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Joint multi-ancestry and admixed GWAS
reveals the complex genetics behind human
cranial vault shape

Seppe Goovaerts 1,2 , Hanne Hoskens2,3, Ryan J. Eller4, Noah Herrick4,
Anthony M. Musolf5, Cristina M. Justice6,7, Meng Yuan 1,2,3, Sahin Naqvi 8,9,
Myoung Keun Lee10, Dirk Vandermeulen2,3, Heather L. Szabo-Rogers11,
Paul A. Romitti 12, Simeon A. Boyadjiev13, Mary L. Marazita 10,14,
John R. Shaffer 10,14, Mark D. Shriver15, Joanna Wysocka 8,16,17, Susan Walsh4,
Seth M. Weinberg 10,14,18 & Peter Claes 1,2,3,19

Thecranial vault inhumans is highly variable, clinically relevant, andheritable, yet
its genetic architecture remains poorly understood. Here, we conduct a joint
multi-ancestry and admixed multivariate genome-wide association study on 3D
cranial vault shape extracted from magnetic resonance images of 6772 children
from the ABCD study cohort yielding 30 genome-wide significant loci. Follow-up
analyses indicate that these loci overlap with genomic risk loci for sagittal cra-
niosynostosis, show elevated activity cranial neural crest cells, are enriched for
processes related to skeletaldevelopment, andare sharedwith the faceandbrain.
We present supporting evidence of regional localization for several of the iden-
tified genes based on expression patterns in the cranial vault bones of E15.5mice.
Overall, our study provides a comprehensive overviewof the genetics underlying
normal-range cranial vault shape and its relevance for understanding modern
human craniofacial diversity and the etiology of congenital malformations.

The cranial vault—the globular portion of the head, shaped by flat,
plate-like bones that surround and protect the brain—shows con-
siderable size and shape variation within and among human
populations1,2. Because cranial vault morphology has implications for

paleoanthropology3,4, forensics5,6, and human health7–9, it is crucial to
understand the factors that drive its phenotypic variation. The debate
surrounding the relative contribution of genetic and environmental
influences on the cranial vault has a long history, starting with the
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observation by Boas in the early 20th century10 that head dimensions
can change in a single generation in response to environmental con-
ditions. Formal heritability studies, including those reanalyzing Boas’s
data11, indicate that genetic effects account for a sizable portion (>50%)
of the phenotypic variation in vault size. Of course, these positions are
not in conflict, as continuous morphological traits are generally con-
sidered polygenic, with epistatic and gene-environment interactions
playing an important role.

Revealing the genetic architecture of the cranial vault is a
necessary step toward elucidating the various molecular pathways
involved in both normal and abnormal cranial development and
growth. However, despite evidence of a genetic contribution, we
know little about the specific genes that impact variation in human
vault morphology. Several lines of evidence point to signaling
molecules, like Fibroblast Growth Factors and their receptors, as
being important. Genes in several signaling pathways (e.g., FGF, TGF,
BMP, WNT, IHH/SHH, TWIST) have been implicated in congenital
malformations characterized by vault dysmorphology, such as syn-
dromic and non-syndromic forms of craniosynostosis12,13. Genome-
wide association studies (GWASs) of non-syndromic craniosynos-
tosis have yielded candidates such as BMP2, BBS9, and BMP714,15.
Moreover, gene expression and experimental studies of the devel-
oping vault have also implicated many of these genes (and others in
their pathways) in suture morphogenesis16–19. When considering
normal-range variation in cranial vault morphology, genome-wide
QTL studies of skull shape inmice have implicated a fewdozen genes,
including some with effects on the vault20–22. In humans, two candi-
date gene studies have reported associations between common
variants in FGFR1 and cranial vault dimensions23,24, and several large
GWAS of global vault size (head circumference) have identified a
handful of loci25–27. In addition, a GWAS of vault length, width, and
cephalic index in over 4000 individuals reported associations at
several loci near relevant genes like SOX9 and SOX1128; notably, no
association with FGFR1 was observed.

One of the limitations of prior genetic studies of human vault
morphology is a reliance on relatively simple phenotyping approaches
(e.g., distances). Such measures are often straightforward to acquire
but suffer from an inability to adequately describe complex 3D shapes
and may not capture the most salient aspects of variation for genetic
investigations. As a result, it is likely that the genes identified to date
account for a small fraction of the heritable variation in human vault
morphology. In genetic studies of human facial morphology, we have
previously shown that data-driven multivariate approaches capable of
more fully exploiting the information contained in 3D biological
shapes outperform more traditional morphometric approaches29. In
the present study, we advance the pace of genetic discovery by
applying a similar phenotyping strategy to the cranial vault. We
accomplish this by extracting 3D vault surfaces from magnetic reso-
nance images (MRIs) collected on a multi-ancestry adolescent cohort,
partitioning the surfaces into anatomical regions in a global-to-local
pattern, quantifying the shape variation present in each region, and
then performing multivariate GWASs. In addition, we test whether our
discovered variants impact risk for single suture craniosynostosis, and,
given the close relationship between brain, facial, and vault
morphology30, we investigate the degree of overlap between their
genetic architectures.

Results
Joint multi-ancestry and admixed GWAS of cranial vault shape
Cranial vault shape, herein defined as the outer head surface encom-
passing the supraorbital ridge and extending towards the occipital
bone, was extracted from structural MRIs (Supplementary Fig. 1;
Methods). Since the outer soft-tissue layer in this region is thin and
uniform31, shape variation associated with the neurocranial bones is
well captured byour phenotypicdefinition. To study shape variation at
both a global and local resolution, the cranial vault surface, repre-
sented by a mesh of 11,410 vertices, was partitioned into a set of
smaller segments through hierarchical spectral clustering following

Fig. 1 | Global-to-local genome-wide association study of cranial vault shape.
a Hierarchical segmentation of cranial vault shape resulting in 15 cranial vault
segments (cyan) across 4 hierarchical levels. b Manhattan plot of genome-wide
associations. For each SNP the lowest P-value (CCA, upper-tail chi squared) across
all 15 cranial vault segmentswasplotted. Full and dashedhorizontal lines represent

genome-wide (P < 5e−8) and study-wide (P < 4.37e−9) significance thresholds
respectively. Plausible candidate genes are annotated to each genome-wide sig-
nificant locus (n = 30) (Methods). c Number of genetic loci reaching genome-wide
significance (P < 5e−8; CCA, upper-tail chi squared) in each cranial vault segment.
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the data-driven approach introduced by Claes et al.29 (Fig. 1a). The
result was a set of 15 cranial vault segments, with the first segment
being the ‘global’ full cranial vault surface and segments 8 to 15 being
the most ‘local’ segments. Considering the globular and relatively
smooth nature of the cranial vault, in contrast to the face32 or brain33,
we stopped at the fourth hierarchical level to not unnecessarily inflate
the total number of segments. The smallest segment, segment 12,
covered 7.70% of the overall surface area.

Each of the 15 cranial vault segments was subject to principal
component analysis (PCA) to extract a smaller number of morpholo-
gical dimensions, followed by parallel analysis to identify the optimal
number of PCs to retain. We then applied canonical correlation ana-
lysis (CCA), which extracts the linear combination of those dimensions
that maximally correlates with the state of a given single nucleotide
polymorphism (SNP). In total, 10,647,531 SNPs across the genomewere
tested in a US cohort comprising of rich ancestral diversity. After
applying quality control procedures on images, genotype, and cov-
ariate data, the final GWAS cohort consisted of 6772 unrelated
individuals.

Given the high level of admixture in our dataset and the lack of
more than a single substantial homogenous group, any stratification-
based approach, such as a GWASmeta-analysis, was deemed unfruitful
and we instead opted to run a single joint multi-ancestry and admixed
GWAS. As a compromise between sample inclusion and model com-
plexity, our GWAS was limited to three ancestral groups (i.e., Eur-
opean, African, and Indigenous American), and any admixture thereof.
Prior to GWAS, cranial vault shape was adjusted for the effects of age,
sex, height, weight, cranial size, MRI machine/scanning site, and
ancestral heterogeneity using partial least squares regression (PLSR).
The latter was done by including global genomic ancestry, expressed
by the first 10 genomic PCs, as well as local genomic ancestry,
expressed by ancestral dosages at 0.2 cM windows throughout the
genome (Methods).

In total, 15 GWASs were conducted (one per vault segment),
yielding 1658 SNPs that reached genome-wide significance (P < 5e−8)
in at least one of the segments. Of these SNPs 1138 were also study-
wide significant (P < 4.37e−9), correcting for the effective number of
GWAS runs as estimated by permutation testing (Methods). Based on
genomic distance and linkage disequilibrium (LD), SNPswere clumped
into 30 independent genome-wide and 24 study-wide significant
genomic loci (Fig. 1b; Supplementary Table 1). Among these signals,
only the locus nearHMGA2 has been previously identified in GWAS on
cranial vault dimensions25,26. The 30 lead SNPs combined explained
1.03% to 1.83% of variation among the 15 cranial vault segments, and
1.31% of global cranial vault shape variation after adjustment for cov-
ariates. We observed a range of associated phenotypic effects, with
some GWAS signals impacting multiple regions of the vault simulta-
neously and others impacting vault shape in a more localized manner
(Supplementary Data 1). Animations of the shape effects associated
with each locus are available from our FigShare repository34. In addi-
tion to global vault shape (segment 1), segments involving the frontal
portion of the vault showed the largest number of significant asso-
ciations (Fig. 1c). Twenty-one out of 30 loci (21/30, 70.0%) showed
significant (P < 5e−8) effects on global cranial vault shape (Fig. 1c and
Supplementary Fig. 2), with 13 loci (13/21, 61.9%) providing the most
significant P-values. Among the 7 loci (7/30, 23.2%) that had most
significant effects at the finest level of segmentation (i.e., hierarchical
level 4), only 3 (3/7, 42.9%)were also significant (P < 5e−8) in the global
cranial vault. For most loci with their lowest P-values in the global
cranial vault, significance gradually decreased as the vault was parti-
tioned into smaller segments. In contrast, most of the loci with their
lowest P-values in one of themore local level-4 segments exhibited the
opposite effect. This suggests a distinction between globally and
locally acting loci.

To demonstrate that our data-driven segmentation approach is
capturing genetically salient aspects of vault shape variation, we
examined the effects of discoveredSNPsper vertex on the entiredense
3D mesh. Based on the 21 lead SNPs that were significantly (P < 5e−8)
associated with global vault shape, we calculated deformation hot-
spots (Supplementary Fig. 3), which we defined as local regions of the
cranial vault where effects attained a greater magnitude relative to
their immediate surroundings. Most of these hotspots were located
along the midline, coinciding with sutures, and two hotspots were
located laterally. These results show that without including any SNPs
whose phenotypic associations were dependent on the segmentation
approach, a pattern of deformation hotspots was obtained that aligns
almost perfectly with our vault segmentation. This provides con-
firmation that our data-driven approach can capture biologically
meaningful information and is capable of doing so with a fraction of
the computational bandwidth required to perform vertex-wise
analyses.

To test for any uncontrolled confounding due to population
stratification, we compared the obtained genome-wide association P-
values to a set of simulated association P-values under the null
hypothesis (Methods). No inflation of test statistics was observed
(Supplementary Fig. 4), suggesting that our GWAS results were not
affected by uncontrolled population stratification. Due to the
observed relationship between the fixation index (FST) and power in
our GWAS, we calculated the genomic control factor lambda (λGC) for
different subsets of SNPs, defined by varying upper limits for the FST.
The highest λGC of 1.002 was found for the set of SNPs with FST smaller
than 0.001 (Supplementary Fig. 4), further suggesting the absence of
uncontrolled confounding.

