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Ongoing shuffling of protein fragments
diversifies core viral functions linked to
interactions with bacterial hosts

Bogna J. Smug 1, Krzysztof Szczepaniak1, Eduardo P. C. Rocha2,
Stanislaw Dunin-Horkawicz3,4 & Rafał J. Mostowy 1

Biological modularity enhances evolutionary adaptability. This principle is
vividly exemplified by bacterial viruses (phages), which display extensive
genomic modularity. Phage genomes are composed of independent func-
tional modules that evolve separately and recombine in various configura-
tions. While genomic modularity in phages has been extensively studied, less
attention has been paid to protein modularity—proteins consisting of distinct
building blocks that can evolve and recombine, enhancing functional and
genetic diversity. Here, we use a set of 133,574 representative phage proteins
and highly sensitive homology detection to capture instances of domain
mosaicism, defined as fragment sharing between two otherwise unrelated
proteins, and to understand its relationship with functional diversity in phage
genomes. We discover that unrelated proteins from diverse functional classes
frequently share homologous domains. This phenomenon is particularly
pronounced within receptor-binding proteins, endolysins, and DNA poly-
merases. We also identify multiple instances of recent diversification via
domain shuffling in receptor-binding proteins, neck passage structures,
endolysins and some members of the core replication machinery, often
transcending distant taxonomic and ecological boundaries. Our findings
suggest that ongoing diversification via domain shuffling is reflective of a co-
evolutionary arms race, driven by the need to overcome various bacterial
resistance mechanisms against phages.

Modularity is a fundamental concept that pervades biological systems,
shaping everything from the architecture of cells to the complexity of
ecosystems1–4. This principle posits that biological entities are often
composed of interchangeable, semi-independent units or ‘modules’
that serve specific functions. In evolutionary terms, modularity
enhances adaptability, allowing organisms to reconfigure or expand
their functional repertoires in response to changing environmental
pressures5–8.

Among the most compelling systems for studying biological
modularity are (bacterio)phages—viruses that infect bacteria. David
Botstein proposed as early as in 1980 that phages evolve by shuffling
interchangeable functional modules within their genomes, a concept
known as genomic modularity. This modular organisation facilitates
the emergence of new, mosaic genotypes that are advantageous in
specific niches9. The outcome of this genomic modularity is what is
termed genetic mosaicism. Multiple studies have since demonstrated
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that genetic mosaicism is ubiquitous in phages, resulting from fre-
quent homologous and non-homologous recombination events
between different viruses10,11. Recombination can also occur relatively
frequently between genetically distant phages12. As a result, bacter-
iophage population structure is better represented as a network rather
than a phylogenetic tree13,14, where modules of functionally related
groups of genes have a coherent evolutionary history15,16. Following
billions of years of co-evolution with bacteria, the resulting diversity of
phages is astounding, a phenomenon that has only recently become
fully appreciated due to advances in genomics and metagenomics17.
Such diversity is evident not only at the genomic level—DNA18 and
RNA19—but also extends to the variety of phage morphologies,
structures17, bacterial resistance mechanisms20–22 and viral counter-
strategies23,24.

While the concept of genomic modularity has been extensively
studied in phages, less attention has been given to modularity within
proteins, a phenomenon we refer to as protein modularity. In this
context, protein modularity describes the organisation of a three-
dimensional structure of a protein into distinct functional domains or
units, each serving a specific role. These domains can be thought of as
the building blocks of a protein, capable of being shuffled, duplicated,
or modified, much like genomic modules. This can lead to domain
mosaicism, which refers to the occurrence of proteins that are com-
posed of domains or units derived from different origins25,26. Essen-
tially, it serves as themanifestation of proteinmodularity at the level of
individual proteins, akin to how genetic mosaicism serves as a mani-
festation of genomic modularity27. Hence, the occurrence of domain
mosaicism can be thought of as a predictor of protein modularity.

There are compelling reasons to suspect extensive protein mod-
ularity in phages. First, certain functional classes of phage proteins,
such as receptor-binding proteins (including tail fibres, tail spikes) and
endolysins, exhibit remarkable modularity at both genetic and struc-
tural levels28–31. These modules can even be experimentally shuffled to
produce viable phage virions with modified host ranges32–35. Second,
previous studies have suggested that structural phage proteins of
different functions have evolved to reuse the same folds for various
purposes, with recombination being a key genetic mechanism driving
this evolution36,37. Finally, studies that looked for the presence of
composite genes (fusions of different gene families) in viral genomes
found this phenomenon to be extensive16,38. However, the extent to
which domain mosaicism occurs in phages and its relationship to
genetic and functional diversity in phages has never beenquantifiedon
a large scale.

In this study, we aim to better understand the extent of protein
modularity in phages and its role in viral evolution. Specifically, we
analysed over 460,000 phage proteins to detect instances of domain
mosaicism, defined here as two non-homologous protein sequences
sharing a fragment (domain or unit). We remain agnostic as to the
exact nature of the genetic process leading to this observation (e.g.,
genetic recombination, deletion of intergenic regions between con-
secutive genes, rearrangement, integration). Using a highly sensitive
approach based on comparing Hidden Markov Models (HMMs) of
proteins39, we found thatwhile domainmosaicism iswidespread, some
functional groups, including tailfibres, tail spikes, endolysins, andDNA
polymerases, are particularly enriched in mosaic compositions.

Results
Functional annotation using protein fragments is often
ambiguous
To investigate the relationship between protein diversity, function and
modularity in bacteriophages,we carriedout a comprehensive analysis
of Hidden Markov Model (HMM) profiles of representative phage
proteins by comparing their predicted functional annotations, genetic
similarity and domain architectures (see “Methods” and Supplemen-
tary Fig. S1). Briefly, we used mmseqs2 to cluster 462,721 predicted

protein sequences in all bacteriophage genomes downloaded from
NCBI RefSeq. The clusteringwas carried out at 95% coverage threshold
to ensure that all proteins grouped within a single cluster have an
identical or near-identical domain architecture. We took 133,574
representative protein sequences from the resulting clusters and used
them to query the UniClust30 database. The alignments obtained
were then converted intoHMMprofiles, whichwewill henceforth refer
to as representative HMM profiles or rHMMs. To assign functions to
rHMMs,we used hhblits40 to search each rHMM against the PHROGs
database41 (to our knowledge the most accurate mapping to date
between diverse phage proteins and manually curated functional
annotations) complemented with a database of antidefence phage
proteins42. Throughout this study, we employed HMM-HMM compar-
isons to align our rHMMswith themselves or other HMMdatabases. In
HMM-HMM comparisons, two profile HMMs are aligned with each
other, capturing the statistical properties of the sequence diversity in
each protein family. This involves scoring the likelihood that the
amino-acid patterns in one HMM profile match those in another,
thereby providing a robust and highly sensitive measure of similarity
between representative proteins39.

We investigated the robustness of the PHROG functional anno-
tations (which were additionally simplified to combine closely related
biological functions; see “Methods” and Supplementary Data S1) by
assessing how the HMM-HMM comparison parameters affected both
the functional coverage of the data (i.e., proportion of representative
proteins with any functional hit) and functional uniqueness (i.e., pro-
portion of annotated representative proteins with unique functional
hits). We found that pairwise coverage (both query and subject) had a
much stronger effect on functional assignment than hit probability
(see Supplementary Fig. S2). Specifically, while changing the coverage
threshold from 80% to 10% (while maintaining a high probability
threshold of 95%) increased the functional coverage from 19% to 34%,
it also decreased functional uniqueness from 93% to 52%—meaning
that at the lowest coverage threshold every second, annotated rHMM
had multiple, different functional assignments. We also found that at
high pairwise coverage threshold ambiguous functional assignment
often reflected biological similarity (e.g., ribonucleoside reductase vs.
ribonucleotide reductase, or transcriptional regulator vs. transcrip-
tional activator; see Supplementary Fig. S3). By contrast, at lower
sequence coverage thresholds co-occurrences between clearly differ-
ent functions became more and more common and affected the
majority of functions (see Supplementary Fig. S3), meaning it was
often impossible to confidently assign a function based on a fragment
of a protein (i.e., partial match to a reference database; here PHROGs).
Considering this, for further analyses we set the probability and pair-
wise coverage cut-offs for the PHROG annotations to 95% and 80%,
respectively, while conservatively excluding all rHMMs with hits to
more than a single functional class (see “Methods”).

