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Consensus-building conversation leads to
neural alignment

Beau Sievers 1,2 , Christopher Welker 1, Uri Hasson 3,
Adam M. Kleinbaum 4 & Thalia Wheatley1,5

Conversation is a primary means of social influence, but its effects on brain
activity remain unknown. Previous work on conversation and social influence
has emphasized public compliance, largely setting private beliefs aside. Here,
we show that consensus-building conversation aligns future brain activity
within groups, with alignment persisting through novel experiences partici-
pants did not discuss. Participants watched ambiguous movie clips during
fMRI scanning, then conversed in groups with the goal of coming to a con-
sensus about each clip’s narrative. After conversation, participants’brainswere
scanned while viewing the clips again, along with novel clips from the same
movies. Groups that reached consensus showed greater similarity of brain
activity after conversation. Participants perceived as having high social status
spoke more and signaled disbelief in others, and their groups had unequal
turn-taking and lower neural alignment. By contrast, participants with central
positions in their real-world social networks encouraged others to speak,
facilitating greater group neural alignment. Socially central participants were
also more likely to become neurally aligned to others in their groups.

We take for granted that conversation plays a profound role in shaping
belief and coordinating behavior. We rely on consensus-building
conversation when the stakes are high, as in jury trials, scientific
funding decisions, corporate boardrooms, and elections. Conversa-
tion is also pervasive in day-to-day life, from bars and coffee shops to
workplace meetings1. Public conversation is the basis of deliberative
democracy2, and disruption of public conversation is considered a
serious political threat3. Yet, we lack scientific understanding of how
conversation shapes our beliefs and brain responses over time. How
does talking change our thinking?

Previous research has shown that conversation determines
important attitudes and behaviors. Even brief conversations can have
meaningful effects, such as creating support for anti-discrimination
laws4 or influencing voting behvior5. Further, these effects can spread
through social networks. Talking to a friend about voting may affect
not only who they vote for, but who their future conversation partners
vote for6,7. Remarkably, even brief social contact can influence the

health outcomes of friends and friends of friends8,9, including
depression10, and drug and alcohol use11–14.

However, it remains unclear whether these conversations shape
the way individuals fundamentally see the world, as behavior is not a
perfect reflection of deeply held belief—private acceptance is distinct
from public compliance15. Psychologists, economists, and others
offering explanations of social influence have therefore often treated
conversation as a means of achieving public compliance, setting pri-
vate beliefs aside. This may be because public compliance is easier to
measure.

Recent studies suggest that neural alignment, measured as inter-
subject correlation (ISC) of blood-oxygen level dependent signal from
functional magnetic resonance imaging (fMRI)16, can be used as a
proxy measure of private acceptance. Although we cannot look at any
one person’s brain and know the exact contents of their thoughts, we
canmeasure the similarity of activity across brains. For example, Chen
et al.17 used ISC to show that the structure of memory was shared
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among those with similar experiences. ISC has also been used to draw
out inter-individual differences. When some movie-viewing partici-
pants pretended to be detectives while others pretended to be interior
decorators, the decorators’ brains systematically differed from the
detectives’ brains18. Likewise, when two groups were given different
interpretations of an ambiguous story, alignment of brain activity was
higher among people given the same interpretation19. A similar pattern
of results held when participants invented their own interpretations of
movie depicting interacting abstract shapes20.

In these prior studies, experimenters either dictated an inter-
pretation to a group or individuals reached an interpretation in isola-
tion, eliminating the natural, back-and-forth dynamic of mutual social
influence. But studies of brain alignment need not be limited to top-
down instruction in artificial settings. For example, brain alignment in
the classroom has been associated with student engagement21 and
retentionof course content22. Interestingly, Parkinson and colleagues23

found that friends in a real-world social network were more likely to
have similar brain activity, suggesting brain alignment may play a role
in determining who befriends whom, perhaps in conjunction with
social reward systems24. Previous research has also shown that per-
sonality traits25–28 predict network centrality, suggesting that align-
ment of brain activity within social networksmay depend on the social
behaviors of individuals.

Here, we show that groups who have consensus-building con-
versations become more neurally aligned relative to groups who do
not reach consensus and controls who do not converse. Drawing
participants from real-world social networks allows us to identify
relationships between conversation behavior, network centrality, and
changes in neural alignment toward or away from individual partici-
pants. The anatomical locations of neural alignment differ across
groups and conversations, but are concentrated in brain areas asso-
ciated with visual attention and movement, narrative understanding,
andmemory. Conversationbehavior is alsoassociatedwithdifferences
in neural alignment: Groupswith participants perceived as having high
social status show unequal turn-taking and lower alignment, whereas
groups with participants who were more central in their real-world
social networks show greater alignment. This may be because per-
ceived high-status participants signal disbelief in others’ proposals and
speak more, disrupting group consensus. By contrast, high-centrality
participants encourage others to speak and are more likely to become
neurally alignedwith their groups.Wediscuss the implications of these
results for understanding how cognitive processes shape the structure
of social networks, as well as for theories of social influence, language,
and the mind.

Results
Experimental paradigm
In Session 1, participants (n = 49, 23 male, 26 female based on self-
reported free response; age range 26–32, mean age = 27.66)) watched
movie clips with ambiguous narratives during brain scanning using
fMRI. Afterward, participants answered a survey assessing their beliefs
about each clip’s narrative. In Session 2, participants met in small
groups (9 groups; mean group size;= 4.2) to discuss the movie clips
with the goal of reaching a consensus. Group membership was ran-
domly assigned, pursuant to participants’ scheduling constraints. Each
group answered the survey presented in Session 1, but expressing the
shared view of the group. Participants then rated the influence of the
other participants and indicated their personal level of agreementwith
the consensus. In Session 3, participants re-watched the movie clips
during fMRI scanning, along with additional novel clips featuring the
same characters. Participants then answered a survey assessing their
beliefs about the novel clips. A control group (n = 9) skipped Session 2,
doing both fMRI sessions without the intervening group conversation.

To facilitate testing our social network centrality hypothesis, all
participants were Master of Business Administration students at a

private university in the United States. Because the university was rural
and relatively isolated, the students formed a tight-knit community
and, as part of their coursework, answered a survey used to map their
cohort’s social network.

For a complete description of the experimental procedure, see
Methods.

Consensus-building conversation aligned future brain activity
All participants but two reported agreeing with their group’s con-
sensus (as rated from −3 to +3 with values > 0 indicating more agree-
ment; 1-sample t(28) = 8.32, two-tailed parametric p <0.001,
mean= 1.71, 95% CI = [1.29, 2.13]). Further, each group converged on a
different consensus: after conversation, participants’ survey answers
became more similar to the answers of their conversation group
members, compared to those in other groups. Hierarchical linear
regresison was used to test the effect of session (before versus after)
and comparison type (within versus between groups) on the city block
distance between subjects’ survey answers (behavioral distance). The
model included both predictors and their interaction, as well as ran-
dom intercepts for participant pairs. Themodel significantly explained
variance in behavioral distance (marginal R2 = 0.28, two-tailed permu-
tation p <0.001, n = 1369 participant pairs). Session, comparison type,
and their interaction all significantly predicted behavioral distance.
Distance was higher before conversation (β = 2.78, 95% CI = [2.48,
3.08], two-tailed permutation p <0.001), lower within groups
(β = −3.67, 95% CI = [−4.4, −2.94], two-tailed permutation p < 0.001),
and higher within groups before conversation (β = 3.67, 95% CI = [2.67,
4.67], two-tailed permutation p <0.001) (Supplementary Figure 1).

