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Cortical reactivation of spatial and
non-spatial features coordinates with
hippocampus to form a memory dialogue

HaoRan Chang 1 , Ingrid M. Esteves1, Adam R. Neumann1,
Majid H. Mohajerani1,2 & Bruce L. McNaughton1,3

Episodic memories comprise diverse attributes of experience distributed
across neocortical areas. The hippocampus is integral to rapidly binding
these diffuse representations, as they occur, to be later reinstated. However,
the nature of the information exchanged during this hippocampal-cortical
dialogue remains poorly understood. A recent study has shown that the
secondary motor cortex carries two types of representations: place cell-
like activity, which were impaired by hippocampal lesions, and responses
tied to visuo-tactile cues, which became more pronounced following hip-
pocampal lesions. Using two-photon Ca2+ imaging to record neuronal
activities in the secondary motor cortex of male Thy1-GCaMP6s mice, we
assessed the cortical retrieval of spatial and non-spatial attributes from
previous explorations in a virtual environment. We show that, following
navigation, spontaneous resting state reactivations convey varying degrees
of spatial (trajectory sequences) and non-spatial (visuo-tactile attributes)
information, while reactivations of non-spatial attributes tend to precede
reactivations of spatial representations surrounding hippocampal sharp-
wave ripples.

The encoding, storage and retrieval of episodic memories require a
carefully orchestrated exchange of information between the hippo-
campus and the neocortex1–4. During periods of active behaviour,
unique experiences are comprised of diverse attributes that span a
multitude of modalities and cortical sites. The task of associating and
storing these distributed patterns of activity as they occur, so that they
may be recalled at later times, has been attributed to the hippocampal
network1,2,4. An important line of experimental evidence reinforcing
this theoretical principle stems from the study of reactivation; during
offline periods (i.e., sleep and quiet-wakeful states), patterns of activity
that are related to previous experiences are spontaneously and
repeatedly reinstated. Consistent with the notion of a distributed
memory system, multiple cortical regions have been implicated in the
reactivation of behavioural features, which are congruous with the

known functions of their respective regions (e.g., refs. 5–10). For
instance, the retrosplenial cortex, a region responsible for the
encoding of stable landmarks, reactivates for landmark locations11,
while the medial prefrontal cortex, implicated in cognitive flexibility
and rule learning, reactivates for task rules12. The reactivations of these
distributed features are also temporally coordinated across cortical
regions13.

In rodents, a substantial portion of the variability in cellular
activity of hippocampal neurons is explained by space, whereby indi-
vidual neurons’ discharges are correlated to specific locations in a
spatial environment—these are known as place cells14. Accordingly,
reactivated patterns in themedial temporal lobe andmedial prefrontal
cortexmanifest themselves as sequences of trajectories undertaken in
a previously explored environment15–19. As is the case between cortical
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regions, the hippocampus reactivates in coordination with many cor-
tical areas5–7,9,20. These coordinated reactivation events often occur in
conjunction with hippocampal sharp-wave ripples (SWRs)—discrete
high frequency events expressed by synchronous CA1 neuronal
populations during offline periods—which are temporally coupledwith
transient cortical activities21–28. Though a continuous gradient likely
marks the timing between hippocampal and neocortical activations29,
the onset of cortical reactivations typically precedes that of hippo-
campal SWRs by an order of ~50–200 ms5,8,9,12. Conversely, hippo-
campal population activities reliably trigger responses in the
cortex6,7,21,24,27, while the content of hippocampal activities during
SWRs can predict subsequent cortical patterns9.

In principle, if the hippocampus were to provide a set of asso-
ciative links — an index — pointing to specialized patterns distributed
over cortical regions2,30, then it follows that the contents of the activ-
ities expressed during coordinated reactivations between the hippo-
campus and the neocortex should share similar features fromprevious
experiences. Such was the case reported by multiple studies, which
collectivelymapped several cortical areas that reactivated for patterns
complementary to those reactivated by the hippocampus5–7,20. How-
ever, in these studies, the shared features in question were correlated
over the spatial dimension, where the contents of reactivations were
linked to specific locations from previous explorations. In one excep-
tional study, the contents of the reactivated patterns observed in the
auditory cortex were related to specific tonal stimuli9. However, the

exact functional relevance of the patterns reactivated in conjunction
by the hippocampus could not be determined. Given that diverse
cortical areas encompass a wide range of cognitive processes, the
functional links that would permit associations to be formed between
the hippocampus and the cortex remains to be elucidated. Specifically,
the spatial and non-spatial aspects of experiences, which seemingly
constitute an important functional basis for the hippocampal-cortical
dialogue3 in a distributed memory system, require further
reconciliation.

Recently, a study has reported that, during a virtual spatial
navigation task, two kinds of representations were concurrently
supported by primary and secondary neocortical regions: place
cell-like activities which were impaired by hippocampal lesion,
and responses related to visuo-tactile cues which became more
pronounced following hippocampal lesion31. Premised on this
finding, the current study aimed to explore whether these distinct
representations, which are likely of hippocampal and cortical
origin respectively, are reactivated concurrently by the same
cortical region, and if so, whether they engage in interactions that
are reflective of an exchange of information between the hippo-
campus and the neocortex. Using two-photon calcium imaging,
we simultaneously recorded populations of neurons in the
superficial layers (LII/III) of the secondary motor cortex (M2) of
Thy1-GCaMP6s transgenic mice (n = 14 animals; Fig. 1b; Supple-
mentary Table 1; ~19 frames-per-second). Water-restricted mice

Fig. 1 | Two-photon imaging and behavioural paradigm. aWater-deprived mice
were head-restrained over a 150 cm long treadmill belt, over which were mounted
several visuo-tactile cues. An LED light illuminated the path in front of the animals
so that they are able to see the incoming cues. b Example of a cranial window
implant. Blackboxes delineate the two imagingwindows, ofwhichone is chosen for
each mouse on the basis of signal quality and the presence of bone-regrowth.
Regional boundaries were determined from the Allen Common Coordinate Fra-
mework atlas (CCF v3). c Each imaging session was divided into three 10–20 min
blocks. Before (REST1) and after (REST2) exploration (RUN), animals rested quietly
over the belt, during which the treadmill was clamped. A 100 s segment from each
imaging block is illustrated for one example session (out of n = 86 recording

sessions in total). The time courses of deconvolved ΔF/F0 for all simultaneously
imaged neurons were sorted by the location of peak activity during RUN. Animal
position and linear velocity are shown below. Notice that, during REST2, co-active
ensembles of neurons are clustered with respect to the sequential activity patterns
over spatial locations during RUN. d ROIs of neurons that were active during the 1 s
time window surrounding the single reactivation event delineated in c (green), and
those of neurons that were active at locations 0–30 cm, roughly corresponding to
the span of the trajectory encoded by the ensemble of reactivating neurons (cf.
Fig. 3a). The overlapping ROIs between those two groups are shown. All neurons
that were part of the reactivation event were also active in the first 30 cm during
behaviour.
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were trained to navigate on a linear treadmill for a drop of
sucrose water at the end of each lap (Fig. 1a). The treadmill
consists of a 150 cm long belt lined with four distinct visuo-tactile
cues. To characterize awake reactivation patterns, we acquired
resting state activity for 10–20 min before (REST1) and after
(REST2) virtual exploration (RUN) (Fig. 1c).

We found that, in the resting period following virtual navigation,
awake reactivation events carry information that is, in varying degrees,
related to trajectory segments in space or visuo-tactile attributes.
Reactivations that are biased towards visuo-tactile features tend to
occur earlier in time relative to hippocampal SWRs, whereas reacti-
vations that aremore related to spatial trajectories tend to occur later.
Furthermore, concurrent reactivations of cue and trajectory informa-
tion reinstate similar features from previous experiences, where the
reactivated trajectory segments tend to coincide with the locations of
the reactivated cues. These results are commensurate with the theo-
rized notion that cortical reactivation of non-spatial attributesmay act
as partial information to seed the hippocampal retrieval of associated
spatial sequences. These spatial representations are then propagated
back to the cortex, hence forming a functional cortical-hippocampal-
cortical loop (cf. ref. 9).