Proteins assigned to different functional classes share homo-
logous domains
Given that for a low pairwise coverage threshold we often found
rHMMs to be co-annotated by apparently distinct functional classes,
we hypothesised that these functions contained rHMMs that shared
homologous domains (i.e., protein structural and functional units that
have been shown to have emerged from a common ancestor). To
address this hypothesis, we used the Evolutionary Classification of
Protein Domains (ECOD) database as it provides a comprehensive
catalogue of known protein domains and their evolutionary
relationships43. We then used HMM-HMM comparisons to detect the
presence of these domains in rHMMs (see “Methods” and Supple-
mentary Fig. S1). The ECOD database categorises protein domains
based on their evolutionary relationships and structural similarities,
organising them into a hierarchical system which includes possibly
homologous groups (X), homologous groups (H) and topologies (T).
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Domains with a similar spatial arrangement of their secondary struc-
tures are assumed to share the same topology and are assigned to the
same T-group. Domains from different T-groups are grouped into
homologous groups (H-groups) when there is evidence of their
homology via sequence similarity, functional similarity or other fea-
tures. Domains that lack sequence similarity but share structural fea-
tures can still be classified as possibly homologous and be assigned to
the same X-group. We thus assumed that domains in different
X-groups are unrelated.

Figure 1 shows the distribution of ECOD domains (H-groups)
across different functional classes. (The distribution of T-groups
across functional classes is also shown in Supplementary Fig. S4.) In
line with previous literature, we found examples of phage proteins
with different functions sharing homologous domains. These include
well-known examples of helix-turn-helix domains found in transcrip-
tional regulator/repressor proteins, integrases, transposases or DNA-
binding proteins44; the RIFT-related domains found inmany structural
proteins like tail and neck proteins45 but also for example in RNA

multiple
categories tail

head
and

packaging

connector

tail

DNA, RNA and
nucleotide

metabolism

integration
and excision

metabolic

transcription
regulation

lysis

antidefense

other

DNA clamp

all−
alpha N

TP pyro
phosp

hatase
s

alpha/b
eta−Hammerh

ead/

Barre
l−sa

ndwich hybrid

Double−str
anded beta−helix

HAD domain−re
late

d
HTH

Lyso
zyme−lik

e

Metallo
−dependent p

hosp
hatase

s

Nucleic acid−binding pro
te

ins

P−loop domains−
re

late
d

Restr
ictio

n endonuclease
−lik

e

Ribonuclease
 H

−lik
e

RIFT−re
late

d
SH3

TIM
 barre

ls

gpW
/g

p25−lik
e

Phage ta
il fi

ber p
ro

te
in

tri
meriz

atio
n domain

capsid
internal virion protein

major capsid
minor capsid

terminase large
terminase small

adaptor
head closure

baseplate
baseplate hub

baseplate spike
baseplate wedge

distal tail
major tail
minor tail

tail fiber
tail sheath

tail spike

clamp loader of DNA polymerase
DNA annealing protein

DNA binding protein
DNA binding/annealing protein

DNA helicase
DNA helicase loader

DNA ligase
DNA polymerase

DNA polymerase processivity factor
DNA primase

DNA primase/helicase
endonuclease

exonuclease
Holliday junction resolvase

nucleoside triphosphate pyrophosphohydrolase
palindrome specific endonuclease

partition protein
replication initiation protein

RNA ligase
RNA polymerase

single strand DNA binding protein

excisionase
integrase

transposase

2OG−Fe(II) oxygenase

Arc−like repressor
transcriptional regulator
transcriptional repressor

endolysin

anti−CRISPR−associated gene
CRISPR system inhibited

CRISPR...Cas evasion
Type II TA system

deoxynucleoside monophosphate kinase
MazG−like pyrophosphatase

metallo−phosphoesterase
peptidase

PhoH−like phosphate starvation−inducible
polynucleotide kinase

10

30

100

300

number
of rHHMs

DNA,
RNA
and

nucleot.
metab.

Fig. 1 | Diverse protein functions often share homologous domains. Heatmap
showing groups of homologous ECOD domains (H-group names; X-axis) found in
proteins assigned to different functional classes (Y-axis). A domain was considered
present in a functional class when it was present (i.e., found with a minimum 95%
probability and 70% subject coverage) in at least 5 rHMMs assigned to a given
functional class. The colour scale indicates number of rHMMs in which the domain

was found.Only domains found inmultiple functional classes (at least 3) are shown.
Generic functional classes (tail and structural protein) were excluded from this
visualisation. Functional classes are grouped and coloured according to their
categories. Source data are provided as a Source Data file. rHMM: representative
HMM profile.
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polymerases in the formof double-psi barrels46; P-loop domain-related
family found in ligases, kinases or helicases47–49; or the ribonuclease
H-like domain family found in many DNA processing enzymes like
Holliday junction resolvases, exonucleases, DNA polymerases or
transposases50.

Cases of homologous domain sharing (i.e., belonging to a single
ECOD H-group) between proteins assigned to different functional
classes can be explained in several ways. One explanation is that such
proteins may actually have the same function (e.g., baseplate and
baseplate wedge). Alternatively, ancient and large domain classes that
playan important, biological role (e.g., DNAbinding orNTPhydrolysis)
may have diverged into subfamilies specific for different functions and
thus are shared by a wide range of PHROG classes. Indeed, we found a
strongly significant, positive correlation between domain frequency
(number of rHMMscontaining eachH-group) and diversity (number of
predicted ECOD families within each H-group; see Supplementary Fig.
S5), suggesting that domains that are common in nature tend to be
more diverse.

Finally, domain sharing between proteins assigned to different
functional classes may be the result of mosaicism, i.e., the acquisition
of specialised domains for different functions. This scenario is addi-
tionally supported by the observation that distinct H-groups were
detected in proteins assigned to the same functional class. For exam-
ple, within proteins assigned as exonucleases, endonucleases, DNA
polymerases or endolysins we found as many as 4 distinct H-groups,
each found in at least 5 rHMMs (althoughnot necessarily all together in
the same rHMM; see Fig. 1).We thus hypothesised that this distribution
is indicative of modularity and ongoing domain shuffling in function-
ally diverse proteins.

Protein modularity is most often linked to replication, lysis and
structural proteins
To detect and quantify domain mosaicism and better understand its
relation to protein function, we studied the presence or absence of
ECOD domains within pairs of proteins. Specifically, a pair of proteins
(represented by rHMMs) was considered to exhibit domainmosaicism
if it met the following criteria (see also Fig. 2A): (1) each protein in the
pair has at least two domains belonging to different X-groups, (2) the
pair shares at least one domainwith the same topological features (i.e.,
belonging to the same T-group), and (3) each protein in the pair also
contains at least one domain with unique structural architecture (i.e.,
belongs to an X-group absent in the other protein). We refer to this as
ECOD-based mosaicism. We found evidence of such mosaicism in 45
out of 101 functional classes (assuming at least three mosaic rHMMs
per functional class). Figure 2B shows amapof ECOD-basedmosaicism
visualised as a network with nodes representing functional classes and
edges linking those classes that contained rHMMs with evidence of
ECOD-based mosaicism. We found that functional categories where
domain-level mosaicism was common were DNA/RNA metabolism
(e.g., RNA and DNA polymerases, DNA ligases, helicases, exo- and
endonucleases, DNA-binding proteins), transcription regulation,
structural tail proteins (tail fibre, tail spike and baseplate proteins) and
endolysins. Three functional classes with themost examples of within-
class ECOD-based mosaicism were DNA polymerases, endolysins and
tail spikes.