Next, we replicatedourGWAS signals and their phenotypic effects
in an independent cohort of 16,846 individuals from the UK Biobank35,
based on MRI. For each of the 30 lead SNPs, we tested all segments in
which genome-wide significance was reached (P < 5e−8) during the
discovery phase, totaling 108 tests (Methods). In total, 55 out of 108
(50.9%) lead-SNP/segment pairs and 20 out of 30 (66.7%) individual
lead SNPs were replicated in at least one segment at a 5% false dis-
covery rate (FDR) (Supplementary Table 1). Note that the replication
MRIs were heavily damaged, mainly at the frontal area of the cranial
vault (i.e., MR images are defaced for subject anonymity). Although
these defects were partially mitigated during image processing
(Methods), the lowest segment-wise replication rates of 23.1% and
9.09% were observed in the corresponding cranial vault segments 5
and 11, respectively (Supplementary Fig. 5). Thus, our replication rate is
likely very conservative.

Multi-ancestry GWAS signals are shared between ancestries
To investigate whether the lead SNPs representing each of our 30
genome-wide significant loci were shared across different ancestral
populations, FST enrichment analysis was performed following Guo
et al. (2018)36. Significantly lower inter-African/European, but not inter-
Indigenous-American/European FST was found for our set of lead SNPs
compared to the expected values for a set of similar SNPs in terms of
minor allele frequency (MAF) and LD score (Fig. 2a, b). Notably, the
mean observed inter-African/European (mean: 0.072, range: 0 to
0.320) and inter-Indigenous-American/European (mean: 0.079, range:
0 to 0.195) FST were similar. However, in line with existing knowledge,
the expected inter-African/European FST was higher than the inter-
Indigenous-American/European FST, ultimately resulting in a sig-
nificant enrichment of shared signals only between African and Eur-
opean ancestry.

To examine how the multi-ancestry aspects of our study influ-
enced the overrepresentation of shared loci, we repeated the FST
enrichment analysis under two additional scenarios. In the first sce-
nario, themulti-ancestry GWAS (n = 6772) was rerun, this time without
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adjusting for the effects of local genomic ancestry. Comparing the
outcome with the main GWAS revealed that the adjustment for local
genomic ancestry induces a stronger selection for shared loci between
ancestral groups compared to the adjustment for global genomic
ancestry alone (Fig. 2c, d). In the second scenario, the GWAS was
rerun on only the subjects that were assigned European ancestry
(n = 4198) (Methods). In this more ancestrally homogeneous group,
adjustment for the first 10 genomic PCs was still performed to adjust
for the within-Europe population structure. In contrast to the main
GWAS, no significant over- or underrepresentation of SNPs shared
between ancestral groupswas observed (Fig. 2e, f), suggesting that the
multi-ancestry nature of our GWAS drove the overrepresentation of
shared SNPs.

Figure 2g, h illustrates how the selection of shared loci was
achieved through the reduction in statistical power for differentiated
SNPs. While, in our multi-ancestry GWAS, adjustment for global
ancestry alone reduced the power of high FST SNPs, the additional
adjustment for local genomic ancestry exacerbated this effect. These
results align with previous studies37–39. Moreover, for any SNP with FST
equal to 1 (i.e., both ancestral groups have a different allele that is fixed
within that group) the allelic dosage would correlate perfectly with the
local genomic ancestry. Therefore, those SNPs would attain no power
after removing the effects of local genomic ancestry (Fig. 2g, h).
Together, these results show that our multi-ancestry GWAS approach
identified ahigher-than-expected sharingof genetic factors underlying

cranial vault shape between ancestral groups. They also illustrate how
the selection of shared SNPs between ancestries directly results from
our multi-ancestry approach to GWAS.

To further validate the sharing of effects across populations, we
tested for heterogeneity of effect size between ancestral groups at
each of our 30 lead SNPs under several scenarios (Methods). Briefly,
each test is based on the likelihood ratio of nested models, where the
full model includes differential effect sizes between ancestral groups,
and a constraint model includes a single joint effect size. All testing
scenarios yielded mostly consistent results (Supplementary Fig. 6). At
5% FDR, we found heterogeneous effect sizes for 2 out of 30 lead SNPs
under the most sensitive testing scenario (Fig. 2i) and for 3 out of 30
lead SNPs across all scenarios. This lack of significant effect size het-
erogeneity further supports that the identified loci comprise shared
signals among ancestral groups. Notably, no significant relationship
was observed between FST and effect size heterogeneity (Supplemen-
tary Fig. 7).

We next performed a sensitivity analysis to evaluate the discovery
of genome-wide loci when including or excluding the 2504 non-
European-ancestry GWAS cohort subjects. To this end, a locus was
considered to be overlapping between both GWASs if the corre-
sponding lead SNPs were within 250 kb, resulting in a joint set of 31
unique loci (Supplementary Fig. 8). Among these loci, 22 were shared,
of which 17 (17/22; 77.3%) reached lower P-values in the multi-ancestry
GWAS (Supplementary Fig. 8). Moreover, 8 loci were unique to the

Fig. 2 | Adjustment for global and local genomic ancestry induces prioritiza-
tion of shared signals between ancestral groups. a–f FST enrichment analysis
(top row: European vs. African; bottom row: European vs. Indigenous American) of
lead SNPs at genome-wide significant GWAS loci under different scenarios. Left
(green, Local + Global): the main, multi-ancestry GWAS (n = 6772) with global and
local genomic ancestry adjustment. Middle (cyan, Global only): a multi-ancestry
GWAS on the same individuals (n = 6772) with only global genomic ancestry
adjustment. Right (navy, Single Ancestry): a European-only GWAS (n = 4198) with
global genomic ancestry adjustment. The full vertical line represents the mean
observed FST and the dashed vertical line represents the 2.5th percentile on the

distribution of expected FST. g, hMean test statistic of the full cranial vault GWAS
(segment 1) across 50 FST bins (left: European vs. African; right: European vs.
Indigenous American) under the GWAS scenarios from a–f. Error bars represent
the standard deviation of the test statistic. i Heterogeneity of effect size between
European and African ancestry based on the univariate latent phenotypes asso-
ciated with each SNP in themain GWAS (Methods). All segment-SNP combinations
with P < 5e−8 during GWAS discovery were considered, and the lowest P-value
(upper tail chi-squared test with varying degrees of freedom; see Methods) for
each SNP was kept after adjustment for 5% FDR. The vertical line indicates the
Padjusted < 0.05 threshold.
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multi-ancestry GWAS, and one locus (rs563186113) was unique to the
European-only GWAS. Nonetheless, all those 9 loci stilled showed
some degree of association in the other GWAS. Overall, the multi-
ancestry GWAS thus achieved a higher discovery rate, identifying 7
more loci, and reaching lower P-values in 25 of the 31 loci (80.6%).
Furthermore, shape effects and segment-wise association profiles
were highly concordant between both GWASs at each of the 31 loci
(Supplementary Data 2). At 21 loci (21/31; 67.7%), the same segment
generated the lowest P-value, and at 5more loci (5/31; 16.1%) the lowest
P-values were generated in segments that were directly related. Strong
co-localizationwasobserved for the genomic signals in bothGWASs as
shown by LocusZoom40 and LocusCompare41 plots in Supplementary
Data 2. Altogether, the analyses conducted in this section extensively
demonstrated which aspects of the genetic findings were influenced
by the inclusion of non-European individuals.

Cranial vault shape originates early in development
Using the genomic regions enrichment of annotations tool (GREAT42),
genes near the 30 lead SNPs were tested for enrichment of biological
processes and pathways, as well as associated mouse phenotypes
(Supplementary Table 2 and Supplementary Table 3). Among the
enriched (by both binomial and hypergeometric test, 5% FDR) mouse
phenotypes were terms related to abnormal head morphology
(abnormal morphology of the head, face, mouth, cranium, neurocra-
nium, viscerocranium, basicranium; exencephaly), and abnormal
morphology of multiple craniofacial bones (abnormal morphology of
the squamosal, interparietal, temporal, occipital, supraoccipital,
zygomatic, basisphenoid, nasal bone; maxilla, mandible, palate), as
well as other bones throughout thebody (abnormalmorphologyof the
humerus, scapula, tibia, clavicle, rib, limb long bone,…). Interestingly,
the analysis identified significant terms related to the brain and neural
tube (open neural tube, abnormal neural tube closure, decreased
midbrain size, abnormal midbrain size, absent cerebellar lobules,
abnormal neural crest cell migration). These results illustrate the
important role of the genes near our identified loci in normal cranio-
facial development and suggest an overlap in genetic architecture
between the cranial vault, the face, and the brain.

In line with the associatedmouse phenotypes, we found enriched
biological processes related to bone development (skeletal system
development, osteoblast differentiation, bone development, ossifica-
tion, osteoblast development) and cartilage development (regulation
of cartilage development, chondrocyte differentiation, cartilage
development, positive regulation of cartilage development). Further-
more, the analysis yielded enrichments formesenchyme-related terms
(mesenchymal cell differentiation, mesenchyme development, con-
nective tissue development), as well as more broad terms related to
embryonic development (embryo development, embryonic morpho-
genesis, embryonic organ morphogenesis and development, …). In
agreement with these terms, enrichment of phenotypes in GWAS
Catalog using FUMA yielded bone-related traits, including, bone
mineral density (heel, skull, lumbar spine, …) and height (Supple-
mentary Table 4).

Next, we analyzedH3K27acChIP-seq signals near the 30 leadSNPs
across approximately 100 cell types and tissues (Fig. 3). Additional
information regarding the cell types and tissues can be found in Sup-
plementary Table 5. We found that the 30 GWAS loci were most enri-
ched for nearby H3K27ac signal in embryonic craniofacial tissues and
cranial neural crest cells (CNCCs), indicative of cell-type specific
enhancer activity. This suggests thatourGWAS signals are locatednear
enhancer elements that are active during early craniofacial develop-
ment. Notably, while the frontal bone originates from CNCCs, the
parietal bone arises from the mesoderm-derived mesenchymal pro-
genitors. However, the H3K27ac ChIP-seq data from the latter
mesenchymal progenitors were not available, and thus were not
included in this analysis. Nonetheless, the majority of the identified
GWAS loci affected either global cranial vault shape or the frontal
segments, consistent with the strong contribution of CNCC-derived
structures. Together, these results suggest that post-natal shape var-
iation associated with the neurocranial bones originates in early
developmental stages.

Expression of GWAS candidate genes in E15.5 mice calvarium
To compare the parietal versus frontal localization of phenotypic
effects associatedwith our lead SNPs to expression levels of associated

Fig. 3 | Regionsnear the 30genome-wide significant leadSNPs are enriched for
active enhancers with preferential activity in cranial neural crest cells and
embryonic craniofacial tissue. Enrichment for active enhancers in cranial neural
crest cells and embryonic craniofacial tissues was significant (P-value = 1.37e−10,
Wilcoxon rank sum test, one-tailed, n = 141 cell/tissue types). Each boxplot (n = 30
loci) represents the distribution of H3K27ac signal in 20-kb regions around the 30
genome-wide-significant (P < 5e−8) lead SNPs in one sample, with cranial neural

crest cells (navy) and embryonic craniofacial tissues (cyan) highlighted. Boxplots
plot the first and third quartiles, with a dark black line representing the median.
Whiskers extend to the largest and smallest values no further than 1.5× the inter-
quartile range from the first and third quartiles, respectively. The horizontal
dashed line represents themedian level of H3K27ac reads per million (RPM) signal
across all cell types and tissues.
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candidate genes, we performed a differential expression analysis of
E15.5 mice parietal and frontal bone tissues. We found 648 differen-
tially expressed genes (DEGs) out of approximately 30,000 analyzed
genes from the sequencing library. Of the DEGs, 410 were upregulated
in the parietal bone tissues and 238 were upregulated in the frontal
bone tissues (Supplementary Table 6).We were particularly interested
in exploring the candidate genes (Supplementary Table 1; Methods)
located near the 30 GWAS lead SNPs to determine whether a) the
candidate genes’ mouse homologs demonstrated differential expres-
sion and b) given the genes were differentially expressed, whether
their expression patterns could further validate the cranial vault phe-
notypes in which the associated lead SNPs were initially found. Among
the GWAS candidate genes were 11 DEGs at 5% FDR, of which nine
genes showed significantly higher expression in the frontal bone, and
two in the parietal bone (Table 1 and Supplementary Fig. 9). Other
candidate genes were either not differentially expressed or had fewer
than one raw (unnormalized) gene count in at least one of the six
samples.