Results
M2 ensemble dynamics during resting state
We began with a characterization of the resting state activity in the
secondary motor cortex, while screening for evidence of reactivation
of task-related patterns. At the population level, neuronal activities
exhibited higher synchrony in the ultra-slow frequency range
(0.05–0.5 Hz) during RUN, as compared to during awake quiescent
periods (Supplementary Fig. 1a, b, d, g). This synchrony likely arose
from the entrainement of cortical activities by locomotion (Supple-
mentary Fig. 1c). In parallel, a decrease in the rate of calcium transients
was also associated with running (Supplementary Fig. 1f), a phenom-
enon that has been previously described32. In contrast, during awake
quiescence, populationactivities expressed stronger power in the slow
oscillatory ranges (1–10 Hz) (Supplementary Fig. 1b, e), in accordance
with a synchronized cortical state (see refs. 33,34). Overall, the sec-
ondary motor cortex exhibited distinct population dynamics across
awake behavioural states.

Consistent with previous reports11,19,35, activities during the resting
periods were characterized by spontaneously co-activating groups of
neurons (Fig. 1c; Fig. 2a) — henceforth referred to as ensembles.
Between REST1 and REST2, ensembles were composed of a

Fig. 2 | M2 resting ensembles preferentially recruit neurons expressing high
spatial information. a Illustration of hierarchical clusteringmethodused to detect
synchronous neuronal ensembles during rest. A 1 min segment of REST2 from the
same recording as Fig. 1c–d is shown. Neurons were sorted by similarity in time
course vectors. Black vertical bands highlight movement epochs, which were
excluded from analysis. The Pearson correlation matrix between the time-series of
neuron pairs is illustrated, along with the dendrogram obtained from hierarchical
clustering. Neurons part of a synchronous ensemble were grouped by the same
colour. Coloured dots over the time-series mark reactivation events detected for
individual ensembles. b Themean deconvolved ΔF/F0 as a function of position and
laps for all individual neurons in the three synchronous ensembles in a. Neurons
were sorted byplacefield location. Notice that neurons of the same ensemble share
neighbouring place fields. c The mean activity of the neurons in b as a function of
position. d The fraction of spatially-selective neurons that were part of REST1 and
REST2 synchronous ensembles, and the overall fraction of spatial cells in all
recording sessions (n = 14 mice; n = 86 sessions; p =0.034 for REST1-REST2; not

significant between other groups; Kruskal-Wallis H test). e Difference between the
fraction of spatially-selective neurons within synchronous ensembles and the
overall fraction of spatial cells (n = 14 mice; n = 86 sessions). REST2 ensembles
contained a significantly higher fraction of spatial cells (p = 7.299 × 10−5; one-tailed
Wilcoxon signed rank test for the null hypothesis of median smaller or equal to
zero), while REST1 ensembles showed no significant deviation from baseline
(p =0.92). f Cumulative distribution functions of spatial information for REST1 and
REST2 neurons that were part of synchronous ensembles (n = 2672 REST1 and
n = 3613 REST2 neurons; p = 1.773 × 10−15 two-tailed Kolmogorov-Smirnov test;
p = 1.22 × 10−18 two-tailedMann-WhitneyU-test).g Percentage of explained variance
(ev) and reverse explained variance (rev) in all imaging sessions (n = 14 mice;
n = 86 sessions; p = 1.815 × 10−15; paired-sample one-tailedWilcoxon signed rank test
for the null hypothesis of median smaller or equal to zero). All box plots show the
median (line), the first and last quartiles (box), the minimum andmaximum values
(whiskers) and the outliers (circles). Source data are provided as a Source Data file.
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comparable number of neurons (Supplementary Fig. 2a, b) with an
average of 6.92 and 7.75 members respectively. However, a greater
number of ensemblesweredetected in REST2 (Supplementary Fig. 2c),
which suggests that the network, following locomotion, exhibited
more stereotyped patterns of activity. We tested the latter hypothesis
by carrying out a principal component analysis on the correlation
matrices of time series vectors for REST1 and REST2 (Supplementary
Fig. 2e). The results show that fewer components were needed to
explain a greater fraction of the total variance in the neuronal popu-
lation of REST2, which affirms the notion that the population activity
contained more recurring patterns. Moreover, REST2 ensembles acti-
vated at a lower rate than REST1 ensembles (Supplementary Fig. 2d).
Taken together, these results suggest that following exposure to a
virtual environment, the spontaneous activities of the secondary
motor network became more stereotyped, with similar patterns of
population activity being reinstated over time.

To understand how these synchronous activities could be related
to functional patterns, we examined the characteristics of the
ensemble neurons during active behaviour. In REST2, synchronous
ensembles preferentially recruited neurons that expressed spatial-
selectivity during active locomotion. Indeed, REST2 ensembles con-
tained amedian of 43.8% spatially-selective cells, higher than the 32.6%
in REST1 ensembles (Fig. 2d). When the difference is taken between
these percentages and the total fraction of spatially-selective cells in a
given session, we found that the median of this difference was not
significantly different from zero for REST1, while it was higher than
zero for REST2 (Fig. 2e). This suggests that the constituent neurons of
REST2 ensembles were more likely to include cells that were spatially
selective during RUN than REST1 ensembles. A more robust approach
for testing this relationship is through a hypergeometric test, which
aims to model the probability that a certain fraction is obtained by
drawing at chance from a population. This test revealed that a sig-
nificantly higher proportion of REST2 ensembles had a high compo-
sition of spatially-selective cells (Supplementary Fig. 3). Overall, REST2
ensemble neurons expressed higher spatial information con-
tent (Fig. 2f).

This propensity for REST2 ensembles to recruit neurons with high
spatial information suggest that M2 may be reactivating features
related to recent experiences. The first evidence for reactivation came
from explained variance analysis23, which revealed that REST2 popu-
lation activity accounted for a higher percentage of the variance in
RUN than REST1 activities (Fig. 2g). Given that activity patterns during
active behaviour were characterized by continuous sequences of place
cell-like activity, this result suggested that most of the variance exists
in the correlational structure between neurons with nearby place
fields. Indeed, REST2 ensembles tend to contain spatial cellswith place
fields that were in proximity to each other (Fig. 1c, d; Fig. 2b, c). Next,
we investigated the significance of this organization.

Cue and trajectory information are jointly reactivated
Our previous findings31 suggested that the secondary motor cortex
supports two distinct encodings during virtual navigation: place cell-
like activities which were impaired by hippocampal lesion, and
responses associated with visuo-tactile cues which became more
pronounced following hippocampal lesion (Supplementary Fig. 4).We
investigated whether these separate neuronal representations may be
preferentially reactivated in cortex. Intriguingly, resting-state ensem-
bles that consisted of spatially-selective cells sharing neighbouring
place fields could be classified into two separate categories based on
the contents of their reactivated features. On the one hand, we noted
ensembles thatwere composedofneuronswith nearly identical spatial
tuning profiles. These cells often supported multiple place fields
(Fig. 3a, b) that strongly overlapped with the locations of visuo-tactile
cues (Fig. 3f), while the same place fields tended to be shared between
all ensemble members (Fig. 3a, d). Given their propensity to encode

cue information,wedubbed thesegroups cue ensembles.On the other
hand, we noticed ensembles that were composed of members that
shared place fields in proximity to one another (Fig. 2b, c; Fig. 3a;
Supplementary Fig. 5), although theywere not completely overlapping
(Fig. 3d). Collectively, they formed short segments of continuous tra-
jectories in space with a median length of 36 cm for REST1 and 33 cm
for REST2, corresponding to 24% and 22% of the length of the envir-
onment respectively (Fig. 3a; Supplementary Fig. 6). These ensembles
will be termed trajectory ensembles.

Both trajectory and cue ensembles contained a significantly
higher number of spatially-selective cells than the ensembles thatwere
unclassified (Fig. 3e). This suggests that the reactivated contents
supported by these groups were highly specific to spatial features
encodedduring locomotion. In contrast, thewidthof theplacefields in
cue ensemble neurons was markedly narrower than that of trajectory
ensembles (Fig. 3c). Indeed, the median of the average width of place
fieldswithin cue ensembleswas 35.4 cm,whichwas lower than the 45.6
cm in trajectory ensemble neurons (note that place field widths and
trajectory lengths were quantified using different methods, which
makes it appear as though place fields are wider than the trajectories
that they form; see Methods). This indicates that cue ensemble
members have inherently sharper tuning profiles, which likely reflects
a primary/secondary response towards cue stimuli. Overall, trajectory
ensembles were more than three times as prevalent as cue ensembles
in both REST1 and REST2, although a greater fraction of REST2
ensembles couldbe placed into either of these two categories (Fig. 3g).
These fractions are consistent with the comparatively low proportions
of cue-responding neurons within the total population of spatially-
selective cells, which was estimated to be 16.51% (Supplementary
Fig. 7). Furthermore, a comparable number of neurons comprised the
two ensemble classes (Supplementary Fig. 10c), signifying that the
classification of these ensembleswas notbiasedby sample size. During
locomotion, neurons belonging to cue ensembles showed stronger
activation than trajectory ensemble neurons (Supplementary Fig. 8a).
This trend was reversed, however, during resting states (Supplemen-
tary Fig. 8c). In parallel, themean rates of calcium transients conveyed
by trajectory ensemble neurons was slightly higher compared to cue
ensemble neurons during rest, while comparable rates were reported
during locomotion (Supplementary Fig. 8b, d). This was corroborated
by a heightened rate of reactivations during REST2 for trajectory
ensembles compared to cue ensembles (Supplementary Fig. 8e, f).
Altogether, these results suggest that the reactivation of two separate
types of neural representations could be observed in the secondary
motor cortex.