To examine the relationship between protein function and ECOD-
based mosaicism independently of assignment to functional classes,
we next investigated which domain architectures are statistically
associated with such mosaicism. To this end, for each domain (ECOD
T-group), we calculated the odds ratio of being over-represented in
proteins with evidence of ECOD-based mosaicism vs. those without
any evidence of ECOD-based mosaicism (see “Methods” section).
Specifically, we first considered only rHMMs with significant hits to at
least a single domain. Then, for a given domain, we calculated the
number of all domain architectures (i.e., unique combinations of ECOD

T-groups) with and without that domain and the number of all domain
architectures with and without evidence of ECOD-based mosaicism.
Finally, we calculated the odds ratio that this domain is found more
frequently in mosaic domain architectures than non-mosaic domain
architectures (see “Methods”). Results, shown in Fig. 2C, are consistent
with the network in panel B. Domains with the greatest odds ratio of
being over-represented in mosaic proteins typically fall into three
categories: (1) domains occurring in proteins associated with DNA/
RNA metabolism, particularly in DNA polymerases, DNA primases,
DNA helicases, exonucleases, ribonucleotide reductases and Holliday
junction resolvases, e.g., P-loop containing nucleoside triphosphate
hydrolase, RibonucleaseH-like, adenylyl and guanylyl cyclase catalytic,
toprim or SAM-like domains; (2) domains occurring in endolysins, e.g.,
lysozyme-like, SAM-like, cysteine proteinases or SH3; and (3) domains
occurring in receptor-binding proteins, e.g., pectin lysase-like or tail
fibre trimerization domain.

The existence of domain mosaicism in phages is not a new phe-
nomenonas some functions analysedhere havebeenpreviously linked
with mosaic domain architectures51,52. We thus next enquired which
cases of ECOD-based mosaicism are ancient (i.e., represent ancestral
domain shuffling underlying functional diversification) and which
cases of ECOD-based mosaicism are contemporary (i.e., are the result
of an evolutionarily recent reshuffling of domains). This issue was
partially addressed using ECODT-groups insteadofH-groups to assign
shared domains in protein pairs. However, to investigate this problem
further, we first looked into the sequence similarity distribution of all
mosaic pairs of rHMMs and found that only 9% of them shared frag-
ments with a percentage identity of 10% or greater. Then, we reana-
lysed the data using a definition of contemporary mosaicism by
requiring that the shared protein fragments have an amino-acid per-
centage identity level of 50% or greater. We found that four of the
functional classes fulfil that criterion (Fig. 2B, brown edges): DNA
polymerase, tail spikes, endolysins and tail fibres. Finally, using the
domain-based approach (Fig. 2D), we found that domains (ECOD T-
groups) significantly over-represented in proteins showing evidenceof
contemporary mosaicism are most often linked to receptor-binding
proteins and baseplate proteins (e.g., putative tailspike protein
N-terminal domain, pectin lyase-like, N-terminal Ig-like domain) and to
endolysins (e.g., LysM domain, SH3, amidase-like, lysozyme-like etc.);
we also found a signal to domains that are typically associated with
replication (HAD domain-related and P-loop domains-related). (The
full list of odds ratios and p-values from Fig. 2C and D can be found in
Supplementary Data S2.)

Overall, these results show that (1) domain mosaicism, measured
with ECOD-based mosaicism, is common in phage proteins and asso-
ciated with DNA/RNA replication, lysis and structural proteins, (2)
while most of that mosaicism appears to be due to ancient domain
shuffling or specialisation, we see clear examples of contemporary
mosaicism particularly in receptor-binding proteins and endolysins,
and (3) there are also rare and intriguing cases of recently emerged
mosaicism associated with other functions.

Domain mosaicism hotspots
To better understand the nature of protein modularity, we next looked
into the specific domain architectures of the four mosaicism-outliers:
DNApolymerase, tailfibre, tail spike andendolysin.Wealsodevelopeda
Shiny webserver that allows users to interactively look up and visualise
domain architectures in all functional classes used in this analysis aswell
as to connect specific domains shared with proteins of other functions:
bognasmug.shinyapps.io/PhageDomainArchitectureLookup.

DNA polymerase and other replication proteins. As far as individual
functional classes are concerned, DNA polymerases are the clear
mosaicism outlier in the ‘DNA, RNA and nucleotide metabolism’ cate-
gory. The representative domain architectures of all of those found in
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Fig. 2 | Map of ECOD-based mosaicism in phages. A ECOD-based mosaicism for
any rHMM pair was defined when (1) both proteins had at least two distinct ECOD
domains detected, (2) both shared a domain assigned to the same ECOD T-group
and (3) both additionally contained non-homologous domains (i.e., belonging to
different X-groups).BMosaic network of protein functions. Each node represents a
functional class and edges link functional classes where evidence of domain
mosaicism was found between at least four pairs of domain architectures (i.e.,
unique combinations of ECOD T-groups which can be thought of as structurally
equivalent proteins). Brown edges connect functions where at least one case of
contemporary mosaicism was found (i.e., a pair of rHMMs with the percentage
identity of a shared fragment 50%or greater). Node size corresponds to the number
of domain architectures in a given functional class. Edge thickness corresponds to
the number of domain architecture pairs with evidence of domain mosaicism.

Generic functional classes (tail and structural protein) were excluded from this
visualisation.CBarplot shows theodds ratio that a givendomain (ECODT-group) is
found more frequently in mosaic domain architectures than non-mosaic domain
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values adjusted using Bonferroni correction for multiple testing, n = 1011 domain
architectures). Colours denote the most frequent functional category in rHMMs
with the given domain. For each domain, corresponding H-group names are pro-
vided if different from theT-groupname.D Sameaspanel (C) but heremosaicism is
defined as contemporary as for brown edges in panel (B). The full list of odds ratios
and exact p-values from panels (C and D) can be found in Supplementary Data S2
(n = 1011 domain architectures). Source data are provided as a Source Data file.
rHMM: representative HMM profile.
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DNA polymerases are shown in Fig. 3. For comparison, in Supple-
mentary Fig. S6 we show an overview of the domain architectures for
representative members of all families of DNA polymerases known to
occur in bacterial or viral genomes (A, B, C, X and Y)53,54 detected using
HHpred55 with ECOD as the database.

Our results point to a few notable observations. First, we have
recovered domain architectures of not only families A and B, which are

well known to occur in phages such as T4 and T7 but also of families C
and Y (c.f., Supplementary Fig. S6) which are characteristic of bacteria.
Second, we have identified other domain architectures that are var-
iants of the above. For example, instead of the four domains typical of
familyA (ECODX-groups 2484, 4970, 4964 and 304), we found rHMMs
that contained only the first three (2484, 4970, 4964) and two (2484,
4970). Such rHMMs with unusual domain architectures represented

Domain
102.1.1: SAM domain−like
2.1.1: Nucleic acid−binding proteins
2002.1.1: TIM barrels
2484.1.1: Ribonuclease H−like
302.1.1: Lesion bypass DNA polymerase (Y−family), little finger domain
304.48.1: Adenylyl and guanylyl cyclase catalytic domain−like
316.1.1: Nucleotidyltransferase
3584.1.1: DNA polymerase III finger domain
4239.1.1: DNA polymerase III theta subunit−like
4964.1.1: helical bundle in Bacillus stearothermophilus−like DNA polymerase I
4968.1.1: insertion domain in bacteriophage phi29 DNA polymerase
4969.1.1: thumb domain in bacteriophage RB69−like DNA polymerase I
4970.1.1: fingers domain in bacteriophage RB69−like DNA polymerase I
7569.1.1: Uracil−DNA glycosylase−like
multiple domains
undetected