To compare between the frontal and parietal phenotypes utilized
in the expression analysis and the 15 cranial vault segments used in the
GWAS, all GWAS lead SNPs were assigned a ‘frontal’, ‘parietal’, or ‘both’
label, depending on the association profile across the 15 segments
(Methods). As GWAS lead SNPs were identified using vault segments
from several overlapping hierarchical layers, we performed our par-
ietal/frontal/both classifications twice using the following two
schemes—‘most significant hit’ and ‘most specific hit’. Both classifica-
tions schemes yielded concordant results, demonstrating robustness
of the assigned labels.

For example, GWAS lead SNP rs11609649, associated with ALX1
via GREAT, was identified in cranial vault segment 5 in the GWAS
analysis, which corresponds to the frontal region. Since segment 5
contains themost significant signal for the lead SNP and since segment
5 is also phenotypically specific, the classification of ALX1 for the ‘most
significant hit’ and ‘most specific hit’method is the same—frontal. For
several other loci, the most significant signal was found in a segment
with both parietal and frontal bone content, such as the full cranial
vault (segment 1). Nonetheless, their associationmay still be driven by
a predominant frontal or parietal activity. For those loci, we identified
the most specific segment by tracing the association signal into hier-
archical levels three and four.

For the majority of DEGs, the GWAS analysis identified a stronger
effect in the region where the gene was upregulated in mice. Among
those genes were Alx1, Eya4, Hmga2, Shox2, Cped1, and En1, which all
showed higher transcriptional activity in the frontal bone and Rspo3

and Bmper, which showed higher transcriptional activity in the parietal
bone. Conversely, while Fgf10, Zeb2, and Adamtsl3 were down-
regulated in the murine parietal bone, the GWAS analysis identified a
stronger effect in the parietal region. Specifically, the association with
rs3822730 near FGF10 was most significant in a parietal segment
(segment 8; Supplementary Data 1) and genome-wide significant in
other parietal segments (segments 4, 7, and 15) while not reaching
nominal significance in any of the frontal segments (segments 5, 10, 11,
and 12). The strong parietal localization of the FGF10 GWAS signal
combinedwith a lower transcriptional activitymay indicate differential
FGF10 dosage sensitivity between both tissues, where the developing
parietal bone could bemore sensitive to small changes in FGF10 levels.
Alternative explanations exist and exact mechanisms could be a sub-
ject for functional follow-up studies. Altogether, our data suggests that
some genes may have a predominant frontal or parietal contribution
to cranial vault shape.

Cranial vault shape genetics comprise risk for NCS
Craniosynostosis is a condition that occurs in approximately 1 in 2500
newborns and is characterized by the premature fusion of one ormore
cranial sutures, thereby drastically affecting skull morphology during
growth. The most common form, non-syndromic craniosynostosis
(NCS), is etiologically complex and influenced by genetic and envir-
onmental factors. A previous GWAS14 implicated SNPs near BMP2 and
BBS9 as genetic risk loci for developing sagittal NCS. Interestingly,
both genes were also identified in the current GWAS of normal-range
cranial vault shape.We testedwhether the leadSNPs frombothGWASs
tagged the same genomic loci. Published risk SNPs for sagittal NCS,
rs10262453 (r2 with rs148673350: 0.98; 1000G all populations) near
BBS9 and rs1884302 (r2 with rs6054748: 0.95; 1000G all populations)
near BMP2 reached P-values of 3.02e−14 and 2.40e−10 respectively in
our normal-range cranial vault shape GWAS, thus both reaching study-
wide significance (Fig. 4a, b and Supplementary Fig. 10). Remarkably,
the latent shape variation associated with our lead SNP near BMP2,
rs6054748, comprised an elongationandnarrowingof the cranial vault
and when exaggerated, presented a dolichocephalic cranial vault
shape, reminiscent of sagittal NCS patients (Fig. 4c–e). No such
resemblance was observed for our BBS9 lead SNP (Supplemen-
tary Data 1).

To further assess whether any other genomic loci involved in
normal-range cranial vault shapewere contributing risk for developing
sagittal NCS, we proceededwith a targeted replication of our 30GWAS
loci in a sagittal NCS cohort consisting of 63 case-parent trios (n = 189).
At 5% FDR, significant associations were identified for our lead SNPs

Table 1 | Classification of frontal versus parietal localization based on global-to-local GWASs and RNAseq in murine (E15.5)
parietal and frontal bones

GWAS SNP Mouse gene Log2-fold
change

Differential expression
Padjusted

RNAseq Label GWAS Label (most spe-
cific hit)

GWAS Label (most sig-
nificant hit)

rs11609649 Alx1 −1.37 9.52e−13 Frontal Frontal Frontal

rs296418 Eya4 −1.90 2.57e−17 Frontal Frontal Frontal

rs151174669 Hmga2 −0.48 3.63e−2 Frontal Frontal Frontal

rs7626244 Shox2 −1.96 2.25e−17 Frontal Frontal Frontal

rs1581525 Cped1 −0.34 9.08e−3 Frontal Frontal Frontal

rs6739488 En1 −0.61 4.52e−7 Frontal Frontal Both

rs4842918 Adamtsl3 −1.01 3.18e−12 Frontal Parietal Both

rs17479393 Zeb2 −0.34 2.81e−2 Frontal Parietal Both

rs3822730 Fgf10 −0.52 1.61e−2 Frontal Parietal Parietal

rs148673350 Bmper 0.68 6.85e−-7 Parietal Parietal Both

rs9491697 Rspo3 0.44 6.86e−3 Parietal Parietal Parietal

All candidate genes near the 30 genome-wide significant lead SNPs were tested for differential expression between themurine cranial tissues. Only significantly differentially expressed genes are
shown. P-values (Wald test, one-tailed) are adjusted for 5% FDR, log2-fold change represents the expression levels in the parietal bone relative to the frontal bone.
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rs6054748, rs148673350, and rs1034266 near BMP2, BBS9, and ZIC2
respectively. This ultimately resulted in a bidirectional replication for
BMP2 and BBS9, as well as an additional candidate risk gene for sagittal
NCS, ZIC2, not previously reported. Furthermore, we identified sig-
nificant associations at the nominal P-value threshold (P <0.05) with 6
other genomic loci in 92 coronal NCS trios (n = 276), 62 metopic NCS
trios (n = 186), and 17 lambdoid NCS trios (n = 51) (Supplementary
Table 7). It is also worth noting that rs6054748 near BMP2 reached at
least nominal significance in all but the metopic NCS cohort.

Shared genetics of the face, brain, and cranial vault
Next, we examined the sharing of genetic signals between the cranial
vault and the face. Given the unsigned test statistics yielded by CCA,
the approach of calculating genomic correlation using LD-score
regression43, which requires signed summary statistics, was not
applicable and we instead used Spearman correlations33. Based on a
facial GWAS in a European cohort by White & Indencleef et al. (2021)32

who used a similar global-to-local approach to phenotyping facial
shape, comparisons could bemade formultiple facial and cranial vault
segments. At 5% FDR, significant sharing of genetic signals was
observed between the frontal cranial vault segment and all the facial
segments, though weaker for the upper lip, nose, and philtrum (Fig. 5a
and Supplementary Fig. 11a). Other segments of the cranial vault
showed significant, but weaker genetic overlap with the face. These
results alignwith biology, as the face and frontal bone areboth derived
from CNCCs, but the rest of the cranial vault stems from the

mesoderm44. Unsurprisingly, a strong overlap was observed for seg-
ments of the face and cranial vault that contained the forehead (Fig. 5a
and Supplementary Fig. 11a), illustrating consistency with previously
published data32 and doubling as good validation for those loci
affecting forehead morphology.

Based on LD (r2 > 0.2; 1000G all European populations), we found
direct genomic overlap between facial GWAS loci and 18 out of our 30
(60.0%) cranial vault loci (Fig. 5b). Genes near these shared loci have
established roles in CNCCs and/or craniofacial skeletal development
and comprised a high incidence of involvement in craniofacial syn-
dromes, often with distinct effects on facial appearance, e.g., TBX15
(Cousin Syndrome, OMIM:260660), HMGA2 (Silver-Russell Syndrome
5, OMIM:618908), ZEB2 (Mowat-Wilson Syndrome, OMIM:235730),
ALX1 (Frontonasal Dysplasia 3, OMIM:613456), MEIS1 (Cleft Palate,
Cardiac Defects, And Mental Retardation, OMIM:600987), EN1
(Endove Syndrome, Limb-brain Type, OMIM:619218), RUNX2 (Cleido-
cranial Dysplasia, OMIM:119600), BMP2 (Short Stature, Facial Dys-
morphism, and Skeletal Anomalies with or without Cardiac Anomalies,
OMIM:617877) (Supplementary Table 8).

Next, we looked at the genetic correlation between the cranial
vault andbrainusing data froma cortical surfacemorphologyGWAS in
a European cohort by Naqvi et al. (2021)33 who also employed a global-
to-local approach to phenotyping. Sharing of genetic signals was
observed across the brain and cranial vault segments, with strong
sharing between the brain and the frontal segment of the cranial vault,
likely relating to their shared ectodermal origin and physical proximity

Fig. 4 |VariationnearBMP2 andBBS9 comprises risk for sagittal nonsyndromic
craniosynostosis. a LocusZoomplot around rs6054748nearBMP2. P-values (CCA,
upper-tail chi squared) are show for cranial vault segment 4 where rs6054748 was
most significant. Sagittal NCS risk SNP rs1884302 from Justice et al. (2012) is also
indicated. b LocusZoom plot around rs148673350 intronic in BBS9. P-values (CCA,
upper-tail chi squared) are show for cranial vault segment 1where rs148673350was
most significant. Sagittal NCS risk SNP rs10262453 from Justice et al. (2012) is also

indicated. The color in a and b indicates the LD (r2) with the lead SNP (purple
diamond). c, d Exaggerated depiction of the latent cranial vault shape associated
with both alleles of rs6054748 near BMP2. Arrows indicate the direction of
deformation with regard to the mean cranial vault shape. e Latent cranial vault
shape associated with rs6054748 near BMP2, visualized on the mean cranial vault
shape. Blue and red indicate an inward and outward deformation respectively.
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during development (Fig. 5a and Supplementary Fig. 11b)44. To further
expose patterns of shared genetic signal irrespective of dominant
drivers such as shared cellular origins, segment-wise vault-brain cor-
relations were normalized (by dividing by themaximum value across a
cranial vault or brain segment). As such, the dominance of the frontal
cranial vault segment and potentially others among the brain and
cranial vault segments was mitigated. Mutual strongest connections
were then extracted, revealing evidence for spatially dependent shar-
ing of genetic signals between the brain and cranial vault (Fig. 5c).
These results suggests that the encapsulation of the brain by the cra-
nial vault and the proximities it imposes, is at least in part responsible
for their shared genetics.