Increased inter-subject correlation of fMRI BOLD signal (ISC) was
observed within conversation groups, supporting the hypothesis that
consensus-building conversation can align future brain activity. To
capture change in ISC that was convergent across groups, we tested
the effect of being in any conversation group (Fig. 1 bottom left,
Supplementary Figure 2). Importantly, this analysis could not show the
effect of being in a specific group that conversed about a specific
movie clip. To address this limitation, we tested the effects of dis-
cussing specific movies with specific groups, counting the number of
groups with statistically significant results (Supplementary Fig. 4). We
use the term “movie–group combination” to refer to effects assessed
for a specific groupwatching a specificmovie; 5movies times 9 groups
gives 45 possible movie–group combinations. A wider range of brain
areas were significant at the movie–group combination level, indicat-
ing that the neural effects of conversation depended on who was
speaking and what they were speaking about.

In conversation groups, alignment tended to increase in visual
and auditory sensory areas, as well as in higher-order areas associated
with the attention and default mode networks, including the temporal
parietal junction, angular gyrus, posterior cingulate, medial prefrontal
cortex, and temporal pole. These results stand in contrast to the
control group (no conversation), where ISC mostly decreased (Sup-
plementary Fig. 3). See Supplementary Material for brain maps, Neu-
rosynth terms (described below), change in alignment over time, and
visualization of group convergence for each brain area with statisti-
cally significant change in alignment.

Importantly, the effects of consensus-building conversation can
generalize to new stimuli. When viewing previously unseen clips
sampled from later in each ambiguous movie, neural alignment was
significantly higher within conversation groups. Across groups, higher
within-group alignment for novel movies was observed in bilateral
superior frontal gyrus (Supplementary Fig. 5). At the movie–group
combination level, reflecting alignment unique to each group, after-
conversation alignment was observed in a wide network of brain
regions (Supplementary Fig. 6), consistent with the hypothesis that
conversation can affect many future cognitive processes. Multiple
regressionwasused to localize brain areaswhere ISCduring viewing of
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novel clips was predicted by conversation; for all conversation groups,
and then for each movie–group combination (see Methods:
Conversation-induced change in ISC).

Change in ISC was calculated by subtracting ISC before con-
versation from ISC after conversation, for each pair of participants.
Multiple regression with multiple comparisons correction was used to
localize change in ISC unique to each movie–group combination or
present in all conversation groups. fMRI regression analyses were
controlled by an intercept term corresponding to all within- and
between-group participant pairs, including control group participants.
This intercept term controlled for the effect of watching the movie
clips twice, with or without conversation, regardless of conversation
group. Unless otherwise noted, the reported results are relative to this
intercept. During some movie clips, the control group showed some
localized positive changes in ISC. This may be because some infor-
mation was shared within most conversation groups, but not among
controls, or because simply having a conversation, regardless of con-
tent, changed how participants engaged with the movie clips.

A permutation testing method that accounted for the grouped
structure of the data was used to limit the false positive rate29. Because
groups were small and conservative multiple comparisons correction
was used, it is possible that this analysis did not detect all changes in

neural alignment. The scope of inferential statistical generalization is
limited to the specific movie clips and groups reported here.

Similarity of survey answers was correlated with whole-brain
alignment, even across groups, including control participants that did
not converse (R(3476) = 0.09, two-tailed permutation p <0.001,
n = 3478 unordered participant pairs across all movie clips). To
account for the non-independenceof participant pairs, amixed-effects
model with random intercepts for participant pairs was used to esti-
mate the effect of meaning change on whole-brain alignment, finding
similar results (standardized β = 0.1, 95% CI = [0.07, 0.13], two-tailed
parametric p <0.001). These findings suggest that the timings and
locations of neural alignment were not idiosyncratic, but were driven
by convergence of beliefs (see Supplementary Material). Whole-brain
alignment was calculated as the sumof unthresholded positive change
in ISC. Note that while most statistically significant regions showed
increases in alignment, some regions showed decreases.

See Supplementary Data 1 for a table of significant clusters across
all fMRI analyses, corrected for multiple comparisons (cluster forming
threshold: p =0.01, minimum cluster size: 32 voxels, p < 0.05 cor-
rected), with mean, peak, and 95% CI columns describing beta esti-
mates for each significant cluster and atlas labels from Destrieux,
Fischl, Dale, & Halgren30.

Fig. 1 |Methodand change in alignment across allmovie clips andgroups.Top:
Participants (n = 49) viewedfive ambiguousmovie clips duringbrain scanning, then
met in small groups anddiscussed themovieswith the goal of reaching a consensus
interpretation. Participants re-watched the movie clips during brain scanning, as
well as novel clips from later in each movie. At each step, participants filled out a
survey capturing their interpretations. Linear regression was used tomodel change
in inter-subject correlation (ISC) (see Methods). Bottom left: Change in neural
alignment caused by consensus-building conversation. Color shows the multiple
regression beta weight for being in any conversation group, across all five movie
clips (n = 703 unordered participant pairs from 9 conversation groups, control
group excluded). Results were thresholded at a two-tailed permutation test P-value
of 0.05 corrected formultiple comparisons. Brainmaps created using AFNI/SUMA.

Bottom right: Participants whose survey answers became similar showed greater
neural alignment (n = 3478 unordered participant pairs across all movie clips,
including control group participants that did not converse). The central diagonal
line and shaded region show the regression line of best fit and its 95% confidence
interval. Violin plots use width to represent the density of the distribution, with a
central dashed line showing the median and dotted lines showing the lower and
upper quartiles. “Brain” icon by Clockwise from Noun Project, available at https://
thenounproject.com/icon/brain-1080481/. “Meeting” icon by SBTS from Noun
Project, available at https://thenounproject.com/icon/meeting-5279011/. “Clip-
board” by Made by Made from Noun Project, available at https://thenounproject.
com/icon/clipboard-674066/. “Film” icon by NeueDeutsche from Noun Project,
available at https://thenounproject.com/icon/film-531914/.
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Conversation aligned brain areas associated with a range of
cognitive processes
After-conversation alignment was observed in brain areas associated
with a wide range of cognitive processes, as estimated by quantitative
reverse inference using Neurosynth31. Neurosynth uses a large data-
base of previously published brain imaging literature, where English-
language terms are associated with brain activation likelihood maps.
For each statistically significant brain area in all reported fMRI ana-
lyses, we estimated which Neurosynth terms were a likely match. We
then identified groups of terms that tended to co-occur using principal
component analysis. 18 groups of terms explained 70% of the variance
in the term probability data (Fig. 2). The group of terms that explained
the most variance included words related to vision and motion, sug-
gesting that one important function of conversation is future align-
ment of visual attention. Other high-ranking principal components
were associated with motor activity, working memory, face percep-
tion, the default network, auditory perception, body movement and
social understanding, and language. See Supplementary Material for
term probabilities for each brain region and Methods for additional
detail.