Domain
1.1.13: Phage tail proteins
10.1.1: Concanavalin A−like lectins/glucanases
2007.5.1: SGNH hydrolase
207.2.1: Pectin lyase−like
219.1.1: Cysteine proteinases
235.1.1: Lysozyme−like
3240.1.1: Intramolecular chaperone domain in virus tail spike protein
3386.1.1: gp9 C−terminal domain−related
3761.1.1: Major tropism determinant (Mtd) trimerization domain−related
3856.1.1: Putative tailspike protein Orf210 N−terminal domain
3857.1.1: Head−binding domain of phage P22 tailspike protein
5.1.3: 6−bladed
5092.1.1: Domain in virus attachment proteins
520.1.1: gp9 N−terminal domain−related
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Fig. 3 | Visualisation of domain architectures for functional classes exhibiting
the highest levels of ECOD-basedmosaicism. Each line shows one chosen rHMM
(abbreviated reprseqXXXXXX) per each domain architecture, with the number of
protein sequences having this domain architecture displayed in bracket, and the
ECOD domains (T-groups) found within that rHMM. Colours denote the ECOD T-

groups, with black denoting multiple domains found in this region and white
denoting the absence of ECOD hits. ECOD T-groups are in the following format:
Xid. Hid. Tid. Only domain architectures with at least two different T-groups are
shown. Source data are provided as a Source Data file. rHMM: representative HMM
profile.
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clusters with multiple protein sequences, suggesting multiple occur-
rences of such architectures in the analysed genomes. Finally, the
comparison of these domain architectures points to clear cases of
mosaicism, such as the insertion domain of bacteriophage ϕ29 found
alongside the exonuclease (ECOD X-group 2484) and/or the finger
domain (ECOD X-group 4970). It also highlights that conserved folds
found in DNA polymerases are reused in various combinations, but
also in combination with domains present in other proteins belonging
to the ‘DNA, RNA and nucleotide metabolism’ category (see Supple-
mentary Fig. S7).

Receptor-binding proteins and other tail proteins. Receptor-binding
proteins, like tail fibres and tail spikes, are often described in the lit-
erature as consisting of three domains: a conserved N-terminal that
binds to the tail structure (e.g., to the baseplate), a variable and host-
dependent C-terminal that binds to the receptor at the bacterial sur-
face, and the central domainwhich contains enzymes (hydrolases) that
help the phage penetrate layers of surface sugars like the capsular
polysaccharide56. Our results showclear evidence for the emergenceof
domain mosaicism via shuffling of all of these domains (see Fig. 3).
First, we find N- and C-terminal domains inmultiple arrangements. For
example, the C-terminal ‘Alanine racemase-C’ domain (ECOD T-group
1.1.7) is found in tail spikes in combination with either the 'Head-
binding domain of phage P22 tailspike protein domain' (3857.1.1) or
with the 'Putative tailspike protein Orf210 N-terminal domain'
(3856.1.1), providing an excellent example of mosaicism. Second, we
found the co-existence of various enzymatic domains within the same
protein in different combinations. For example, the 'Intramolecular
chaperone domain in virus tail spike protein' domain (3240.1.1) was
found to co-occur with the SGNH hydrolase domain (2007.5.1) in a tail
fibre protein as well as with the Pectin lyase-like domain (207.2.1) in a
tail spike. Finally, some domains present in receptor-binding proteins
were also found to occur in other functional classes. A good example
here is the tail fibre trimerization domain (79.1.1) which is also found in
baseplate spikes in combinationwith other domains like lysozyme (see
also Supplementary Fig. S8). Overall, these results suggest that
domains found in receptor-bindingproteins cannot onlybe shuffled in
different combinations, but that multiple enzymatic domains can co-
occur in the same protein.

Endolysins. Endolysins are classically described as having catalytic
domains (lysozymes, muramidases, amidases, endopeptidases, etc.)
and/or cell wall-binding domain; and theymay be observed inmultiple
combinations29,30,57. Here, we find both types of domains co-occurring
in various combinations (see Fig. 3). For example, the catalytic domain
Cysteine proteinases (ECOD T-group 219.1.1) is found in combination
with either the SH3 domain (4.1.1) or target recognition domain of
zoocin A domain (6062.1.1). We also found the presence of multiple
catalytic domains within the same proteins. This includes the co-
occurrence of exopeptidases (2011.1.1) and Cysteine proteinases
(219.1.1), or co-occurrence of the spore cortex-lytic enzyme (3374.1.1)
andHedgehog/DD-peptidase (307.1.1). Thesedomain architectures are
in line with those previously described for endolysins of mycobacter-
iophages, where apart from multiple instances of co-occurrence
between the peptidase-like N-terminal and a cell wall-binding C-term-
inal there were also central domains with amidases, glycoside hydro-
lases and lytic transglycosylases57. Domain architectures composed of
multiple catalytic domains, and sometimes lacking any cell wall-
binding domains have also been reported by Criel and colleagues29.

Interestingly, a domain-based network of diversity in all lysis
genes exhibited a higher level of interconnectedness than for repli-
cation and tail protein networks (see Supplementary Fig. S9). This
phenomenon suggests that endolysin domains likely co-occur inmany
out of all theoretically possible combinations, which is consistent with
previous analyses of domain diversity in endolysins29,31,57.

Sequence-based insight points to extensive mosaicism beyond
domain analysis
ECOD-basedmosaicism—ourmeasure of domainmosaicism—serves as
a robust approach for detecting protein modularity. It uses the evo-
lutionary information from the ECOD database to discern whether a
lack of local sequence similarity is due to evolutionary divergence
(same T-groups) or due to a lack of common ancestry (different X-
groups). The approach also ensures that the units of mosaicism (i.e.,
domains) are evolutionarilymeaningful as they can fold independently
and hence can be horizontally shuffled. However, this approach has
two important limitations.

The first limitation is that the approach to detect domain mosai-
cism relies on the assumption that all functional classes have a com-
parable coverage in the ECOD domain database, which may not be
true. Indeed, our analysis of such coverage (see Supplementary Fig.
S10) shows that while some functional classes—for example, those
belonging to the ‘DNA/RNA nucleotide metabolism’ category—are
relatively well annotated by ECOD, other functional classes (e.g., tail
completion, head scaffolding, spanin, holin/anti-holin, nucleotide
kinase or tail length tape measure) seem to be strongly under-
represented in domain databases like ECOD. An interesting example is
tail fibres, which rarely exhibit hits tomore than a single ECOD domain
in spite of being known as long and multi-domain proteins. Further-
more, while we saw a strong and significant correlation between
structural diversity (number of unique domain architectures detected
by ECOD at the T-group level) and genetic diversity (measured by the
number of protein families, where protein family was defined as a
cluster of similar rHMMs; see “Methods”) in different functional clas-
ses, some classes—including tail length tape measure protein, mem-
brane proteins, head-tail joining proteins or ssDNA binding proteins—
had a disproportionately low structural diversity compared to genetic
diversity (see Supplementary Fig. S11).

The second limitation of the ECOD-based approach to detect
domain mosaicism is that it relies on a highly restrictive definition of
mosaicism—it requires that each protein in a mosaic pair has two
structurally unrelated domains detected (different X-groups). This
requirement might miss many cases of mosaicism where a domain is
undetected or when mosaicism occurs at the sub-domain level58. To
gauge the potential extent of such bias, we carried out the all-against-
all comparison of 134k rHMMs using hhblits40 and investigated the
relationshipbetween their sequence similarity and coverageof all pairs
(see Supplementary Fig. S12A). The results show that, while most
rHMM pairs with any detected similarity align at high coverage,
reflecting their likely homology over the majority of the sequence
length, there is a substantial fraction of pairs that overlap by a frag-
ment that constitutes a short proportion of their length, indicating
possiblemosaicism at the domain or sub-domain level. The number of
pairs that overlap on a short proportion of length was nearly the same
when we subtracted all rHMM pairs where we detected ECOD-based
mosaicism (Supplementary Fig. S12B), suggesting that this measure of
domain mosaicism is highly restrictive and hence imperfect.

Given those limitations, we introduced another measure of
domainmosaicism,hereafter called sequence-basedmosaicism, aimed
at finding instances of similar sequences shared by otherwise unre-
lated proteins (see Fig. 4A). To detect sequence-based mosaicism, we
queried all rHMMs against each other using HMM-HMM comparisons.
Then, for every rHMM pair for which similarity was detected, we cal-
culated query and subject coverage as the total number of residues in
the aligned sequence regions divided by the length of the query and
subject sequence, respectively. Finally, for each pair, we calculated the
pairwise coverage as themaximumof subject and query coverage, and
pairwise probability as the average ofHHsuite probabilities assigned to
each residue in the homologous region. A pair of rHMMs was desig-
nated as mosaic according to the sequence-based definition if they
exhibited detectable similarity across less than half of their respective
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lengths (with a pairwise coverage of 50% or less) but with a minimum
length of 50 amino-acids, minimum of 30% identity in the aligned
protein region and a hit probability of at least 95%. Furthermore, any
rHMM involved in such a mosaic pair was termed an rHMM with a
signal of sequence-based mosaicism.

