radius is significantly smaller than the spatial pat-
tern, the patches are averaged over all positions on the whole spatial
transcriptomic space and hence the model can capture the global
patterns of SVGs. Therefore, we recommend using the default value of
3.0 for the radius of large patches in most situations, especially when
the sizes of spatial patterns remain unclear. Usersmay adjust the value
of D2 within the range of 2.0 to 5.0, particularly when dealing with a
known, large-scale spatial pattern. Moreover, this approach is applic-
able to any dimension. These defined patches can effectively capture
the characteristics of the expression patterns in both 2D space and 3D
volume,makingBSP capableof analyzing SRTdata inbothdimensions.

This granularity-guided approach makes BSP a data-driven and
non-parametric model. First, BSP is particularly well-suited for the
complexities of biological data, especially in the tumor micro-
environment, where fixed spatial patterns cannot be assumed to form
locally and globally. BSP’s effectiveness in these complex scenarios has
been demonstrated in both 2D and 3D simulations, without pre-
conceived assumptions about the underlying distributions. Second,
BSP is robust to different levels of signal strengths and tolerates
occasional noise. It robustly discovers the same persistent results in
different samples, as the spatial patterns are invariant in different
scales. Third, the BSP algorithm is highly efficient. In the typical sce-
nario of a 10X Visium scale, BSP remains the fastest method among all
the existing methods. Even for large-scale datasets, such as Slide-seq,
Slide-seqV2, and HDST, BSP remains feasible with reasonable compu-
tational resources. Fourth, BSP’s core implementation is just a few
dozen lines of code, making it easy to implement and adaptable to
different usage scenarios.

Although BSP has shown notable advancements in quantitatively
measuring spatial patterns using the lognormal distribution to fit the
distribution of test scores of all the genes, some limitations still need to
be addressed. Through meticulous examination of histograms on
permuted data vs. density of distribution and correspondingQ-Q plots
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(Supplementary Figs. 39-40), and goodness-of-fit test with Cramer-von
Mises criterion (Supplementary Data 34-35), it becomes evident that
the lognormal distribution offers a more suitable fit than the beta
distribution for studies involving 2D simulation data, mouse olfactory
data, and human breast cancer data. However, alternative statistical
distributions or non-statistical ranking measurements could be
explored to further improve the fitting of the distribution of ratios
between variances of the averaged expression in the paired big-small
patch. In the practical usage where spatial patterns exhibit alternating
high- and low-expressed cells within a confined area, e.g., a pattern of
thin curved stick in Fig. 4A, it is essential to exercise caution regarding
the choice of patch radius. Using an excessively large patch radius can
potentially result in a reduction in statistical power, as demonstrated in
Supplementary Fig. 22. Furthermore, BSP compromises the perfor-
mance and computational resources in SRT studies. Although it per-
forms better on the benchmarks, BSP consumes more time and
memory than SPARK-X on large-scale datasets.

In conclusion, BSP has demonstrated its efficacy as a robust
method for identifying SVGs in both 2D and 3D spatial transcriptomics
analysis. As 3D sequencing technologies continue to advance and
mature, we anticipate BSP to be increasingly valuable in future appli-
cations of 3D spatial transcriptomics. We will also explore the incor-
poration of sparsematrices to accelerate the computational processes
on large-scale data, especially high-resolution spatial transcriptomics
data. Moreover, as time is often considered as the fourth dimension in
development biology55,56, we will also explore the potential for spa-
tiotemporal studies using BSP.

Methods
BSP algorithm
BSP aims to identify spatially variable genes in 2D or 3D SRT data. The
algorithm contains several steps, including (1) normalizing expression
and spatial coordinates, (2) defining big and small patches for each
spot based on neighboring spots with a larger or small radius, (3)
calculating local means of gene expression for both big and small
patches, (4) computing the ratio between the variances of local means
between big and small patches for each gene, and (5)fitting the ratio of
each gene with a log-normal distribution and calculating the p-value
for each gene. The flowchart of the BSP algorithm is shown in Sup-
plementary Fig. 41.

Problem setting and data normalization
On an SRT sample withM spots andN genes. The coordinates of spot i
are xi,yi

� �
for 2D spatial transcriptomics, ðxi,yi,ziÞ for 3D spatial tran-

scriptomics. The expression level of gene j in spot i is denoted as X ðjÞ
i ,

where 1≤ i≤M, 1≤ j ≤N. The goal of BSP is to identify SVGs from all N
genes with significant spatial patterns.