Neural influence and social network centrality
The change analysis reported above could not capture directional
social influence. Consider the following hypothetical example: Amar
influences Beth, and later in the same conversation Carlos influences
Amar. Themethod used above would detect that Carlos and Amar had
aligned, but would overlook Amar’s influence on Beth. Tomeasure the
degree to which each participant influenced each other participant we
performedaneural influenceanalysis. Eachparticipantwas analyzed as
both the person exerting influence (called the ego) and the person
being influenced (called the alter), accounting for the possibility that
participants could both influence others andbe influencedby others in
different respects. The amount of neural influence was the extent to
which the alter becamemore similar to the ego’s initial patternof brain
activity. Neural influencemapswere calculated by comparing the brain
activity of the ego before conversation to that of the alter both before
and after conversation. Whole-brain neural influence was calculated as
the sumof positive values in the unthresholded neural influencemaps.

Participants’ centrality in the social networkof their school cohort
wasmeasured using brokerage and eigenvector centrality. Brokers are

those who connect people who would not otherwise be connected,
allowing them to control the flow of information between cliques32.
People with high eigenvector centrality are both well-connected and
have many well-connected friends33. Because of hypothesized differ-
ences between brokerage and eigenvector centrality32,34, we tested the
unique contributions of these measures. We also computed a PCA
centrality score capturing variation common to both eigenvector
centrality and brokerage (see Methods).

Unexpectedly, participants who were central in their social
networks weremore likely to be neurally influenced by others in their
conversation groups (Fig. 3, Supplementary Figs. 7–10, Supplemen-
tary Table 8, Supplementary Data 1). Multiple regression was used to
locate brain areas where neural influence was predicted by the PCA
centrality, eigenvector centrality, and brokerage of egos and alters in
the same conversation group, across all groups and movie clips (see
Methods).

Ego PCA centrality predicted negative neural influence in right
middle temporal gyrus (Supplementary Fig. 7), while alter PCA cen-
trality predicted positive neural influence across a range of brain areas
(Supplementary Fig. 8). Similarly, ego eigenvector centrality predicted
negative neural influence in left middle temporal gyrus (Supplemen-
tary Fig. 9), while alter eigenvector centrality predicted positive neural
influence across a range of brain areas (Supplementary Fig. 10). These
results suggest variance in eachcentralitymeasurewas associatedwith
different neural processes. Analyses of neural influence specific to
each group–movie combination yielded qualitatively similar results
(Supplementary Figs. 11 and 12).

To detect neural influence that occurred in different parts of the
brain for different pairs of participants, we tested whether network
centrality predicted whole-brain neural influence. A mixed-effects
model including eigenvector centrality and brokerage for both egos
and alters as predictors modestly predicted whole-brain influence
(marginal R2 = 0.03, two-tailed permutation p =0.001). Alter eigen-
vector centrality was the only significant predictor, andwas associated
with more whole-brain influence (β = 0.43, 95% CI = [0.12, 0.74], two-
tailed permutation p =0.007). No ego centralitymeasures significantly
predicted whole-brain influence, and a separate mixed-effects model
analysis showed that neither ego nor alter PCA centrality significantly
predicted whole-brain influence. To account for the non-
independence of participant pairs, these models included random

Fig. 2 | Cognitive processes associatedwith alignedbrain areas.Conversation-related neural alignment was detected in brain areas associated with a range of cognitive
processes, as identified by quantitative reverse inference using Neurosynth31.
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intercepts for participant pairs. Participant pairs were included in
these analyses only if they were in the same conversation group.

Suggesting that neural influence was related to changes in belief,
survey influence calculated over the survey answers of ordered parti-
cipant pairs was correlated with whole-brain neural influence
(R(8618) = 0.06, two-tailed permutation p <0.001, n = 8620 ordered
participant pairs across allmovie clips), and survey influencepredicted
neural influence in a mixed-effects model with random intercepts for
participant pairs (standardized β =0.06, 95% CI = [0.04, 0.08], two-
tailed permutation p <0.001) (see Supplementary Material for addi-
tional analyses comparing behavioral and neural results).

Network centrality and perceived social status related to group
alignment
Some groups showed stronger consensus and greater neural align-
ment than others. Exploratory hierarchical regression analysis showed
that groups that spoke more had higher neural alignment (β =0.56,
95% CI = [0.33, 0.79], two-tailed permutation p < 0.001). Groups with
more high-centrality participants also showed higher neural alignment
(β =0.52, 95% CI = [0.3, 0.73], two-tailed permutation p <0.001), and
this effect was stronger the more words were spoken in conversation
(2-way interaction, β = 0.32, 95% CI = [0.11, 0.53], two-tailed permuta-
tion p =0.04). However, groups with unequal turn-taking had lower
neural alignment (β = −0.35, 95% CI = [−0.57, −0.13], two-tailed per-
mutation p =0.037).

Groups with high-centrality participants had higher behavioral
alignment (β = 7.24, 95% CI = [4.15, 10.33], two-tailed permutation
p <0.001). However, groups with high-centrality participants and also
unequal perceived social status showed much lower behavioral align-
ment (interaction between centrality and Gini coef. of perceived social
status, β = −17.22, 95% CI = [−24.77, −9.68], two-tailed permutation
p <0.001). To account for the hierarchical structure of the data,
models included random intercepts for movie clips. Both regression
models significantly explained variance in outcomes (neural

alignment: marginal R2 = 0.53, two-tailed permutation p < 0.001, n = 45
group–movie pairs; behavioral alignment: marginal R2 = 0.34, two-
tailed permutation p <0.001, n = 45 group–movie pairs).

Below, we describe similarities and differences between high PCA
centrality and perceived high-status participants in their word choices
and general conversation behaviors. For further description and
examples of participants’ conversation behavior, see Supplementary
Material.

Word use in each speech turn was modestly predictive of parti-
cipants’ PCA centrality (F(350, 7771) = 2.0, two-tailed permutation
p <0.001, R2

adj =0.04) and perceived status (F(350, 7771) = 2.39, two-
tailed permutation p <0.001, R2

adj = 0.06). For regression analysis
details see Methods; see Supplementary Table 2 for significant word-
level betas and P values and Supplementary Data 2 for a complete
regression table.

To qualitatively understand how the identified words functioned
in context, we searched the conversation transcripts and read the
speech turns before, after, and containing each word. This revealed
marked differences in how high-centrality and perceived high-status
participants’ behaved in conversation. High-centrality participants
encouraged others to express themselves, whereas perceived high-
status participants did the opposite.