Figure 4B shows the number of rHMM families with a signal of
mosaicism detected by ECOD (i.e., ECOD-based mosaicism) vs. by
ECOD or sequence (i.e., ECOD-based mosaicism or sequence-based
mosaicism) indifferent functional classes.We saw that, on average, the
proportion of rHMM families with the signal of sequence-based
mosaicism in a given functional class was greater than the proportion
of rHMM families with a signal of ECOD-based mosaicism. This result

was in line with our expectations since, as explained above, the
sequence-based mosaicism approach is the less conservative one.
Notably, however, in some functional classes, the proportion of
families with a signal of sequence-based mosaicism alone was dis-
proportionately high. Examples include functional classes such as
replication initiation protein, endonuclease, DNA-binding protein,
capsid assembly, endolysin, tail spike, tail length tape measure, tail
fibre, minor tail or transcriptional repression/regulation. In particular,
some of the functional classes that were not over-represented in
rHMMs mosaic according to ECOD-based definition turned out sig-
nificantly over-represented when we used the sequence-based defini-
tion. These include tail fibres, tail spikes, tail length tapemeasures and
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endonucleases. (The full list of odds ratios and p-values is available in
Supplementary Data S3.) These observations suggest that these—and
potentially some other—functional classes may harbour an under-
explored reservoir of domain mosaicism.

Protein diversification via domain shuffling is an ongoing evo-
lutionary process
Our results so far indicate that domainmosaicism frequently underlies
functional diversity in phages. In some functional classes, such as
receptor-binding proteins (RBPs) and endolysins, the emergence of
domain mosaicism can be considered ‘contemporary,’ based on our
own definition that restricts the term to cases where the percentage
identity of the shared fragment is at least 50%. Furthermore, using a
sequence-based definition of mosaicism—with a baseline of percen-
tage identity threshold of 30%—we found that proteins assigned to
multiple functional classes exhibit mosaicism that is not detected by
the ECOD-based analysis. However, these thresholds may still permit
cases of domain mosaicism that are relatively old—particularly if the
shared fragments are evolutionarily conserved. Therefore we were
unable to reveal which functions, if any, may be subject to ongoing,
rapid diversification. To provide a more nuanced view, we introduce a
category ‘recently emerged mosaicism’ to classify cases of recently
emerged sequence mosaicism using two levels: high-confidence (per-
centage identity ≥ 70%) and very high-confidence (percentage iden-
tity ≥ 90%). We then created a network of functional classes with
rHMMs that exhibit a signal of a recently emerged mosaicism at both
confidence levels (see Supplementary Fig. S13). While, as expected,
multiple links were found between proteins classified as tail fibres, tail
spikes and endolysins, connections between proteins of other func-
tionswere also identified, including replication proteins, neck proteins
and anti-defence proteins. Additionally, almost all of the functional
classes linked with rHMMswith an unknown status, implying that they
had amosaic signal with a protein the function of which was uncertain.

To investigate whether instances of recently emerged mosaicism
are genuine indicators of ongoing protein diversification rather than
false positives, we employed a multi-faceted approach. This involved
pairwise comparisons,HHpreddomaindetection andgenomic context
analysis to examine dozens of these pairs in detail. Consequently, we
present illustrative examples fromsix different functional classes: neck
passage protein, tail fibre, endolysin, ribonucleotide reductase, repli-
cation initiation protein, and DNA polymerase (see Fig. 5). These
examples serve as representative cases for their respective functional
classes, showcasing the diversemechanisms and biological contexts in
which domain shuffling facilitates ongoing protein evolution.

As shown in Fig. 5A, one mechanism that mediates protein
diversification is the exchange of domains. This can be best seen using
the example of neck passage structure proteins. These proteins have
been previously identified as a diversity hotspot in Lactococcus
phages59 and some are known to carry carbohydrate-binding
domains60. The provided example shows an exchange of a non-
homologous C-terminal receptor-binding domain and pectin lyase-like
domain while preserving the near-identical N-terminal in two closely
related phages. An analogous example are two tail fibre proteins
(Fig. 5B), found in closely related Klebsiella phages, with a very similar
N-terminal and two, non-homologous receptor-binding C-terminal
domains—a phenomenon verywell known to occur in phages infecting
bacteriawith extensive surfacepolysaccharidediversity28. A similarbut
converse example are two fragment-sharing endolysins found in two
otherwise unrelated genomes ofAnoxybacillus andAeribacillusphages
(Fig. 5C). The said endolysins contain a highly similar C-terminal
(lysozyme) and two unrelated N-terminal domains (exopeptidase and
amidase).

On the other hand, we observed multiple different mechanisms
driving protein diversification in core replication proteins. One was
domain exchange between ribonucleotide reductases in Lactococcus

phages (Fig. 5D). The two closely related genomes both carry a ribo-
nucleotide reductase protein with an identical N-terminal domain and
unrelated C-terminals: ten stranded beta/alpha barrel domain (ECOD
2500.1.1) and FAD/NAD(P)-binding domain (2003.1.2). Interestingly,
one of the genomes has the other C-terminal domain in another pro-
tein that is located downstream from a genetic island that contains
other ribonucleotide reductases and endonuclease domains. This
suggests that diversification of the discussed protein was linked to the
insertion/deletion of a new domain, possibly together with the men-
tioned genetic island.

Another example of a protein diversification mechanism was
found in two replication initiation proteins present in two closely
related genomes of Gordonia phages (Fig. 5E). The two proteins share
near-identical C-terminal regions but with no detectable ECODdomain
hits; they also both have hits to the winged helix-turn-helix domain
(ECOD 101.1.2) but with no detectable similarity at the sequence level.
While the homologous N-terminal could potentially be explained by
strong diversifying selection, the high similarity between the two
phage genomes (ANI = 97%, coverage = 89%) suggests that the most
likely explanation is a domain exchange via recombination into its
distantly related variant.

Last but not least, we investigated the underlying mechanism of
diversification of DNA polymerases. Interestingly, this mechanism is
quite different from the ones above and involves shuffling (i.e., gain or
loss) of domains, as shown in Fig. 5F. Two proteins, found in related
genomes of Bacillus phages, share an identical sequence that we
identified as a helical bundle in DNA polymerase I. Investigation of
other proteins in the neighbouring genetic region revealed that the
two genomes contain the same set of DNA polymerase domains at a
high percentage identity but split into different open reading frames
due to the presence and absence of several endonucleases between
those domains. This suggests that the diversification of replication
regions, includingDNApolymerases, in phagesmayoftenoccur via the
gain and loss of domains.

Domain mosaicism transcends taxonomic and ecological
boundaries
We next sought to determine whether domain mosaicism is restricted
to specific taxonomic and ecological groups of phages. To address
this, we assigned taxonomic information (family and genus), host (at
the bacterial genus level) and predicted lifestyle (temperate or viru-
lent) to all relevant genomes in the NCBI RefSeq database (see
“Methods”). For each genome, we then calculated the proportion of
proteins with signal of mosaicism (ECOD-based or sequence-based).
This analysis yielded several intriguing observations.

First of all, as shown in SupplementaryFig. S14, our results suggest
that temperate phages possess a higher proportion of proteins with
signal of mosaicism compared to lytic phages. These findings are in
line with the existing literature on the greater genetic mosaicism and
frequency of horizontal gene transfer in temperate phages compared
to virulent ones17. Additionally, the observed differences in propor-
tions of proteins with signal of mosaicism between phage families (see
Supplementary Fig. S15) and host genera (see Supplementary Fig. S16)
were statistically significant, with Autographiviridae phages typically
having shorter genomes and showing a higher proportion of proteins
with signal of mosaicism compared to other families (see Supple-
mentary Fig. S15). However, a comparison of the proportion of pro-
teins with signal of mosaicism between multiple groups of phages
should be interpreted with caution due to potential confounding fac-
tors,most importantly due to the limited ability to detectmosaicism in
proteins from phages that are under-represented in databases.