All gene expression levels are normalized and scaled to ½0,1� using
a min-max normalization across all spots, 0 ≤X ðjÞ

i ≤ 1 for all X ðjÞ
i . The

normalization of spatial coordinates of the spots on SRT is based on
the density of spots. The coordinates of spots in each direction are
divided by the estimated density, which is calculated as the total
number of spots dividedby the area (2D) or volume (3D) of the sample.
For simplicity, a rectangle is defined as the 2D space, and a cube is
defined as the 3D volume. The rescaling functions f for 2D space is
defined as Eqs. (1), and for 3D space as Eq. (2):

f xi, yi
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

ΔXΔY

r

� xi, yi
� � ð1Þ

f xi, yi, zi
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

ΔXΔYΔZ
3

r

� xi, yi, zi
� � ð2Þ

where xi, yi, and zi are the coordinates of spot i.ΔX ,ΔY , andΔZ denote
the ranges of the sample space. They can be calculated as the

differences between the maximum and minimum coordinates in each
direction for the cube, as: ΔX= max xð Þ �min xð Þ, ΔY= max yð Þ�
min yð Þ, and ΔZ= max zð Þ �min zð Þ.

This spatial coordinate normalization step ensures an adequate
number of spots captured by the pre-defined radii D1 and D2. The goal
of this step is to minimize the average spot-to-spot distance to slightly
less than one unit. Typically, the default value ofD1 is set as one unit to
capture the nearest neighbors, while D2 is set to three units to include
more spots in the patches.More comprehensive exploration shows the
BSP performance is insensitive in selecting D2 on scenarios of simu-
lations (Supplementary Fig. 22) and on real data of mouse olfactory
bulb and human breast cancer studies (Supplementary Data 36).

Big-small path
After coordinates normalization, the Euclideandistance between spots
i1 and i2 is calculated as distði1,i2Þ. For a given spot i, a patch Si is
defined as the set of neighboring spots l within the radius of D

Si = fl : distði, lÞ<D, l = 1≤ l ≤M and l ≠ ig

With a patch Si, X̂
ð jÞ
i is defined as the Local Mean, the average

expression level of gene j in this patch.

X̂
ð jÞ
i =

P

i2Si
X ð jÞ

i

numðSiÞ
ð3Þ

where num Si
� �

is the cardinal number of spots within Si. Local Mean
describes the expression characteristics in the patch. σð jÞ

D is defined as
the variance of Local Means of all patches on gene j.

σð jÞ
D = var

[

i2½1,M�
X̂
ðjÞ
i

 !

ð4Þ

For a gene j without any spatial expression pattern, i.e., the dis-
tributions of the expression levels being identical across all spots, σð jÞ

D
equals to 0. Otherwise, σð jÞ

D >0. If distance D is big enough to cover the
radius of the sample, then σð jÞ

D also equals 0 for each patch containing
all spots, as the Local Means are the same for each spot.

For each spot i, we define a paired big-small patch, i.e., a mall
patch is defined as S 0

i with a radiusD1, a big patch is defined as S 00
i with

a radius D2, where D1 <D2. We take the rð jÞD1D2
, the ratio between the

variances of the paired local averaged expression levels between big
patch and small patch, describes the characteristics of the spatial
pattern on gene j, defined as:

rð jÞD1D2
=wj

σð jÞ
D2

σð jÞ
D1

ð5Þ

wj is the weight to normalize the intrinsic gene expression variance

within the gene with themaximum variance, i.e.,wj =
σ2
j

maxk ðσ2
k
Þ, where σ

2
j

is the variance of expression levels of gene j of all the spots in the
sample, and 1≤ k ≤N.

Fitting distribution and calculating p value
After rðjÞD1D2

is calculated with all the genes, j 2 ½1,N�, a lognormal dis-
tribution is approximated for the distribution of rð jÞD1D2

using the stat
packages from sklearn57. Depending on the characteristics of the data, a
beta distribution is considered as an alternative approximation for rð jÞD1D2

using the same packages. The null hypothesis that a gene has no spatial
pattern is thus reformulated as the ratio of a gene adhering to the fitted
log-normal or beta distribution. To tolerate the potential noise and
long-tail deviations, a one-sided p-value is assigned to each gene if rð jÞD1D2
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exceeds the upper tail of the fitted distribution at a probability of
100* 1� αð Þ%, where α refers to the significance level (usually set as
0.05).We assume that only a small portion of genes located in the tail of
the distribution are SVGs, while themajority of genes are non-SVGs that
are spatially independent. This hypothesis is particularly applicable in
high-throughput SRT platforms like 10X Visium, which involve more
than thousands of genes. However, in low-throughput SRT platforms
such as FISH,where there are insufficient genes (hundreds or even less),
a set of random genes permuted across spatial locations as null genes
are generated to compensate for non-SVGs. These null genes help
estimate the complete distribution for practical usage.