While both high-centrality and perceived high-status participants
used casual language like cool, gotta, for sure, dude, shit, gonna, and
’cause, these words were stronger predictors of centrality than per-
ceived status. High-centrality (but not perceived high-status) partici-
pants also spoke quite frankly, discussing sexual content ("There’s
gonna be somuch tension it’s gonna turn sexual”), describing ideas or
movie clips as weird ("I had some really weird thoughts on this one”),
and using fuck as an intensifier ("Weird fucking movie”). High-
centrality participants also prompted others to comment on the
group’s survey answers using far ("So, what I have so far is…”), answer
("That’s a good answer now”), and character (Reading a survey ques-
tion aloud: “Are the characters discussing politics?”). These behaviors

Fig. 3 | Neural influence across all movie clips and groups. Changes in neural
alignment toward or away from individual participants was captured by a neural
influencemeasure. For each participant pair, one was designated the ego while the
other was designated the alter. Neural influence reflects the movement of the
alter’s BOLD time series toward the ego’s initial BOLD time series. When egos had
higher PCA centrality, alters moved away from them after conversation (top brain
map, blue areas). When alters had higher PCA centrality, they moved toward their

egos after conversation (bottom brain map, red areas). All movie clips and groups
were analyzedusing a single regressionmodel (seeMethods). Brainmaps (n = 1406
ordered participant pairs from 9 conversation groups, control group excluded)
show the beta weights for ego PCA centrality (middle) and alter PCA centrality
(bottom) (see Methods). Brain maps created using AFNI/SUMA. “Brain” icon by
Clockwise from Noun Project, availble at https://thenounproject.com/icon/brain-
1080481/.
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may havemade other participantsmore willing to express themselves.
By contrast, perceived high-status (but not high-centrality) partici-
pants challenged others’ proposals by asking really? (e.g.: Speaker 1:
“Yeah, that’s Joaquin Phoenix.” Speaker 2: “Really?”). They also tended
to express tentative or reserved approval of others’ proposals using
fine ("I can gowith it. I’mfine.”). Thesebehaviorsmayhavemadeothers
less willing to express themselves.

Pairs of hypothesis-blind coders classified each speech turn by its
function in the conversation (see Methods). Perceived high-status
participants were more likely to propose explanations of movie con-
tent (β = −0.81, 95% CI = [−1.17, −0.44], two-tailed parametric
p =0.001), more likely to direct attention to others (β = 0.09, 95%
CI = [0.04, 0.13], two-tailed parametric p <0.001), and were also more
likely to give orders to others (β = 0.1, 95% CI = [0.08, 0.12], two-tailed
parametric p < 0.001). Perceived high-status participants were also
more likely to reject others’ proposed explanations, favoring implicit
rejection (e.g., by asking “Really?” or saying something that when
evaluated in context suggests another’s proposal is unlikely) (β = 0.04,
95% CI = [0.01, 0.07], two-tailed parametric p =0.016). Perceived high-
status participantsweremore likely to speakwith confidence (β = 0.02,
95% CI = [0.02, 0.03], two-tailed parametric p <0.001) and more likely
to make jokes (β = 0.01, 95% CI = [0.0, 0.02], two-tailed parametric
p =0.018). Accordingly, speech turns by perceived high-status parti-
cipants were slightly less likely to be ignored by others (β = −0.01, 95%
CI = [−0.01, −0.01], two-tailed parametric p <0.001).

Likeperceivedhigh-status participants, high-centrality participants
were more likely to speak with confidence (β =0.02, 95% CI = [0.0,
0.03], two-tailed parametric p=0.043). However, high-centrality parti-
cipants were more likely to ask others for clarification (β =0.16, 95%
CI = [0.06, 0.25], two-tailed parametric p=0.001), were less likely to
suggest changes toother speakers’proposals (β = −0.13, 95%CI = [−0.21,
−0.05], two-tailed parametric p =0.003), and were slightly less likely to
have their proposals incorporated into the group explanation of the
movie content (β = −0.01, 95% CI = [−0.02, −0.0], two-tailed para-
metric p =0.045).

Groups with higher median perceived status had more unequal
turn-taking (R(43) = 0.35, two-tailed permutation p =0.02). Accord-
ingly, percived high-status participants spokemore (R(37) = 0.65, two-
tailed permutation p <0.001) and were rated as more influential by
others in their group (R(27) = 0.74, two-tailed permutation p <0.001).
Participants who spoke more were also rated more influential
(R(27) = 0.77, two-tailed permutation p <0.001). However, perceived
status was negatively correlated with pairwise, whole-brain neural
influence (R(7028) = −0.05, two-tailed permutation p <0.001, n = 7030
unordered participant pairs across all movie clips) and amixed-effects
model trained with random intercepts for participant pairs yielded a
similar result (standardized β = −0.05, 95% CI = [−0.085, −0.016], two-
tailed parametric p =0.005). The correlation between centrality and
words spoken was not significantly different from zero (R(37) = 0.24,
two-tailed permutation p =0.143), and the correlation between cen-
trality and influence ratings was not significantly different from zero
(R(27) = 0.15, two-tailed permutation p =0.433).

Taken together, these results suggest that the conversation
behaviors of high-centrality participants supported group alignment,
while the behaviors of participants with perceived high social status
produced public compliancewithout private acceptance, and that this
was detrimental to group alignment.

Discussion
The naturalistic study design, in which participants showed higher
neural alignment after discussing movies they just watched, exposes
the power of conversation to shape how our brains process the world.
Differences between conversation groups and controls show that
consensus-building conversation strengthens the neural alignment of
group members across a range of brain areas. These areas were

associated with many cognitive processes, ranging from vision and
audition to attention, language, andmemory. Each group aligned in its
own way, and group alignment was correlated with the degree of
behavioral consensus. Further, increases in group alignment general-
ized to novel stimuli not discussed, indicating that conversation pro-
vided a mental framework to interpret new information. Importantly,
though the present results show that consensus-building conversation
can create neural alignment, the mechanistic details of this process
remain unknown.

We did not expect all conversations to be equally successful, and
some conversation groups aligned more than others. Specifically,
groupswith participants perceived as having high social status showed
less alignment, while groups with high-centrality participants showed
more alignment. This may be because perceived high-status and high-
centrality participants behaved differently in conversation. Groups
with higher median perceived status had more unequal turn-taking.
This may be because percieved high-status participants spoke more,
gave more orders, and implicitly rejected others’ proposals. Perceived
status was associated with higher influence ratings from group mem-
bers, but lower neural influence measurements, raising the possibility
that perceived high-status conversation behaviors produced public
compliance without private acceptance. This misperception of status
cues as markers of influence may play a pernicious role in the rein-
forcement of power hierarchies35.

By contrast, real-world social network centrality was associated
with neural influencemeasurements in both directions: high-centrality
participants becamemore similar to their groupmembers, while at the
same time their group members became more similar to them.
Accordingly, groups with high-centrality participants achieved greater
neural alignment. High-centrality participantsmay have facilitated this
alignment by creating a psychologically safe environment, encoura-
ging others to speak36, privately accepting and internalizing others’
proposals, and rallying their groups around agreeable consensus
positions.