We further investigated whether specific phage taxonomic or
ecological groups predominantly contribute to the observed domain
mosaicism in certain functional classes such as tail spikes or fibres,
DNA polymerases or endolysins. Our analysis revealed that signals of
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the same colour. (Right). Genomic comparison of the regions where the two pro-
teins were found, with the corresponding names of the phage and genome

coordinates. The upper genome fragment corresponds to the upper protein, and
stars show the location of the two proteins. Only proteins with informative func-
tional hits (NCBI Genbank) are labelled and marked in green; otherwise, they are
grey. Links are drawnbetween geneswith percentage identity of at least 30%across
the full length, with the level of identity represented by the scale at the bottom of
the figure. Genome comparison visualisations weremade using clinker97, and the
corresponding NCBI accession numbers are displayed.
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mosaicism were widespread across multiple phage families (see Sup-
plementary Fig. S17). For instance, high levels of mosaicism in tail
spikes were primarily observed in the Kuttervirus genus, while mosai-
cism in proteins related to DNA metabolism was more prevalent in
phages with larger genomes, such as Straboviridae and Hellerviridae.
Unsurprisingly, when categorising phages as either lytic or temperate,
we found that certain functional classes, like those related to integra-
tion or transcription regulation, were almost exclusively found in
temperate phages (see Supplementary Fig. S18). Moreover, endolysins
tended to bemoremosaic in temperate phages, whereas tail fibres and
DNA polymerases exhibited greater mosaicism in lytic phages (see
Supplementary Fig. S18).

Finally, we examined whether domain mosaicism transcends
taxonomicor ecologicalboundaries. Our analysis revealed that for not-
recently-emerged mosaicism (percentage identity < 70%), rHMMs in a
mosaic pair often belonged to different groups (e.g., temperate and
virulent) or consisted of proteins conserved between the groups (see
Supplementary Fig. S19). In contrast, recently emerged mosaicism
(percentage identity ≥ 70%) typically involved rHMMs from the same
group, although in some cases they came from different genera or
hosts, and more rarely, from different taxonomic families or lifestyles
(see Supplementary Fig. S19). Notably, recently emerged mosaicism
involving rHMM pairs from distinct taxonomic families or lifestyles
was exclusively observedwithin receptor-binding proteins, specifically
tail fibres and tail spikes (see Supplementary Fig. S20).

Discussion
In this study, we have systematically analysed the relationship between
genetic diversity, functional diversity and protein modularity (detec-
ted by instances of domain mosaicism) in phages using 134k Hidden
Markov Model (HMM) profiles of representative phage proteins
(rHMMs). We compared these profiles to each other and to the ECOD
domain database using a sensitive homology search via HMM-HMM
comparison. While alternative methods for comparing distant
sequences of proteins exist61,62, HMM-to-HMM alignments are known
to be the most accurate, able to detect homology even when the
sequence similarity falls below 10%39,63. Even though there have been
recent emerging techniques—such as those employing natural lan-
guage processing64—that show promise in achieving sensitivities
comparable to HMM-HMMmethods, they have not yet undergone the
extensive validation that profile-profile alignment methods have.
Therefore, we opted for the well-established and highly reliable HMM-
HMM comparison approach to ensure the robustness of our findings.

Our results demonstrate that domain conservation in phage
proteins is extensive, often linking proteins with different functions
and that these domains often co-occur in multiple combinations. This
is consistent with our knowledge of how phages evolve and their
remarkable ability to not only alter their protein sequence through
rapid evolution but also to recycle existing folds in novel biological
contexts36,37,65. Indeed, our findings show that such domain shuffling,
which is known to be often recombination-driven66, not only links
different functions but also underlies genetic diversity within multiple
functional classes, notably related to tail proteins, lysins, and the core
replication machinery. Our results also demonstrate that domain
shuffling is a vital mechanism for ongoing diversification in phage
populations. The recent emergence of domain mosaicism in proteins
from phages of varied taxonomic and ecological origins underscores
the pivotal role this mechanism plays in facilitating viral adaptation to
new hosts and ecological settings.

Modularity in receptor-binding proteins (tail fibre, tail spike) as
well as in endolysins has been extensively studied before, though to
our knowledge it has not been systematically quantified and compared
to other functional classes. Both receptor-binding proteins and lysins
can play an important role in host range determination67, and previous
studies have repeatedly demonstrated their rapid evolution in the face

of adaptation to new hosts, particularly in receptor-binding
proteins30,68,69. It is therefore not surprising that these proteins
would have evolved a LEGO-like, modular architecture that facilitates
rapid structural alterations to aid viral adaptation7. There are never-
theless important differences between the two groups in terms of how
the resulting domain mosaicism has been and continues to be shaped
by evolution. While receptor-binding proteins and endolysins are both
specific in that they contain enzymes that recognise and hydrolyse
specific sugar moieties, the diversity of the sugar repertoire on which
they act can be quite different. Receptor-binding proteins often use
surface polysaccharides as the primary receptor, notably capsular
polysaccharides and LPS, which due to their rapid evolution can often
vary considerably, even between two bacterial isolates of the same
lineage70. This means that phages are under selective pressure to
rapidly adapt to new hosts that may bear completely different surface
receptors than their close relatives. A good example is Klebsiella
pneumoniae, which is known to often exchange polysaccharide
synthesis loci with other bacterial lineages71 while its phages are known
for not only extensive modularity of receptor-binding proteins28 but
also the existence of phages with complex tails with a broad host
spectrum72. In linewith this, we found clear evidence of the emergence
of recent mosaicism within tail fibres and tail spikes.

Endolysins, on the other hand, target the peptidoglycan of their
bacterial hosts. While there is a considerable diversity of peptidogly-
cans in bacteria73, its diversity does not vary as dramatically between
different lineages of the same species as can be the case with surface
receptors. Consequently, one would expect a weaker diversifying
selection acting within phages that infect closely related bacteria and a
stronger one for those phages that infect distantly related hosts. In line
with this reasoning, Oechslin and colleagues recently found that the
fitness costs of endolysin exchange between phages increased for
viruses infecting different bacterial strains or species30. However, they
also found evidence of recombination-driven exchange of endolysins
between virulent phages infecting the same host and the prophages
carried by this host, pointing to the likely importance of recombina-
tion in driving the evolution of endolysins. This is consistent with the
previous report of the extensive mosaic architecture of domains in
endolysins in Mycobacteriophages57 and across all Uniprot data29. Our
results corroborate these findings by further showing that the diver-
sification of phage endolysins via domain shuffling is an evolutionarily
ongoing phenomenon.

Another major group for which there was evidence of extensive
domain mosaicism were core replication proteins, particularly DNA
polymerases. This result may seem counter-intuitive as core replica-
tion proteins are known to contain highly conserved sites due to the
very precise way in which they process and metabolise DNA/RNA. But
theDNA replicationmachinery is known to behighly diverse across the
tree of life74, including in viruses52, and this diversity is known to have
been evolving since the existence of the last common universal
ancestor (LUCA) with evidence for the importance of recombination
and domain shuffling in this process51. It can be thus expected that
much of the domain mosaicism that we detect in this study is ancient
and predates the emergence of bacteria and phages. However, there
are a few arguments to suggest that such mosaicism has been emer-
ging, and continuously emerges, during co-evolution betweenbacteria
and phages. First, the scale of diversity of (and mosaicism in) some
core replication proteins, for example, DNA polymerases or endonu-
cleases, suggests that maintaining such diversity must have been
beneficial for phages. Second, previous studies have reported the
modularity of DNA polymerases75 as well as the plasticity and mod-
ularity of the DNA replicationmachinery as awhole76 in T4-like phages.
The authors argued that such flexibility gives these viruses an edge in
adapting to their diverse bacterial hosts76. Finally, our data points to
clear examples of recently emerged domain mosaicism in DNA poly-
merases, ribonucleotide reductases and replication initiation proteins.
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This suggests that core replication proteins continue to evolve in the
process of bacteria-phage co-evolution.