Sharing of genetic signals between the brain and the cranial vault
may be facilitated throughmechanical interactions, where intracranial
pressure promotes the remodeling of the cranial vault to mirror the
shape of the expanding brain45. Additionally, brain and skull develop-
ment may rely on coordinated integration of signaling through fibro-
blast growth factor (FGF), bone morphogenic proteins (BMP), Wnt,
and hedgehog30. In the current GWAS, we identified genes encoding
members from all four signaling families with established roles in brain
development and craniofacial skeletal development, FGF (FGF1046,47,
FGF1848,49), BMP (BMP250,51), hedgehog (SHH52,53), and Wnt (WNT1654,55).
Furthermore, we found that genes near a substantial portion of the 30
cranial vault loci showed evidence of involvement in brain develop-
ment in mouse knockout studies (Supplementary Table 9). Abnormal
brain morphology or size has been reported for mouse knockouts of
MEIS156, EN157–61, KIF662, SHH63–68, HMGA269, ALX170, ZIC271–73, and
CEP5574. In addition, several genes have been implicated in the early
stages of abnormal neuronal development, tracing back to the neural

plate (ZEB275, ZIC276), neural tube (EN177, ZEB275,78,79), and neural crest
(ZEB278, ZIC280, ALX181).

Among the shared (in LD: r2 > 0.2) brain-face-cranial vault loci
(Fig. 5b) included genes with known roles in cranial neural crest
development and migration, such as ZEB278, ZIC280, DLX582, and
although corresponding lead SNPswerenot in strong LD (r2 < 0.2), also
BMP283 and ALX181. Other shared loci include craniofacial skeletal
development genes, such as EN184, FGF1849, BMP250,51, DLX582,85,86,
RUNX251,85,87–92, PTHLH93, and TBX1594. In part, this sharing of genetic
loci is likely due to pleiotropy, with genes like ZEB2, ZIC2, and DLX5
being expressed in both the neural crest and the brain. In other cases,
however, genes likeALX1, RUNX2, and TBX15 have roles primarily in the
mesenchyme with no expression in the brain. Therefore, sharing of
these loci is likely driven by the cranial vault.

Discussion
In this study, we used an unbiased multivariate approach to pheno-
typing normal-range cranial vault shape, expanding on previous work
on the face and brain. By doing so, we have accelerated the pace of
discovery by comprehensively documenting the genetics underlying
normal-range cranial vault shape variation in humans. Overall, the 30
genome-wide significant loci reflect known aspects of cranial vault
biology. Many of the genes near these loci are involved in craniofacial
skeletal development, withRUNX2 being a core transcription factor for
other skeletal development genes, and essential for intramembranous
ossification, the process through which the cranial flat bones are
formed85,87–93. Several other candidate genes identified near our GWAS
loci encode activators of RUNX2 transcription, such as PTHLH and
DLX585,89,93. This is a likely pathway through which they exert their

Fig. 5 | Genome-wide sharing of signals between the cranial vault, brain,
and face. a Genetic Spearman correlations with individual level-3 cranial vault
segments (cyan) across level-4 brain and facial segments. Significance of Spearman
correlations was determined based on standard errors obtained through boot-
strapping. Empirical P-values (one-tailed) were adjusted for 5% FDR. Insignificant
segments are indicated in grey. b Chord diagram of loci shared (r2 > 0.2) between
the cranial vault and the brain/face. Line thickness is proportionate to the sum of
-log10(P-values) (CCA, upper tail chi squared) between both shapes after

normalizing the -log10(P-values) per shape so that themaximumvaluewas equal to
1. Loci are grouped by their most significantly associated shape module as indi-
cated by the colors of corresponding circle segments and shapemodules. cMutual
highest normalized correlations between brain and cranial vault segments indi-
cated by black lines. Segment-wise vault-brain correlations were normalized by the
maximum value across the brain and vault respectively. Colors indicate the
strength of the unnormalizedpair-wise correlations using the same color scale asa.
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influence on cranial vault shape. In addition, we identifiedmembers of
the FGF, BMP, hedgehog, and Wnt signaling families, known to mod-
ulate different stages in the differentiation from mesenchymal stem
cells to osteoblasts47,49,51,85,88,91–93,95. For example, SHH has been shown
to promote osteoblast differentiation through the activation of BMP2,
which acts both upstream (through DLX5) and downstream of
RUNX288,90,95. Previous genetic studies on cranial vault dimensions have
identified variation near FGFR123,24, which, together with FGFR2 and
FGFR3, is under direct transcriptional control of RUNX292. Though no
association was found with FGFR1 here, we did find associations with
FGF10 and FGF18, whose proteins are expressed in the calvarial
mesenchyme and have high affinity for FGFR2 and FGFR3
respectively88,91,92,96. It has been proposed that increased signaling by
FGFs, including FGF10 and FGF18 drives a switch from FGFR2 to FGFR1
expression in osteoprogenitor cells, which is associated with the onset
of osteogenic differentiation96–98. We also identified EN1, which was
found to regulate proliferation and differentiation of osteoblasts by
influencing responsiveness to FGFs through attenuation of FGFR1 and
FGFR2 expression84. Moreover, we identified WNT16, which induces
osteogenesis and suppresses osteoclast differentiation, cells involved
in bone resorption99.

During normal craniofacial development, a balance between
proliferation and differentiation of the suture mesenchyme keeps the
sutures patent to accommodate the growing brain30,100. Premature
ossification of the cranial sutures results in craniosynostosis16. Inter-
estingly, several genes identified through our GWAS, or their inter-
acting partners have been implicated in syndromic and non-syndromic
craniosynostosis. For example, early expression of RUNX2 induces
ossification in the suturemesenchyme resulting in craniosynostosis101.
Importantly, gain-of function coding variants in RUNX2 were reported
in patients with midline craniosynostosis and the RUNX2 p.Ala84-
Ala89del variant was reported to be significantly enriched in sagittal
NCS, implicating overexpression of this gene in the etiology of
craniosynsotosis102. We also identified BCL11B, a transciption factor
involved in keeping suture patency by preventing expression ofRUNX2
and FGFR2 in the suture mesenchyme103 and for which de novo
mutations have been observed in several craniosynostosis cases104,105.
In addition, we identified PTHLH, whose associated receptor gene,
PTH2R is implicated in syndromic craniosynostosis106. While no sig-
nificant associations were found near FGFR1, FGFR2, or FGFR3, all
implicated in syndromic and non-syndromic craniosynostosis, we
found associations with genes encoding their ligands, FGF10 and
FGF1813. In addition, RAB23mutations cause craniosynostosis through
failure to repress FGF10 expression107, and ZIC1, implicated in syn-
dromic craniosynostosis, exerts its pathogenic effect through tran-
scriptional regulation of EN1, which we identified in our GWAS108.

Furthermore, we identified BMP2 and BBS9, which were both
implicated as risk genes with large effect sizes (odds ratio > 4 for both
loci) in a GWAS on non-syndromic sagittal craniosynostosis14. Using
data from that GWAS, we performed a cross-GWAS replication of the
lead SNPs near BMP2 and BBS9 and found bi-directional significant
associations for both. Consistent with its effect on sagittal suture
morphogenesis, we found our lead SNP near BMP2 to be associated
with an elongation of the cranial vault. These results suggest that some
variants affecting normal-range cranial vault shape variationmaydo so
by attenuating the timing of cranial suture closure. In fact, a recent
report has concluded that undiagnosed sagittal craniosynostosis is
common in the general population, detected in 41 out of the 870
(4.71%) patients based on a retrospective review of head computed
tomography scans, but goes unnoticed if thepatient has a cranial index
within the normal range (width/length > 0.7)109. The prevalence of this
normocephalic sagittal craniosynostosis increased until 36 months of
age, then plateaued, suggesting that, indeed, the timing of cranial
suture closure is a source of normal-range cranial vault shape variation
with milder features at increased age of synostosis109.

Though not identified in the current GWAS, several other genes
(ERF110, SIX2111, SMAD6111, SMURF1111,MSX2112, ALX4112, TWIST1113, TCF12113,
EPHA4114, and FREM1115) implicated in syndromic and non-syndromic
forms of craniosynostosis affect ossification of the suture mesench-
yme through modulation of BMP, FGF, or HH signaling and/or
attenuation of RUNX2 expression, highlighting the shared molecular
pathways of craniosynostosis and normal cranial vault development.
Because of this spatiotemporal overlap, variation at our 30 GWAS loci
may work synergistically with rare variants in other relevant genes,
modifying their effect. One such example is the suggested interaction
between common variation near BMP2 and rare loss of function
mutations in the gene encoding its inhibitor, SMAD6116. Mouse models
of craniosynostosis have supported the idea of modifying genes,
whereby mice carrying identical Fgfr2 mutations exhibited variable
phenotype expression depending on their genetic background117.
Taking into account such interactionsmayguide surgical interventions
and treatment planning in craniosynostosis patients and ultimately
lead to better outcomes.

Sharing of loci between the cranial vault and the face and/or the
brain was twofold. On the one side, shared loci harbor genes, such as
ZEB278, ZIC280, DLX582, ALX181, and BMP283, with known roles in the
neuroectoderm, which constitutes the shared cellular origin of the
brain, facial skeleton, and frontal bone, while the other bones of the
cranial vault have different cellular origins, i.e., themesoderm44. In line
with the hypothesis that those genes concurrently influence brain,
facial and cranial vault shape through their common tissue origins, we
detected strong sharing of genetic signals between the frontal seg-
ment of the cranial vault and both the brain and face, much stronger
than any sharingof signalwith the restof the cranial vault. On the other
hand, shared loci comprised a substantial number of genes involved in
craniofacial skeletal development: EN184, FGF1849, BMP250,51, DLX582,85,86,
RUNX251,85,87–92, PTHLH93, and TBX1594. Moreover, mutations in genes
with involvement in the cranial neural crest or craniofacial skeletal
development result in malformations of the cranial bones, such as in
Mowat-Wilson syndrome (ZEB2), frontonasal dysplasia 3 (ALX1), clei-
docranial dysplasia (RUNX2), Endove syndrome (EN1), cousin syn-
drome (TBX15), and sagittal craniosynostosis (BMP2). One explanation
could be that these genes promote remodeling of the cranial skeleton
to accommodate the growing brain, allowing for subtle changes in
brain shape. This is especially plausible given thatwedetected spatially
dependent sharing of genetic signals between the brain and cranial
vault. Furthermore,mutations in several genes implicated inourGWAS
result in abnormal brain morphology or size in mice, such as MEIS156,
EN157–61, KIF662, SHH63–68, HMGA269, ALX170, ZIC271–73, and CEP5574. For
example, mutations in KIF6 result in increased brain size, and a domed
cranium,which likely results from the force exerted by the brain62. This
raises the question whether cranium morphology influences brain
morphology, orwhether it is the otherwayaround. Likely the influence
is bidirectional, and starts early in development, as we have shown
elevated transcriptional activity near our GWAS loci in CNCCs and
embryonic craniofacial tissue. From then, this mutual influence may
continue throughout development. Altogether, shared loci between
the cranial vault and the face and/or brain comprise genes implicated
in diverse molecular pathways across different stages of brain and
craniofacial development. The exact mechanisms of action are a rele-
vant topic for future studies.