These results suggest the possibility that thinking like one’s con-
versation partners facilitates social connection. Previous research on
personality and social network centrality points in this direction:
People with high self-monitoring personalities (i.e., those who adapt
their behavior to the people around them) tend to be more socially
central37,38, and they becomesobymaking friends acrossdisconnected
cliques28. Further, survey measures of self-monitoring, cognitive flex-
ibility, and communication flexibility are closely related and highly
correlated39,40. Althoughwe do not knowhowour participants became
central in their social networks, it is plausible that the ability to help
groups reach consensus through a combination of influence and
flexibility enabled them to grow large and diverse groups of friends. It
is alsopossible that those in central network positions for independent
reasons are motivated to develop consensus-building conversation
behaviors. By connecting the dots between how people think, how
people speak, and who they socialize with, we hope to provide a
cognitive, process-level view of social network structure.

As across the sciences, arts, and humanities, knowledge is
increasingly produced by collaborative, conversing teams41, these
effects have practical implications for leadership and management, as
well as for predicting the spread of information through social net-
works. The present results also fit research showing that powerful (i.e.,
socially central) individuals can afford to manage the conflicts of
others, resulting in a benefit to their group42,43.

Limitations on generalization
Although the present results are suggestive, they are limited in
scope. The reported effects are relatively small, and because movie
clips and groups were treated as fixed effects, the statistical meth-
ods used do not guarantee generalization. Different groups dis-
cussing different movies may exhibit different patterns of
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alignment and influence. In particular, we note that participants in
the present study had very little moral stake in the movie clips
discussed. Morally charged conversations may yield different
results. Further, participants were given the explicit goal of coming
to a consensus. While many natural conversations share this feature
explicitly (e.g., jury deliberations) or implicitly (e.g., meetings at
work), many other important conversation contexts are naturally
adversarial (e.g., political debates), and in these contexts we should
also expect different results. In particular, responsiveness to influ-
ence may be less desirable in contexts where groups seek a correct
solution to a well-defined problem, or where there is direct com-
petitionwithin or between groups. Further, our participants were all
Master of Business Administration students at a private university in
the United States, and likely differed from the general population in
socioeconomic status, general intelligence, and conversation
behavior, limiting the generalizability of the reported findings.
Finally, the conversation content analysis used a rubric to classify
speech turns. We found that percieved high-status participants
made more statements not captured by the rubric (β = 0.02, para-
metric p = 0.007), suggesting the rubric was not a complete catalog
of relevant conversation behaviors. Uncovering generalizable fac-
tors affecting consensus and neural alignment will require future
research.

Theoretical implications: influence, language, and the mind
In agreement with prior studies44,45, we found that the cognitive pro-
cesses underlying social understanding were shared across people.
Further,we found that theseprocessesweremore aligned after natural
consensus-building conversation, not only when participants were
listening to each other, but into the future. These results bear on
theories of social influence, language and the mind.

Much research on social influence has focused on public com-
pliance, setting aside the long-lasting effects of social interaction on
private cognition15,46–50. However, the present results show that
consensus-building conversation can align neural responses within
groups, and that this alignment can generalize to novel stimuli that
were not discussed. This suggests a stronger role for private
acceptance in understanding social influence, and demonstrates the
feasibility of fMRI as a tool for measuring changes in private
thought51.

The observed results could only have occurred if participants’
ways of speaking were commensurable, complicating strong versions
of accounts on which people regularly use the same words but with
completely different meanings52–54. Additionally, we would not have
observed neural alignment if the participants tended to represent the
same concepts using different neural processes55,56.

The reported results suggest the possibility that one function of
consensus-building conversation is producing neural alignment. This
would pose a challenge to the claim that language did not evolve for
communication, but instead for organizing individual thought57. By
contrast, the reported results are consistent with the theory that the
coordination of belief is an important evolutionary function of
language58–64, and further suggest the alignment of neural processes
governing attention as a mechanism. On this account, conversation
resembles a neuro-feedback process65 where people use language to
understand and influence others’ mental states. The tight, ever-
evolving coupling between your thoughts and my thoughts, corre-
sponding to tight neural alignment across our brains, is a plausible
mechanism for building group realities based on shared language. This
view is compatible with predictive processing accounts of
cognition66,67, especially those that place special importance on the
challenge of predicting other people68,69. The aligning function of
conversation may also support cumulative development on an evolu-
tionary time scale, as the language environment created by past gen-
erations scaffolds the learning of the next70–74.

Methods
Participants
Participants who completed the social network survey were first-year
Master of Business Administration students at a private university in
theUnited States (n = 865). The surveywas completed as a part of their
coursework on leadership. A subset of these participants (n = 49, 23
male, 26 female based on free-response self-report; age range 26–32,
mean age = 27.66) went on to participate in the fMRI studies. We had
no hypotheses concerning sex or gender, so sex and gender were not
considered in the study design beyond recruiting a gender-balanced
participant sample. Scheduling was facilitated by a custom web
application that allowed participants to select available sessions. Par-
ticipants met in small groups with 3–6 participants per group (9
groups; mean group size = 4.2). 9 participants were assigned to a
separate control group that did not complete the conversation task.
Participants were compensated with a cash payment and an animated
digital image of their brain anatomy. All participants provided written
informed consent, and all experimental procedureswere reviewed and
approved by the Dartmouth College Committee for the Protection of
Human Subjects.

Exclusions and missing data
A total of 59 participants underwent fMRI scanning, however, 10 par-
ticipants were excluded, yielding 49 participants. 5 participants were
excluded because of technical difficulties during scanning, 1 was
excludedbecause the scanner compatibleglasseswere insufficient and
they couldn’t see actors’ facial expressions, 2 were excluded because
they terminated the scan session due to discomfort, 1 was excluded
because they were absent from the group discussion, and 1 was
excluded because an anatomical anomaly was detected (this partici-
pant was referred to a neurologist for follow-up in accordance with
Dartmouth Brain Imaging Center safety policies). Due to a technical
error, three groups were given an incorrect version of the survey for
fMRI session 2 (after conversation) that did not include run-by-run
agreement ratings or yes-or-no questions for the repeatedmovie clips.
These same three groups were also not given pen-and-paper surveys
after the group session, but instead verbally confirmed that they
agreed with the group consensus (the realization that this was inade-
quate led to the introduction of the pen-and-paper survey).

Session 1: before-conversation movie viewing
Participants viewed a selection of movie clips during fMRI scanning.
Naturalistic, narrative movie clips were selected to capture the audi-
ence’s attention over an extended period of time, maximizing the
anatomical extent of neural alignment75. All movie clips focused on
social interaction and were selected from a range of major motion
pictures (see Movies, below). Importantly, all movie clips were narra-
tively ambiguous, allowing participants to form a range of interpreta-
tions that could be plausibly be changed via social influence. In
addition, the sound was turned off, removing music, dialog, and con-
text cues that might otherwise constrain interpretation of the narra-
tive. Two additional movie clips with interesting social content were
selected for use in hyperalignment76,77. Hyperalignment clips were
presented with the sound on. See Supplementary Table 7 for titles,
presentation order, and duration in seconds and TRs. All movie clips
were edited for time and narrative continuity. The edited clips may be
downloaded at https://osf.io/kr9fb/.