One possible and potentially important driver of the diversity of
core replicationproteins in phages could be bacterial defence systems.
There is a growing body of literature describing bacterial defence
systems that target phage replication machinery to prevent viral
infection and their spread in bacterial populations. One example is the
DarTG toxin that was recently shown to ADP-ribosylate phage DNA to
prevent phage DNA polymerase from replicating viral DNA and escape
mutations in DNA polymerase allowed the phage to process the
modified DNA77. Another example is the Nhi, a bacterial nuclease-
helicase that competes with the phage DNA polymerase for the 3’ end
of DNA to prevent phage replication78. A recent study by Stokar-Avihail
and colleagues systematically investigated molecular mechanisms of
phage escape from 15 different phage-defence systems in bacteria and
found that such escape was often linked to mutations in core repli-
cation proteins including DNA polymerase, DNA primase-helicase,
ribonucleotide reductase or SSB proteins24. The authors speculate
that, from the evolutionary point of view, it makes sense for the bac-
terial defences to target essential components of the viral core repli-
cation machinery as an escape mutation would likely induce greater
fitness cost for the virus. We thus think that the observed diversity and
mosaicism observed within and between the proteins associated with
core nucleotidemetabolism reflects the ongoing co-evolutionary arms
race between bacterial phage-defence systems and phages co-
adapting to new bacterial defences. Given that mutations can often
bear a high fitness cost, the recombination of existing folds could be a
viable evolutionarymechanismof adaptation tomove across the steep
fitness landscape.

Altogether, our results can be viewed as one approach to identify
evolutionary hotspots in phage genomes. Bacteria employ a wide
range of, often highly genetically diverse, strategies to resist infection
by phages and mobile genetic elements. Variation in how bacteria
protect themselves over time, space and phylogeny means that no
single strategy—or even a combination or strategies—can universally
work for either side79. This is the type of scenario where one expects
balancing selection (e.g., negative frequency-dependent selection) to
maintain diversity of such strategies80, and where genetic innovation
can be evolutionarily favoured81. In this context, biological modularity
enhances adaptability, allowing organisms to reconfigure or expand
their functional repertoires in response to these changing environ-
mental pressures82. Therefore, we would expect protein modularity,
and the resulting domain shuffling, to become increasingly associated
over time with functions that are essential in overcoming different
bacterial resistance mechanisms that determine host range, such as
host entry, lysis, and evasion of multiple bacterial defence systems.

An important aspect of ongoing protein evolution are applica-
tions in phage biotechnology and engineering, particularly in the
realm of protein design. Understanding the fundamental building
blocks of phage proteins and their functional implications could
facilitate the rational design of synthetic phages with tailored
functionalities83,84 or modified host range32,35. For instance, insights
into receptor-binding proteins, endolysins, and DNA polymerases
could be leveraged to engineer phages that are more effective in tar-
geting specific bacterial strains, thereby enhancing their utility in
phage therapy85 or diagnostics86. Additionally, the knowledge of how
domains can be shuffled and diversified, powered by new AI-aided
technologies like CADENZ87, could inform the design of modular
phage-based biosensors88, delivery vectors89 or enzybiotics90. This
could be particularly useful in applications requiring high specificity
and adaptability, such as targeted drug delivery or environmental
monitoring. Furthermore, the identification of instances of recent
diversification via domain shuffling suggests avenues for directed
evolution experiments aimed at generating novel functionalities.
Overall, our study not only advances our understanding of phage

evolution but also provides a foundational framework that could be
exploited for the rational design of phage-derived
biotechnological tools.

As mentioned before, each of our two approaches to study
domain mosaicism has strengths and weaknesses. While ECOD-based
mosaicism is a robust approach to detect domain mosaicism, we
showed that it is very restrictive and bound to miss genuine cases of
protein fragment shuffling (e.g., horizontal swaps of homologous
domains, sub-domain recombination or domain gain/loss), especially
in proteins that are under-represented in domain databases. On the
other hand, while sequence-basedmosaicism is likely to identify these
problematic cases, it can result in false-positive cases ofmosaicism, for
example stemming from highly variable rates of evolution in different
areas of proteins. One good example are tail length tape measure
proteins. They often exhibitedmosaic signal by sequence but we were
not able to confirm any genuine cases of the recent emergence of
mosaicism either due to the presence of long and repetitive coiled coil
regions or due to the occurrence of frequent splits of very long, near-
identical ORFs into multiple ones. Ideally, a comprehensive under-
standing of the role of protein modularity in phage evolution would
integrate sequence, domain, and structural information.

This leads us to an important caveat: our conclusions are most
robust for well-represented and diverse protein functions, such as
structural proteins or core replication proteins. This is a common
challenge in studies of horizontal gene transfer and genetic recombi-
nation. While recombination promotes the emergence of diversity,
greater diversity, in turn, makes it easier to detect composite
sequences. Given the limitations discussed above, it is to be expected
that a great reservoir ofmosaicism exists beyondwhatwas reported in
this study, namely in (1) proteins of unknown functions, (2) proteins
which are under-represented in domain databases and (3) in less fre-
quent, accessory proteins that themselves could have emerged as a
result of domain shuffling and diversifying selection acting on the
phage pangenome. We thus expect that our results are only the tip of
the iceberg which is the true extent of domain mosaicism in phage
populations.

Our study also raises intriguing questions that extend beyond its
current scopebut offer fertile ground for future research. For example,
our dataset is heavily skewed towards DNA phages, leaving the mod-
ularity of faster-mutating RNA phages largely unexplored. Another
complex yet captivating question is whether phages are intrinsically
moremodular than bacteria. Addressing this would involve navigating
challenges such as horizontal gene transfer which can blur the lines
between bacterial and viral genes, database selection—ideally of tem-
poral nature from co-evolving populations or bacteria and viruses—
and the need for functionally comparable datasets. These questions,
while methodologically demanding, could represent exciting direc-
tions for future research.

Methods
Data
Wedownloaded all complete bacteriophage genomes fromNCBI Virus
in January 2022 using the following criteria: virus = bacteriophage,
genome completeness = complete, sequence type = RefSeq, yielding
4,548 complete genomes. We then detected open reading frames in
those genomes using the approach based on MultiPhate291. This
resulted in 462,721 predicted protein sequences which were clustered
with mmseqs292 (release 14-7e284) using the following parameters:
minimum sequence identity = 0.3, sensitivity = 7, coverage = 0.95,
yielding 133,624 clusters.

HMM profile construction
For each of the clusters, a representative protein sequence was taken
as the one suggested by mmseqs2 (i.e., sequence with the most align-
ments above the special or default thresholds with other sequences of
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the database and these matched sequences). Of those, 50 included
more than 10 unknown characters and were thus excluded from fur-
ther analysis. Each of the remaining 133,574 representative sequences
was then used as a starting point to build a hidden Markov model
(HMM) profile for each of the clusters. The profile was built by aligning
the UniClust30 database93 (release UniRef30_2020_06_hhsuite)
against each representative sequencewith hhblitswith the following
parameters: minimum probability = 90%, minimum sequence identity
withmaster sequence = 10%,minimumcoveragewithmaster sequence
= 30%, and other parameters set to default40. If no hit was found, the
HMM consisted of one single (representative) sequence which was
used as the initial point to further hhblits searches. The resulting
profiles are referred to as rHMMs (HMM profiles of representative
proteins) throughout this work. See also Supplementary Fig. S1 for a
visual outline of the methodology.