As we have shown previously with facial surface shape and brain
shape, the global-to-local segmentation approach used here yielded
replicable associations that would otherwise have been missed by
limiting to a global definition of the vault. While few additional hits
were detected for the 14 segments that were not the global cranial
vault, this could not have been known a priori given the poor under-
standing of normal-range cranial vault shape. Hence, we retained the
segmentation approach to show thatSNPs affecting vault shapemostly
do so on a global level. Still, certain loci showed significant effects on
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local segments only, whereby the association strength decreased
gradually going from a local to a global level, though still with some
degree of association with the global cranial vault. This is exactly what
one should expect if the true effect of a locus is indeed local, i.e., that
considering a larger set of vertices increases the total variance in the
phenotype while the variance explained by the genotype does not
increase with the same extent, thereby resulting in a statistically
weaker association. One example is rs3936018 near TBX15, which was
associated specifically with the frontal region, and previously identi-
fied to be associated with forehead morphology32. Another example is
rs11609649 near ALX1, which also showed association locally with the
frontal region, and not with the posterior regions, matching in situ
expression patterns in mouse embryos118. While for those loci, we
observed effects in the regions where they were expected, it is inter-
esting to see the lack of any significant association in other regions of
the vault, thereby affirming their localized roles.

Furthermore, we specifically examined the parietal versus frontal
localization of candidate genes near our GWAS loci based on the pat-
tern of their GWAS signal throughout the cranial vault segments, as
well as RNAseq data frommurine (E15.5) parietal and frontal bones.We
found several of the GWAS signals in cranial segments to be promi-
nently frontal or parietal while also showing expression differences in
the same frontal and parietal mouse tissue. These trends add addi-
tional support that the human GWAS-based signals are functionally
rooted to their role in cranium development in mouse embryos,
affirming that some genes may have a predominant frontal or parietal
contribution to cranial vault shape. A possible explanation may lie in
the different cellular origins of both bones, the frontal being derived
from the cranial neural crest and the parietal from the mesoderm.
Nonetheless, Fgf10, Zeb2, and Adamtsl3 showed a predominant par-
ietal association with cranial vault shape while being downregulated in
the parietal mouse tissue. It is possible that the parietal tissue is more
sensitive to alterations in corresponding protein levels. If so, genetic
variation relating to gene regulationwouldbe expected to have amore
pronounced effect despite the lower overall transcriptional activity
relative to the frontal tissue. Functional assays could test this idea.
Other explanations relate to how both methods record their signals,
i.e., a GWAS captures accumulated effects over time, whereas RNAseq
provides a snapshot in time. As such, RNAseq might fail to capture
potentially more dominant effects of genes in different regions at
different times. Furthermore, brain-related influences may sub-
stantially impact cranial vault shape and could not be picked up by the
RNAseq.

Although most multi-ancestry genome-wide mapping efforts to
date have been limited to GWAS meta-analysis119–122 or admixture
mapping123–127, several works have intensively explored the idea of a
joint multi-ancestry GWAS37–39,128,129. In general, those works have
agreed that adjustment for global genomic ancestry is necessary to
avoid spurious results and that adjustment for local genomic ancestry
is useful for obtaining more accurate effect sizes and better signal
localization in the presence of LD expansion that comes with
admixture130. Because the ancestralmake-up of the ABCD study cohort
is highly heterogeneous and unbalanced (with a large group of Eur-
opean ancestry individuals), we opted to adjust for local genomic
ancestry to ensure accurate results of downstream analyses and bio-
logical interpretations. Atkinson et al. (2021) have made recent efforts
towardmulti-ancestryGWAS. Theirmethodology, called Tractor, splits
the allelic dosage of a SNP by the inferred donor ancestries and esti-
mates different effect sizes for the different ancestral groups in a
mixed ancestral cohort (including admixed). Its implementation can
theoretically be extended to support any number of ancestral groups
but is currently limited to univariate traits only. Aswithmany statistical
methods, multivariate implementations are likely to follow. However,
accurate estimation of multivariate phenotypic coefficients (i.e., latent
traits) for different ancestral groups based on a single multi-ancestry

cohort, is still likely to require many representatives from each
ancestral group. This is therefore a limitation of the current study and
similar studies to come.

We acknowledge that although multi-ancestry, our GWAS cohort
is still predominantly comprised of individuals with recent European
ancestry. While 4198 out of 6772 (62.0%) cohort subjects were
assigned European ancestry, the prevalence of European ancestry in
the admixed individuals contributed strongly to the overall local
genomic European ancestry in the cohort. Hence, our discovery effort
may be largely European-driven, and the improved discovery rate in
our GWAS over a European-only GWAS may be due to the additional
European-derived alleles.Nonetheless,wedemonstrate that ourGWAS
hits are enriched for shared SNPs between the ancestral groups as a
direct result of our multi-ancestry approach, and that effect sizes are
mostly consistent across those groups, clearly illustrating the con-
tribution of non-European inclusion. This also suggests that our GWAS
successfully identified shared genetic components of cranial vault
shape variation and implies that the phenotypic effects associatedwith
our 30 lead SNPs likely hold more predictive value across
populations131. With the high need for transferable results from GWAS
and its derived applications, such as polygenic (risk) scores, running a
single joint multi-ancestry and admixed GWAS as opposed to a strati-
fied analysis may be a direct way to obtain more widely generalizable
results.

Methods
Ethics statement
Use of patient data was approved by local ethics committees at U.C.
Davis (IRBNet; protocol: 215635-25). Data available through controlled
access repositories (UK Biobank, NIMH data archive) has been
approved for broad sharing and local institutional approval (S63179,
S60568, respectively) was granted for access to these datasets. All
participants of these studies provided written informed consent to
participate and have their data shared. Experiments resulting in RNA-
seq data were approved by and performed under the oversight of the
University of Pittsburgh Institutional Animal Care and Use Committee
(protocol: 20057353).

Discovery cohort
The Adolescent Brain Cognitive Development (ABCD) study132 is a
longitudinal study following brain development and health through
adolescence. From data release 3.0 (February 2020), high-quality full-
head MRIs were available for 11,702 participants. Following the ABCD
recommendations for image inclusion, 471 individuals were removed
from the dataset. Anthropometric data, including age, sex at birth,
weight, and height were available on 11,787 individuals. Individuals
withmissing data (n = 11) or extreme outlier values (Z-score > 6; n = 14)
for any of these variableswere excluded. All participantswerebetween
9 and 10 years old at the time of data collection and represent diverse
ancestral backgrounds.

For this study, Quality Controlled Genotype Data from the ABCD
cohort was downloaded as ABCD_release3.0_QCed Data files (.bed,.-
fam,.bim). It contained 11,099 unique individuals and 516,598 genetic
variants aligned to the positive strand of build GRCh37. Subject
information such as interview age, sex at birth, height, weight, BMI,
and MRI information were extracted from the compiled RDS file
(nda3.0.Rds) in the Data Exploration and Analysis Portal (DEAP).

Genotyping and imputation of discovery cohort
The ABCD data files were first converted to a variant call file (VCF)
using PLINK133 2.0. Reference SNP cluster IDs (rsIDs) were added using
Bcftools134,135 'annotate' and dbSNP154.hg37. The ABCD data was then
lifted and sorted from build GRCh37 to GRCh38 using Bcftools and in-
house scripts. SNPs and indels were merged and only SNPs
(n = 502,882) were kept for downstream phasing and imputation per
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chromosome 1–22. Phasing was performed using default parameter
settings from SHAPEIT v4.2.2136 and the New York Genome Center
(NYGC) 30x-1000 genomes-phased-dataset as reference, which can be
found at [http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/
1000G_2504_high_coverage/working/20201028_3202_phased/].

The reference data file used for imputation was prepared by the
Iliad genomic data pipeline137. In short, the final reference dataset was
compiled with data from the Human Genome Diversity Project
(HGDP)138 and the 1000 Genomes Project139. HGDP samples were
retrieved as individual sequence alignment files in CRAM format
[https://ftp.sra.ebi.ac.uk/1000g/ftp/data_collections/HGDP/data/].
The samples underwent variant calling via Bcftools ‘mpileup’ and ‘call’
commands for each chromosome. The HGDP dataset alone consists of
828 individuals from 54 populations. The data was reduced in variant
size using an annotations list provided by the NYGC140 whichwas input
as a regions file. Finally, each HGDP combined chromosome VCF was
phased and then merged with its chromosomal representative from
the NYGC 30x-1000 genomes-phased-datasets to create a more glob-
ally represented reference set (NYGC1KGEN-HGDP) of 61,876,281 var-
iants (including X chromosome) from 4030 Individuals in 80
populations that was used for imputation.

Imputation of the ABCD data was performed using IMPUTE5
v1.1.5141 with SHAPEIT4 b38 genetic maps and the combined
NYGC1KGEN-HGDP reference dataset using default parameter set-
tings. Imputation regions that would maximize the use of both the
reference and target sets were generated using imp5Chunker_v1.1.5141.
Setting a threshold imputation INFO score of > 0.3, an ABCD imputed
dataset of 11,099 individuals with n = 49,745,078 variants was gener-
ated. Following the ABCD recommendations, 82 individuals that were
genotyped on plate 461 were excluded for further analysis.

Genomic ancestry inference
Genotypes of unrelated ABCDparticipants (using King Robust142 with a
cutoff of 0.0442) were merged with 1000G139 Phase 3 and HGDP138

genotypes of unrelated individuals. Markers in common were pruned
iteratively, using PLINK133 2.0, using a window of 1000 markers, a step
size of 50 markers and an r2 cutoff of 0.2 until no more markers were
being excluded. The resulting dataset was subjected to PCA to build an
ancestry space, in which the relatives were then also projected. The
first 10 PCs were used to express global genomic ancestry for each
ABCD participant.

We defined local genomic ancestry to be discrete and assumed
that each local genetic fragment can be traced back to a single
ancestral population. In order to reduce model complexity and avoid
potentially counterproductive errors, we limited local ancestry infer-
ence to three ancestral groups: European, African and American. With
thesegroups, including any admixture thereof, wewere able to include
most of theABCDparticipants. The followingparagraphsdescribe how
ABCD participants and ancestry references were selected for local
ancestry inference.

In order to refine the combined set of 1000G and HGDP refer-
ence ancestry samples, we applied the ADMIXTURE143 software in an
unsupervised approach to estimate the genetic ancestry proportions
of the individuals within the reference set for a given number of
populations, K. The K:6 model was chosen as it best reflected con-
tinental distribution. It also allowed us to discern the samples from
Oceania as one distinct ancestry component among the six (see
cluster 5 in Supplementary Fig. 12).

Further analysis of the six co-ancestry proportions for this refer-
ence data included K-means clustering and sample filtering based on
each designated cluster’s main ancestry component to decrease the
effect of noise with the clusters and create ‘anchor’ population refer-
ence data. K-means elkan algorithm from sklearn.cluster library on
Python v3.7.6 designated each reference sample into one of six clus-
ters based on their co-ancestry components. To develop these clusters

even further, a filter was applied to each cluster for retention of sam-
ples that displayed greater than the average proportion of the cluster’s
main ancestry component (e.g., if Cluster 0 had a K0 ancestry com-
ponent average of 0.90 across all the Cluster 0 samples, only samples
with a proportion of greater than 0.90 would be kept as a reference
anchor). This effectively created the desired reference data of anchors
to estimate the unknown biogeographical ancestries of the ABCD
subjects. Analyses of the anchor reference data are shown in Supple-
mentary Fig. 12 and sample sizes of the anchor reference data are
provided in Supplementary Table 10. The European, African, and
American anchor references were selected as ancestry representatives
for local ancestry inference.

The supervised technique in ADMIXTURE143 was used to estimate
the co-ancestry proportions of the entire ABCD dataset from the
anchor populations with a K:6 model. There were n = 251,073 variants
after additional, independent QC (--hwe 1e-50 ‘midp’ --maf 0.01) was
performed on ABCD subjects prior to merging with the reference
anchor samples. The co-ancestry proportions output from the super-
vised K:6 test was used to filter ABCD participants. Specifically, we
retained 10,334 (10,334/11,099; 93.1%) participants with >90% joint
European, African, and Indigenous American ancestry proportions for
local ancestry inference. To identify European-ancestry participants,
the co-ancestry proportions were subjected to K-means clustering,
followed by additionalfiltering, similar to whatwas done to the anchor
references as mentioned above, yielding 5746 participants with a
nearly wholly European ancestry component.