Previous studies showed that, during replay of previous
behaviour-correlated patterns, the activity sequences undergo tem-
poral compression17,18. In relation to our current findings, an interest-
ing hypothesis may be proposed. On the one hand, if cue ensembles
contain neurons that, duringbehaviour, respond simultaneously to the
sensing of cues, then, owing to the lack of a sequential structure, they
should not undergo temporal compression during reactivation. On the
other hand, trajectory sequences are expected to undergo compres-
sion as previously reported. Such was indeed the case; we reported
medianvalues of optimal compression factors of 2× for cue ensembles,
compared to 30× for trajectory ensembles (Supplementary Fig. 9).
Note that, owing to the low temporal sampling rate, these estimated
values are expected to fall over a broad confidence intervals range (cf.
Supplementary Methods).

In spite of the tendencies for ensembles to encode cue versus
trajectory information, there remains the possibility for ensembles to
be composed of a mixture of cue-responsive and place-responsive
cells, which themselves may be encoding for conjunctive features. To
test this possibility, two models were devised and fitted to the time-
series of each individual ensemble neuron. The first model assumes
that the neuron’s response tuning curve abides by a Gaussian function
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over spatial locations, acting as a first-order approximation of a place
cell. The second model fits a distinct firing rate at each cue location
with a constant baseline firing rate, therefore reflecting a sensory
stimulus-driven neuronal response. The distribution of ratios between
the goodness-of-fit of the two models (measured as the likelihood
ratio) did not express bimodality, which confirms the hypothesis that
ensembles or ensemble neurons encode for conjunctive features
between cue and trajectory (Supplementary Fig. 10a). However, neu-
rons that belonged under the class labels of cue or trajectory ensem-
bles did show a significant bias over these ratios (Supplementary

Fig. 10a, b), which confirms that ensembles have distinct propensities
to encode for cue and trajectory. This is further corroborated by the
fact that cue ensemblesweremore accurate atdecoding individual cue
identities than trajectory ensembles using a Bayesian paradigm (Sup-
plementary Fig. 10d). An additional method was employed to further
validate these results. Taking advantage of the aforementioned dif-
ferences in temporal compression between cue and trajectory
ensembles, we conducted non-negativematrix factorisation to embed
the temporal compression profiles of ensembles into a reduced fea-
tures space (Supplementary Fig. 11a, b). The resulting projections were
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Fig. 3 | Resting state ensembles reactivate spatial and non-spatial features.
a Cumulative distribution functions of the length of trajectories encoded by
REST1 and REST2 ensembles (n = 160 REST1 trajectories; n = 325 REST2 trajec-
tories; p = 0.059; two-tailed Kolmogorov-Smirnov test). A subset of these trajec-
tories with a length shorter than 30 cm were composed of neurons with nearly
identical tuning profiles, coinciding with the locations of visuo-tactile cues. Four
examples of cue ensembles and trajectory ensembles are shown, with the mean
activity of ensemble neurons as a function of position, sorted by place field
location. Different metrics used to compare the spatial contents reactivated by
cue and trajectory ensembles (two-sample two-tailed Kolmogorov-Smirnov test;
p = 2.932 × 10−5, 8.102 × 10−8, 7.786 × 10−8 from b to d; two-tailed Mann-Whitney U-
test; p = 1.45 × 10−6, 1.769 × 10−11, 4.025 × 10−11 from b to d). For each ensemble
(n = 81 cue ensembles; n = 261 trajectory ensembles; n = 528 unclassified ensem-
bles), neurons that were identified as spatially-selective cells were extracted. The
average number of place fields (b) and the average width of the place fields (c)
were computed for each ensemble. Additionally, the Pearson correlation matrix
of the spatial tuning profiles between spatial cell pairs was obtained, and the
average value in the upper triangle of the correlation matrix was taken (d). e The

percentage of spatially-selective neurons in cue, trajectory and unclassified
ensembles. Both cue and trajectory ensembles carried more spatially-selective
cells than unclassified ensembles, but the fractions were comparable between the
two categories of interest (Kruskal-Wallis One-way ANOVA p = 1.787 × 10−7; post-
hoc tests report Bonferroni-adjusted p-values: none-cue p = 2.607 × 10 − 6, none-
traj p = 6.857 × 10 − 7, cue-traj p = 1). For fair comparisons, unclassified ensembles
with less than 3 spatially-selective cells were omitted (n = 72 remaining).
f Histogramic distributions of place field centres (n = 741 place fields for cue
ensembles; n = 1676 place fields for trajectory ensembles) for spatially-selective
cells that were recruited by cue and trajectory ensembles. Shaded area denotes
95% bootstrapped confidence interval. g Pie charts for the portion of trajectory,
cue and unclassified (none) ensembles in REST1 and REST2. The proportions of
cue and trajectory ensembles were significantly increased from REST1 to REST2
(two-tailed χ2 test; p = 7.041 × 10−8; χ2 = 32.94; df = 2). All box plots show the
median (line), the first and last quartiles (box), theminimum andmaximum values
(whiskers) and the outliers (circles). Source data are provided as a Source
Data file.
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assigned cue and trajectory class labels by an unsupervised k-means
clustering method, which showed a strong correspondence with the
labels assigned by our selection criteria (Supplementary Fig. 11b, c).
Nevertheless, the projected density varied smoothly and continuously
over this features space (Supplementary Fig. 11b). Therefore, although
ensembles can be approximately discriminated based on their ten-
dencies for encoding cues or trajectories, they are likely to exist, in
actuality, over a continuumdefinedby the conjunctions between these
two behavioural features. However, in consideration for conciseness
and interpretability, we will treat these ensembles as belonging to two
distinct classes for the remainder of this article.

Reactivation of cue precedes trajectory around SWRs
Having established two separate forms of reactivated features, we
explored whether cue and trajectory ensembles interact differently
with the hippocampus around SWRs (Fig. 4a; Supplementary Fig. 12d).
We found that, from the onset of SWR events, cue ensemble reacti-
vations preceded trajectory ensemble reactivations during REST2
(Fig. 4b). Similarly, from the onset of reactivation events, ripple-band
power peaked at a later time during cue reactivations compared to the
reactivation of trajectories (Fig. 4d). Cross-correlation analysis
between the reactivation strength time vectors of cue and trajectory
ensembles revealed that cue ensemble reactivations preceded trajec-
tory ensemble reactivations by an average of 126 ms (Fig. 4c), while
ripple-band power during cue ensemble reactivation also lagged 238
ms behind the spectral power during trajectory reactivations (Fig. 4e).
It is important to note here that, given our image sampling rate of ~ 19
Hz, the Galvo-Resonant scanners spent an average of ~50 ms of dwell
time on the tissue for each frame. Therefore, the values of time delay
reported here should be interpreted with a confidence interval of
50
3 ≈± 17 ms, corresponding to the theoretical average delay between
when two neurons were scanned along the slow Galvo-axis. In contrast
to REST2, a less clear relationship could be determined about REST1
activities. On the one hand, no significant temporal offset was
observed between cue and trajectory reactivations from the onset of
ripple events (Fig. 4b, c). On the other hand, though an average delay
of 263ms separated the ripple-band powers during cue and trajectory
reactivations, this effect was detected at a much lower level of statis-
tical significance (Fig. 4d, e). Therefore, evidence for shifted temporal
interactions between cue and trajectory reactivations were incon-
clusive with regard to REST1.