The before-conversation fMRI session consisted of an anatomical
scan, five echo-planar imaging (EPI) runs of ambiguous movie clip
viewing, and two EPI runs of hyperalignment movie clip viewing (nat-
uralisticmovies with rich social interaction, with the sound turned on).
After scanning, participants answered a detailed survey to assess their
individual, before-conversation understanding of the movie clip con-
tent. Questions about each movie clip were accompanied by an array
of screenshots to act as a memory aid.
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Session 2: group conversation
Participants met in groups of three to six and were seated around a
circular table. The only instructions were to talk with the goal of
reaching a group consensus, and to fill out the survey so it reflected
that consensus. The survey included an array of screenshots for each
clip as a memory aid and was presented on a laptop that could be
moved around from participant to participant. Participants were
allotted 15 minutes of conversation per movie clip and were given
verbal warnings when the remaining time reached five minutes and
one minute. If participants finished before the time limit was reached
they informed the experimenter and moved directly on to discussing
the next clip. After participants were finished, they each went into
separate rooms and filled out pen-and-paper surveys rating their
agreement with the group consensus and evaluating the influence of
each group member (including themselves) on the group consensus.

Session 3: after-conversation movie viewing
In thefinal fMRI scan session, participants viewed the same selectionof
clips presented during Session 1. Participants then viewed five more
movie clips, each of which was a scene from later in each of themovies
they had already seen. These clips were used to test the generalization
of the group consensus to novel stimuli. After leaving the scanner,
participants answered a survey containing the same questions as in
Sessions 1 and 2, except for the new set of clips the participants had
just seen.

Movies
Gower, L., Morris, N., Piel, J-L. (Producers), & Glazer, J. (Director).
(2004). Birth. United States: New Line Cinema.

Pitt, B., Gardner, D., Scott, R., Daly, J., Valdes, D. (Producers), &
Dominik, A. (Director). (2007). The Assassination of Jesse James by the
Coward Robert Ford. United States: Warner Bros. Pictures.

Thomas, J. (Producer), & Glazer, J. (Director). (2000). Sexy Beast.
United Kingdom, Spain: Fox Searchlight Pictures.

Sellar, J., Lupi, D., Anderson, P. T., Ellison, M. (Producers), &
Anderson, P. T. (Director). (2012). The Master. United States: The
Weinstein Compay.

Cuarón, A., Vergara, J. (Producers),&Cuarón, A. (Director). (2001).
Y tu mamá también. Mexico: 20th Century Fox, IFC Films.

Hyperalignmentmovies. Bialic, G. (Producer), Blichfeld, K., & Sinclair,
B. (Directors). (2016). “High Maintenance” Tick. United States: Home
Box Office.

Pollack, S., Samuels, S., Fox, J., Orent, K. (Producers), & Gilroy, T.
(Director). (2007). Michael Clayton. United States: Warner Bros.
Pictures.

fMRI image acquisition
Participants were scanned at the Dartmouth Brain Imaging Center
using a 3T Siemens Prisma scanner with a 32-channel head coil. A high
resolutionT1-weightedMPRAGE anatomical scan (2.32msTE; 2300ms
TR; 0.9 x;0.938 x 0.938mm resolution) was performed at the begin-
ning of each scanning session. Functional images were acquired using
an echo-planar sequence (32ms TE; 727ms TR; 53∘

flip angle; 3 x 3 x 3
mm resolution). The number of scans per run varied depending on the
stimulus presented. Sound was delivered using an in-ear headphone
system. Foam padding was placed around participants’ heads to
minimize motion.

fMRI image preprocessing
Anatomical images were deobliqued using AFNI 3dWarp. Brain
extraction was performed using ANTs antsBrainExtraction.sh
with priors derived from the MICCAI 2012 Multi-Atlas Challenge Data
[ref. 78; Available at: https://my.vanderbilt.edu/masi/workshops/].
Tissue segmentation was performed using FSL fast, and tissuemasks

were saved for calculating tissue-specific nuisance variables (below).
Anatomical images were normalized to the non-linear, asymmetrical
MNI ICBM152 template79 using ANTs antsRegistrationSyN.sh, and
transformation matrices were saved for normalizing EPI time ser-
ies (below).

EPI images were motion corrected using FSL mcflirt and motion
outliers (framewise displacement > 0.9) were detected using FSL
fsl_motion_outliers. Motion parameters and outlier TR indices
were saved. EPI-to-anatomical transformations were calculated using
AFNI align_epi_anat.py and saved for normalizing EPI time series
(below). EPI images were deobliqued using AFNI 3dWarp, then
percentage-scaled80 using NumPy, then normalized to the non-linear
asymmetrical MNI ICBM-152 template by concatenating the EPI-to-
anatomical and anatomical-to-MNI transformations and applying them
in a single step using ANTsantsApplyTransforms. EPI images inMNI
space were then iteratively blurred until reaching a smoothness of
6mm full width at half maximumusing AFNI 3dBlurToFWHM. Nuisance
variables were removed from the smooth EPI images in MNI space
using Nilearn clean_img(). Nuisance regressors included: 6 motion
parameters, framewise displacement outliers (one binary regressor
per outlier), tissue confounds81, linear and quadratic trends, and an
intercept term.

Hyperalignment
Searchlight hyperalignment82 was performed using PyMVPA83. Hyper-
alignment maps were calculated using runs 6 and 7 from the pre-
conversation fMRI session. Because 6 participants did not complete
both runs, a second set of hyperalignment maps was calculated using
only run 6, which was completed by all participants. For all analyses,
EPI images hyperaligned using both runs 6 and 7 were used if they
existed; if not, the EPI image hyperaligned using only run 6 was used.
Towork around an issue in PyMVPA (described at: https://github.com/
PyMVPA/PyMVPA/issues/589), very low-amplitude Gaussian noise was
added to invariant features (voxelswith novariance) beforecalculating
the hyperalignment maps, and also before forward-mapping of EPI
images. Inspection of the images showed that the invariant features
were voxels included in the MNI ICBM-152 template mask, but not in
individual participants’ EPI images, because sometimes parts of the
cerebellum were not imaged.

Inter-subject correlation
The basic unit of the reported neuroimaging analyses is inter-subject
correlation (ISC). Here, ISC is defined as the Pearson correlation of
time series in corresponding voxels in a pair of participants. Voxel-wise
ISC was calculated on the hyperaligned images using AFNI
3dTcorrelate.

Conversation-induced change in ISC
ISC was calculated for every participant pair, creating an ISC matrix. A
change matrix was calculated by subtracting before-conversation ISC
from after-conversation ISC. The effect of group membership on
change in ISC was quantified using regression analysis. For the group-
specific analyses, predictormatrices were created for each group, with
1s where both participants were in the target group and 0s otherwise.
For the across-groups analysis, a single prediction matrix included 1s
when both participants were in the same conversation group. For all
analyses, an all-1s intercept matrix was used to capture change that
occurred whether or not participants were in the same group (i.e.,
change caused simply by watching a movie clip twice). For analyses
including all movie clips, the relevant change and predictor matrices
were concatenated, supporting the analysis of multiple clips using a
singlemodel. Unraveled vector versions of thesematriceswereused as
predictors in amultiple regressionwith theunraveled changematrix as
the target, executed usingNumPy lingalg.lstsq(). The beta values
from this regression represent the change in ISC either unique to each
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groupor common across all conversing groups. See Fig. 4 for aworked
example. Repeating this procedure for each movie clip across every
voxel in the fMRI data yielded changemaps showingwhere in the brain
change occurred for each movie–group combination. See Results
and Fig. 1.