Genome-wide local ancestry was then inferred for ancestry-pre-
filtered ABCD participants, using the 1000G and HGDP anchor refer-
ences from the European (EUR; n = 613), African (AFR; n = 545), and
Indigenous American (AMR; n = 105) clusters as ancestry representa-
tives. This was done using RFMIX144 v2 with one expectation-
maximization step, a window size of 0.2 cM, and a terminal node size
of 5. The expectation-maximization step reanalyzed admixture in the
ancestry representatives to improve the ability to distinguish ances-
tries. A genomicmap, to informof switch positions was obtained from
the Eagle145 software website.

We observed good consistency between global ancestry esti-
mated by ADMIXTURE143 and RFMIX144 (Pearson correlation coefficient
> 0.998 for all ancestries). In addition, genome-wide local ancestry
proportions doubled as a quality control for imputation, which to date
is still a non-trivial task for multi-ancestry datasets. We reasoned that
any systematic bias in haplotype matching during the imputation
process would result in a detectable change in local genomic ancestry.
Overall, genome-wide local ancestry proportions were consistent,
except for somecentromeric (e.g., chromosome9) and telomeric (e.g.,
chromosome 21, 22) regions, as well as some known regions of long-
range LD (e.g., chromosome 6), some of which have been previously
reported to result in local ancestry biases130,146–148 (Supplementary
Fig. 13). In addition, no anomalies in local ancestrywere detected at the
30 genome-wide significant GWAS loci (Supplementary Fig. 13).

Image acquisition, phenotyping, and quality control
Minimally processed T1w structural MRI data were downloaded from
the ABCD data repository. Image preprocessing steps include distor-
tion correction, movement correction, resampling (1mm isotropic
voxels), alignment to standard space, and initial quality control149.
Facial surfaces can be segmented from MR images using intensity
thresholding-based approaches. However, resulting segmentations are
prone to errors due to noise, partial volume effect, placeholders, and
MR bias fields.More specifically, the ABCDMRI data contains artifacts,
such as missing parts and noise, that are unstructured over the dif-
ferent subjects and acquisitions. Hence, these artifacts can be reduced
prior to segmentation, given a sufficient number of independent
samples. Instead of re-acquiring MRI data for the same ‘target’ subject
and averaging them out to remove the artifacts, we generated virtual
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re-acquisitions by an inter-subject intra-MRI non-rigid image-based
registration approach. A total of 300 MRI scans (‘floating’ scans)—
matched in terms of sex at birth, height, weight, and genomic ancestry
—were registered to a single target MRI scan using Elastix (SimpleITK
library150 in Python) with the Param0000 parametermap (affine and B-
spline)151. The use of 300 floating scans per ‘target’ image was chosen
based on visual inspection of the results while controlling for com-
putational time and resources. The resulting, denoised consensus
‘target’ image was defined as the voxel-per-voxel median of the
resulting warped ‘floating’ images.

Based on the work ofMatthews et al. (2018)152 a full head template
(n = 28,218 vertices) was constructed as the average of the expected
head shapes of boys and girls at 9.5 years old, i.e., those closest in age
toour study cohort. The cranial vault (n = 11,410 vertices)wasmanually
delineated on this template, encompassing the supraorbital ridge and
extending towards the occipital bone (Supplementary Fig. 1).

DenoisedMR scans were imported as.nii files intoMatlab (version
2021a) and the craniofacial surface was extracted as a mesh using the
isosurface function (Matlab function: isosurface). Full head surfaces
were cleaned by cropping internal head structures, also captured by
the volumetric imaging protocol, based on the distance of each vertex
to the centroid. The full head template was then registered to the
extracted craniofacial surfaces using MeshMonk153 following a scaled
rigid and non-rigid registration step. Prior to rigid registration, an
initial rough alignment was performed to ensure a similar orientation
of both template and target scans. Because all MR scans were already
aligned to standard space during image preprocessing, this could be
done bymanually placing five positioning landmarks on 100 randomly
selected target surfaces and transferring the averages of these land-
marks to all individual scans.

Visual inspection of the data showed that compression of soft
tissue structures caused by external fixation systems during the MRI
scanning procedure was primarily observed near the ears, cheeks, and
chin. To remove such distortions, ears were flagged as outliers during
Meshmonk surface registration. In addition, while focusing on the face
and cranial vault (i.e., the most reliable parts of the face), erroneous
regions were interpolated using thin-plate splines in Matlab.

For all participants, the cranial vault shapewas extracted from the
full headmeshes based on the selected region in Supplementary Fig. 1.
Images were manually inspected and labeled according to the type of
error/artifact observed (e.g., partially missing data due to cropping of
the MRI scans, external structures such as goggles, and remaining
distortions of the head surface). The set of good-quality images was
then further inspected for outliers due to mapping errors or still
overlooked imaging artefacts. Similar to previous works29,32, we mea-
sured the Mahalanobis distance for each cranial vault to the overall
average cranial vault in a shape space spanned by PCs that capture 98%
of total shape variation. Based on the distribution of Mahalanobis
distances, a z-score was calculated for each image, and only images
with an absolute z-score lower than 1.5 were considered for further
analysis, yielding a set of 9015 well-QCed images.

Global-to-local segmentation of cranial vault shape
To study genetic effects on cranial vault variation at both a global and
local level, we performed a data-driven hierarchical segmentation on
symmetrized cranial vault shape, similar to earlier work on facial and
brain shape29,32,33. First, the meshes were adjusted for age, sex at birth,
height, weight, cranial size, the scanner (encoded by dummy vari-
ables), and the 10 first genomic PCs.

Next, a vertex-wise similarity matrix was constructed by measur-
ing the correlation of the distance-to-centroid between each pair of
vertices. Thismeasurewas augmentedwith pairwiseEuclidiandistance
(proximity in 3D) to make nearby vertices more similar to enforce
connectivity and coherence within the segments. Specifically, both
measures were normalized separately so that the most alike pair of

vertices (highest correlation or smallest distance) got a value of 1, and
the least alike pair got a value of 0. These were then combined using a
weighted sumof 60% correlational similarity and 40%proximity-based
similarity. These percentages were chosen based on connectivity and
coherence of segments resulting fromdifferentweighted sumsof both
measures at 5% intervals. Hierarchical spectral clustering29 was carried
out based on the resulting similarity matrix. At each step the vertices
were split into twomaximally similar clusters, resulting in 1, 2, 4, and 8
non-overlapping segments at hierarchical levels 1, 2, 3, and 4 respec-
tively. For each of the resulting segments, independently of the other
segments, the configurations were aligned using generalized Pro-
crustes analysis (GPA) and subjected to PCA. Parallel analysis154,155 was
used to determine the number of PCs required to explain the major
phenotypic variance with fewer variables.

Final discovery GWAS cohort
The intersect of ABCD participants which satisfied covariate quality
control, genotype quality control (n = 11,017), ancestral pre-filtering
(n = 10,334), and image quality control (n = 9015) yielded 8217 parti-
cipants. From this set, we removed 1445 relatives using the King
Robust142 software with a cutoff of 0.0442 (3rd degree relatives),
resulting in a final GWAS sample size of 6772 (3742 male and 3030
female) of which 4198 (2220 male and 1978 female) were assigned
European ancestry and 2504 non-European, predominantly mixed
ancestry. Imputed variants of ancestry-selected participants
(n = 10,334) were filtered for SNPs only, with MAF> 1% and missing
genotyping rate > 95%, resulting in a final set of 10,647,531 SNPs.

Joint multi-ancestry and admixed GWAS approach
At each SNP, cranial vault shape across all 15 segmentswas adjusted for
the assigned local ancestral origin of its respective genomic region,
coded additively for two out of three ancestries (European, African,
and Indigenous American ancestry). This adjustment for local genomic
ancestry aimed to remove phenotypic differences due to ancestry-
associated genotyped or ungenotyped variation, such that any phe-
notypic effect measured is dose-dependent on the SNP, independent
of genomic ancestry (globally and locally). In other words, we wanted
to ensure that we found genotype-phenotype associations at marker-
level resolution to ensure accuracy of downstream analyses.

Under the reduced model, the residual phenotypic variance in
each of 15 cranial vault segments was tested for association with the
presence of the major allele, coded based on the additive genetic
model. This was done using CCA, which extracts the linear combina-
tion of PCs maximally correlated with the SNP, representing a multi-
dimensional shape deformation in the PC space. Significance was
tested using a right-tailed chi square test with degrees of freedom
equal to the number of phenotypic PCs (Supplementary Fig. 14).

Genome-wide significance of genotype-phenotype associations
wasdeclared at the traditional thresholdofP < 5e−8.However, because
of the increasedmultiple-testing burden introducedbymultipleGWAS
runs on different cranial vault segments, we empirically estimated the
effective number of independent tests based on genotype permuta-
tions, following the procedure of Kanai (2016)156. Briefly, for a single
SNP we randomly permuted the genotypes 10,000 times, essentially
creating the distribution of chance associations with cranial vault
shape under the null hypothesis. Each permuted genotype was tested
for association with the 15 cranial vault segments and the lowest P-
value was retained. We then divided 0.05 by the 5th percentile of the
resulting 10,000 P-values to estimate the number of effective GWAS
runs performed. This was repeated for 500 random SNPs, resulting in
an average effective number of phenotypes of 11.44 (SD: 0.56). The
effective number of phenotypes was additionally estimated following
the same approach using the 30 lead SNP as well as using three
eigenvalue-based methods157–159 on the 15 × 15 segment-segment cor-
relation matrix as estimated using either genome-wide P-values, chi
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squared statistics, or genomic Pearson correlations, yielding 10 addi-
tional estimates in the range of 8.52–11.28 (See Supplementary Note
for details on additional approaches for estimating the effective
number of phenotypes). We then opted for the former, most con-
servative estimate, and obtained a subsequent ‘study-wide’ sig-
nificance threshold of P < 4.37e–9 (i.e., 5e–8/11.44).

No sex stratified GWAS was performed in this work for reasons
related to power, however, we did adjust for sex assigned at birth and
resulting GWAS thus focused on aspects of cranial vault shape varia-
tion independent of sex.

Peak detection and annotation
Peak detection was performed in three steps starting from 1658 SNPs
that reached genome-wide significance in the GWASs. Starting from
themost significant SNP, all SNPs within 250kb, as well as thosewithin
1Mb and in LD (r2 > 0.01) were clumped into a single locus represented
by themost significant SNP (lead SNP). Thiswas repeated until all SNPs
were assigned a locus (n = 32). Next, any two loci were merged into a
single locus if the lead SNPs were within 10Mb and in LDwith r2 > 0.01.
The lead SNP with the lowest P-value was chosen to represent the
newly merged locus. Lastly, for robustness any singleton SNP below
the study-wide significance threshold was removed (n =0). This
resulted in30genome-wide and24 study-wide significant genomic loci
associated with cranial vault shape. LD was calculated using the gen-
otypes of the GWAS cohort. LocusZoom40 plots for all 30 loci are
available in the Supplementary Data 1.

To study functional enrichments of the genes near our 30 GWAS
loci, we performed Gene Ontology (GO) enrichment analysis using
GREAT42 v4.0.4 with default settings. Significance was determined at
5% FDR by both binomial and hypergeometric tests. To look for
enrichments of phenotypes in GWAS Catalog, we used FUMA160 v1.3.7
with default settings and the list of genes obtained from GREAT for
consistency across the enrichment analyses.