One potential confounding factor is that the reactivation of tra-
jectories takes a longer duration, given that, in the hippocampus, the
replay of place cells occurs as a temporal sequence17,19; hypothetically,
the reactivation of cues could take less time as the constituent neurons
share similar spatial tuning curves and therefore need not be orga-
nized in a temporal sequence (cf. Supplementary Fig. 9). As a result, the
observed delaymay be influenced by the inherent timing properties of
the two ensemble classes. This was not the case, however, as the
median durations of the reactivation events across all three ensemble
classes were comparable at ~180 ms (Fig. 4g). To further validate this
hypothesis, cross-correlation was conducted between the onset times
of ensemble reactivations and those of SWRs (Fig. 4f), inwhich case the
durations of reactivation would no longer pose a bias. This analysis
confirmed the same pattern of delay between cue and trajectory
ensembles during REST2. Overall, the majority of ensemble reactiva-
tions onsets occurred after the onset of SWRs, with a median delay of
213.2 ms (Supplementary Fig. 12a, b). In consideration for the con-
tinuum of cue/trajectory features, wemodelled the timing differences
between ensemble reactivation and SWR onsets, as a function of the
likelihood ratios for ensembles’ cue and trajectory encoding tenden-
cies. It was revealed that stronger cue-bias were related to earlier
reactivation onsets from SWRs, while this timing was progressively
delayed withmore trajectory bias (Supplementary Fig. 12c). Moreover,
the fraction of cue and trajectory reactivation events that were

associated with a SWRwere comparable at 18.52% and 18.22%medians
respectively in REST2 (Fig. 4h). However, a greater fraction of trajec-
tory reactivation events were coupled with SWRs as compared to cue
reactivations during REST1 (16.10% for cue and 21.93% for trajectory).
In summary, these results indicate that awake reactivations of cue
information following exposure to a spatial task tended to precede
reactivations of trajectory information.

Shared features in concurrent cue/trajectory reactivation
The timing difference observed between cue and trajectory reactiva-
tions in relation to SWRs suggests that, within the same recording
session, some pairs of cue-trajectory ensembles may show significant
temporal relationships. To identify these interactions, we performed
cross-correlations between the reactivation strength time vectors
across all cue-trajectory ensemble pairs concurrently recorded within
the same session (Fig. 5a, b). Out of these ensemble pairs, 15.09% (24
pairs) expressed significant temporal coupling. Consistent with the
cue-trajectory delay around SWRs, the average time lag between these
coupled pairs, weighed by the cross-correlation coefficients, was 93.5
ms (Fig. 5c). We reasoned that these temporally coupled ensemble
pairs would share certain functional features that distinguish them
from the uncoupled pairs (Supplementary Fig. 13). As a preliminary
step in visualizing these potential relationships, we grouped cue
ensembles into three categories based on the cue location they reac-
tivated most strongly towards (the last two cues were grouped under
the same label on account of their spatial proximity). The average
reactivation strength over spatial locations in the associated trajectory
ensembles appeared to followmore closely the location(s) of the cues
in the temporally coupled pairs, compared to the uncoupled group
(Fig. 5d; Supplementary Fig. 6). This tendencywas tested by taking the
Pearson correlation between the features reactivated by cue-trajectory
ensemble pairs (Fig. 5e). A two-way ANOVA model indicated that
temporally coupled ensemble pairs shared a significantly higher
degree of similarity in their reactivated features than uncoupled pairs.
For REST1 ensembles, 22.22% (8 pairs) exhibited significant temporal
coupling (Supplementary Fig. 14a). However, no difference was found
in the similarity of reactivated features between coupled and uncou-
pled pairs (Supplementary Fig. 14b). With the current sample size, this
result was inconclusive as it may reflect a feature of REST1 as well as a
deficiency in statistical power to discern an effect.

Drawing inspirations from the mechanisms of pattern comple-
tion, we further tested this relationship using a Hopfield network
model (Supplementary Fig. 15a). Sampling still from within the same
recording sessions, we trained the network to learn two reactivated
trajectory features, one that was coupled with a cue ensemble and one
that was not. We then presented the corresponding reactivated cue
feature as a partial retrieval pattern and tested for which of the two
learned representations was retrieved. This procedure was conducted
over all possible combinations in sessions that satisfied the training
requirements. In 73.08% of these cases, the network successfully
retrieved the coupled trajectory information (Supplementary Fig. 15b).
Analogously, the Hamming distance between coupled cue and trajec-
tory ensemble features were shorter compared to features reactivated
by uncoupled pairs (Supplementary Fig. 15c). Taken together, these
results demonstrated that cue and trajectory ensembles that expres-
sed interlocked timings were likely to reactivate for complementary
features of previous experience.

Cue features exhibit higher stability across days
Lastly, we investigated whether the representations supported by cue
and trajectory ensembles neurons express different degrees of stabi-
lity over time. In 10 experimental animals, the same field-of-view had
been imaged across consecutive recording days (Supplementary
Fig. 16; Supplementary Table 1). We isolated spatially-selective cells
that were part of cue or trajectory ensembles in REST2 within each
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imaging session, and looked for overlapping ROIs on the subsequent
recording day. We observed that cue ensemble neurons maintained a
stable spatial tuning profile on the following test day, while trajectory
ensemble neurons saw a higher degree of remapping (Fig. 6a–d). A
large density of stable trajectory ensemble neurons coincidedwith the
locations of landmarks, suggesting that they may be cue-responsive
cells organized into trajectory sequences (Fig. 6a, b).

Given the tendency for cue features to be more stable, we rea-
soned that the same cue ensembles may be recruited during resting
state across days. To test this possibility, we quantified the proportion
of overlapping neurons between ensembles acrossdays for all possible
combinations of REST1 and REST2 (i.e., between REST1 ensembles
across days, between REST2 ensembles across days and between
REST1 ensembles and REST2 ensembles across days) (Supplementary
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Fig. 17a–d). During REST2, there was a slight tendency for similar cue
ensembles to be found on the subsequent recording day, more often
so than trajectory ensembles (Supplementary Fig. 17d, e). However, no
difference in persistence was found across other REST combinations
(Supplementary Fig. 17a–c, e). Overall, cue and trajectory ensembles
expressed a similar degree of persistence across days, with an average
of 22.73% and 20.59% persistent ensembles respectively (Supplemen-
tary Fig. 17f). Despite this lack of preference, REST2 contained a sub-
stantially higher fraction of persistent cue and trajectory ensembles
across days (Supplementary Fig. 17g, h).

Within the same session, we found no preference between the
recruitment of cue and trajectory ensembles across resting periods
either (Fig. 6e), with 22.85% and 26.22% of cue and trajectory ensem-
bles being reported as persistent respectively (Fig. 6f). Overall, these
results indicate that cue ensembles consist of neurons that encode for
more stable features across time, while trajectory ensemble neurons
are more susceptible to remapping. However, this persistence in
encoded features did not translate into a persistent recruitment of cue
ensembles across recording days or across rest periods. Therefore, the
process that determines the membership of offline ensembles is likely
unbiased by functional features. Following locomotion, similar resting
state ensembles are more likely to be found across days. Taken toge-
ther, these results indicate that a recent exposure to a familiar
experience invokes the reactivation of similar groups of neurons,
despite the remapping of certain features.

Patchy topographic organization in resting state ensembles
Lastly, we were interested in whether cue and trajectory ensemble
neurons express differences in topographic arrangements. Naïvely,
because sensory information tend to be organised in a topographic
fashion in primary cortices (including in the motor cortex)36, while the
outflow of spatial information from the hippocampus would likely be
distributed without discernible topography (cf. ref. 37), we hypothe-
sized that cue ensembles may exhibit a higher level of topographic
clustering, whereas trajectory ensemble neuronsmay bemore diffuse.
We began by examining the distribution of cells’ tendencies for
encoding either cue or spatial locations, for all spatially-selective
neurons. In this map, we observed a few patches of heightened den-
sities of cells encoding for either feature (Supplementary Fig. 18a, b).
However, no clear organization could be distinguished, suggesting
that the topographic arrangement may be localized to patches. Four
100 × 100 μm windows were drawn over these patches (Supplemen-
tary Fig. 18b). Neurons found within the two windows over the regions
with a higher prevalence of position-correlated responses form a uni-
form representation of spatial locations, with population vectors
decorrelating smoothly over distance. In contrast, neurons contained
within the two regions exhibiting preference for cue-responses form a

discontinuous representation biased by the locations of cues. Overall,
these results suggest that a patchy topographic arrangement may bias
the tuning tendencies of secondary motor neurons towards cues and
positions.