To test whether conversation-related change extended to the
novel stimuli shown in the after-conversation fMRI session, a

regression was performed using the same predictors, but with the
after-conversation ISC matrix as the target.

Significance values were calculated using subject-wise permuta-
tion testing29. The regression described above was repeated 2000
times. Each time, the rows and columns of the change matrix were
identically permuted (Fig. 4, bottom). This procedure satisfies the
exchangability assumption of permutation testing, appropriately

Fig. 4 | Changeanalysis example.Aworked toy example of the changeanalysis for
two groups each containing four participants. Top: ISC matrices were calculated
for both fMRI sessions. Eachmatrix contained ISCmeasurements for all participant
pairs. The before-conversation ISC matrix was subtracted from the after-
conversation ISC matrix to obtain the change matrix. Middle: Structure of the

multiple regression analysis. Predictormatrices captured change caused simply by
watchingmovie clips twice (the intercept), as well as change caused by consensus-
building conversation within a single group. Bottom: Examples of subject-wise
permutation29, where rows and columns are identically shuffled.
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limiting the false positive rate. Two-tailed P-values for each parameter
were obtained by calculating the proportion of permutations where
the true result wasmore extreme than the permuted results. Statistical
significance was achieved when the true result was more extreme than
97.5% of the permuted results, establishing a two-tailed alpha value of
0.05. This approach controls the false positive rate given the pairs-and-
groups structure of the study, but it is not equivalent to the use of a
multilevel model. Multiple comparisons correction was performed at
the cluster level using AFNI 3dClustSim. Cluster simulation used a
non-Gaussian ACF model allowing for heavy tails, using model para-
meters estimated from themean of the collected fMRI data using AFNI
3dFWHMx. Analyses including all groups and movies used a cluster-
forming threshold of p = 0.05 and aminimum cluster size of 115, giving
p =0.05 corrected. Analyses of specific groupswatching specificmovie
clips used a cluster-forming threshold of p = 0.01 and a minimum
cluster size of 32, also giving p =0.05 corrected.

To identify time points when change occurred, ISC was calculated
in a rolling window for each significant cluster in both the before- and
after-conversation fMRI sessions. The rolling window ranged 10 TRs
and had a step size of 1 TR. The mean pairwise ISC calculated within
each window was mapped to the TR corresponding to the window’s
center, creating a group-level ISC time series. The difference between
the before-conversation group ISC time series and the after-
conversation group ISC time series was used to calculate a group
change time series. Group change time series for each significant
cluster are included in Supplementary Material.

Social network centrality
Exhaustivemaps of participants’ social networkswere created using an
online name generator survey. Participants in this study came from
three separate cohorts of MBA students, and separate social networks
were generated for each cohort. All first-year students in each cohort
(Ns = 285, 293, 287; Fig. 5) were emailed a link to the survey website.
The sole survey question was adapted from Burt32 and read as follows:
“Consider the people with whom you like to spend your free time.
Since you arrived at [institution name], who are the classmates you
have been with most often for informal social activities, such as going
out to lunch, dinner, drinks, films, visiting one another’s homes, and so
on?” To reduce the likelihood of inadequate or biased recall, all pos-
sible classmates names were listed alphabetically in four columns,
which each column corresponding to one of the MBA program’s
assigned sections. Participants checked a box next to a name to indi-
cate the presence of a social tie. No limit was placed on the number of
social ties or the time taken to complete the survey.

Survey responses were used to create directed graph representa-
tions of each network, where nodes corresponded to respondents and
edges to social ties. Each cohort had a similar number of social ties/
edges (9472, 7340, 7676) and diameters (3, 3, 2). Two metrics were
computed over these graphs: eigenvector centrality, a measure of how
well each node in a graph is connected to other well-connected
nodes33, and brokerage, a measure of how well each node connects
other nodes that would not otherwise be connected32. Both measures
were computedusing theRpackage igraph84. Brokeragewas calculated
by raising the network’s constraint to an exponent of −0.5. Because
eigenvector centrality and brokerage are often highly correlated,
principal component analysis was used create a centralitymeasure that
captured the variance shared by both metrics. PCA was applied using
Scikit-learn85, and the social networkmetricswereprojectedon thefirst
principal component. The resulting projection is referred to as PCA
centrality. Participants in the fMRI study had widely varying centrality
values, covering most of the population distribution (Fig. 5).

Neural influence
We refer to the participant hypothesized to exert neural influence as
the ego, and the participant hypothesized to be influenced as the alter.

First, ISC matrices including every possible ego–alter pair were cal-
culated. The initial positionmatrixmeasured the ISC of the ego and the
alter during the before-conversation fMRI session, while the final
position matrixmeasured the ISC of the ego before conversation with
the alter after conversation. To obtain an influence matrix, the initial
position matrix was subtracted from the final position matrix (Fig. 6).
Unlike the change analysis above, in which only the lower triangle of
each matrix was used, in the influence analysis both the upper and
lower triangleswere used, to test bothmembersof each pair in the ego
and the alter position. This procedure yielded neural influencemaps at
the participant-pair level, with values directly interpretable as how
much more similar the alter became to the ego’s initial time series.

The effect of social network centrality was assessed using
regression analysis over the neural influence maps generated at the
level of the participant pair. Predictor matrices were structured
similarly to the predictors used in the across-groups change analysis,
but instead of 1s, each cell included the social network centrality
values of either the ego or the alter. Group-specific predictor matri-
ces zeroed out cells for all but the target group. For analyses
including all movie clips, the relevant influence and predictor
matrices were concatenated, supporting the analysis of multiple
clips using a single model. Because predictor beta estimates
made with ordinary least squares regression depend only on the
variance unique to that predictor, this approach allowed us to esti-
mate the effects of PCA centrality with one model, and then to esti-
mate the unique effects of eigenvector centrality and brokerage with
a second model. Each regression yielded maps of centrality-
dependent neural influence.

The correlation of positive cluster values in the ego neural influ-
encemapwith alter ratings of influence during the group conversation
for each participant pair was used to test whether neural influence
corresponded with social influence.

Reverse inference with Neurosynth
For each significant region in all of the foregoing analyses and each of
the 3228Neurosynth terms,weobtained a vector of probabilities that a
term would be used, given the spatial pattern of the result (i.e., the
posterior probability(feature∣activation), assuming an empirical prior).
This yielded a matrix where rows corresponded to brain regions and
columns to term posterior probabilities. Anatomical and duplicate
termswere removed. The columns of the term probabilitymatrix were
reduced to 18 components using Principal Component Analysis, cap-
turing 70% of the variance in the data.