Next, a set of candidate genes at each locus was compiled by
combining the genes annotated by GREAT v4.0.442, FUMA160 v1.3.7, as
well as manually annotated genes within 500 kb of the lead SNP based
on available literature (Supplementary Tables 8 and 9). Specifically, we
relied on evidence of involvement in craniofacial development from
mousemodels and human craniofacial syndromes, as well as previous
implications in GWAS on the cranial vault or face (the forehead in
particular). Lastly, we performed Bayesian colocalization analysis161 (R
package ‘coloc’) to check if our GWAS hits coincided with an expres-
sion quantitative trait locus (eQTL) in any of 22 tissues selected from
GTEx8 based on their relevance to the cranial vault (Supplementary
Table 11). Prior probability distributions were set by default. Any gene
within 1Mb of the lead SNP was considered a candidate gene at the
locus if the posterior probability of locus overlap (‘PP4’) was ≥70%.
Additionally, all eQTLs with PP4 ≥ 50% are listed in Supplementary
Table 12.

Calculating genomic inflation
Following the original definition of the genomic inflation factor162, we
calculated an overall inflation factor for our combined set of 15 GWASs
(one corresponding to each cranial vault segment) as the median
observed test statistic divided by the median expected test statistic
under the null hypothesis (i.e., no genotype-phenotype association).
As SNPs in the combined GWAS were represented by their lowest P-
value across the 15 segments, a null distribution of P-values was
obtained empirically by repeating the GWAS with randomly permuted
genotypes for each SNP and taking its lowest P-value across the seg-
ments. Because P-values corresponding to each segment were derived
from chi square distributions with different degrees of freedom, we
obtained a normalized test statistic, ν, form the chi square statistics
following Naqvi et al. (2021)33 as ν = χ2D=Dð1 +

χ2D
N Þ, withD, the degrees of

freedom, andN, the sample size. The genomic inflation factorwas then
calculated as the median observed test statistic divided by the median
test statistic from the empirical null distribution.

Deformation hotspots
For each of the 21 SNPs with genome-wide significant (P< 5e−8) effects
on global cranial vault shape, vertex-wise normal distances were calcu-
latedbetween theaveragecranial vault and thecranial vault transformed
along the latent shape direction associated with the SNP. The absolute
values were then normalized to unit length per SNP and a vertex-wise
distribution of deformation magnitudes was subsequently obtained. At
each vertex, the 95th percentile of the SNP-associated deformation
magnitude was used for visualization in Supplementary Fig. 3.

Replication of cranial vault shape variants
The UK Biobank35 contains genetic and phenotypic data on approxi-
mately 500,000 UK volunteers, aged 40–70 at recruitment. Full-head
T1-weighted MR images were available for 39,609 subjects from
release v2.3 (October 2020). These scanswereobtained in anonymized
form, meaning that the entire face and regions around the ears were
removed. The process of anonymization has been described in detail
by Alfaro-Almagro et al.163.

The MRI data in NifTi format was imported into Matlab (version
2021a), and the isosurface was extracted (function: isosurfacewith an
iso value of 250) from each image, followed by taking the concave
hull (function: boundary with shrink factor set to 1) to remove
internal structures. A cranial vault template was aligned to eachmesh
based on four landmarks located at themost superior, posterior, and
lateral (left/right) points of the head. We then performed rigid and
non-rigid surface registration, using MeshMonk153 while mitigating
the damage from the MRIs. Specifically, we masked all vertices in the
damaged regions (Supplementary Fig. 5) across all images and
restricted these vertices from contributing to the deformation of the
template duringmapping, essentially treated the damaged regions as
missing data. Recompletion of the missing regions was done by sta-
tistical data imputation, where an active shape model164 constructed
from the processed ABCD vault data was used to impute the position
of themasked vertices. To furthermitigate any impact of the damage
on the surface registration, non-rigid deformations of the template
were constrained by the active shapemodel, i.e., it replaced themore
general freeform non-rigid deformation model in the MeshMonk153

toolbox. This resulted in cranial vault shapes that realistically
represented cranial vaults according to the active shape model but
lacked individual level variation in the damaged regions. Conse-
quently, the segment-wise replication rate was decreased based on
the extend of data treated as missing (Supplementary Fig. 5).

The quality of the mapping relied on the rigid alignment of target
and template, which in turn was hindered by the damage done to the
images. In some cases, this caused the template to rotate incorrectly.
During image quality control, rotations measured along all three
orthogonal directions were combined into a single chi square statistic
with 3 degrees of freedom. This statistic was then normalized by taking
the right-tailed cumulative density so that unrotated images were
assigned 1, asymptotically decreasing to 0 for heavily rotated images.
Using a cut-off value of 0.8, 17,959 (unrotated) images were retained
(Supplementary Fig. 15).

All subjects with missing covariates or covariate outliers (>6 SD)
were removed. Ancestral outliers (>3 SD)were removed based on the 4
first genomic PCs (‘elbow’ of Scree plot). The remaining cranial vaults
(n = 17,214) were adjusted for age, age squared, weight, height, sex,
cranial size, scanner, and the first 10 genomic PCs using PLSR. The
residuals were added to the average ABCD cranial vault shape, fol-
lowed by applying the same global-to-local segmentation as defined in
the ABCD cohort. Segments were then independently aligned using
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GPA and projected into the corresponding ABCD shape space
per segment. Subjects without genotype data, or with more than 5%
missingness were omitted from further analysis, as well as relatives up
to the third degree identified using the King142 robust algorithm with a
cutoff of 0.0442. This resulted in a sample size of 16,846 (7439 male
and 9407 female) for the final replication cohort. Out of the 30
genome-wide significant discovery lead SNPs, 29 overlapped with the
replication dataset directly; rs34898775 was selected as a proxy SNP
for rs202055590 (located 1.1 kb away, with r2 of 0.997 in all combined
1000G populations).

To measure the presence of the associated shape trait from the
discovery panel (ABCD), the replication panel (UK Biobank) was pro-
jected onto the latent shape trait, identified by CCA, for a particular
SNP in a particular cranial vault segment. The resulting univariate
scores were calculated for each lead SNP/segment pair (n = 108) for
which significant (P < 5e−8) associations were found. The F-statistic
froma linear regressionwas calculated todetermine the significanceof
association between the projection scores and the SNP genotypes for
all 108 SNP-segment combinations. A 5% FDR-adjusted P-value
threshold of P <0.0244 was calculated using the Benjamini-
Hochberg165 method, yielding 55/108 significant tests, and 20/30 sig-
nificant SNP replications in at least one cranial vault segment.

FST enrichment analysis
The Weir and Cockerham estimators166 for Wright’s fixation index,
FST were calculated per SNP between European (EUR) and African
(AFR), and EUR and Indigenous American (AMR) samples in the
1000 G Phase 3 dataset using vcftools167 v0.1.17. Next, FST enrich-
ment analysis36 was performed on our set of GWAS lead SNPs to see
if the GWAS signals were significantly enriched for high or low FST
SNPs. The average FST across the lead SNPs was compared to a dis-
tribution of 10,000 averaged FST values, each calculated based on
the same number of SNPs with matched MAF and LD scores43. To
match the LD scores to the GWAS cohort, covariate-adjusted LD
scores were calculated based on the 6772 GWAS cohort subjects
with a window size of 20 cM (--ld-wind-cm 20), and after adjusting
genotypes for the first 10 genomic PCs using scripts of Luo et al.
(2021)168. For matching SNPs, the range of MAFs and LD scores was
divided into 20 equally spaced quantiles, and a matched SNP was
selected at random from the same bins as the original SNP. Sig-
nificance of the enrichment was declared if the observed average FST
was lower than the 2.5th percentile or higher than the 97.5th per-
centile of the null distribution (5% alpha).

Calculating heterogeneity of effect size
For each of the 30 lead SNPs, we performed 2 × 2 × 2 tests of effect
size heterogeneity between ancestry groups, with each test impos-
ing different restrictions on a generativemodel. First, we considered
univariate versus multivariate SNP-trait associations. Under the
univariate (�y,β1�52R) scenario, the latent associated shape trait from
the main GWAS was tested (Eq. 1), while under the multivariate
(�y,β1�5 2 R1xm, with m the number of phenotypic dimensions) sce-
nario, the latent trait was free to vary (Eq. 2). Second, we considered
both 2-way and 3-way heterogeneity of effect size. Under the 2-way
scenario, only African versus European effect size heterogeneity
(β3,β42R vs. β3 =β42R, with β2 =β5 =0) was tested, and under the
3-way scenario, African versus European versus Indigenous Amer-
ican effect size heterogeneity (β3,β4,β52R vs. β3 =β4 = β52R) was
tested. Third, we looked for heterogeneous effects sizes in the most
significantly associated cranial vault segment, as well as all sig-
nificant (P < 5e−8) segments. Under the best segment scenario, het-
erogeneity of effect size was only tested in the segment most
significantly associated with the SNP in the GWAS, while under the
significant segments scenario, heterogeneity of effect size was tested
in all segments where that SNP was significant (P < 5e−8) in the

GWAS, and the lowest 5% FDR-adjusted P-value was kept.

�y=β0 +β1aEUR +β2aAFR +β3xEUR + β4xAFR + β5xAMR ð1Þ

�y=β0 +β1aEUR +β2aAFR +β3xEUR +β4xAFR +β5xAMR ð2Þ

To test for statistical significance, we considered a full model (with
parameters θ), which included different effect sizes for different
ancestries, and a constrained model (with parameters θ0) with equal
contributions from all ancestries. Significance of �2*ln

Lθ0
Lθ

� �
was

determined based on the upper tail of a χ2 distributionwith degrees of
freedom equal to the difference in number of parameters estimated
between the nested models. Observe that the constraint model
represents the standard GWAS setting, albeit with additional adjust-
ment for local ancestry, where a biallelic SNP is modeled under the
additive genetic model, i.e., its state is modeled as 0, 1, or 2, counting
the major allele. The full model is equivalent to tractor by Atkinson
et al. (2021)129, where alleles are assigned a donor ancestry, and are
then modeled under the additive genetic model per ancestry. Tractor
scripts were used to extract ancestry-specific allelic dosages, xi. Local
ancestry is modeled by ai. The univariate phenotype, �y and the
multivariate phenotype, �y were pre-adjusted for all covariates,
including global genomic ancestry using PLSR.

GWAS in a single-ancestry versus multi-ancestry cohort
To allow for comparative analysis between the multi-ancestry GWAS
and a single-ancestry GWAS, a European-only GWASwas conducted on
a subset of 4198 samples with assigned European ancestry, repre-
senting the largest ancestral group within the total cohort. This GWAS
was run analogously to the full, multi-ancestry GWAS, albeit without
adjusting phenotypes for local genetic ancestry. Peaks were then
called analogously to the full, multi-ancestry GWAS, and loci were
considered to be overlapping between both GWASs if corresponding
lead SNPs were within 250kb. Shape effects and segment-wise asso-
ciation profiles were then summarized for each pair of overlapping
loci. When no lead SNPwas within 250 kb in the other GWAS, the locus
was considered to be specific to oneGWAS. In that case, we elected the
SNPwithin 250 kb thathad the lowestP-value in theGWAS to represent
the locus.