Next, we examined the topographic distributions of ensemble
neurons for different categories of ensembles (Supplementary
Fig. 18c). Overall, cue ensemble neurons were more likely to be found
over the lateral aspect (similar to Supplementary Fig. 18a), compared
to trajectory ensemble neurons and neurons of unclassified ensem-
bles, which were uniformly distributed (Supplementary Fig. 18d). To
quantify the difference in these topographic distributions, the
Kullback-Leibler divergencewas taken between the probability density
maps of each ensemble class and the density map of all neuronal ROIs
(Supplementary Fig. 18e). Under this measure, the distribution of cue
ensemble neurons was orders more different from the overall dis-
tribution of ROIs, compared to unclassified and trajectory ensemble
neurons. An immediate hypothesis that can be generated from these
results is that neurons that are part of a cue ensemble should bemore
clustered topographically due to their lateral confinement, whereas
trajectory ensemble neurons should be more dispersed, assuming a
random recruitment strategy for ensemble neurons. This was, how-
ever, not the case, as both cue and trajectory ensembles exhibit a
similar degree of clustering in topographic space (Supplementary
Fig. 18f, g). Nevertheless, over ~70% of ensembles of either category
showed significant clustering, as opposed to dispersed. Therefore,
resting state ensembles in M2 appear to be intrinsically organised into
topographic patches. Taken together, these results suggest that both
the distribution of cue-tending and position-tending cells, and the
recruitment of resting state ensemble neurons follow a patchy
arrangement in topographic space, though neither cue nor trajectory
representations have a well-defined topographic organization.

Discussion
We found that, following a virtual spatial navigation task, two distinct
types of experience-related representations were reactivated in the
motor cortex. On the one hand, synchronous ensembles of neurons
during resting state consisted of cells that responded to visuo-tactile
landmarks. On the other hand, short segments of continuous trajec-
tories in space were formed from other sets of synchronous neuronal
ensembles. Around the onset of SWRs detected in the ipsilateral hip-
pocampus, the reactivation of cue information, on average, preceded
that of trajectory information. The same pattern of delay was found
between cue-trajectory ensemble pairs within the same recording
sessions, whose patterns of reactivation showed significant temporal
coupling. Such ensemble pairs reactivated for related features of
previous experiences, whereby reactivated trajectories tended to
occur around the locations of reactivated cues. Ourfindings illustrate a

Fig. 4 | Cue reactivations precede trajectory reactivations in relationship to
hippocampal SWRs. a A 3 min segment of a recording with simultaneous two-
photon and hippocampal LFP acquisitions. Three distinct ensembles are colour-
coded with their reactivation events highlighted by dots (same as Fig. 2a). The
reactivation strength over time for each ensemble is shown. Zooming in on an 8 s
window, consecutive reactivations of the three ensembles can be observed, whose
occurrence coincided with SWRs. The reactivation strength, the broadband LFP
(downsampled to 2.6 kHz) and the bandpass filtered SWR traces (150-250 Hz) are
shown. The onset times of SWRs are labelled by asterisks. b Average z-scored
reactivation strength of trajectory and cue ensembles centred at the onset of SWRs.
Shaded areas denote the mean± s.e.m. c Unbiased cross-correlation coefficients
between cue and trajectory average reactivation strengths (b) as a function of lag
period. Dotted line denotes the one-tailed 95% confidence interval. The coefficients
were fitted to a Gaussian function to estimate the peak delay period. d, e Same as
b, c, but for the average z-scored ripple-band power centred at the onset of
ensembles reactivations. f Cross-correlograms between the onset time-stamps of

cue and trajectory ensemble reactivations and the onset time-stamps of SWR
events during REST2. Shaded area delineates 95% bootstrapped confidence inter-
vals. Boxplots summarize the peak lag times in the cross-correlations (n = 59 cue,
n = 118 trajectory ensembles; two-tailed Mann-Whitney U-test p =0.00268). g The
mean duration times for the reactivation of different ensemble classes show no
significant difference across categories (n = 62 cue, n = 164 trajectory, n = 252 none
REST2 ensembles; Kruskal-Wallis One-way ANOVA p =0.6421). h Percentage of
reactivation events associated with a SWR (n = 16 cue ensembles and n = 78 tra-
jectory ensembles in REST1; n = 59 cue ensembles and n = 118 trajectory ensembles
in REST2). During REST1, a greater number of trajectory reactivations were asso-
ciated with SWRs (two-sample two-tailed Kolmogorov-Smirnov test p =0.010; two-
tailed Mann-Whitney U-test p =0.036), while the same proportions were reported
in REST2 (two-sample two-tailed Kolmogorov-Smirnov test p =0.189; two-tailed
Mann-Whitney U-test p =0.638). All box plots show the median (line), the first and
last quartiles (box), the minimum andmaximum values (whiskers) and the outliers
(circles). Source data are provided as a Source Data file.
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functional and timing-dependent relationship surrounding the offline
retrieval of memories in cortical structures.

The existence of two parallel functional representations in the
secondary motor cortex had been alluded to previously by multiple
studies. In terms of visuo-tactile responses, the M2 is reciprocally
connected with the somatosensory cortex as well as the visual cortical
areas38,39. Accordingly, M2 has been found to respond to tactile sti-
mulations in rodents40, while lesioning the structure evokes somato-
sensory neglect41. Interestingly, optogenetic inactivation of M2 fibres
projecting to S1 during NREM sleep caused impairments in a novel
object recognition task requiring discrimination of tactile textures42.
This finding demonstrated M2’s involvement in the consolidation of
somatosensory features. With regard to spatial coding, a number of
recent articles have identified neuronal responses similar to those of
place cells in multiple regions of the neocortex5,20,31,43–46. Crucially, the

formation of these representations was severely disrupted (including
in M2) following bilateral lesions to the dorsal hippocampus31,47. These
findings suggest that the hippocampal outflow of spatial information
may pervade widely distributed regions of the neocortex.

Importantly, we found that both forms of representations were
reactivated in M2 during quiet-wakefulness. A majority of previous
investigations into cortical patterns of reactivation have uncovered
features describing singular dimensions of behaviour, usually those
related to the known functions of the structure. To name a few
examples, it had been reported that the prefrontal cortex reactivated
for task rules12, the posterior parietal cortex for egocentric
parameters8, the retrosplenial cortex for environmental landmarks11

and the primary motor cortex for movement sequences10. From these
findings, one might conclude that cortical reactivations recapitulate
aspects of previous experiences specific to the modality of the region.

Fig. 5 | Temporally coordinated cue-trajectory ensemble pairs reactivate for
similar features of previous experience. a Cross-correlation coefficients over
a ± 1 s window between the reactivation-strength time-course vectors of cue-
trajectory ensemble pairs found within the same REST2 session. Out of 159 such
pairs, 24 showed significant temporal coordination. These pairs were labelled as
coupled, whereas the remaining non-interacting pairs were referred to as uncou-
pled. b Average correlation-coefficient over time lags for coupled cue-trajectory
ensemble pairs. Shaded area denotes bootstrapped 95% confidence intervals.
c Average time lag, weighted by the cross-correlation coefficient, between coupled
pairs suggested a significant delay from the reactivationof cue ensembles to that of
the trajectory ensembles (n = 24 coupled pairs; two-tailed Wilcoxon sign rank test
for the null hypothesis of zero median; p =0.0079). d We separate the ensemble
pairs into three groups, based on the cue location that the cue ensemble was most
strongly reactivating for (the last two cues were labelled under the same group due
to their spatial proximity). The average reactivation strength of the associated

trajectory ensembles as a function spatial location are illustrated in polar coordi-
nate space. Qualitatively, the reactivated trajectory features tend to follow the
associated cues more faithfully in the coupled pairs compared to the uncoupled
pairs. e Pearson correlation coefficients between the reactivated cue and trajectory
features in coupled and uncoupled pairs (atanh-tranformed for normality; for
coupled pairs, at each cue from left to right, n = 7, 10, 7; for uncoupled pairs, n = 17,
44, 74). Coupled pairs expressed a greater degree of similarity in reactivated fea-
tures thanuncoupledpairs (two-way type II ANOVAwith cueand temporal coupling
as between factors; no significant interactions between factors; p =0.2299; no
effect of cue group on feature similarities; p =0.1291; significant effect of temporal
coupling on features similarity; p = 5.562 × 10−4; Shapiro’s normality test p =0.2754;
Levene’s equality of variances test; p =0.1736). All boxplots show themedian (line),
the first and last quartiles (box), theminimum andmaximum values (whiskers) and
the outliers (circles). Source data are provided as a Source Data file.
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However, there are a few studies that demonstrated reactivation of
spatial features in extra-hippocampal regions, namely in the visual5,
the posterior parietal20, the medial prefrontal6,18 cortices, the deep
layers of the medial entorhinal cortex7 and the ventral striatum48,
where the reactivation of such features were interlocked with hippo-
campal reactivations of the samebehavioural experiences. Our current
results help to reconcile these separate reports by suggesting that
spatial and non-spatial features may be jointly expressed in the same
cortical structure during offline periods. Nevertheless, given the lim-
itations of the head-fixed preparation, it is hard to determine the exact

behavioural states the animals were in during the resting periods.
Further research is needed to describe whether these patterns of
reactivation express different dynamics during sleep or during parti-
cular states in awake quiescence.