Conversation content analysis
All conversations were transcribed. Pairs of hypothesis-blind coders
classified each speech turn by its function in the conversation. For a
complete list of speech turn types, see Supplementary Table 4. Coders
also rated each speech turn from 1 to 10 on a range of continuous
properties. For a complete list of continuously rated speech turn
properties, see Supplementary Table 6. Coders also rated participants’
perceived social status, whether a speech turn referred to other
speakers, whether a speech turn was promped by another speaker,
whether the speaker interrupted someone, and whether others
laughed. Speech turn coding had moderate inter-coder reliability
(median Cohen’s kappa = 0.53, all parametric P-values < 0.001). Ten
additional coders rated each participant’s perceived social status.
Perceived status coding had excellent inter-coder reliability (F(38,
parametric p <0.001, 570) = 10.72, ICC2k =0.9, 95% CI = [0.85, 0.94]).
Cohen’s kappa for speech turn coding was computed using the irr
package for R version 3.6.0 (2019-04-26), and intra-class correlation
for status coding was computed using the psych package for R, based
on a mean-rating, absolute-agreement, 2-way mixed-effects model.
Similarly, participants’ perceived status values were estimated using
beta values from amixed-effects model with z-scored status ratings as
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the target, participant ID as the predictor, and random intercepts for
rater IDs.

At the conversation group level (n = 45 group–movie pairs, 9
conversation groups each watching 5 movies), exploratory multi-
model inference was performed using the R package MuMIn86, select-
ing the regression models that best predicted changes in brain align-
ment and changes in answers to survey questions. The following
predictors and their interactions were included: the total number of
words spoken by the group59,87,88, as well as the inequality across group
members of words spoken, PCA centrality, and perceived social status,
each measured using the Gini coefficient89. These predictors were
selected to capture leader–follower dynamics90–93 and because pre-
vious research indicates that high-centrality participants may have
specific conversational skills25–27. Separate hierarchical models were fit
for each alignment DV,with random intercepts formovie clips.Models
were fitted using the lme4package for R94. Because the MuMInpackage

is limited to a maximum of 30 predictors (including interactions), it
was not possible to include both the central tendencies and Gini
coefficients of PCA centrality and perceived status. The bestmodel fits
with significant individual predictors were obtained using only Gini
coefficients, so the medians of PCA centrality and perceived status
were excluded. The central tendency of PCA centrality was negatively
correlated with its Gini coefficient (R = −0.61, p <0.001), so this ana-
lysis cannot distinguish highermedian centrality from lower inequality
of centrality. See Supplementary Table 1 for regression statistics.

At the speech turn level (n = 16,057 speech turns) our focuswas on
whether individual variables predicted perceived status and PCA cen-
trality, and not on total variance explained. Accordingly, a separate
model was trained for each continuous variable, ensuring variance
shared between predictors was represented in the results. For these
continous variable models, P-values were corrected for multiple
comparisons using Holm’s95 sequential procedure. Types of speech

Fig. 5 | Participant social networks. Visualizations of the participants' social networks. Dot size is scaled by PCA centrality (see Methods). Red dots were participants.

Fig. 6 | Neural influence analysis example.Aworked example of how neural influencewas calculated based on ISC, for two groups each containing four participants. The
influence matrix is determined by assessing how far the alter moved toward the ego’s initial position.
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turns (see above) were treated differently: Because speech turn types
were mutually exclusive, a single model was trained for each depen-
dent variable with type as a categorical predictor, and predictor P-
values were not corrected for multiple comparisons. Both continuous
and categorical models were controlled for the number of words
spoken by participants and included random intercepts for speaker
and coder identities to account for the hierarchical structure of the
data. Analysis at the conversation level included a small number of
predictors, so a single hierarchical model with all predictors and
interactions was trained, with random intercepts for group identity.
Models were fitted using the lme4 package for R94. See Supplementary
Tables 3 and 5 for regression statistics.

At the word level (n = 8122 speech turns), all conversation tran-
scripts were preprocessed using Gensim96. This included stripping
punctuation, white-space, and numeric values, removing short words
and a standard list of stop-words, and word stemming using Porter’s97

algorithm. Word stems used less than 5 times across all conversations
were replacedwith the placeholder “RAREWORD.”Topartially account
for the hierarchical structure of the data, word stems were only
included in further analysis if they were used by 10 or more partici-
pants and in discussions of 3 or more movie clips, excluding partici-
pant– andmovie– specific terms. 352word stemswere used in the final
analysis. A matrix was constructed where rows corresponded to
speech turns and columns corresponded to word stem usage counts.
Columns were added for the speaker’s z-scored PCA centrality, and
z-scored perceived status. Using the statsmodels package for
Python98, separate ordinary least squares regressions were performed
with PCA centrality and perceived status as target variables and word
stem counts as predictors. Beta values are interpretable as predicted
increases in the number of standard deviations from the network-wide
mean PCA centrality and experiment-wide perceived status values. See
Supplementary Table 2 and Supplementary Data 2 for word-level
regression statistics.

Marginal R2

For mixed-effects models, marginal R2 captures the variance accoun-
ted for by fixed-effects only and was calculated using a modified ver-
sion of the procedure of Nakagawa & Schielzeth99, as implemented by
the R library MuMIn86 or directly using the Python packageNumPy. The
marginal R2 P-value was calculated using permutation testing: The
analysis was repeated with at least 2000 different random permuta-
tions of the DV to create a null distribution of marginal R2 values, and
the P-value was the fraction of the null values as or more extreme than
the empirical marginal R2 value.

Assumptions of statistical tests
All P-values specify whether they were calculated parametrically or
with permutation testing. All brain maps used permutation tests and
were corrected for multiple comparisons. When permutation tests
were used, the data and randomization procedures satisfied the
assumption of exchangeability. Parametric P-values were used when
permutation tests were impractical (e.g., when mixed-effects models
with large sample sizes failed to converge on randomly permuted
data). For the parametric P-values, tests of normality of residuals and
equal variance were not reported because even very small deviations
from normality are significant at large sample sizes, and because
mixed-effectsmodels used are considered robust to violations of these
assumptions100.

Multidimensional scaling
Multidimensional scaling (MDS) plots in SupplementaryMaterial show
a 2-dimensional projection of the relative distances between partici-
pants BOLD time series, before and after conversation. MDS was per-
formed using Scikit-learn85 using the correlation distance between
participants’ BOLD time series.

Image credits
"Brain” icon by Clockwise from Noun Project, availble at https://
thenounproject.com/icon/brain-1080481/. “Meeting” icon by SBTS
from Noun Project, available at https://thenounproject.com/icon/
meeting-5279011/. “Clipboard” by Made by Made from Noun Project,
available at https://thenounproject.com/icon/clipboard-674066/.
“Film” icon by NeueDeutsche from Noun Project, available at https://
thenounproject.com/icon/film-531914/.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw fMRI data generated in this study have been deposited in the
NIMH Data Archive database under collection ID #771, available at
https://doi.org/10.15154/1504150101. Stimuli, anonymized conversation
transcripts, conversation ratings, social network analysis derivatives,
and fMRI analysis derivatives are available in the Open Science Frame-
work database, available at https://osf.io/kr9fb/102. The raw social net-
work data are protected and are not available due to data privacy laws.

Code availability
Preprocessing code, analysis code, and figure rendering code are
available in theOpen Science Framework database, available at https://
osf.io/kr9fb/102.
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