All-by-all profile-profile comparison
All 133,574 rHMMs were pairwise compared using hhblits, with a
minimum hit probability threshold set at 0.5 and all other parameters
left at their default settings. For eachpair of rHMMs,weperformed two
types of alignments: query-to-subject and subject-to-query, as HMM-
HMM alignments are non-commutative. For each alignment type, we
calculated both query and subject coverage as the proportion of the
aligned region length to the total length of the query and subject
sequences, respectively. Hit probability was conservatively calculated
as the minimum of the probabilities obtained from both types of
alignments; percentage identity was similarly determined as the
minimum of the percentage identities from both alignments. Unless
specified otherwise, only hits that met or exceeded a (final) minimum
hit probability of p ≥0.95 were considered. To assign rHMMs into
protein families, we recalculated hit probability, query and subject
coverage as above but restricting the homology search to p ≥0.95
instead of 0.5 Then we only considered all pairs of rHMMs with a
pairwise coverage cov = minðqcov,scovÞ ≥ 0:8. For each pair, we then
calculated a weighted score of p × cov, which was used as a weight of a
undirected network. Finally, we used a Markov clustering algorithm
(MCL)94 with an inflation factor –I 2 to cluster rHMMs into 72,078
families.

Functional annotation
Toassign each rHMMto a functional category, we used the Prokaryotic
Virus Remote Homologous Groups database (PHROGs; version 4)41.
Every rHMM was compared with the PHROGs HMM profile database
using hhblits. We used functional classes as defined by PHROGs, but
we additionally simplified and merged the names referring to closely
related biological functions (e.g., RusA-like Holliday junction resolvase
and RuvC-like Holliday junction resolvase became Holliday junction
resolvase; Dda-like helicase and DnaB-like replicative helicase became
DNA helicase; head-tail adaptor Ad1 and head-tail adaptor Ad2 became
adaptor, etc.). The exact mapping of used functional categories onto
PHROGs is provided in Supplementary Data S1. Only functional classes
that (1) were assigned to PHROGs with the total number of at least
500 sequences and (2) were found in at least 20 rHMMs were con-
sidered (unless stated otherwise). Additionally, every rHMM was
compared with a database of antidefence proteins42 using hhblits, and
those that had hits to PHROGs and some specific antidefence function
were assigned the specific antidefense class. Functional classes were
assigned as those with hits to a known class at 80% coverage and 95%
probability hit threshold. Finally, rHMMs with hits to more than a
single functional class were discarded unless they only co-occurred
with generic classes like tail or structural protein.

Domain detection
To detect domains in rHMMs, we used the Evolutionary Classification
of Protein Domains43 database (ECOD, version from 13.01.2022). Each

of the 133,574 rHMMs was compared to the HHpred version of the
ECODdatabaseusinghhblitswith aminimumprobability of 20% and
otherwise default parameters. Domains were considered as those hits
to rHMMs with probability p ≥0.95 and subject coverage scov ≥0.7.

Detection of mosaic protein pairs
To look for potential mosaicism between rHMMs at the domain level
(cf., 2A), we searched for pairs of rHMMs that shared a domain of the
same topology (i.e., fold; ECOD T-groups), detected at the 95% prob-
ability threshold, while each containing domains that belonged to
different ECOD X-groups (i.e., there is absence of evidence of homol-
ogy between these domains at both sequence and structural level). To
look for potential mosaicism between proteins at the sequence level
(cf., Fig. 4B), we compared all rHMMswith eachother at the permissive
probability threshold of 50% to account for potential distant homol-
ogybetween the twosequences.Again, thequeryand subject coverage
were calculated as the total number of residues in the aligned
sequence regions by their respective lengths. The pair of rHMMs was
considered mosaic if it was found to share a similar genetic fragment
(probability p ≥0.95 percentage identity pid ≥0.3) in the background
of the absence of homology at the permissive probability threshold:
maxðscov,qcovÞ ≤ 0:5. We only considered rHMM pairs with a mini-
mum aligned fragment length of 50aa.

Statistics and reproducibility
Multiple ECOD domains were tested for being over-represented in
rHMMs with evidence of domain mosaicism. Additionally, all con-
sidered functional classes were tested for being over-represented in
families of rHMMs with evidence of domain mosaicism. All these tests
were done using one-tailed Fisher’s exact tests and Bonferroni cor-
rection for multiple testing, as described below.

Odds ratio to be over-represented in proteins with evidence of
domainmosaicism. Eachdomain architecturewas classified asmosaic
(i.e., having evidence of mosaicism) or non-mosaic (no evidence of
mosaicism). Then for each topology (ECODT-group) we calculated the
number mosaic domain architectures including this topology (mt),
number of mosaic domain architectures not including this topology
(mnt), number of non-mosaic domain architectures including this
topology (nt) and number of non-mosaic domain architectures not
including this topology (nnt). Then the odds ratio was calculated as:

OR=
mt=mnt

nt=nnt
: ð1Þ

Functional classes over-represented in families with evidence of
domainmosaicism. Each rHMM family was classified asmosaic by our
ECOD-based or sequence-based definition of domain mosaicism if it
contained any rHMMwith a respectivemosaic signal. Then, for each of
the 99 well-specified functional classes (excluding the generic classes
‘tail’ and ‘structural protein’) we counted the number of mosaic
families (by ECOD and sequence, respectively) that include at least one
rHMM assigned to this functional class nm and the number of mosaic
families (by ECOD and sequence, respectively) that do not include any
rHMM assigned to this family but include at least one rHMM assigned
to any of the remaining 98 functional classes, mm. Likewise, for each
functional class, we counted the number of non-mosaic families that
include at least one rHMMassigned to this functional class, nn, and the
number of non-mosaic families thatdonot include any rHMMassigned
to this functional class but include at least one rHMM assigned to any
of the remaining 98 functional classes,mn. Those numbers were then
passed to a contingency table to perform the one-tailed Fisher’s exact
test. As the testwas performed separately for each of the 99 functional
classes, we adjusted the p-values with a Bonferroni correction.
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Taxonomic and ecological metadata
We first assigned a bacterial host (Genus level) to a phage genome
using information from the NCBI database (release October 2022). We
used the 38th release of the ICTV classification95 to assign both Genus
and Family. (It is worth noting that many phage genomes lacked
assigned taxonomic classifications, particularly at the family level.) For
lifestyle prediction, we employed BACPHLIP96 (version 0.9.6). Phages
with a temperate probability of ≥90%were classified as temperate and
those with a temperate probability of ≤10% were classified as virulent.
Overall, host, family, genus and lifestyle information was assigned to
n = 4543, n = 1579, n = 3611 and n = 3375 genomes, respectively.

Finally, we assigned host, taxonomic family, genus, and lifestyle to
rHMMs involved in mosaic pairs. Specifically, if all proteins within a
given rHMM originated from the same group (excluding unclassified
or unknown ones), the rHMM was allocated to that group. However,
numerous rHMMs consisted of proteins that were conserved across
multiple groups, including different families, genera, hosts, or life-
styles. In such instances, we were unable to assign them to any
specific group.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Genomes used in this study were downloaded from NCBI Refseq in
January 2022. Representative HMMprofiles were built with UniClust30
release UniRef30_2020_06_hhsuite. Functional annotation was
carried out with PHROGs version 4. Domain architectures were pre-
dicted using ECOD version ECOD_F70_20200207. All data necessary
to reproduce the results have been uploaded to FigShare and are
accessible at https://doi.org/10.6084/m9.figshare.24004092, with
NCBI accession numbers which can be used to link all protein
sequences to the corresponding genomes. Domain architecture
lookup in different functional classes is available at: https://
bognasmug.shinyapps.io/PhageDomainArchitectureLookup. Source
data are provided with this paper.

Code availability
Two computational pipelineswereused to generate the results: phage-
protein-modularity-data and phage-protein-modularity-figures. The
first pipeline was written in Python3 and processes NCBI RefSeq data
and carries out HMM profile construction, all-by-all HMM comparison
and HMM-HMM comparison to PHROGs and ECOD databases. The
second pipeline, written in R version 4.1, takes the output of the first
pipeline as input and generates all outputs andfigures presented in the
publication. Both pipelines are available under the following Github
releases: https://github.com/bioinf-mcb/phage-protein-modularity-
data, archived under https://doi.org/10.5281/zenodo.10021838,
https://github.com/bioinf-mcb/phage-protein-modularity-figures,
archived under https://doi.org/10.5281/zenodo.10026778.
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