Lending support to the presence of such a dichotomy is the
temporal delay observed between the reactivation of cues and tra-
jectory information. Classifying the reactivating ensembles into two
categories based on their encoded features revealed that cue infor-
mation was reactivated earlier on average than trajectory information.
This finding complements a previous report in which patterns of
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activity in the auditory cortex during NREM sleep preceding SWRs
could accurately predict the ensuing CA1 activities, while these CA1
patterns could in turn explain the subsequent activities in the auditory
cortex9. In that study, the offline activities in the auditory cortex were
explained by distinct patterns of sounds, though the exact nature and
contributions of hippocampal activities with regard to the cortex
could not be determined. Here, our results suggest that the early and
late reactivations surrounding SWR events may in fact constitute dis-
tinct functional representations. Given this temporal dissociation, it
may be hypothesized that the earlier reactivation of cue-centric
information reflect locally-encoded attributes in the secondary motor
cortex, whereas the later reactivation of trajectory sequences may be
driven by hippocampal outflow (cf.29). This notion is corroborated by
the heightened stability of cue representations across recording days
compared to trajectory information, which is consistent with the
higher rates of synaptic turnover in hippocampus compared to
neocortex49.

The idea that local cortical patterns could serve as triggers for the
retrieval of mnemonic information from the hippocampus places
under scrutiny the potential for other cortical regions in contributing
to this dialogue. In fact, rodent studies havedemonstrated that specific
auditory stimuli presented during NREM sleep could bias the content
of hippocampal replay9,50, while the presentation of olfactory cues had
the same effect in a human fMRI study51. These sensory modalities,
with the addition of visuo-tactile representations elaborated presently,
imply that widely distributed neocortical sites could each serve as the
initiator for hippocampal reactivation, where the subsequently evoked
hippocampal patterns would permeate global cortical modules linking
together the different attributes associated with episodic experiences.
This model could explain the prevalence of trajectory reactivations
over cue reactivations in our data. In particular, reactivated trajectory
patterns observed in the secondary motor cortex could have been
initiated by a separate region of the brain.

From the output side, it may be inferred from the present results
that the information received by cortical sites downstream from the
hippocampus during offline reactivation comprises sequential place
cells activations analogous to the patterns of replay observed directly
in the hippocampus15–17,19. Similarly, previous reports on coordinated
reactivations between the hippocampus and the cortex for the same
behavioural experiences have largely involved spatial features5–7,20.
This observation calls into question the relevanceof the place-code for
cortical processing and consolidation. One possibility asserts that the
hippocampal place-code encompasses a diverse range of non-spatial
information as well14,52,53, which is reflected in the modulation of firing
rates within otherwise stable place fields by varying sensory/task
conditions, a phenomenon known as rate remapping54,55. As such, the
place-code provides a vehicle through which arbitrary associations
could be formed between the diverse attributes of episodic

experiences spanning disparate modalities. In the present study, cue
and trajectory ensembles that expressed temporally coordinated
reactivations encoded for similar attributes of a recent experience. It is
thereforepossible, hypothetically, that the overlap between the spatial
and the non-spatial dimensions is the semantic link that allows cortical
cue features to be used to retrieve hippocampal patterns30,56,57 (Fig. 7).
Specifically, this retrieval process can be facilitated by pattern com-
pletion mechanisms supported by the CA3 recurrent network, which
forms the basis of a content-addressable memory system1,2,4,58,59. The
hippocampal output in turn elicits previously associated attributes of
experience found across wide regions of the neocortex. This globally-
coherent retrieval would hence allow cortico-cortical associations to
form in such a way as to extract the statistical regularities found in
those experiences.

This proposed hypothetical model has implications for both
modulating online behaviour and mediating offline mnemonic pro-
cesses. On the one hand, the targeted outflow of hippocampal spatial
information onto cortical sites may provide a contextual and/or
mnemonic frame of reference for guiding active behaviours60. Parti-
cularly, in the M2, it has been shown that population activities convey
spatial/contextual information with a putative involvement in guiding
action and decision-based planning61. Similarly, the interactions
between the medial prefrontal cortex and the hippocampus appear
important for navigation tasks that rely on memories of past
trajectories62. On the other hand, the offline reactivation of recent
experiences may drive changes in sensory encoding and functional
representations in cortical areas. A recent study has shown that reac-
tivation events in the lateral visual cortexmore faithfully replicated the
sensory responses of neurons in the future, rather than the preceding
stimulus-evoked responses63. In parallel, neurons in the primary visual
cortex gradually acquire sharper discrimination between distinct
grating patterns with training64. Such descriptions of integrative pro-
cesses thatoccur during both online andoffline periods have also been
hinted by our data. In particular, additional modelling has suggested
that the features encoded by resting state ensembles exist over a
continuumwhere varying degrees of cue and trajectory information is
expressed. This conjunctive aspect may not only reflect a gradual
consolidation of spatial information into existing cortical representa-
tions (cf. ref. 65), but also a mechanism for imparting contextual
information to sensory representations to guide online behaviour.
Moreover, the heightened stability of cue representations over days, as
compared to spatial information, may indicate a difference in the rate
of consolidation or experience-driven drifts in functional representa-
tions in the cortex. Overall, a hypothesis can be proposed, stating that
spatial information integrates with non-spatial information in the
cortex to bothmodulate online behaviour through conjunctive coding
and drive representational changes during offline periods. It remains
to be determined how the functional encodings in cortical neurons

Fig. 6 | Cue ensemble neurons support more stable representations
across days. a The same FOVwas recorded over consecutive experimental days in
10 animals. Spatially-selective neurons that were part of cue and trajectory
ensembles during REST2 were identified in the following recording day. Neurons'
average activities as a function of position were sorted by the location of peak
activity on the reference day. The same sorting was kept for tunings on the sub-
sequent recording day. b Pearson correlation matrices of population vectors over
positions (columns in a) between the reference day (y-axis) and the following
recording day (x-axis). c Pearson correlation coefficients of neurons' spatial tuning
profiles (rows in a) across recording days. Cue ensemble neuronsmaintainedmore
stable tunings over days (one-tailed Mann-Whitney U-test; p = 4.951 × 10−9; n = 255
cue ensemble neurons; n = 315 trajectory ensemble neurons).d Pearson correlation
coefficients of population vectors (columns in a) across recording days. Popula-
tions vectors express a higher degree of similarity across days for cue ensemble
neurons (paired-sample one-tailed Wilcoxon signed rank test; p = 4.131 × 10−9;
n = 50 spatial bins). e The Jaccard index was computed to measure the persistence

of ensembles between REST1 and REST2. For each REST2 ensembles, we calculated
the number of member neurons overlapping with each REST1 ensembles. The
Jaccard indexwas given as J = O

A +B�O, where forO overlappingmembers, there areA
and B total members in the REST1 and REST2 ensembles respectively. For each
REST2 ensemble, we keep the maximum Jaccard index value following paired
comparisons with all REST1 ensembles. Cue (n = 62) and trajectory (n = 164)
ensembles were equally persistent across resting states (two-sample two-tailed
Kolmogorov-Smirnov test p =0.725; two-tailed Mann-Whitney U-test p =0.340).
f Following on e, we tested for the significance of the proportion of overlap by one-
tailed Fisher’s exact test against the null hypothesis that the overlapping fraction is
not higher than chance. P-values lower thanα =0.001wereconsidered aspersistent
ensembles. In REST2, a similar fraction of cue and trajectory ensembles remained
persistent from REST1 ensembles (two-tailed χ2 test; p =0.574; χ2 = 0.3159; df = 1).
All box plots show themedian (line), the first and last quartiles (box), theminimum
andmaximumvalues (whiskers) and the outliers (circles). Source data are provided
as a Source Data file.
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may be gradually shaped by the outflow of hippocampal place infor-
mation and the degree to which this process may rely on the
hippocampus.