Localization of genetic effects using RNA-seq in E15.5 mice
Timed-pregnant female CD1 mice were purchased from Charles River
Laboratory. The mice were housed under standard conditions in the
University of Pittsburgh Division of Laboratory Services vivarium. The
E15.5 embryos were collected via C-section after CO2 euthanasia of the
pregnant dam. Sexwasnot consideredwhen selecting the embryos. All
animal husbandry, procedures and protocols were approved by and
performed under the oversight of the University of Pittsburgh Insti-
tutional Animal Care and Use Committee. We dissected 9 E15.5 skull
vaults along the coronal suture into the frontal (frontal bones and
metopic suture), and the parietal (parietal bones and sagittal suture)
components. Each biological replicate consists of the frontal and
parietal components from 3 embryos therefore no sex-stratified ana-
lysis was possible. The tissue was lysed using with Trizol (Invitrogen),
followed by additional homogenization using the Qiashredder and
then the RNA was extracted with the Qiagen RNAeasy kit. Axeq made
and sequenced the libraries from 6 biological replicates (n = 3 frontal,
and n = 3 parietal) as 100 bp paired end reads on an Illumina
HiSeq2000 sequencer (Axeq Technologies, South Korea).

The resulting 6 FASTQ formatted paired-read sequence files
produced by Axeq Technologies were subsequently downloaded and
visually inspected for quality control purposes with FASTQC169 v0.11.9.
Read trimmingwas performedbyTrimmomatic v0.32170 using a sliding
window of four nucleotides and a mean Phred score (Q value) greater
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than 20 (SLIDINGWINDOW:4:20) corresponding to an error prob-
ability of 0.01 over the four nucleotides. Sequences shorter than 25
nucleotides (MINLEN:25) were removed.

The resulting trimmed reads were then aligned to the Ensembl
primary assembly mouse reference Genome, GRCm39, available at
[http://ftp.ensembl.org/pub/release-106/fasta/mus_musculus/dna/],
utilizing the GRCm39 gene annotation file, available at: [http://ftp.
ensembl.org/pub/release-106/gtf/mus_musculus/] using the STAR171

sequence aligner version 2.7.10a. Alignment for the 6 trimmed paired-
end reads showed an average uniquely mapped read percentage of
94.3% ± 0.2%.

Gene expression quantification was carried out using the Geno-
micAlignment R package172 set with the following options: Mode =
Union, singleEnd = FALSE, ignore.strand = TRUE, fragments = FALSE.
Normalization of differentially expressed gene counts were based on
five stable housekeeping genes (Actb, Gapdh, Rer1, Rpl27, and Rpl13a)
identified in the Ho and Patrizi, 2021 mouse cranium and brain
development study173. To improve visualization of gene expression,
the normalized gene counts were variance stabilizing transformed
(VST)174–176, which is roughly similar to transforming thedata to the log2
scale, allowing for better visualizations. To allow for easier compar-
isons between genes, especially for the combined expressionplots, the
mean difference in expression, hereafter referred to as ‘mean differ-
ence’, of the sample grouping to all other (parietal and frontal) sample
groupings were calculated and plotted. This allows the plots to report
the ~log2 expression change of each tissue-specific group (e.g., Sample
Group 1 is sampled from the frontal region and thus labelled as
‘frontal’) to the mean of all other samples (e.g., the mean of Sample
Groups 1–6). The R package DESeq2 1.36174,177 was used to analyze the
expression data using the DESeq function174,177, which transforms read
counts based on the estimation of size factors and dispersion, fits to a
negative binomial GLM, performs a Wald significance test, and asses-
ses based on a cutoff false discovery rate of <0.05 using the Benjamini-
Hochberg procedure165. All bioinformatic analyses were performed
using R-4.2.1 and Bioconductor178.

As part of the validation of GWAS hits via differential analysis,
we compared the phenotypes utilized in the GWAS to those of the
two tissues sampled in the expression analysis. Since the expression
analysis was based on tissues taken from the parietal and frontal
areas of the mouse embryo while the GWAS utilized 15 cranial vault
segments, to directly compare the phenotypes we classified the 15
GWAS segments as containing either primarily ‘frontal’ or primarily
‘parietal’ content. As some segments, like segment 1, contain both
parietal and frontal content, those segments were labelled as ‘both.’
Subsequently, this allowed candidate genes near the GWAS lead
SNPs to be classified as either frontal, parietal, or a combination of
both parietal and frontal, depending on the cranial vault segment in
which the lead SNPs were initially found. One issue of this classifi-
cation scheme is that lead SNPs were not always identified in the
most phenotypically specific cranial vault segment (i.e., hierarchical
levels 3 or 4). To remedy this, we performed several classifications.
One classification scheme, labelled as ‘most significant hit’, based
the classification of candidate genes on themost significant segment
in which it was found (i.e., based on the classification of segments
found in hierarchical levels 1–4). The other classification, labelled as
‘most specific hit’, utilized the more phenotypically specific seg-
ments in which the candidate gene was either found in or directly
related to. In this classification, a label with equal or higher specifi-
city was obtained recursively by considering the most significantly
associated ‘child’ segment until the encountered segment com-
prised solely of frontal or parietal content or until hierarchical level
four was reached. As an example, GWAS lead SNP rs17479393 was
identified in segments 1, 2, 3, 7, 8, and 15. The ‘most significant hit’
classification simply takes the most significant segment, segment 1

in this example, and assigns a classification. As segment 1 encom-
passes both the parietal and frontal regions, it is labelled as ‘both’.
The ‘most specific hit’ classification starts at segment 1 and follows
the strongest association of its ‘child’ segments to reach segment 8
(through segments 2 and 4), which contains solely parietal bone
content.

Frontal and parietal tissue gene expression from mice embryos
were analyzed to generate expression profiles that were ultimately
compared to humancandidate genes located near lead SNPs identified
in the GWAS analysis. To make this comparison possible, gene symbol
and human homolog mappings were carried out on mouse Ensembl
identification IDs using the Biomart R package179.

Enrichment for enhancer activity
Signals of acetylation of histone H3 on lysine K27 (H3K27ac) in the
vicinity of the 30 genome-wide significant leadSNPswere calculated as
described in White & Indencleef et al. (2021)32. Information regarding
the cell types and tissues used together with a link to where they are
available can be found in Supplementary Table 5. Briefly, to compare
H3K27ac signal in the vicinity of the genome-wide significant lead SNPs
between cell-types in anunbiasedmanner, wedivided the genome into
20 kb windows, and calculated H3K27ac reads per million (RPM) from
each aligned read (bamor tagAlign) file in eachwindowusing bedtools
coverage (v2.27.1). We then performed quantile normalization (using
the normalize.quantiles function from the preprocessCore package,
v3.7) on the matrix of 154,613 windows × 133 ChIP-seq datasets. We
then selected the windows containing each of the 30 genome-wide
significant lead SNPs.

Genetic overlap with brain and facial traits
To quantify sharing of genetic signals between a pair of GWAS, we
calculated Spearman correlations as described in Naqvi et al. (2021)33.
Briefly, SNPs were first selected to overlap with the HapMap3 SNPs180,
and SNPs within the major histocompatibility complex were removed.
We then organized the remaining SNPs in 1725 LD blocks that are
approximately independent in individuals of European ancestry181. The
mean SNP -log10(P-value) was calculated per block, and a rank-based
Spearman correlation was calculated on the averaged association
score per block. A standard error of the correlation coefficient was
estimated based on 100 bootstrapping cycles.

Testing variants for their role in NCS
We tested for genotype-phenotype associations between our 30
genome-wide significant SNPs and craniosynostosis based on a dataset
comprising whole genome sequence data (WGS; dbGaP,
phs001806.v1.p1) from families with children affected with four dif-
ferent types of craniosynostosis – coronal (72 trios; n = 276), lamb-
doidal (17 trios; n = 51), metopic (62 trios; n = 186), and sagittal (63
trios; n = 189). These families are trios with sequence data on an
affected child and two unaffected parents. Trios were analyzed using
the transmissiondisequilibrium test (TDT) via PLINK133. Trioswere only
analyzed with trios of the same phenotype (i.e., metopic craniosy-
nostosis families were only analyzed with other metopic families) so
we had four discrete analyses based on the four types of craniosy-
nostosis. We then checked the results of the 30 genome-wide sig-
nificant cranial vault SNPs in these four analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Full cranial vault GWAS summary statistics for this study have been
deposited to the NHGRI-EBI GWAS Catalog [https://www.ebi.ac.uk/
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gwas/] under accession codes GCST90270327–GCST90270341 (one
accession number per segment). All the data and detailed information
for the ABCD Study, including MRI scans, genetic markers, and cov-
ariates are available under restricted access through the ABCD data
repository [https://nda.nih.gov/abcd/] upon completion of the rele-
vant data use agreements. The ABCD data repository grows and
changes over time. The ABCD data used in this report came from data
release 3.0 [https://doi.org/10.15154/1519007 and https://doi.org/10.
15154/1528459]. All the data and detailed information for the UK Bio-
bank data set, includingMRI scans, geneticmarkers, and covariates are
available under restricted access to bona fide researchers. Access can
be requested via the UK Biobank data access process [https://www.
ukbiobank.ac.uk/enable-your-research/apply-for-access]. The NYGC
30×1000 genomes phased dataset and HGDP dataset are freely avail-
able online [http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000G_2504_high_coverage/working/20201028_3202_
phased/, and https://ftp.sra.ebi.ac.uk/1000g/ftp/data_collections/
HGDP/data/]. The WGS data from the craniosynostosis cohorts used
in this study is available fromdbGaPunder accession code phs001806.
v1.p1. The mouse cranial bone RNAseq dataset used in this study is
available in the GEO database under accession code GSE245664. The
mouse GRCm39 reference genome assembly and gene annotation file
used in this study are available from Ensembl [http://ftp.ensembl.org/
pub/release-106/fasta/mus_musculus/dna/ and http://ftp.ensembl.
org/pub/release-106/gtf/mus_musculus/]. The cis-eQTL data from 22
tissues used in this study are available from the GTEx V8 database
[https://gtexportal.org/home/datasets]. The LD block coordinates
used in this study are available from Berisa et al. at [https://bitbucket.
org/nygcresearch/ldetect-data/src/master/]. The H3K27ac ChIP-seq
datasets used in this study are available from the Gene Expression
Omnibus and Roadmap Epigenomics databases. Accession codes and
links can be found in Supplementary Table 5. Source data for the
manuscript figures, 3D animations of cranial vault effects, and the
anthropometrics masks used in this study are available from our Fig-
Share repository [https://doi.org/10.6084/m9.figshare.c.6858271.
v1]34. Source data are provided with this paper.

Code availability
KU Leuven provides the MeshMonk v.0.0.6 spatially dense facial-
mapping software, free to use for academic purposes available at
[https://github.com/TheWebMonks/meshmonk] and from our Fig-
Share repository [https://doi.org/10.6084/m9.figshare.c.6858271.v1]34.
Matlab implementations of the hierarchical spectral clustering to
obtain facial segmentations are available from a previous publication
[https://doi.org/10.6084/m9.figshare.7649024.v1]182.

The statistical analyses in this work were based on functions in
Matlab 2021a, python v3.7.6, R v4.2.1, PLINK 2.0, bcftools v1.10.2,
vcftools v0.1.17, SHAPEIT v4.2.2, IMPUTE5 v1.1.5, imp5Chunker v1.1.5,
ADMIXTURE v1.3.0, RFMIX v2, MeshMonk v0.0.6, GREAT v4.0.4,
FUMA v1.3.7, LocusZoom, FASTQC v0.11.9, Trimmomatic v0.32, STAR
sequence aligner v 2.7.10a, Bioconductor, bedtools v2.27.1, R libraries
(GenomicAlignment, DESeq2 v1.36, Biomart, preprocessCore v3.7,
coloc v5.1.0.1, locuscomparer v1.0.0, circlize v0.4.15), python packages
(SimpleITK v 2.1.0), scripts from Luo et al. (2021, available at: https://
github.com/immunogenomics/cov-ldsc), and scripts from Atkinson
et al. (2021; available at: https://github.com/Atkinson-Lab/Tractor), as
mentioned throughout the Methods.
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