2D simulation on mouse olfactory bulb data
We utilized the mouse olfactory bulb data within the framework of
SPARK to construct 2D simulations. The simulation was based on
mouse olfactory bulb data consisting of three spatial expression pat-
terns measured on 260 spots (as shown in Fig. 2A). Each simulation
contained 1000 simulated SVGs with identified patterns in SpatialDE
and SPARK, as well as 9000 non-SVGs generated through gene per-
mutation without any spatial expression pattern. The p values from
basic spatial autocorrelation statistics Moran’s I, SpatialDE, SPARK,
SPARK-X, and BSP were calculated to quantify the corresponding
power (true positive rates) given a false discovery rate (FDR). To
illustrate the rate of true positives (y-axis) identified by eachmethod at
different FDRs (x-axis) in power analysis, we generated ten replicates
for each simulation. Specifically, simulation data was generated under
different signal-noise ratios (FC =3,4,5) with a medium level of noise
(τ =0:5, as defined in SPARK). Then another set of simulation data was
generated under different noise levels (τ=0:2,0:5,0:8) with a moder-
ate signal-noise ratio (FC =4).

3D simulation on FISH data
3D simulation on FISH data with continuous spatial patterns. For the
simulations in 3D space scenarios, we extended the framework origin-
ally introduced by Trendsceek and SPARK. All simulations were gener-
ated based on seqFISH data, with 10 segments in the z-coordinate and
225 spots representing cells in each piece in the x- and y-coordinates.
We assume the sample was cryosectioned into 10 sections, with each
section placed on an individual array without any direct contact
between array surfaces. Togenerate spatial locations for afixednumber
of cells (n=225) in each section, we used a random-point-pattern
Poisson process. These spatial locations for each section were
then stacked together with the index of the section serving as the
z-coordinates (z = 1,2, . . . ,10).

The 3D spatial patterns were constructed using a set of spheres
with center points generated through a random walk with a fixed step
length of 2. We included three types of continuous spatial patterns in
the simulations by controlling the range of directions (Fig. 4A). These
continuous patterns include Pattern I (curved stick), themovements of
a randomwalk are monotonic in two directions (x- and z- coordinates,
or y- and z-coordinates); Pattern II (thin plate), the movements of a
random walk are monotonic in one direction (z- coordinates); Pattern
III (irregular lump), the movements of a random walk are non-
monotonic in any directions. We produced 1000 SVGs with 3D pat-
terns for each simulation and generated 9000 non-SVGs without any
spatial expression pattern by permutating known patterns.

The expression of SVGs was sampled based on whether the cell
was inside or outside the pattern, distinguishing between marked and
non-marked cells. For marked cells inside the pattern, we randomly
selected gene expression values from the upper quantile of the gene
expression distribution in the seqFISH data. For non-marked cells and
thoseoutside thepattern,we assignedgene expression randomly from
the expression measurements in the seqFISH data. Non-SVGs were
generatedbypermutating gene expressions of SVGs. For each SVG, the
expression values were permuted and repeated 9 times (i.e., randomly

assigning values to all cells without replacement). Finally, random
noise was added proportionally to the averaged standard deviation of
expressions in all genes.

To systematically explore the influences under different scenar-
ios, we held two parameters constant while manipulating the third to
vary the patterns’ sizes, signal strengths, and noise levels. We tested
three sphere radius values (r) of 1.5, 2.0, and 2.5, which determined the
pattern size. Quantile thresholds of 0.66, 0.80, and 0.88 were set,
corresponding to expected expression fold changes (FC) of 2.0, 2.5,
and 3.0 between marked and nonmarked cells, indicating low, mod-
erate, and strong signal strengths, respectively. We applied random
noise following a Gaussian distribution with mean zero and the stan-
dard deviation (τ) of 0, 1, and 2 times the averaged standard deviation
of the expressions of all simulated genes to represent low, moderate,
and high noise levels. In the 3D simulations, we varied the pattern sizes
(r = 1:5,2:0,2:5), expression fold changes (FC =2:0,2:5,3:0), and noise
levels (τ=0,1,2) across continuous spatial patterns I, II, and III. For each
combination of pattern size, signal strength, and noise level, we con-
ducted 10 replicates to perform the power analysis.

3D simulation onFISHdatawithdiscrete spatial patterns. To further
evaluate the model’s performance on data with locally influential dis-
crete patterns (Fig. 4D), we designed a set of 3D simulation scenarios
within the ranges of x- and y- coordinates from 0 to 30. The local
discrete spatial patterns were constructed using solid spheres with a
center-to-center distance of 8 units. Specifically, sixteen center points
were selected, with fixed z-coordinates of 5.5, and the x- and
y-coordinates were generated from a sequence of numbers from 3 to
27with an interval of 8. To introduce randomness into spatial patterns,
we incorporated auniformly distributed randomvariable ranging from
−2 to 2 and added it to the coordinates of each center point. The cells
within the spheres were marked, and expression values were assigned
as Section 4.3.1.