Taken together, the current findings demonstrate a temporally
organized sequence of cortico-hippocampal exchanges during offline
reactivation, which is graded by the specific contents of the beha-
vioural features being reactivated. These reactivated features likely
arise separately from the hippocampus and the neocortex, and
accordingly involves spatial and non-spatial aspects of previous
experiences. As such, neocortical recollections of the specific ‘attri-
butes’ of prior experiences may seed the reactivation of hippocampal
sequences (i.e., episodes), which in turn is propagated back to neo-
cortical regions. Pattern completion is proposed as a likelymechanism
through which these separate dimensions of behaviour may be linked
in order to facilitate the targeted retrieval of recent experiences from
the hippocampus by the neocortex.

Methods
Animals and surgical procedure
All experiments were conducted in compliance with the guidelines
established by the Canadian Council on Animal Care and were
approved by the Animal Welfare Committee at the University of
Lethbridge. Mice were single-housed under a 12 h light/dark cycle
following surgery with mouse chow and water provided ad libitum
until the beginning of experimentation. The room temperature is kept
at 22 degrees Celsius and the humidity fluctuates between 40 and 60%
depending on the season. A total of 14 Thy1-GCaMP6s transgenic mice
were used (aged from 2–8 months old). All mice received a 5 mm
cranial window implant over the dorsal cortex (AP: –3 to +2 mm from
bregma; ML: centred on midline; Fig. 1b) following the same proce-
dures as previously described11,31. 11 mice were also implanted with a
bipolar electrode (0.5 mm tip separation; 50.8 μm Teflon-coated
stainless-steel wires from A-M Systems) in dorsal CA1 stratum pyr-
amidale ipsilateral to the imaging site. Electrodes were inserted from
the posterior edge of the imaging window (AP: –3 mm; ML: 1.8 mm)
with a 30∘ angle-of-approach along the AP axis pointed anteriorly. To
determine the depth at which to lower the electrode, the signal was
monitored through a speaker during lowering of the electrode. An
abrupt increase in spikes signals that the lower tip has reached stratum
pyramidale. Lowering the electrode by another ~0.5 mm should result
in another burst of spikes, at which point the upper tip is within stra-
tum pyramidale while the lower reference tip should be in stratum
moleculare. Electrodes were implanted in the same hemisphere in
which imaging was conducted. Two of the implanted electrodes
showed poor signal quality, and themice carrying these implants were
excluded from electrophysiological analyses.

Behavioural paradigm
Water-restricted mice were trained to run over a 150 cm long linear
treadmill for a dropof sucrosewater at the endof each lap,while under
head-fixation (for training protocol and treadmill design, see11,31,45,47).
The treadmill belt was lined with four distinct visuo-tactile cues
(Fig. 1a) constructed out of hot glue (first and last cues), a strip of soft
Velcro (second to last cue) and two strips of reflective tape (second
cue). An LED light source was positioned in front of the animal to
illuminate incoming cues. Before and after running, the treadmill was

locked and the animals were habituated to rest quietly on the belt in
addition to being trained to run. Inmost cases, consistent running and
resting are learned after two weeks to a month of training. This typi-
cally required a week of clamping the belt for ~10 min before and after
running. At first, animals will attempt to move the treadmill belt, but
will soon learn to associate the absence of the reward port (moved
away during rest periods) with immobility. With the belt clamped, the
rotation encoder on the treadmill is still sensitive enough to detect
motions from the animals, and these epochs were removed from
subsequent analysis. Each imaging session proceeded with 10–20 min
of resting (REST1), followed by ~8 min of running (RUN), and con-
cluded with another 10–20 min of rest (REST2). Sessions in which
animals ran less than 10 laps were discarded from further analysis.

Two-photon imaging and ROI tracking over days
Imaging was performed under a Thorlabs Bergamo II microscope
powered by a Ti:Sapphire femtosecond pulsed laser (Coherent Cha-
melion Ultra II) tuned to an excitatory wavelength of 920 nm and
operated using the ThorImage 4.1 software. The light beam was ras-
terized by Galvo-Resonant scanners bidirectionally at a frame rate of
~19Hz and focusedonto the tissue via a 16 ×water immersion objective
(Nikon; NA =0.8; 80–120 mW output power measured at the sample).
Emitted light signals were amplified using a GaAsP photomultiplier
tube (Hamamatsu) and digitized to a resolution of 800× 800 pixels at
16 bit precision. The imaging FOV consisted of a 835 μm×835 μm
square plane acquired at a depth of 100-200 μm from the cortical
surface to reach layers II/III. Depending on the imaging quality and the
presence of bone-regrowth obstructing the window, the imaging
window spanned anywhere between 0 mm and +1.67 mm over the AP
axis and was centred on 0.5 mmML (i.e., edging the superior saggital
sinus; Fig. 1b).

Suite2p66 was used to identify the neuron ROIs, and the extracted
fluorescent traces were deconvolved by constrained non-negative
matrix factorization67. The automatically detected ROIs weremanually
curated to remove any false-positives. In 10 animals, the same FOVwas
imaged across consecutive days, where specific landmarks such as
blood vessels and neurons were used to guide the experimenter to
manually align the FOV to that of the day-1 reference (Supplementary
Fig. 16). To identify persistent neurons across two imaging sessions,
the ROIs masks of the two session were binarized and registered
against each other (Supplementary Fig. 19). Registration was con-
strained to rotation and translation only and was achieved through
finding the nearest localminimum from the non-shifted images using a
customdirect search gradient-free solver. ROIs that share 50% ormore
overlapping pixels were identified as the same neuron (percentage
overlap calculated as the Jaccard index O

A +B�O × 100%, where out of A
and B pixels contained by two candidate ROIs, O pixels are
overlapping).

Given the nature of the present study, opting for the secondary
motor cortex over the somatosensory cortex would seem rather
counterintuitive. The choice of imaging the secondary motor cortex is
a practical one. Because the cranial window implant is designed to be
attached flush against the dorsal aspect of the skull (our microscope
does not rotate), we were limited to dorsal cortical regions. Out of
these regions, only the hindlimb regions of the somatosensory cortex
were accessible for imaging. This leads to amarked spatial delay in the

Fig. 7 | Proposed hypothetical model for temporal dynamics of reactivation
based on the theory of pattern completion. a The temporal sequence that could
account for the reported observations is illustrated. First, the secondary motor
cortex spontaneously reinstates information related to visuo-tactile landmarks
found within a recently explored virtual environment. Subsequently, these repre-
sentations reach the hippocampal CA3 subfield, where pattern completion takes
place in conjunction with sharp-wave ripples. Finally, the associated place cells

trajectory sequence is retrieved and broadcast back to the cortex. b The putative
computations that occur in CA3 during pattern completion are illustrated. Visuo-
tactile landmark representations, inputted as partial retrieval cues to the CA3
recurrent network, are compared against the stored trajectory sequences from
recent explorations inside a virtual environment. The trajectory pattern that shares
the strongest similarity with the cued pattern is retrieved and outputted.
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neuronal responses tied to visuo-tactile cues, which could bias sub-
sequent analyses. By contrast, the cue-related responses in the sec-
ondary motor cortex were much more centred around cue locations.
Furthermore, bone-regrowth tends to occur over the lateral edges of
the imaging window. This affliction scarcely impacted the midline
regions, away from the anterior edge of thewindow, in our experience.
These experimental limitations led to the pragmatic consideration of
imaging the secondary motor cortex.

Electrophysiology and detection of SWRs
Local field potential was amplified 1000 × and band-pass filtered from
0.1–10,000 Hz through a Grass 7P122G amplifier. The analogue output
was digitized using a Digidata 1550B unit sampling at 192 μs intervals
(Axon pCLAMP 10 acquisition software). The signal was down-sampled
to 2.6 kHz for analysis. To detect SWRs, local field potential was band-
pass filtered from 150–250 Hz using a 400-order FIR filter. A RMS
power envelope was extracted using an 8 ms sliding window. Ampli-
tude regions exceeding 3 standard deviations from the mean were
labelled as ripple events. 75% of this threshold was subsequently used
to identify the times of onset and offset for each event. Ripple events
must be at least 3 cycles long. Events that occurred less than 250 ms
from a previous event were discarded (merged with the
previous SWR).

Detection of spatially-selective cells
The methods used for classifying neurons that express spatial encod-
ing have been described extensively in previous works11,31. Briefly, two
criteriamust bemet for successful identification. For the first criterion,
the spatial information (SI) conveyed by a neuron about the animal’s
location must exceed the 95th percentile of a shuffled distribution.
Spatial information was computed as68

I =
XN

i = 1

pi
f i
f
log2

f i
f
, ð1Þ

where the average neuronal activity fi in the ith bin over the total
average activity f, weighed by the spatial occupancy pi, were evaluated
over N = 50 spatial bins. The null distribution of SI was obtained by
circularly shifting the time-course vectors of neuronal activities by a
random factor 1,000 times. For the second criterion, neurons’ place
fields were identified by conducting a continuous wavelet transform
over the spatial tuning curve of the neurons using a Ricker (Mexican
Hat) wavelet. The scales evaluated were Σ = {1, 2, 3,…,50} correspond-
ing to the N = 50 spatial bins. Local maxima exceeding 3 median
absolute deviations from the wavelet coefficients at the lowest scale of
the transform (σ = 1) were identified as potential place fields. If a local
maximum falls within the bounds of another maximum at a higher
scale (i.e., wider place field), the candidate sitting at the lower scale
(with a narrower place field) is discarded. The width of a place field
mustbe between 5 and 80%of the total length of the environment. The
mean activity within a place field must be 2.5 times higher than the
activity outside of place fields. Peak activity during individual trials
must occur within the place field in at least a third of the trials. Cells
that supported at least one place field satisfying these constrained
were determined to be spatially-selective.

Detection of resting-state ensembles
Agglomerative clustering was used to detect groups of neurons that
expressed highly synchronized activity during quiet wakeful periods
(Fig. 2a) as previously described11. First, the time-courses of simulta-
neously recorded neurons were Gaussian smoothed (σ = 200 ms) in
order to combat temporal jittering (cf. Supplementary Fig. 20) and to
increase correlation between neuron pairs. Then, the Pearson corre-
lation matrix between the z-scored time-courses of neuron pairs was
taken. The correlation coefficients r were converted into a distance

metricd by d = 1−r. This value, which ranges from0 to 2, describes how
similar the time-course vectors between a pair of neurons are, with 0
being completely correlated, 1 being unrelated, and 2 being com-
pletely anti-correlated. Agglomerative clustering was then performed
over this distancematrix using unweighted average distance criterion.
A cut-off threshold of 0.75 was applied corresponding to an average
correlation coefficient of 0.25 within each cluster of neurons. Clusters
needed to contain at least 5 members in order to be classified as an
ensemble.

Classification of cue and trajectory ensembles
Irrespective of their final label, classification of ensembles began with
screening for the presence of trajectories. Ensembles which contain
less than 3 spatially-selective neurons were not considered. The nor-
malized (from 0 to 1) spatial tuning curves (activity as a function of
position) were extracted for each spatially-selective ensemble neuron.
We identified continuous segments in space where the activity in the
tuning curve of any ensemble neuron exceeded 0.5. Segments that
were formed by less than 3 spatially-selective cells were discarded.
These segments were also circularly wrapped for trajectories that
crossed the starting/reward location. Out of these candidate trajec-
tories, thosewith a lengthof less than30 cm that spanned the centre of
a cue were identified. Ensemble that carried such a segment were
classified as cue ensembles, while the remaining ensembles that still
contained a spatial segment were labelled as trajectory ensembles.

Reactivation strength and extracting reactivated features
Hierarchical clustering permits the identification of neurons that are
part of co-active ensembles, but otherwise does not provide infor-
mation on the temporal activity of these ensembles. To further fine-
tune the detected ensembles and to establish the time-courses of their
resting-state dynamics, a custom PCA-ICA approach was devised
(Supplementary Fig. 21). First, the deconvolved firing-rates matrix X,
with columns as individual neuron’s time-course vectors, is normalized
to have null mean and unitary variance. Typically, PCA and ICA extract
a defined number of components, which are used as the basis vectors
for a reduced space into which the firing-rates vectors are
projected12,69,70. Here, the ensembles detected using hierarchical clus-
tering serve as an initial estimate of these basis vectors defined in the
matrix eW. For each ensemble m, we define a column vector ûm of
length N in which the ensemble neurons are labelled 1 while the
remaining neurons are 0. The vector is subsequently normalized to a
unit vector um = ûm

jjûmjj pointing to the mean direction of the ensemble
neurons:

eW= u1 u2 u3 � � � uM

� �
= û1

jjû1 jj
û2

jjû2jj
û3

jjû3jj � � � ûM
jjûM jj

� �
: ð2Þ

Note that eW> eW= I since there are no overlapping members between
ensembles detected from hierarchical clustering. In other words, eW
forms an orthonormal basis, just like the eigenvectors obtained from
PCA. From here, projecting X into eW would yield the activity vectors
over time for each ensemble defined as the mean firing-rate across all
member neurons over time. However, doing so would assume that
each neuron member of an ensemble contributes equally to the
activation of that ensemble, which is unlikely to reflect the actual
dynamics of the network given that separate pairs of neurons within
the same ensemble share different degrees of temporal correlation.
Wewill rely on the ICA algorithm to fine-tune this initial estimate of the
basis, whichwill do so by optimizing over the quality of reconstruction
so that the basis accurately captures the relationships structure in the
temporal dynamics of the neuronal population.

First, de-noising is performed on X to limit the amount of drift in
the basis vectors during ICA optimization caused by spurious rela-
tionships. This is achieved by subtracting the portion of the variance
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captured by the initial basis estimate from X:

X̂=X� X eW eW>
: ð3Þ

Then, PCA is conducted over X̂:

corrðX̂Þ=ΣΛΣ�1, ð4Þ

where Σ is the matrix of eigenvectors (principal components) and
Λ is a diagonal matrix of eigenvalues such that
diagðΛÞ= λ1 λ2 λ3 � � � λN

� �
. The components whose asso-

ciated eigenvalues are greater than the upper bound defined by

the Marčenko-Pastur law λ + = ð1 +
ffiffiffi
N
T

q
Þ
2
are kept12,69. Here, T is the

number of time bins in X. In doing so, the variance in the data
that is contributed by noise is removed and the remaining
variance unexplained by the initial estimates is kept. Concatenat-
ing the initial basis estimate obtained from hierarchical clustering
eW with the L eigenvectors associated with the significant
components obtained from PCA, Σλ+

= σ1 σ2 σ3 � � � σL

� �
,

yields the final estimate of the transform matrix:

eW0
= eW j Σλ+

� �
= u1 � � � uM j σ1 � � � σL

� �
: ð5Þ

Note that it can be shown that the matrix eW0 is still an orthonormal
basis; if λ1,…,λn and v1,…,vn are the eigenvalues and eigenvectors
respectively of the covariance matrix of the residuals in eq. (3),
then Wvi

> =0 8λi >0.
The flavour of ICA used in the present study is reconstruction

ICA70. This method was chosen over the popular FastICA algorithm for
its higher computational efficiency (unconstrained optimization) and
lower sensitivity towards un-whitened data. The original data matrix X
is first projected onto the basis defined by the estimate transform
matrix eW0 to obtain X0. Following this projection, only the variance
accounted by the detected ensembles and the extra variance still
remaining following PCAde-noising are kept. Then, reconstruction ICA
is conducted by solving the following optimization problem:

minimize
W

1
N

XN

i = 1

jjxi � xiWW>jj22 +
XN

i = 1

Xk

j = 1

gðxiWjÞ, ð6Þ

where xi are the rows of X0,Wj are the columns of W and
gðxÞ= 1

2 logðcoshð2xÞÞ is the contrast function that acts as a soft penalty
term in place of the hard orthonormality constraint found in standard
ICA. Here, the initial estimate of W passed to the solver is simply the
identitymatrix of size equal to the number of components in eW0

, given
that the data has already been projected onto the basis of the estimate.
Taking eW0W> and extracting the first M columns of the resulting
matrix, corresponding to the number ensembles detected by hier-
archical cluster, yields the final principal components. From here, the
extraction of the reactivation strength time-course vectors, and the
characterization of the reactivated features proceeds as originally
described in12. That is, projecting X into this components space gives
the reactivation strength as a function of time for each ensemble.
Reactivation events were identified when the reactivation strength
exceeds three standard deviations above the mean. The onset and
offset of these events were delimited by 25% of this threshold.
Similarly, to extract the features encoded by resting-state ensembles
during RUN periods, the corresponding firing-rate matrix during RUN
can be projected into this component space (Supplementary Fig. 22).
Then, computing the mean ensemble activity over spatial locations
gives the reactivated features.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in the DRYAD
database under accession code https://doi.org/10.5061/dryad.
1ns1rn91c71. Source data are provided with this paper.

Code availability
The code that supports the findings of the present study is
available on GitHub at https://github.com/LelouchLamperougeVI/
OfflineEnsembles and deposited in the Zenodo database under
the accession code https://doi.org/10.5281/zenodo.1003086172.
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