In these simulations, SVGs were generated using the Irregular
lump pattern described in Section 4.3.1. We created 500 SVGs with
locally influential discrete patterns and an additional 500 SVGs with
globally influential continuous patterns, along with 9000 non-SVGs as
permutated genes without any spatial pattern. We considered three
scenarios to compare the effects of pattern sizes, signal strengths, and
noise levels, respectively. We adjusted radius values from 1.5 to 2.0
(small and moderate), expected expression fold changes from 2 to 2.5
(small and moderate), and noise levels from 2.0 to 3.0 (moderate and
high). To ensure robustness, ten replicates were generated to perform
the power analysis.

3D simulation on FISH data with varying spatial resolutions in the
z-axis. In practical scenarios, the assumption of similar or equivalent
spatial resolutions across all three dimensions may not hold, particu-
larly in FISH-based sequencing techniques where the inter-plane spa-
tial resolution (z-axis) is often significantly lower than the within-plane
resolution (x- and y-axes). To systematically test the capability of BSP
on 3D spaces, we increased the resolution of the z-axis by multiplying
the z-coordinates by ten (z = 10,20, . . . ,100) and replicated the simu-
lation as described in Section 4.3.1. Considering the substantial dif-
ferences between the z-coordinate and x- or y-coordinates, we
fixed the direction of random walks in the z-axis to ensure that the
sliced planes captured the simulated spatial pattern (Supplementary
Figure 42).We varied the pattern sizes (small andmoderate radius = 1.5
or 2.0), signal strengths (small andmoderate, fold change = 2.0 or 2.5),
and noise levels (small and moderate, τ=1 or 2), respectively. The
performance of the BSP model was compared with SPARK-X.

Biological data collection and analysis
For studies on mouse olfactory bulb, human breast cancer obtained by
SRT sequencing, hippocampus by SeqFish, and mouse hypothalamus
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preoptic regionbyMERFISH,we followed the analysis protocol adopted
by SPARK. For studies on Slide-seq data, Slide-seqV2 data, and HDST
data, we followed the analysis protocol adopted by SPARK-X.

In the case of humanRA synovium studies, the spatial locations in
2D slices were normalized with unit one. These 2D slices were stacked
together with interval one on the z-axis to construct a volume on 3D
transcriptomics. Analysiswasperformedbasedon thenormalizeddata
provided by the authors.

For kidney analysis, all the data were generated using 10X Visium
platforms and processed with CellRanger. Expression data is quality-
controlled and preprocessed by Seurat with scTransform58. Hier-
archical clustering is performed by SciPy from the sklearn package57

(Version 1.1.2) in Python 3.9.12.

Annotations
The annotations using PanglaoDB were performed by rPanglaoDB
(Version 0.2.1). Go enrichment analysis was performed by topGO59

(Version 3.16). The Reactome pathway analysis was performed by
ReactomePA30 (Version 3.16). Disease Ontology Semantic and Enrich-
ment analysis was performed by DOSE34 (Version 3.16). The meta-
analysis was performed by SciPy from the sklearn package57 (Version
1.1.2) in Python 3.9.12.

Statistics & reproducibility
In study design, no statistical method was used to predetermine
sample size. No data were excluded from the analyses. The experi-
ments were not randomized, and the Investigators were not blinded to
allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The mouse
olfactory bulb and human breast cancer data are available at (https://
www.spatialresearch.org/resources-published-datasets/doi-10-
1126science-aaf2403/), the MERFISH data can be downloaded from
https://datadryad.org/stash/dataset/doi:10.5061/dryad.8t8s248, and
the SeqFISH data is available at https://www.cell.com/cms/10.1016/j.
neuron.2016.10.001/attachment/759be4dc-04a6-4a58-b6f6-
9b52be2802db/mmc6.xlsx. Slide-seq data, Slide-seqV2 data, HDST
data, and human rheumatoid arthritis synovium data are available at
Broad Institute’s single-cell repository with ID SCP354, SCP948,
SCP420, and SCP1414. The STARmap data set is available at https://
github.com/drieslab/spatial-datasets/tree/master/data/2018_starmap_
3D_cortex. The kidney spatial transcriptomics data can be downloaded
from the Kidney Tissue Atlas (https://atlas.kpmp.org/) with ID 32-
10074 [https://doi.org/10.48698/3z31-8924]. The generated simula-
tion data has been deposited in Figshare database at https://doi.org/
10.6084/m9.figshare.2418792360. Source data are provided with
this paper.

Code availability
The source code of BSP is freely available at https://github.com/
juexinwang/BSP/61.
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